The present invention relates to feeder breakers for the mining industry and, in particular, to an arrangement for coupling a pick to a feeder breaker.
Feeder breakers include a breaker for processing material that is traveling along a conveyor. Typically, the breaker includes an axle, a drum supported by and rotatable with the axle, and holders positioned on an exterior surface of the drum. Each holder supports a pick or an intermediate holder that supports a pick, and the pick engages and breaks apart the material on the conveyor to ensure that the material on the conveyor remains at an acceptable size. A conventional holder includes a straight bore that receives a shank of an intermediate holder. The shank is inserted into the bore from one end and secured at the opposite end by a threaded nut. A spacer ring is positioned in the bore between the holder and the shank. As the breaker engages the material, the impact force of the material against the pick is absorbed by the front face of the holder around the bore from the intermediate holder. Over time, the holder's face may become distorted and cause the intermediate holder to become loose, which may cause the impact forces to shear the shank of the intermediate holder.
In one embodiment, the invention provides a pick system including a holder and a pick assembly. The holder includes a first end, a second end, and a bore extending between the first end and the second end and defining a longitudinal axis. The surface of the bore may be tapered so that the diameter of the bore proximate the first end is greater than the diameter of the bore proximate the second end. The pick assembly includes a shaft. The shaft is received within the bore of the holder along the longitudinal axis, and the shaft may be tapered to mate with the bore.
In another embodiment, the invention provides a feeder breaker for processing cut material. The feeder breaker includes a conveyor and a breaker for engaging the cut material. The conveyor includes a first end for receiving material and a second end for discharging material. The breaker is positioned between the first end and the second end of the conveyor. The breaker includes a drum rotatably supported on an axle and a plurality of pick systems positioned circumferentially around the drum. Each pick system includes a holder and a pick assembly. The holder has a first end and a second end and defines a bore extending between the first end and the second end along a longitudinal axis. A surface of the bore is tapered with a diameter of the bore proximate the first end being greater than a diameter of the bore proximate the second end. The pick assembly includes a shaft received within the bore of the holder along the longitudinal axis. The shaft is tapered to mate with the bore.
In yet another embodiment, the invention provides a method of manufacturing a pick system for a breaker including a drum rotatable about a drum axis and having an outer surface. The method includes forming a pick holder having a first end and a second end, securing the pick holder to the outer surface of the drum, inserting a pick assembly into the first end of the bore, and securing the pick assembly relative to the holder. The pick holder defines a bore extending between the first end and the second end along a longitudinal axis. Forming includes forming a surface of the bore to be tapered with a diameter of the bore proximate the first end being greater than a diameter of the bore proximate the second end. The pick assembly includes a tapered shaft that mates with the bore.
Other independent aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any independent embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other independent embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Referring to
As shown in
The breaker pick 78 includes a mining point 122, a pick shoulder 124 transitioning to a pick shaft 126, and a pin receiving feature in the form of a groove or a pin recess 130 formed in the shaft 126. The pick shaft 126 is sized to be received within the pick opening 110 of the intermediate holder 62. Further, the pin recess 130 is positioned on the pick shaft 126 such that when the breaker pick 78 is installed in the intermediate holder 62, the pin recess 130 is aligned with the pin aperture 114 (
In the illustrated embodiment, the pin 80 is a coiled spring pin, and both the pin 80 and the pin aperture 114 are sized such that the pin 80 is retained by friction within the pin aperture 114. In the illustrated embodiment, the pin 80 is made from stainless steel. The pin material resists reaction loads and shear failures that result from the impacts that the breaker pick 78 absorbs during normal use. In other embodiments (not shown), other suitable materials may be used or the pin aperture 114 and the pin 80 may be a different shape (e.g., square, rectangular, oval), as desired.
The pick assembly 50 is installed by first inserting the shaft 94 of the intermediate holder 62 into the holder 46 such that the shoulder 106 faces the first end 82 of the holder 46. With the intermediate holder 62 positioned in the holder 46, one or more washers 70 are aligned and installed on the shaft 94 of the intermediate holder 62 proximate the second end 86. The nut 74 is then threaded onto the threaded end portion 98 of the intermediate holder 62. The nut 74 is tightened to a desired torque and/or until the washer(s) 70 are compressed or flattened to a desired thickness. Preferably, this tightness is applied by a torque wrench to prevent over-tightening. The washer 70 acts in cooperation with the nut 74 to inhibit the nut 74 from unthreading (i.e., loosening). The locking pin 76 (
Once the intermediate holder 62 is tightened and secured within the holder 46, the pick shaft 126 of the breaker pick 78 is inserted into the pick opening 110 such that the recess 130 aligns with the pin aperture 114. The pin 80 is inserted into the pin aperture 114 and into the recess 130 of the breaker pick 78 so that the pin 80 is engaged between the body portion 102 of the intermediate holder 62 and the breaker pick 78. Such positive engagement holds the breaker pick 78 securely in position, while the pin 80 remains within the pin aperture 114.
To remove the breaker pick 78, the above installation process is reversed. The pin 80 is pushed out of the pin aperture 114 and therefore out of engagement with the breaker pick 78. Once the used breaker pick 78 is removed, a new breaker pick 78 may be reinserted into the holder 62.
The pick assembly 50 provides a system for replacing breaker picks on feeder breakers with relatively simple tooling. Also, the tapered shaft 94 provides a larger surface area for distributing stress from the impact loads, which may prevent the stress from being concentrated around the first end 82 of the holder 46. In addition, the tapered bore 90 and shaft 94 eliminate the need for a spacer ring, which may reduce the likelihood of shear failure caused by the spacer ring becoming distorted during operation.
Furthermore, in the illustrated embodiment, if the nut 74 were to become loose during operation, the intermediate bit holder 62 would re-seat itself within the bore 90 during the subsequent impact. As a result, the stress would continue to be distributed among the tapered surfaces, which may reduce wear on the intermediate pick holder 62 and extend the life of the pick assembly 50. These and other independent advantages may lead to savings and physical advantages for the end user. When installed, the breaker pick system 50 does not penalize machine performance and may provide an added benefit for the end user.
Thus, the invention may provide, among other things, a tapered pick holder. Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the invention as described.
This application claims the benefit of prior-filed, co-pending U.S. Provisional Application No. 61/777,375, filed Mar. 12, 2013, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61777375 | Mar 2013 | US |