This application claims priority to Japanese Patent Application No. 2020-063369 filed on Mar. 31, 2020, incorporated herein by reference in its entirety.
The present disclosure relates to a tapered roller bearing and a cage.
Japanese Unexamined Patent Application Publication No. 2013-221592 (JP 2013-221592 A) discloses a tapered roller bearing. The tapered roller bearing includes an inner ring, an outer ring, a plurality of tapered rollers, and an annular cage. The cage has a plurality of cage pockets that houses the tapered rollers, respectively, thereby retaining the tapered rollers with intervals in a circumferential direction. To prevent the tapered rollers housed in the cage pockets from detaching radially outward when assembling the tapered roller bearing, each cage pocket has a retainer that can be brought into contact with the tapered roller from a radially outer side.
The tapered roller bearing is assembled as follows. As illustrated in
In view of the above, the small-diameter-side portion 109a of the tapered roller 109 is forced to climb over the small rib 107 by pushing the inner ring 108 in the axial direction against the cage 101 of the set 100 with a great force by using a press or the like. At this time, the tapered roller 109 pushes the retainer 103, and the cage 101 is elastically deformed in a direction in which its diameter increases. Through the assembling method described above, the inner ring 108, the cage 101, and the tapered rollers 109 are integrated into an inner ring unit. An outer ring is attached to the inner ring unit to complete the tapered roller bearing.
When the small-diameter-side portion 109a of the tapered roller 109 climbs over the small rib 107, a considerable force is applied to the cage 101. When the deformation of the cage 101 exceeds its permissible range, the cage 101 may turn white or may be plastically deformed. Further, the cage 101 may be cracked.
In view of the above, the retainer 103 may be downsized or its protruding height may be reduced. Therefore, the permissible amount of the displacement of the tapered roller 109 increases to facilitate the operation for assembling the set 100 and the inner ring 108. In this case, however, the tapered roller 109 can be displaced greatly and the cage 101 can also be displaced greatly in the state of the inner ring unit obtained by assembling the set 100 and the inner ring 108. As a result, the tapered roller 109 of the inner ring unit may climb over the small rib 107 to detach from the cage pocket 102. Thus, the inner ring 108, the tapered rollers 109, and the cage 101 may be disintegrated.
As described above, when the operation for assembling the set 100 and the inner ring 108 is facilitated by, for example, downsizing the retainer 103, the inner ring unit including the inner ring 108, the tapered rollers 109, and the cage 101 is likely to disintegrate. When the disintegration of the inner ring unit is suppressed by, for example, upsizing the retainer 103, the operation for assembling the set 100 and the inner ring 108 is difficult.
The present disclosure provides a tapered roller bearing and a cage that can achieve both facilitation of an operation for assembling an inner ring and a set of a cage and a plurality of tapered rollers, and suppression of disintegration of an inner ring unit obtained by assembling the set and the inner ring.
A tapered roller bearing according to a first aspect of the present disclosure includes an inner ring, an outer ring, a plurality of tapered rollers, and an annular cage. The inner ring has an inner ring raceway on an outer peripheral side, a small rib provided on one side of the inner ring raceway in an axial direction, and a large rib provided on another side of the inner ring raceway in the axial direction. The outer ring has an outer ring raceway on an inner peripheral side. The tapered rollers are in rolling contact with the inner ring raceway and the outer ring raceway. The cage has a plurality of cage pockets that houses the tapered rollers, respectively. Each of the cage pockets has a retainer configured to permit displacement of the tapered roller that is housed in a direction with a component in a radial direction relative to a central axis of the tapered roller bearing, and restrict detachment of the tapered roller to an outer side in the radial direction by bringing the retainer into contact with a part of an outer peripheral surface of the tapered roller. The cage pockets include a first cage pocket and a second cage pocket. The first cage pocket has a first retainer with which a permissible amount of the displacement is a first displacement amount. The second cage pocket has a second retainer with which the permissible amount of the displacement is a second displacement amount smaller than the first displacement amount.
