The present disclosure provides a coupling for connecting a drill tool to a drill string and related methods.
Underground drilling operation often requires connecting a drill tool (e.g., drill bit, backreamer, etc.) to a drill string. It is desirable to connect the drill tools to a drill string in a manner that facilitates quick and easy assembly and disassembly. Low torque coupling, commonly referred to as “torque-less” connection, can provide such functionality. The useful life and strength of such connections can be improved upon. The present disclosure provides a low torque coupling with improved strength and durability.
Referring to
Referring generally to
In the depicted embodiment an adaptor 18 is threadly connected in the proximal end 22 of the sonde housing 14 via a torque connection. The adaptor 18 and sonde 14 are also referred to herein generically as a second member. A collar 26 is provided to slide over a distal end 28 of the starter rod 12 and a portion of the adaptor 18 to prevent relative rotation between the starter rod and adaptor (and hence also prevent relative rotation between the starter rod 12 and the sonde housing 14).
In the depicted embodiment an inner surface of the collar 26 is configured to engage external structural features on the distal end 28 of the starter rod 12 and on the exterior surface of the adaptor 18. In the depicted embodiment the collar includes internal flats 30 that engage flats 32 on the distal end 28 of the starter rod 12 and flats 68 on the exterior of the adaptor 18. The connection between the distal end 28 of the starter rod 12 and the proximal end 36 of the adapter 18 is described in greater detail below.
In the depicted embodiment the coupling includes first member including a driving end and a driven end. In the depicted embodiment, the first member is shown as the starter rod 12. The drive end is shown as the distal end 28 and the driven end is shown as the proximal end 34. The proximal end 34 is threadly connected to the down hole most drill rod 16 via a torque connection.
In the depicted embodiment the driving end of a first member (e.g., the distal end 28 of the starter rod 12) includes a tapered portion (recess 36 shown in
In the depicted embodiment the second member (adaptor 18) includes a drive end 44 and a driven end 46. The drive end 44 includes a threaded connection for attaching to a cutting tool (e.g., a sonde housing 14 supporting a drill bit). The driven end 46 is adapted for connection with the driving end 28 of the first member 12. The driven end 46 includes a tapered portion (e.g., recess 48 shown in
In the depicted embodiment the first land 40 is configured to engage the fourth land 54 and the second land 42 is configured to engage the third land 52 when the tapered threads on the first member 28 are engaged with the tapered threads on the second member 18. In the depicted embodiment the clearance between the first land 40 and fourth land 54 and the clearance between the second land 42 and the third land 52 is sufficient to allow a user to slidably engage the first and second members by hand. In the depicted embodiment the first land and the fourth land are cylindrical having diameters that are at least 0.003 inches different from each other (for example, within 0.003 inches to 0.006 inches (0.076 to 0.150 millimeters) of each other). In other words, the clearance between the surfaces of the lands in a radial direction (radial clearance) is between 0.0015 to 0.003 inches (0.038 to 0.076 millimeters). It should be appreciated that in alternative embodiment the lands could be of different geometric configurations and have different clearance therebetween.
In some embodiment the peaks 58 of the threads on the tapered portion of second member and valleys 60 of the threads of the first member are offset by at least 0.030 inches (0.76 millimeters) even when the threads are engaged. In the depicted embodiment the pitch diameter between the threaded portions on the first and second members are offset by at least 0.030 inches. On a tapered thread like the ones shown the pitch diameter at a given position on the thread axis is the diameter of the pitch cone at that position. It should be appreciated that when the crest of the thread is truncated beyond the pitch line, the pitch diameter and pitch cylinder or pitch cone would be based on theoretical extension of the threaded flanks.
As discussed above, the second member is depicted as an adapter 18. However, it should be appreciated that in alternative embodiments the first member can be different components including, for example, a drill bit or a sonde housing.
In the depicted embodiment the threads on the tapered recess and threads of the tapered protrusions are asymmetric having a tooth width W to height H ratio between 1.25 to 3.0 (
In the depicted embodiment the first member 28 includes structure that abuts structure on the second member 18 to limit the offset between the peaks of the threads on the tapered recess and valleys of the threads of the tapered protrusions. The structure on the first member is shown as front face 62 and the structure on the second member is shown as an annular shoulder 64.
In the depicted embodiment, a portion 66 (
In the depicted embodiment the proximal end of the coupling 18 (e.g., adaptor) which is shown threaded to the sonde housing 14 includes a tapered threaded portion configured to engage mating threads of a sonde housing to toque level in excess of 50 foot pounds. As discussed above, the distal end includes a tapered portion between a first unthreaded portion and a second unthreaded portion. The first and second unthreaded portions include a constant maximum cross-sectional dimension. As discussed above, the coupling includes a stop that engages an end face of the first member to prevent full engagement of the threads (i.e., maintains the above define offset). The stop is positioned on a predetermined location on the second unthreaded portion such that it ensures an offset of at least 0.030 inches between the peaks on the threads of the tapered threaded portion with the valleys on threads that the taper threaded portion is configured to engage. In the depicted embodiment the pitch diameter between the threaded portions on the first and second members are offset by at least 0.030 inches.
The present disclosure also provides a method of connecting a drill tool to a drill rod. The method includes the steps of: contacting threads located at a proximate end of a drill tool member with threads located at a distal end of a drill rod member; threading the drill tool member to the drill rod member by relatively rotating the drill rod member and the drill tool member; and aligning structural features on an external surface of the drill tool member with structural features on an external surface of the drill rod member. In the depicted embodiment the step of aligning the structural features includes counter rotating the drill rod assembly relative to the drill tool between one to ninety degrees.
