The present invention relates generally to follower mechanisms. More particularly, the present invention relates to designs and assembly methods of follower mechanisms and their associated alignment devices.
Referring to
Existing bucket-type follower mechanisms typically include either a stamped or cold formed bucket. A roller follower is typically supported on a shaft that is directly fixed to the bucket such as by staking, swaging, etc. As such, the bucket is a load bearing member and, therefore, requires heat treatment and operations such as grinding. As well, follower mechanisms often have some form of alignment device carried in an aperture defined by the bucket such that rotation of the follower mechanism within its corresponding bore 14 of engine housing 16 is prevented. As such, a groove must typically be machined into bore 14 for slidably receiving the alignment device, which is both expensive and time consuming. One example of known alignment devices includes a mushroom-shaped pin that is fixed in an aperture of the follower mechanism's bucket. Such pins can be difficult to manufacture because of their complicated shapes. As well, required heat treatments of the bucket can cause distortion of the aperture which receives the alignment device, thereby complicating assembly. Such alignment devices are often fixed in their corresponding apertures by an interference fit. Moreover, as many engine housings are constructed of aluminum, the bores in which the follower mechanisms, typically constructed of steel, reciprocate often require specialized coatings to prevent wear to the bores.
The present invention recognizes and addresses considerations of prior art constructions and methods.
One embodiment of the present disclosure provides a follower mechanism for use in a bore of an internal combustion engine, including an outer sleeve having an inner surface and an outer surface defining a substantially cylindrical side wall, an annular lip portion disposed at a first end of the side wall, and a pair of axially extending shaft grooves that are formed in the inner surface and are parallel to a longitudinal center axis of the follower mechanism, an inner cup including a side wall defining a pair of shaft apertures, the inner cup being slidably disposed in the outer sleeve, a shaft having a first end and a second end, each of the first end and the second end extending through a corresponding shaft aperture of the inner cup and being slidably disposed in a corresponding one of the shaft grooves, and a roller follower rotatably received on the shaft such that a portion of the roller follower extends axially outwardly beyond the annular lip portion of the outer cup.
Another embodiment of the present disclosure provides a follower mechanism for use in a bore of an internal combustion engine, including an outer sleeve having an inner surface and an outer surface defining a side wall and a pair of axially extending shaft grooves that are formed in the inner surface of the side wall and are parallel to a longitudinal center axis of the follower mechanism, an inner cup including a side wall defining a pair of shaft apertures, the inner cup being slidably disposed in the outer sleeve, a shaft having a first end and a second end, each of the first end and the second end extending through a corresponding shaft aperture of the inner cup and being slidably disposed in a corresponding one of the shaft grooves, and a roller follower rotatably received on the shaft.
Another embodiment of the present disclosure provides a follower mechanism assembly, including an internal combustion engine defining a bore therein, and a camshaft including a lobe, an outer sleeve having an inner surface and an outer surface defining a substantially cylindrical side wall, and a pair of axially extending shaft grooves that are formed in the inner surface and are parallel to a longitudinal center axis of the follower mechanism, an inner cup including a side wall defining a pair of shaft apertures, the inner cup being slidably disposed in the outer sleeve, a shaft having a first end and a second end, each of the first end and the second end extending through a corresponding shaft aperture of the inner cup and being slidably disposed in a corresponding one of the shaft grooves, and a roller follower rotatably received on the shaft, wherein a portion of the roller follower extends axially outwardly beyond the outer cup and contacts the lobe of the camshaft.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended drawings, in which;
Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention according to the disclosure.
Reference will now be made in detail to presently preferred embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation, not limitation, of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope and spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring now to the figures, as shown in
Referring specifically to
Outer sleeve 110 is preferably formed from a sheet metal blank of low, medium or high carbon plain or alloy steel by a stamping process, or deep drawing process using a multi-station transfer or progressive press, in which case retention features 118 are formed by, for example, semi-piercing or otherwise cutting into outer sleeve 110. Additionally, outer sleeve 110 includes an annular lip 111, at its top end. As shown, annular lip 111 is the same width as the side wall of outer sleeve, but in alternate embodiments annular lip 111 may be thinner in the radial direction than the remaining side wall of outer sleeve 110, forming an annular ledge therewith. In its initial state, prior to fully assembling follower mechanism 100, annular lip 111 extends axially outwardly parallel to the longitudinal center axis of outer sleeve 110. Alternatively, annular lip 111 may be initially formed depending radially inwardly dependent upon from which end of outer sleeve 110 the inner cup and components of the roller follower are placed into outer sleeve 110. In the alternate case, retention features 118 are formed after inner cup 120 and roller follower 131 are placed in outer sleeve 110 from the bottom end.
As best seen in
Once fully inserted in outer sleeve 110 and rotationally positioned by way of shaft ends 138 being received in shaft grooves 116, inner cup 120 is retained therein by folding annular lip 111 over inwardly, such as by crimping, spin curling, punch forming, etc. Note, since outer sleeve 110 does not directly support shaft 132 of roller follower 131, it does not require heat treatment processes dependent upon the material it is formed with. However, in those applications where heat treatment of outer sleeve 110 is desired for wear purposes, the heat treatment process may occur after retention features 118 are formed. Prior to folding, crimping, etc., annular lip 111 over inwardly, annular lip 111 would then be tempered to facilitate the operation and help prevent cracking.
Preferably, inner cup 120 is formed from a sheet metal blank by a stamping process, or drawing process, and is subjected to heat treatment processes as it directly supports shaft 122 of roller follower 131 and supports the cyclical force exerted by pump stem 190 (
As best seen in
While one or more preferred embodiments of the invention are described above, it should be appreciated by those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope and spirit thereof. It is intended that the present invention cover such modifications and variations as come within the scope and spirit of the appended claims and their equivalents.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/027928 | 4/17/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62323192 | Apr 2016 | US |