According to the aspect described above, the permissible amount of the displacement with the component in the radial direction is larger in the tapered roller in the first cage pocket than the tapered roller in the second cage pocket. Therefore, when assembling the inner ring and a set of the cage and the tapered rollers, the tapered roller in the first cage pocket can easily climb over the small rib of the inner ring. As compared to a case where all the cage pockets are the second cage pockets in which the permissible amount of the displacement is small, the operation for assembling the set and the inner ring is facilitated. The permissible amount of the displacement with the component in the radial direction is smaller in the tapered roller in the second cage pocket than the tapered roller in the first cage pocket. Therefore, when the set and the inner ring are assembled into an inner ring unit, the tapered roller in the second cage pocket and the cage are hardly displaced relative to each other. As a result, the tapered rollers housed in the cage pockets hardly detach from the inner ring unit, thereby suppressing disintegration of the inner ring unit.
In the aspect described above, the first retainer may have a first clearance in the radial direction from the tapered roller housed in the first cage pocket, and the second retainer may have a second clearance in the radial direction from the tapered roller housed in the second cage pocket. The second clearance is smaller than the first clearance. Thus, the first cage pocket has the first retainer with which the permissible amount of the displacement is the first displacement amount, and the second cage pocket has the second retainer with which the permissible amount of the displacement is the second displacement amount smaller than the first displacement amount.
In the aspect described above, the number of the second cage pockets may be smaller than the number of the first cage pockets. According to this structure, even though the number of the second cage pockets is small, the cage is hardly displaced relative to the inner ring. Since the number of the second cage pockets is small, the operation for assembling the set and the inner ring is facilitated.
In the aspect described above, a plurality of the second cage pockets may be arranged away from each other in a circumferential direction relative to the central axis of the tapered roller bearing with the first cage pocket interposed between the second cage pockets. According to this structure, the cage is hardly displaced relative to the inner ring more securely.
In the aspect described above, the second retainer may be provided on an inner side in the radial direction with respect to the first retainer. Thus, the second cage pocket has the second retainer with which the permissible amount of the displacement is the second displacement amount smaller than the first displacement amount.
The outer peripheral surface of the tapered roller is shaped along a conical surface in which the outside diameter increases toward the other side in the axial direction. Therefore, the second retainer may be provided on the other side in the axial direction with respect to the first retainer. Thus, the second cage pocket has the second retainer with which the permissible amount of the displacement is the second displacement amount smaller than the first displacement amount.
A second aspect of the present disclosure relates to a cage for a tapered roller bearing including an inner ring, an outer ring, and a plurality of tapered rollers. The inner ring has an inner ring raceway on an outer peripheral side, a small rib provided on one side of the inner ring raceway in an axial direction, and a large rib provided on another side of the inner ring raceway in the axial direction. The outer ring has an outer ring raceway on an inner peripheral side. The tapered rollers are in rolling contact with the inner ring raceway and the outer ring raceway. The cage includes a plurality of cage pockets that houses the tapered rollers, respectively. Each of the cage pockets has a retainer configured to permit displacement of the tapered roller that is housed in a direction with a component in a radial direction relative to a central axis of the tapered roller bearing, and restrict detachment of the tapered roller to an outer side in the radial direction by bringing the retainer into contact with a part of an outer peripheral surface of the tapered roller. The cage pockets include a first cage pocket and a second cage pocket. The first cage pocket has a first retainer with which a permissible amount of the displacement is a first displacement amount. The second cage pocket has a second retainer with which the permissible amount of the displacement is a second displacement amount smaller than the first displacement amount.
According to the aspect described above, the permissible amount of the displacement with the component in the radial direction is larger in the tapered roller in the first cage pocket than the tapered roller in the second cage pocket. Therefore, when assembling the inner ring and a set of the cage and the tapered rollers, the tapered roller in the first cage pocket can easily climb over the small rib of the inner ring. As compared to a case where all the cage pockets are the second cage pockets in which the permissible amount of the displacement is small, the operation for assembling the set and the inner ring is facilitated. The permissible amount of the displacement with the component in the radial direction is smaller in the tapered roller in the second cage pocket than the tapered roller in the first cage pocket. Therefore, when the set and the inner ring are assembled into an inner ring unit, the tapered roller in the second cage pocket and the cage are hardly displaced relative to each other. As a result, the tapered rollers housed in the cage pockets hardly detach from the inner ring unit, thereby suppressing disintegration of the inner ring unit.
According to the aspects described above, it is possible to achieve both the facilitation of the operation for assembling the inner ring and the set of the cage and the tapered rollers, and the suppression of the disintegration of the inner ring unit obtained by assembling the set and the inner ring.
