The subject matter disclosed herein relates generally to isotope production systems, and more particularly to isotope production systems having a target material that is irradiated with a particle beam.
Radioisotopes (also called radionuclides) have several applications in medical therapy, imaging, and research, as well as other applications that are not medically related. Systems that produce radioisotopes typically include a particle accelerator, such as a cyclotron, that accelerates a beam of charged particles (e.g., H− ions) and directs the beam into a target material to generate the isotopes. The cyclotron is a complex system that uses electrical and magnetic fields to accelerate and guide the charged particles along a predetermined orbit within an acceleration chamber. When the particles reach an outer portion of the orbit, the charged particles form a particle beam that is directed toward a target assembly that holds the target material for isotope production.
The target material, which is typically a liquid, gas, or solid, is contained within a chamber of the target assembly. The target assembly forms a beam passage that receives the particle beam and permits the particle beam to be incident on the target material in the chamber. To contain the target material within the chamber, the beam passage is separated from the chamber by one or more foils. For example, the chamber may be defined by a void within a target body. A target foil covers the void on one side and a section of the target assembly may cover the opposite side of the void to define the chamber therebetween. The particle beam passes through the target foil and deposits a relatively large amount of power within a relatively small volume of the target material, thereby causing a large amount of thermal energy to be generated within the chamber. A portion of this thermal energy is transferred to the target foil.
At least some known systems use two foils that are separated by a cooling chamber. A first foil separates the vacuum in the acceleration chamber of the cyclotron from the cooling chamber and a second foil (or target foil) separates the cooling chamber from the chamber where the target material is located. As described above, the second foil absorbs thermal energy from the chamber. The first foil may also generate thermal energy when the particle beam is incident on the first foil.
It is important to transfer the thermal energy away from the foils. In addition to the elevated temperatures, the foils may experience different pressures. The stress caused by the temperature and different pressures render the foils vulnerable to rupture, melting, or other damage. If the foils are damaged, the level of energy that enters the production chamber increases. Greater energy levels may generate unwanted isotopes or other impurities that render the target material unusable. Accordingly, the lifetime of a foil can be lengthened by reducing the thermal energy in the foil.
To address this challenge, conventional systems include a cooling system that transfers the thermal energy away from the first and second foils. The cooling system directs a cooling medium (e.g., helium) through the cooling chamber that absorbs thermal energy from the foils. This cooling system, however, can be complex, costly, and time-consuming to assemble and operate.
In an embodiment, a target assembly for an isotope production system is provided. The target assembly includes a target body having a production chamber and a beam passage. The production chamber is positioned to receive a particle beam directed through the beam passage. The production chamber is configured to hold a target material. The target assembly also includes first and second grid sections of the target body that are disposed in the beam passage. Each of the first and second grid sections has front and back sides. The back side of the first grid section and the front side of the second grid section abut each other with an interface therebetween. The back side of the second grid section faces the production chamber. The target assembly also includes a foil positioned between the first and second grid sections at the interface. Each of the first and second grid sections has interior walls that define grid channels through the first and second grid sections, respectively. The particle beam configured to pass through the grid channels toward the production chamber. The interior walls of the first and second grid sections engage opposite sides of the foil.
In some embodiments, the second grid section has a radial surface that surrounds the beam passage and defines a profile of a portion of the beam passage. The radial surface may be devoid of ports that are fluidically coupled to body channels.
In some embodiments, a cooling channel extends through the target body. The cooling channel is configured to have a cooling medium flow therethrough that absorbs thermal energy from the first and second grid sections and transfer the thermal energy away from the first and second grid sections.
In some embodiments, the foil is a first foil and the target assembly also includes a second foil that engages the back side of the second grid section and faces the production chamber. Optionally, the second foil forming an interior surface that defines the production chamber.
Optionally, the interior walls of the first grid section may engage the first foil and the second foil. In particular embodiments, the first foil is at least 5X thicker than the second foil and/or the first foil is configured to reduce the beam energy of the particle beam by at least 10%. However, it should be understood that the first foil may have a thickness that is less than 5X the thickness of the second foil in other embodiments, and the first foil may be configured to reduce the beam energy of the particle beam by less than 10% in other embodiments.
