This invention relates to internal combustion engines, high pressure fuel pumps therefor and roller tappets usable in such fuel pumps and including roller end shapes for improved lubrication of laterally confined rollers.
It has been found that roller tappets having laterally confined rollers with spherical ends and single point engagement with a cylindrical retainer have experienced excessive wear in applications such as high pressure fuel injection pumps. A solution to the wear problem was desired.
The present invention provides improved end shapes for use in laterally confined tappet rollers in high pressure fuel pumps and similar applications for improving lubrication and wear performance when rotating against a cylindrical end surface. The roller ends are provided with annular end faces having diameters smaller than the roller diameter but spaced outward of the roller axis. The rotation against a cylindrical surface provides two contact areas on opposite sides of a central plane through the axes of the roller and the cylindrical surface. The arrangements separate the surfaces between engagement with the contact areas and permit lubricant to reach the end face surfaces between contacts with the two areas.
These and other features and advantages of the invention will be more fully understood from the following description of certain specific embodiments of the invention taken together with the accompanying drawings.
Referring now to the drawings in detail, numeral 10 generally indicates an engine high pressure fuel injection pump of a type in which a roller tappet according to the present invention could be utilized. Injection pump 10 includes a main body 12 defining a fuel pumping cylinder 14 closed at one end by a cylinder head 16.
The cylinder head contains a fuel inlet port 18 including a suction valve 20 and an outlet port 22 including a high pressure discharge valve 24. A pumping nose 26, extending into the cylinder 14, defines a plunger bore 28 into which a pump plunger 30 extends. The plunger 30 carries a shoe 32, which seats against a roller tappet 34. A compression spring 36 surrounding the pumping nose 26 extends between the cylinder head 16 and the roller tappet 34.
The main body 12 rotatably supports a camshaft 38 carrying a two-lobed cam 40, which engages the roller tappet 34.
In accordance with the invention, the roller tappet 34 includes a follower body 42 having upper and lower sides 44, 45 and a generally cylindrical outer periphery 46. A generally cylindrical guide sleeve 48 receives the follower body 42 in a lower portion of the sleeve and may include an inner rim 50 spaced between opposite upper 52 and lower 54 ends. The guide sleeve 48 is biased downward by the compression spring 36 and engages the follower body 42 of the roller tappet for reciprocation of the guide sleeve 48 and follower body 42 along a longitudinal axis 56 of the pumping cylinder 14. The compression spring 36 also biases the shoe 32 of the pump plunger 30 to maintain the shoe in contact with the roller tappet 34. The lower side 45 of the follower body 42 includes a downwardly open recess 58 with a part cylindrical inner bearing surface 60 extending laterally across the follower body 42 and having open ends 61. In assembly, the follower body 42 is fitted within a cylindrical inner wall 62 of the guide sleeve with the lower side 45 of the follower body 42 lying co-planer with the lower end 54 of the guide sleeve 48, thereby blocking the open ends 61 of the lateral recess 58.
The roller tappet 34 is completed by a follower roller 64, which is rotatably received within the recess 58 for rotation about the roller axis 66 and is engagable with the cam 40 for reciprocating the roller tappet 34 and operating the pump plunger 30. Lateral motion of the roller 64 within the recess 58 is limited by engagement of ends 68 of the roller with the guide sleeve inner wall 62. In accordance with the present invention, the roller ends 68 are each provided with an annulus 70 that is engagable with the sleeve inner wall 62 at a radial location on the roller end that is spaced outward of the roller axis 66 and inward of the outer diameter 72 of the roller.
Experience has shown that rounded ends for the roller with a radius smaller than the radius of the sleeve inner wall, wherein the roller contacts the sleeve wall at a single point on the roller axis, prevents the delivery of adequate lubrication to the contact point, resulting in excessive wear of the sleeve wall. On the other hand, providing the roller with square ends that would form an annulus that would contact the sleeve at the outer diameter of the roller could cause excessive sliding contact velocity that might result in excessive wear. The present invention, wherein the annulus is formed with a diameter between the axis and the outer diameter of the roller has been found to significantly improve lubrication and extend the wear life of the components.