Features, advantages, and technical and industrial significance of exemplary embodiments of the disclosure will be described below with reference to the accompanying drawings, in which like signs denote like elements, and wherein:
Structure of Tapered Roller Bearing
An “axial direction”, a “radial direction”, and a “circumferential direction” in the description of the inner ring 11, the outer ring 12, and the cage 14 are defined. The “axial direction” is a direction along central lines of the inner ring 11, the outer ring 12, and the cage 14. The axial direction includes directions parallel to the central lines. The “radial direction” is a direction orthogonal to the central lines. The “circumferential direction” is a direction along a circle about the central lines. In the drawings, the coinciding central lines of the inner ring 11, the outer ring 12, and the cage 14 are represented by reference symbol “C0”.
An “axial direction”, a “radial direction”, and a “circumferential direction” in the description of the tapered roller 13 are defined. The “axial direction” of the tapered roller 13 is a direction along a central line Cl of the tapered roller 13. For distinction from the axial direction of the inner ring 11, the outer ring 12, and the cage 14, the axial direction of the cage 14 and the like may be referred to simply as “axial direction”, and the axial direction of the tapered roller 13 may be referred to as “roller axial direction”. The roller axial direction includes directions parallel to the central line Cl. The “radial direction” is a direction orthogonal to the central line Cl of the tapered roller 13, and may be referred to as “roller radial direction”. The “circumferential direction” is a direction along a circle about the central line Cl of the tapered roller 13, and may be referred to as “roller circumferential direction”.
The inner ring 11 is an annular member formed by using, for example, bearing steel or steel for machine structural use. The inner ring 11 has a tapered inner ring raceway 21 on its outer peripheral side. The inner ring 11 has a cone front face rib (hereinafter referred to as “small rib”) 22 provided on one side of the inner ring raceway 21 in the axial direction (left side in
The outer ring 12 is an annular member formed by using, for example, bearing steel or steel for machine structural use. The outer ring 12 has a tapered outer ring raceway 20 on its inner peripheral side. The tapered roller 13 is a truncated cone-shaped member formed by using, for example, bearing steel. The tapered roller 13 has a circular roller small end face 16 having a small diameter and located on one side in the roller axial direction (left side in
The cage 14 is made of a synthetic resin, and is formed by injection molding. For example, the cage 14 of this embodiment is made of a polyphenylene sulfide resin (PPS). The cage 14 is resistant to lubricating oil (oil resistance), relatively hard, and hardly deformed elastically. The cage 14 may be manufactured by using a 3D printer. In the present disclosure, the cage 14 can be brought into sliding contact with a part of the inner peripheral surface of the outer ring 12, and accordingly rotation of the cage 14 is guided by the outer ring 12. That is, the tapered roller bearing 10 illustrated in
As illustrated in
In the reference state, an imaginary circle connecting the centers of the roller small end faces 16 of the tapered rollers 13 is defined as a small-diameter-side pitch circle of the tapered rollers 13 (in design), and an imaginary circle connecting the centers of the roller large end faces 17 of the tapered rollers 13 is defined as a large-diameter-side pitch circle of the tapered rollers 13 (in design). An assembly in a state in which the tapered rollers 13 are housed in the cage pockets 34 of the cage 14 (see
In each of the set 50 and the inner ring unit 51, the tapered rollers 13 are arranged along the small-diameter-side pitch circle and the large-diameter-side pitch circle unless otherwise noted. In the present disclosure, this state may be described simply as a state in which the tapered rollers 13 are arranged “along pitch circle”. Each tapered roller 13 is slightly displaceable with a radially outward component until the tapered roller 13 arranged along the pitch circle is brought into contact with the retainers 40. Unless otherwise noted, the tapered rollers 13 are arranged along the pitch circle.
Cage Pocket 34
As described above, the cage 14 has the cage pockets 34. Each of the cage pockets 34 has a set of retainers 40 and 40 in pairs. In each of the set 50 and the inner ring unit 51, a clearance is formed between the small-diameter annular body 31 and the roller small end face 16 of the tapered roller 13 in a state in which the roller large end face 17 of the tapered roller 13 is in contact with the large-diameter annular body 32. In each of the set 50 and the inner ring unit 51, when the tapered roller 13 arranged along the pitch circle is displaced with the radially outward component, the retainers 40 and 40 are brought into contact with a part of the outer peripheral surface of the tapered roller 13 from a radially outer side. Therefore, radially outward detachment of the tapered roller 13 is prevented.
