There are many different types of cables used for the transmission of electricity. Electrical cables may contain any number and type of conductors and insulators within a jacket or sheath. Often, an electrical cable may include a conducting or insulating layer created by wrapping the cable with a tape that possesses the desired properties. One example includes the use of a copper tape to create a copper layer within or around the cable. The application of the copper tape to the cable is achieved using a cable wrapping machine, sometimes called a shield line. The cable wrapping machine wraps copper tape from a tape roll around the cable as the cable is pulled through the machine. The tape roll consists of a core, or tape pad, consisting of cardboard or other suitable material. The copper tape is wound around the tape pad. The tape roll is placed on a cylindrical taping head against a backing plate. The cable to be wrapped is pulled through the center of the taping head as the taping head rotates, wrapping the tape around the cable. In order to wrap the tape from the tape roll around the cable, the taping head, tape roll, and backing plate rotate together at a desired rate corresponding to the rate at which the cable is pulled through the wrapping machine. The tape roll must be secured to the taping head so that it rotates with the taping head without slipping. To secure the tape roll to the taping head, a taping head lock is used.
Typically, the taping head lock is a device that has a threaded aperture in the center. The threaded aperture is sized according to the outer dimensions of the taping head. The taping head lock is screwed onto the taping head after the tape roll is in place on the taping head. The taping head lock is tightened against the tape roll in order to press the tape roll into the backing plate with sufficient force to prevent the tape roll from slipping while the taping head, the backing plate, the tape roll, and the taping head lock rotate. A typical taping head lock has three ears, or tabs, projecting outward symmetrically around a center axis to provide a technician with three moment arms to assist him or her with applying the required torque to the lock that is necessary to secure the tape roll. Additionally, a typical taping head lock has a cam that rotates around a central axis of the lock. The cam includes a key that fits into a slot on the taping head to ensure that the taping head lock is properly positioned.
However, the cumbersome nature of the installation and removal process of the typical taping head lock invites misuse of the lock, which results in damage to the lock. For example, technicians often utilize a hammer or other force application device to the tabs of the taping head lock to engage or disengage the lock from the taping head and tape roll due to the excessive force required to adequately engage and disengage the lock, particularly when threads have been damaged. Doing so results in damage to the locking device and key. Moreover, the taping head lock is prone to cross-threading when mated with the corresponding threads on the taping head. Cross-threading damages the threads on the taping head lock and/or on the taping head and invites further misuse and damage from the misapplication of force to the tabs when trying to engage or disengage the cross-threaded taping head lock from the taping head.
It should be appreciated that this Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to be used to limit the scope of the claimed subject matter.
Apparatus and systems provide a taping head locking device for securing a tape roll on a cable wrapping machine. According to embodiments described herein, a taping head locking device includes a locking device body. The locking device body includes an inner surface that is configured with a surface implement that engages a corresponding surface implement of an outer surface of a taping head in order to control the movement of the locking device body with respect to the taping head. The locking device body also includes an aperture that guides and secures a device to penetrate a tape pad associated with the tape roll.
According to further embodiments, a taping head locking device for securing a tape roll to a taping head includes two segments connected end-to-end such that the segments pivot with respect to one another around the connection point. The two ends of the connected segments opposite the pivoting connection are attached via a locking mechanism. The locking mechanism is operative to prevent movement of the segments when the locking mechanism is engaged and an inner surface of the taping head locking device abuts an outer surface of the taping head. The locking mechanism is further operative to allow movement of the segments around the pivoting connection when the locking mechanism is disengaged. The taping head locking device also includes an aperture that guides and secures a device to penetrate a tape pad corresponding to the tape roll.
According to other embodiments, a taping head locking system for securing a tape pad to a taping head includes a taping head locking device and a tape pad penetrating device. The taping head locking device includes two segments pivotally connected end-to-end. The taping head locking device also includes an inner surface that is configured with a surface implement to engage a corresponding surface implement of an outer surface of the taping head. The engagement of the surface implements controls the movement of the taping head locking device with respect to the taping head. The taping head locking device further includes a threaded aperture that guides and secures the tape pad penetrating device. The tape pad penetrating device includes threads on an outer surface corresponding to the threads within the aperture and is sized to protrude from a rear surface of the taping head locking device to penetrate the tape pad positioned adjacent to the taping head locking device in order to prevent the tape pad from slipping during rotation of the taping head.
Other apparatus and systems according to embodiments will be or become apparent to one with skill in the art upon review of the following drawings and Detailed Description. It is intended that all such additional apparatus and/or systems be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.