In a proposed embodiment, the end 68 of the follower roller 64 is formed with an annulus 70 having a face radius 74 (R2) similar to the radius 76 (R1) of the sleeve inner wall 62 of the guide sleeve 48. The annulus 70 has an inner diameter 78 (D1) about one-third the outer diameter 80 (D2). Portions of the end 68 radially within and without the annulus are recessed or relieved so that the annulus 70 forms a protrusion at the end 68 of the roller 64. The recessed portion within the annulus may form a lubricant pocket 82 for promoting lubrication of the annulus. Thus, only the face radius 74 contacts the sleeve inner wall and the contact is limited to two contact areas 84, 86 spaced equally on opposite sides of a central plane 88 defined by the intersecting axes 56, 66 of the guide sleeve 48 and the roller 64. At other locations, the face radius 74 of the annulus 70 is lifted off the inner wall 62 of the guide sleeve 48 and is open to contact by ambient lubricant from the cam supply.
Many factors may need consideration to determine a preferred configuration for a particular application. One factor would be if the lubricant to be used is a fuel to be pumped by a high pressure injection pump, were the lubricity of the fuel may be a major factor. Thus, as a non-limiting example, an outer diameter of the annulus could be about 3 times larger than an inner diameter thereof and an outer diameter of the roller could be about 1½ times larger than the outer diameter of the annulus.
In a simplified form, the invention has been carried out by forming a flat end portion, not shown, on the part spherical end of a prior roller. The intersection of the flat portion with the spherical end forms an annulus, which engages the guide sleeve inner wall 62 at spaced contact locations as described above. At other locations, the annulus is spaced from the inner wall 62 so that lubricant is able to reform on the annulus. This form of the invention has resulted in extended wear life of the components.
In the embodiments discussed above, the lubrication may be provided by the liquid fuel being pumped by the high pressure fuel injection pump 10.
Referring to
While the invention has been described by reference to certain preferred embodiments, it should be understood that numerous changes could be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the disclosed embodiments, but that it have the full scope permitted by the language of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3108580 | Crane, Jr. | Oct 1963 | A |
4412513 | Obermayer et al. | Nov 1983 | A |
4739675 | Connell | Apr 1988 | A |
4885952 | Connell | Dec 1989 | A |
5188068 | Gaterman et al. | Feb 1993 | A |
5385124 | Hillebrand et al. | Jan 1995 | A |
5390642 | Thoma | Feb 1995 | A |
5419298 | Nolte et al. | May 1995 | A |
5479903 | Werner et al. | Jan 1996 | A |
5564395 | Moser et al. | Oct 1996 | A |
5603303 | Okajima et al. | Feb 1997 | A |
5931133 | Giannone et al. | Aug 1999 | A |
5979416 | Berger | Nov 1999 | A |
5992393 | Yoshida et al. | Nov 1999 | A |
6138641 | Moser | Oct 2000 | A |
6145493 | Espey | Nov 2000 | A |
6209498 | Brothers | Apr 2001 | B1 |
6216583 | Klinger et al. | Apr 2001 | B1 |
6217299 | Jay | Apr 2001 | B1 |
6321724 | Winsor | Nov 2001 | B1 |
6405698 | Steinmetz | Jun 2002 | B1 |
6439204 | Duquette | Aug 2002 | B1 |
6814040 | Hendriksma et al. | Nov 2004 | B2 |
7156079 | Kamiyama et al. | Jan 2007 | B2 |
7497157 | Aoki et al. | Mar 2009 | B2 |
20010004886 | Brothers | Jun 2001 | A1 |
20030059321 | Ikegami et al. | Mar 2003 | A1 |
20060288974 | Meisborn et al. | Dec 2006 | A1 |