The method further includes the step of sliding a collar over a portion of the drill tool member and drill rod member, wherein the collar is configured to engage the structural features on the external surface of the drill tool member and drill rod member thereby preventing relative rotation between the drill tool member and the drill string member.
In the depicted embodiment the step of threading the drill tool member to the drill rod member simultaneously inserts a boss on the distal end of the drill tool member with an aperture on the drill rod member and inserts a boss on the proximal end of the drill tool member with an aperture on a distal end of the drill rod member. The method also includes the step of maintaining at least 0.030 inch (0.76 millimeters) offset between a peak of the threads located on the proximate end of the drill tool member and a valley of the threads located at a distal end of the drill rod member at least when structural features on the external surface of the drill tool member are aligned with the structural features on the external surface of the drill rod member. In the depicted embodiment the pitch diameter between the threads on the drill tool and mating threads on the drill rod are offset by at least 0.030 inches.
In the depicted embodiment the threading step is accomplished by rotating the drill tool member while holding the drill rod member stationary. It should be appreciated that alternatively the drill rod could be rotated while the drill tool is held stationary. In the depicted embodiment, the threading step includes relatively rotating the drill rod member and drill tool member between one to four full revolutions. In alternative embodiments the threading step may include more or fewer revolutions.
In the depicted embodiment the toque needed to unthread the drill rod assembly from the drill tool assembly is less than 50 foot pounds. The step of threading the drill tool assembly to the drill rod assembly includes rotating the drill tool member until a portion of the drill tool member (e.g., annular shoulder) abuts a portion of the drill rod member (e.g., end face) and limits further rotation. In the depicted embodiment at least 0.030 inches offset is maintained when the portion of the drill tool assembly abuts the portion of the drill string assembly. The at least 0.030 inches offset is maintained even if as much as 50 foot pounds of torque are applied to the connection between the drill rod member and drill tool member during the threading step.
In the depicted embodiment the boss on the distal end of the drill tool includes a maximum cross-sectional dimension that is within 0.0015 to 0.03 inches (0.038-0.76 millimeters) of a maximum cross-sectional dimension of the aperture of the drill rod assembly.
Referring to
Referring to
Referring to
It should be appreciate that many more alternative embodiments are possible. For example, although the embodiment shown in
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
This application is a National Stage Application of PCT/US2011/062356, filed on on 29 Nov. 2011, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/418,783, filed Dec. 1, 2010 and U.S. Provisional Patent Application Ser. No. 61/435,689, filed Jan. 24, 2011, and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/062356 | 11/29/2011 | WO | 00 | 6/26/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/074984 | 6/7/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
603004 | Schock et al. | Apr 1898 | A |
3822902 | Maurer et al. | Jul 1974 | A |
3869150 | Brown | Mar 1975 | A |
4658915 | Goris et al. | Apr 1987 | A |
4892337 | Gunderson et al. | Jan 1990 | A |
5505502 | Smith et al. | Apr 1996 | A |
5681059 | Mackie | Oct 1997 | A |
6254146 | Church | Jul 2001 | B1 |
6406070 | DeLange et al. | Jun 2002 | B1 |
6860514 | Wentworth et al. | Mar 2005 | B2 |
7661727 | Roussie et al. | Feb 2010 | B2 |
8225885 | Wentworth et al. | Jul 2012 | B2 |
20050189147 | Williamson et al. | Sep 2005 | A1 |
20050224259 | Bise et al. | Oct 2005 | A1 |
20060078372 | Kanflod et al. | Apr 2006 | A1 |
20070074868 | Slack et al. | Apr 2007 | A1 |
20100171305 | Roussie et al. | Jul 2010 | A1 |
20100308577 | Chin | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 2008057145 | May 2008 | WO |
Entry |
---|
International Search Report and Written Opinion mailed Jul. 27, 2012. |
Railhead Underground Products, LLC, Railhead Quick Connect Features, 2 pages, website printout (2006). |
Ballantine, Inc. HDD Downhole Tool & Accessories copyright date of 2006; 56 pages. |
Third Party Oct. 30, 2014 cover letter enclosing David Helgeson's Oct. 21, 2014 declaration with exhibits and Claim Chart; 2 pages. |
Third Party Claim Chart with annotated figures: enclosure from Third Party Oct. 30, 2014 letter; 11 pages. |
Helgeson, David; Declaration dated Oct. 21, 2014; 85 pages. |
The Railhead Catalog; undated; 74 pages: referenced as Exhibit A in David Helgeson's Oct. 21, 2014 Declaration wherein he alleges that the document was publicly available on or before Jan. 1, 2004. |
Description of the Railhead Quick Connect System; web.archive.org; 2002; 2 pages: referenced as Exhibit B to David Helgeson's Oct. 21, 2014 Declaration wherein he alleges that the document was publicly available before Aug. 2002. |
Description of the Railhead Quick Connect System; undated; 7 pages: referenced as Exhibit C to David Helgeson's Oct. 21, 2014 Declaration wherein he alleges that the document was publicly available before Aug. 2002. |
Vermeer D16X20 Navigator Operator's Manual copyright date of 1996; 120 pages. |
p. 35-10 excerpted from Vermeer D16X20 Navigator Operator's Manual copyright date of 1996; 3 pages. |
Number | Date | Country | |
---|---|---|---|
20120267170 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
61435689 | Jan 2011 | US | |
61418783 | Dec 2010 | US |