In an embodiment, an isotope production system is provided that includes a particle accelerator configured to generate a particle beam. The isotope production system includes a target assembly having a production chamber and a beam passage that is aligned with the production chamber. The production chamber is configured to hold a target material. The beam passage is configured to receive a particle beam that is directed toward the production chamber. The target assembly also includes first and second grid sections disposed in the beam passage. Each of the first and second grid sections has front and back sides. The back side of the first grid section and the front side of the second grid section abutting each other with an interface therebetween. The back side of the second grid section faces the production chamber. The isotope production system also includes a foil positioned between the first and second grid sections along the interface. Each of the first and second grid sections have interior walls that define grid channels therebetween. The particle beam is configured to pass through the grid channels toward the production chamber. The interior walls of the first and second grid sections engage the foil.
In an embodiment, a method of generating radioisotopes is provided. The method includes providing a target material into a production chamber of a target assembly. The target assembly has a beam passage that receives the particle beam and permits the particle beam to be incident upon the target material. The target assembly also includes first and second grid sections that are disposed in the beam passage. Each of the first and second grid sections has front and back sides. The back side of the first grid section and the front side of the second grid section abut each other with an interface therebetween. The back side of the second grid section faces the production chamber. The method also includes directing the particle beam onto the target medium. The particle beam passes through a foil that is positioned between the first and second grid sections at the interface. Each of the first and second grid sections has interior walls that define grid channels through the first and second grid sections, respectively. The particle beam is configured to pass through the grid channels toward the production chamber. The interior walls of the first and second grid sections engage opposite sides of the foil.
In some embodiments, the foil is a first foil and the target assembly includes a second foil that engages the back side of the second grid section and faces the production chamber. The particle beam passes through the second foil. Optionally, the method does not include directing a cooling medium between the first and second foils. Optionally, the target material is configured to generate 68Ga isotopes.
The foregoing summary, as well as the following detailed description of certain embodiments will be better understood when read in conjunction with the appended drawings. To the extent that the figures illustrate diagrams of the blocks of various embodiments, the blocks are not necessarily indicative of the division between hardware. Thus, for example, one or more of the blocks may be implemented in a single piece of hardware or multiple pieces of hardware. It should be understood that the various embodiments are not limited to the arrangements and instrumentality shown in the drawings.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
During operation of the particle accelerator 102, charged particles are placed within or injected into the particle accelerator 102 through the ion source system 104. The magnetic field system 108 and electrical field system 106 generate respective fields that cooperate with one another in producing a particle beam 112 of the charged particles.
Also shown in
The isotope production system 100 is configured to produce radioisotopes (also called radionuclides) that may be used in medical imaging, research, and therapy, but also for other applications that are not medically related, such as scientific research or analysis. When used for medical purposes, such as in Nuclear Medicine (NM) imaging or Positron Emission Tomography (PET) imaging, the radioisotopes may also be called tracers. The isotope production system 100 may produce the isotopes in predetermined amounts or batches, such as individual doses for use in medical imaging or therapy. By way of example, the isotope production system 100 may generate 68Ga isotopes from a target liquid comprising 68Zn nitrate in nitric acid. The isotope production system 100 may also be configured to generate protons to make 18F−isotopes in liquid form. The target material used to make these isotopes may be enriched 18O water or 16O-water. In some embodiments, the isotope production system 100 may also generate protons or deuterons in order to produce 15O labeled water. Isotopes having different levels of activity may be provided.