In each of the set 50 and the inner ring unit 51, a radial clearance is formed between each of the retainers 40 and 40 and the tapered roller 13 located along the pitch circle and housed in the cage pocket 34. Therefore, the retainers 40 and 40 permit displacement of the tapered roller 13 with a radial component. Although the retainers 40 and 40 of the cage pocket 34 permit the displacement of the housed tapered roller 13 with the radial component, the retainers 40 and 40 are brought into contact with a part of the outer peripheral surface of the tapered roller 13 when the tapered roller 13 is displaced. Thus, the radially outward detachment of the tapered roller 13 can be prevented.
The displacement of the tapered roller 13 with the radial component includes not only linear displacement of the tapered roller 13 that moves radially outward but also, as described later, displacement in which the tapered roller 13 is brought into contact with a part of the retainer 40 during assembling and the small-diameter-side portion 13a of the tapered roller 13 pivots radially outward about the contact position. In the set 50, the roller small end face 16 is brought into contact with the small-diameter annular body 31 when the tapered roller 13 is pivotally displaced. Therefore, the pivotal displacement of the tapered roller 13 is restricted by the retainer 40 and the small-diameter annular body 31. The small-diameter annular body 31 has a uniform shape (sectional shape) along the circumferential direction. As described later, the cage 14 has two types of cage pocket 34 (first cage pocket 34A and second cage pocket 34B) different in either or both of shapes and arrangements of the retainers 40. Due to the difference in the retainers 40, permissible amounts of the pivotal displacement of the tapered rollers 13 differ from each other.
In
In
In order that the second displacement amount may be smaller than the first displacement amount, the cage 14 of the present disclosure has at least one of the following first and second structures.
First structure: The contact position of the second retainer 40B with the tapered roller 13 (crest 41 of the retainer 40 near the contact position) is provided on an inner side in the radial direction of the cage 14 with respect to the contact position of the first retainer 40A.
Second structure: The contact position of the second retainer 40B with the tapered roller 13 (crest 41 of the retainer 40 near the contact position) is provided on the other side in the axial direction of the cage 14 with respect to the contact position of the first retainer 40A.
Supplemental description is given about the second structure. The outer peripheral surface of the tapered roller 13 is shaped along a conical surface in which the outside diameter increases toward the other side in the roller axial direction. With the second structure, the second clearance K2 can be made smaller than the first clearance K1, and the “second displacement amount” can be made smaller than the “first displacement amount”.
Due to the difference in the arrangements of the retainers 40, the cage 14 has the two types of cage pocket 34, that is, the cage pockets 34A and 34B. Although illustration is omitted, the cage 14 may have, due to the difference in the shapes of the retainers 40, the two types of cage pocket 34, that is, the cage pockets 34A and 34B that are different in the permissible amount of the displacement of the tapered roller 13.
As described above,
As described above, the cage pockets 34 of the cage 14 include the first cage pockets 34A and the second cage pockets 34B. The first cage pocket 34A has the first retainers 40A and 40A. With the first retainers 40A and 40A, the permissible amount of the displacement of the tapered roller 13 housed in the first cage pocket 34A and located along the pitch circle is the first displacement amount. The second cage pocket 34B has the second retainers 40B and 40B. With the second retainers 40B and 40B, the permissible amount of the displacement of the tapered roller 13 housed in the second cage pocket 34B and located along the pitch circle is the second displacement amount smaller than the first displacement amount.
Assembling of Tapered Roller Bearing 10
The tapered roller bearing 10 having the structure described above is assembled as follows. As illustrated in
Each cage pocket 34 has the retainers 40 and 40. As illustrated in
As described above, the cage 14 has the two types of cage pocket 34. As described above, the permissible amount of the displacement with the radial component in the first cage pocket 34A is the first displacement amount. The first displacement amount is larger than the permissible amount of the displacement in the second cage pocket 34B (second displacement amount). That is, the permissible amount of the displacement with the radial component is larger in the tapered roller 13 in the first cage pocket 34A than the tapered roller 13 in the second cage pocket 34B. Therefore, when assembling the set 50 and the inner ring 11, an “elastic deformation amount (see a left part of
When the set 50 and the inner ring 11 are assembled into the inner ring unit 51 as illustrated in
In the state of the inner ring unit 51 illustrated in
Through the assembling method described above, the inner ring 11, the cage 14, and the tapered rollers 13 are integrated into the inner ring unit 51. The outer ring 12 is attached to the inner ring unit 51 to complete the tapered roller bearing 10.