The following detailed description is directed to apparatus and systems for securing a tape roll on a cable wrapping machine. As discussed briefly above, typical taping head locks require a technician to thread the lock into place after lining up a key in the lock with a slot in the taping head. After threading the lock in position, the lock must be tightened with enough torque to secure the tape roll in place. This process is time consuming and often leads to lock damage from the use of hammers and other tools to apply the proper torque to properly engage the lock and to disengage the lock during the removal process.
However, embodiments of the disclosure provided below describe taping head locking devices and systems that clamp onto the taping head rather than requiring the locking device to be threaded on, saving time and preventing the damage and downtime that is prevalent with typical taping head locks caused by cross-threading the lock onto the taping head. Moreover, embodiments described herein provide taping head locking devices and systems that utilize tape pad penetrating devices that are screwed into a tape pad of the tape roll to secure the tape roll, rather than relying on a technician to properly torque a taping head lock against a tape roll, preventing the damage and downtime that is prevalent with typical taping head locks caused by the use of hammers and other tools to engage and disengage the taping head lock.
Throughout this disclosure, embodiments are described with respect to a cable wrapping machine in the context of wrapping copper tape around an electrical cable. However, it should be appreciated that this disclosure may be utilized with any application in which a roll of material is to be secured in place with respect to the machine or device on which the roll is installed. In the following detailed description, references are made to the accompanying drawings that form a part hereof, and which are shown by way of illustration, specific embodiments, or examples. Referring now to the drawings, in which like numerals represent like elements through the several figures, aspects of a taping head locking device and system will be described.
Turning now to
It should be appreciated that the dimensions of the gap 204, or even the gap 204 itself, is not essential to the functionality of the taping head locking device 114 when configured in a closed position. However, according to various embodiments, the gap 204 is sufficiently wide when the taping head locking device 114 is configured in the open position to allow the cable 104 to traverse the gap 204 in order to facilitate installation of the taping head locking device 114. Similarly, for safety purposes, the gap 204 may be sufficiently narrow when the taping head locking device 114 is configured in the open position to prevent the shaft 106 of the cable wrapping machine from traversing the gap 204 if the taping head locking device 114 were to disengage the taping head 108 while the cable wrapping machine is in operation.
The hinge 206 may be any type of hinge or other connection means that allows the segments 202A and 202B to pivot with respect to one another. According to one embodiment, the hinge 206 is a chain link attached at a location on each of the two segments 202A and 202B that allows for the segments 202A and 202B to contact one another at a contact point 220. The contact point 220 creates a “stop” that prevents the taping head locking device 114 from opening any further. Limiting the taping head locking device 114 from opening substantially farther than the gap 204 distance required for installation of the taping head locking device 114 simplifies handling of the taping head locking device 114 for a technician. The easier that the taping head locking device 114 is to manipulate by a technician, the more efficient the technician can be in installing and removing the taping head locking device 114. However, it should be understood that the segments 202A and 202B may be hinged at any location to allow for any range of motion without departing from the scope of this disclosure.
The taping head locking device 114 further includes a locking mechanism 208 that is operative to secure the taping head locking device 114 in the closed position. The locking mechanism 208 may utilize any means capable of securing the taping head locking device 114, including but not limited to latches, snaps, hook and loop fasteners, screws, clips, magnets, bands, and/or pins. According to the embodiment shown in
The locking mechanism 208 is positioned on the segments 202A and 202B such that the desired clamping load is applied by the taping head locking device 114 to the taping head 108 when the lever 214 is fully depressed. It should be appreciated that for safety purposes, the lever 214 may be configured such that direction of rotation of the lever 214 from the open position to the closed position biases the lever 214 towards the closed position if the lever 214 were to come into contact with an external object or aerodynamic forces when spinning with the taping head 108. For example, if an object were to inadvertently strike the lever 214 of the taping head locking device 114 of
To secure the tape roll 110 onto the taping head 108 so that the tape roll rotates with the taping head 108, tape pad penetrating devices 210 are used. As shown in
According to the embodiments shown in
According to one implementation, each of the apertures 212 is oriented at an angle such that the entry of the aperture 212 on the front surface of the segment 202A or 202B is proximate to an outer edge of the segment 202A or 202B, while the exit of the aperture 212 on the rear surface of the segment 202A or 202B is proximate to an inner edge of the segment 202A or 202B. Configuring the apertures 212 so that they angle inward from the front surface of the taping head locking device 114 to the rear surface of the taping head locking device 114 serves two purposes.