In some embodiments, the isotope production system 100 uses 1H− technology and brings the charged particles to a low energy (e.g., about 8 MeV or about 14 MeV) with a beam current of approximately 10-30 μA. In such embodiments, the negative hydrogen ions are accelerated and guided through the particle accelerator 102 and into the extraction system 115. The negative hydrogen ions may then hit a stripping foil (not shown in
The isotope production system 100 may include a cooling system 122 that transports a cooling fluid (e.g., water or gas, such as helium) to various components of the different systems in order to absorb heat generated by the respective components. For example, one or more cooling channels may extend proximate to the production chambers 120 and absorb thermal energy therefrom. The isotope production system 100 may also include a control system 118 that may be used to control the operation of the various systems and components. The control system 118 may include the necessary circuitry for automatically controlling the isotope production system 100 and/or allowing manual control of certain functions. For example, the control system 118 may include one or more processors or other logic-based circuitry. The control system 118 may include one or more user-interfaces that are located proximate to or remotely from the particle accelerator 102 and the target system 114. Although not shown in
The isotope production system 100 may be configured to accelerate the charged particles to a predetermined energy level. For example, some embodiments described herein accelerate the charged particles to an energy of approximately 18 MeV or less. In other embodiments, the isotope production system 100 accelerates the charged particles to an energy of approximately 16.5 MeV or less. In particular embodiments, the isotope production system 100 accelerates the charged particles to an energy of approximately 9.6 MeV or less. In more particular embodiments, the isotope production system 100 accelerates the charged particles to an energy of approximately 7.8 MeV or less. However, embodiments describe herein may also have an energy above 18 MeV. For example, embodiments may have an energy above 100 MeV, 500 MeV or more. Likewise, embodiments may utilize various beam current values. By way of example, the beam current may be between about of approximately 10-30 μA. In other embodiments, the beam current may be above 30 μA, above 50 μA, or above 70 μA. Yet in other embodiments, the beam current may be above 100 μA, above 150 μA, or above 200 μA.
The isotope production system 100 may have multiple production chambers 120 where separate target materials 116A-C are located. A shifting device or system (not shown) may be used to shift the production chambers 120 with respect to the particle beam 112 so that the particle beam 112 is incident upon a different target material 116. Alternatively, the particle accelerator 102 and the extraction system 115 may not direct the particle beam 112 along only one path, but may direct the particle beam 112 along a unique path for each different production chamber 120A-C. Furthermore, the beam path 117 may be substantially linear from the particle accelerator 102 to the production chamber 120 or, alternatively, the beam path 117 may curve or turn at one or more points therealong. For example, magnets positioned alongside the beam path 117 may be configured to redirect the particle beam 112 along a different path.
The target system 114 includes a plurality of target assemblies 130, although the target system 114 may include only one target assembly 130 in other embodiments. The target assembly 130 includes a target body 132 having a plurality of body sections 134, 135, 136. The target assembly 130 is also configured to one or more foils through which the particle beam passes before colliding with the target material. For example, the target assembly 130 includes a first foil 138 and a second foil 140. As described in greater detail below, the first foil 138 and the second foil 140 may each engage a grid section (not shown in
Particular embodiments may be devoid of a direct cooling system for the first and second foils. Conventional target systems direct a cooling medium (e.g., helium) through a space that exists between the first and second foils. The cooling medium contacts the first and second foils and absorbs the thermal energy directly from the first and second foils and transfers the thermal energy away from the first and second foils. Embodiments set forth herein may be devoid of such a cooling system. For example, a radial surface that surrounds this space may be devoid of ports that are fluidically coupled to channels. It should be understood, however, that the cooling system 122 may cool other objects of the target system 114. For instance, the cooling system 122 may direct cooling water through the body section 136 to absorb thermal energy from the production chamber 120. However, it should be understood that embodiments may include ports along the radial surface. Such ports may be used to provide a cooling medium for cooling the first and second foils 138, 140 or for evacuating the space between the first and second foils 138, 140.
Examples of isotope production systems and/or cyclotrons having one or more of the sub-systems described herein may be found in U.S. Patent Application Publication No. 2011/0255646, which is incorporated herein by reference in its entirety. Furthermore, isotope production systems and/or cyclotrons that may be used with embodiments described herein are also described in U.S. patent application Ser. Nos. 12/492,200; 12/435,903; 12/435,949; 12/435,931 and U.S. patent application ser. No. 14/754,878, each of which is incorporated herein by reference in its entirety.