Particularly in the present disclosure, the number of second cage pockets 34B is smaller than the number of first cage pockets 34A as illustrated in
Tapered Roller Bearing 10 of Present Disclosure
If all the cage pockets 34 are the second cage pockets 34B in which the permissible amount of the displacement of the tapered roller 13 (second displacement amount) is small, the assembling of the set 50 and the inner ring 11 requires a great force (load). Therefore, the assembling is difficult. If all the cage pockets 34 are the first cage pockets 34A in which the permissible amount of the displacement of the tapered roller 13 (first displacement amount) is large, the tapered rollers 13 and the cage 14 are likely to disintegrate from the inner ring 11 in the state of the inner ring unit 51. In the present disclosure, the cage pockets 34 of the cage 14 include the first cage pockets 34A having the first retainers 40A with which the permissible amount of the displacement is the first displacement amount, and the second cage pockets 34B having the second retainers 40B with which the permissible amount of the displacement is the second displacement amount smaller than the first displacement amount. Therefore, it is possible to achieve both the facilitation of the operation for assembling the inner ring 11 and the set 50 of the cage 14 and the tapered rollers 13, and the suppression of the disintegration of the inner ring unit 51 obtained by assembling the set 50 and the inner ring 11.
In the present disclosure, description is given of the single-row tapered roller bearing 10 having the tapered rollers 13 arrayed in one row in the circumferential direction. Although illustration is omitted, a cage of a multi-row tapered roller bearing may have the structure described above. As another form, in a case where a wheel bearing device (referred to also as “hub unit”) configured to support a wheel of an automobile is constituted by a tapered roller bearing, that is, in a case where the wheel bearing device has tapered rollers as rolling elements in part, a cage that retains the tapered rollers may have the structure described above.
Other Features
The cage 14 has a first contact surface 61 on the radially outer side and on one side in the axial direction, and a second contact surface 62 on the radially outer side and on the other side in the axial direction. The first contact surface 61 includes a part of the outer peripheral surface of the small-diameter annular body 31. The first contact surface 61 and the second contact surface 62 can be brought into sliding contact with the inner peripheral surface of the outer ring 12, and accordingly the rotation of the cage 14 is guided by the outer ring 12. In a state in which the central lines of the outer ring 12 and the cage 14 coincide with each other as illustrated in
As described above, the cage 14 is guided by the outer ring by reducing the clearance e1. Further, a clearance e2 formed between an inner peripheral surface 65 of the small-diameter annular body 31 of the cage 14 and an outer peripheral surface 66 of the small rib 22 of the inner ring 11 is set small. The clearance e2 also functions as a labyrinth clearance. Therefore, external lubricating oil hardly enters the tapered roller bearing 10 from one side in the axial direction through a space between the cage 14 and the inner ring 11. By suppressing the entry of the lubricating oil into the tapered roller bearing 10, resistance to stirring of the lubricating oil during rotation of the tapered roller bearing 10 is reduced. Therefore, a running torque (rotational resistance) of the tapered roller bearing 10 can be reduced.
The lubricating oil passing through the clearances e1 and e2 flows toward the other side of the outer ring 12 in the axial direction as indicated by arrows G1 and G2 in
A clearance e3 is provided between the radially outer surface of the cage 14 on the other side in the axial direction (second contact surface 62) and a part of the inner peripheral surface of the outer ring 12. The lubricating oil in the tapered roller bearing 10 is discharged to the outside through the clearance e3. That is, a part of the lubricating oil flowing along the inner peripheral surface of the outer ring 12 flows toward the face 24 of the large rib 23 as described above, and the remaining (surplus) lubricating oil is discharged through the clearance e3. Thus, it is possible to prevent an increase in the stirring resistance of the tapered roller bearing 10 due to the surplus lubricating oil.
The embodiment disclosed herein is illustrative but is not limitative in all respects. The scope of rights of the present disclosure is not limited to the embodiment described above, and encompasses all modifications within the scope of equivalents to the elements in the claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-063369 | Mar 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4728204 | Colanzi | Mar 1988 | A |
20150049971 | Dittmar | Feb 2015 | A1 |
20170335886 | Kamamoto | Nov 2017 | A1 |
20200408260 | Kojima et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
2013-221592 | Oct 2013 | JP |
Number | Date | Country | |
---|---|---|---|
20210301866 A1 | Sep 2021 | US |