First, with this configuration, the heads of the tape pad penetrating devices 210 are angled outward, away from the center of the taping head locking device 114 when installed. Having the heads of the tape pad penetrating devices 210 angled outward when the taping head locking device 114 is installed provides the technician that is installing or removing the taping head locking device 114 with adequate space to maneuver a drill when screwing the tape pad penetrating devices 210 in or out of the taping head locking device 114. As seen in
Returning to
According to various implementations, the taping head locking device 114 may have a surface implement on an inside surface that is configured to engage the taping head 108 as described below. According to the embodiment shown in
The complementary surface implements on the taping head locking device 114 and the taping head allow a technician to position the taping head locking device 114 a desired distance from the tape roll 110 and engage the locking mechanism 208 such that the surface implements engage one another. This engagement secures the taping head locking device 114 in the desired position while the technician installs the tape pad penetrating devices 210. It should be appreciated that any type of complementary surface implements on the inside surface of the taping head locking device 114 and on the outside surface of the taping head 108 may be used without departing from the scope of this disclosure. For example, the taping head locking device 114 and the taping head 108 may include, but are not limited to, complementing tongues and grooves, pins, adhesives, frictional elements, and/or utilize clamping pressure induced by the locking mechanism 208 to hold the taping head locking device 114 in place during installation of the tape pad penetrating devices 210.
It should be understood that the embodiments described above have utilized a taping head locking device 114 that is configured to open for installation and close in place on the taping head 108. However, according to an alternative embodiment, instead of having two segments 202A and 202B that are pivotally linked to allow the taping head locking device 114 to open and close, the taping head locking device 114 may be constructed from a single rigid segment that is not configured to open and close. In this alternative embodiment, an inner surface of the taping head locking device 114 may be threaded so that the taping head locking device 114 is screwed onto the taping head 108. Once screwed onto the taping head 108 to the desired location adjacent to the tape roll 110, tape pad penetrating devices 210 may be screwed into the tape pad 402 through the apertures 212 in the taping head locking device 114 to secure the tape roll 110 such that it rotates with the taping head 108 when the cable wrapping machine is operating.
For clarity, a practical example of the installation and removal process of the taping head locking device 114 and tape roll 110 within the cable wrapping system 100 will now be described. To begin the installation process, the technician will first install the tape roll 110 onto the taping head 108 such that the inside surface 406 of the tape pad 402 abuts the outside surface of the taping head 108 and a rear surface of the tape roll 110 abuts the backing plate 112. The cable 104 is drawn through the shaft 106 of the cable wrapping machine and an end of the tape 102 is secured in the cable wrapping machine for wrapping around the cable 104. The locking mechanism 208 of the taping head locking device 114 is disengaged and the taping head locking device 114 is opened. The taping head locking device 114 is placed over the cable 104 such that the cable 104 passes through the gap 204 into the center of the taping head locking device 114. The taping head locking device 114 is placed into the desired position over the taping head 108 and adjacent to the tape roll 110. At the desired position, the technician engages the locking mechanism 208, ensuring that the threads 306 or other surface implement of the taping head locking device 114 mates with the corresponding threads or other surface implement 502 of the taping head 108.
Now that the taping head locking device 114 is clamped in place on the taping head 108, the technician screws the tape pad penetrating devices 210 through the apertures 212 and into the tape pad 402 of the adjacent tape roll 110, completing the installation process. To remove an empty tape roll 110, the technician removes the tape pad penetrating devices 210 and disengages the locking mechanism 208. Once the taping head locking device 114 is in the open configuration, the technician may then remove the taping head locking device 114 and empty tape pad 402.
The subject matter described above is provided by way of illustration only and should not be construed as limiting. Various modifications and changes may be made to the subject matter described herein without following the example embodiments and applications illustrated and described, and without departing from the true spirit and scope of the present invention, which is set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
708378 | MacMurray | Sep 1902 | A |
862319 | Dunn | Aug 1907 | A |
969268 | Gowing | Sep 1910 | A |
1023419 | Dewey | Apr 1912 | A |
2777647 | Fullerton et al. | Jan 1957 | A |
3263937 | Kirilouckas | Aug 1966 | A |
3367596 | Osborn | Feb 1968 | A |
4136989 | Bianco | Jan 1979 | A |
20040151538 | Landwehr | Aug 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20090084886 A1 | Apr 2009 | US |