The target body 201 is formed from three body sections 202, 204, 206, a target insert 220 (
The target insert 220 and the grid section 225 (
As shown in
The target body 201 forms a beam passage 221 that permits a particle beam (e.g., proton beam) to be incident on the target material within the production chamber 218. The particle beam (indicated by arrow P in
With respect to
A front foil 240 of the target assembly 200 may be positioned between the body section 204 and the body section 202. The front foil 240 may be an alloy disc similar to the target foil 228. The front foil 240 aligns with a grid section 238 of the body section 204. The front foil 240 and the target foil 228 may have different functions in the target assembly 228. In some embodiments, the front foil 240 may be referred to as a degrader foil that reduces the energy of the particle beam P. For example, the front foil 240 may reduce the energy of the particle beam by at least 10%. The energy of the particle beam that is incident upon the target material may be about 12 MeV to about 18 MeV. In more particular embodiments, the energy of the particle beam that is incident upon the target material may be about 13 MeV to about 15 MeV. The front foil 240 and the target foil 228 may be referred to, such as in the claims, the first foil and the second foil, respectively.
It should be noted that the target and front foils 228, 240 are not limited to a disc or circular shape and may be provided in different shapes, configurations and arrangements. For example, one or both of the target and front foils 228, 240, or additional foils, may be square shaped, rectangular shaped, or oval shaped, among others. Also, it should be noted that the target and front foils 228, 240 are not limited to being formed from a particular material, but in various embodiments are formed from an activating material, such as a moderately or high activating material that can have radioactivity induced therein as described in more detail herein. In some embodiments, the target and front foils 228, 240 are metallic and formed from one or more metals.
During operation, as the particle beam passes through the target assembly 200 from the body section 202 into the production chamber 218, the target and front foils 228, 240 may be heavily activated (e.g., radioactivity induced therein). The target and front foils 228, 240 isolate a vacuum inside the accelerator chamber from the target material in the cavity 222. The grid section 238 may be disposed between and engage each of the target and front foils 228, 240. Optionally, the target assembly 200 is not configured to permit a cooling medium to pass between the target and front foils 228, 240. It should be noted that the target and front foils 228, 240 are configured to have a thickness that allows a particle beam to pass therethrough. Consequently, the target and front foils 228, 240 may become highly radiated and activated.
Some embodiments provide self-shielding of the target assembly 200 that actively shields the target assembly 200 to shield and/or prevent radiation from the activated target and front foils 228, 240 from leaving the target assembly 200. Thus, the target and front foils 228, 240 are encapsulated by an active radiation shield. Specifically, at least one of, and in some embodiments, all of the body sections 202, 204 and 206 are formed from a material that attenuates the radiation within the target assembly 200, and in particular, from the target and front foils 228, 240. It should be noted that the body sections 202, 204 and 206 may be formed from the same materials, different materials or different quantities or combinations of the same or different materials. For example, body sections 202 and 204 may be formed from the same material, such as aluminum, and the body section 206 may be formed from a combination or aluminum and tungsten.
The body section 202, body section 204 and/or body section 206 are formed such that a thickness of each, particularly between the target and front foils 228, 240 and the outside of the target assembly 200 provides shielding to reduce radiation emitted therefrom. It should be noted that the body section 202, body section 204 and/or body section 206 may be formed from any material having a density value greater than that of aluminum. Also, each of the body section 202, body section 204 and/or body section 206 may be formed from different materials or combinations or materials as described in more detail herein.
As shown, the plane 290 through the body section 204 intersects the grid section 238 and the cooling network 242. The cooling network 242 includes cooling channels 243-248 that interconnect with one another to form the cooling network 242. The cooling network 242 also includes ports 249, 250 that are in flow communication with other channels (not shown) of the target body 201. The cooling network 242 is configured to receive a cooling medium (e.g., cooling water) that absorbs thermal energy from the target body 201 and transfers the thermal energy away from the target body 201. For example, the cooling network 242 may be configured to absorb thermal energy from at least one of the grid section 238 or the target chamber 218 (
The grid section 238 includes an arrangement of interior walls 256 that coupled to one another to form a grid or frame structure. The interior walls 256 may be configured to (a) provide sufficient support for the target and front foils 228, 240 (
The target body 201 includes a series of cavities or voids through which the particle beam P extends through. For example, the target body 201 includes the production chamber 218 and the beam passage 221. The production chamber 218 is configured to hold a target material (not shown) during operation. The target material may flow into and out of the production chamber 218 through, for example, the first material port 214. The production chamber 218 is positioned to receive the particle beam P that is directed through the beam passage 221. The particle beam P is received from a particle accelerator (not shown), such as the particle accelerator 102 (
The beam passage 221 includes a first passage segment (or front passage segment) 260 that extends from the passage opening 219 to the front foil 240. The beam passage 221 also includes a second passage segment (or rear passage segment) 262 that extends between the front foil 240 and the target foil 228. For illustrative purposes, the front foil 240 and the target foil 228 have been thickened for easier identification. The grid section 225 is positioned at an end of the first passage segment 260. The grid section 238 defines an entirety of the second passage segment 262. In the illustrated embodiment, the grid section 238 is an integral part of the body section 204 and the grid section 225 is a separate and discrete element that is sandwiched between the body section 202 and the body section 204.
Accordingly, the grid sections 225, 238 of the target body 201 are disposed in the beam passage 221. As shown in
Also shown in
The grid sections 225, 238 have respective interior walls 282, 284 that define grid channels 286, 288 therethrough. The interior walls 282, 284 of the grid sections 225, 238, respectively, engage opposite sides of the front foil 240. The interior walls 284 of the grid section 238 engage the target foil 228 and the front foil 240. The interior walls 282 of the grid section 225 only engage the front foil 240. The front and target foils 240, 228 are oriented transverse to a beam path of the particle beam P. The particle beam P is configured to pass through the grid channels 286, 288 toward the production chamber 218.
In some embodiments, the grid structure formed by the interior walls 282 and the grid structure formed by the interior walls 284 are identical such that the grid channels 286, 288 align with one another. However, embodiments are not required to have identical grid structures. For example, the grid section 225 may not include one or more of the interior walls 282 and/or one or more of the interior walls 282 may not be aligned with corresponding interior walls 284 or vice versa. Moreover, it is contemplated that the interior walls 282 and the interior walls 284 may have different dimensions in other embodiments.
In some embodiments, the front foil 240 is configured to substantially reduce the energy level of the particle beam P when the particle beam P is incident on the front foil 240. More specifically, the particle beam P may have a first energy level in the first passage segment 260 and a second energy level in the second passage segment 262 in which the second energy level is substantially less than the first energy level. For example, the second energy level may be more than 5% less than the first energy level (or 95% or less of the first energy level). In certain embodiments, the second energy level may be more than 10% less than the first energy level (or 90% or less of the first energy level). Yet in more particular embodiments, the second energy level may be more than 15% less than the first energy level (or 85% or less of the first energy level). Yet in more particular embodiments, the second energy level may be more than 20% less than the first energy level (or 80% or less of the first energy level). By way of example, the first energy level may be about 18 MeV, and the second energy level may be about 14 MeV. It should be understood, however, that the first energy level may have different values in other embodiments and the second energy level may have different values in other embodiments.
In such embodiments in which the front foil 240 substantially reduces the energy level of the particle beam P, the front foil 240 may be characterized as a degrader foil. The degrader foil 240 may have a thickness and/or composition that creates substantial losses as the particle beam P passes through the front foil 240. For example, the front foil 240 and the target foil 228 may have different compositions and/or thicknesses. The front foil 240 may comprise aluminum, and the target foil 228 may comprise Havar® or Niobium, although other materials are contemplated for the foils.
In particular embodiments, the front foil 240 and the target foil 228 have substantially different thicknesses. For example, a thickness of the front foil 240 may be at least 0.10 millimeters (mm). In particular embodiments, the front foil 240 has a thickness that is between 0.15 mm and 0.50 mm. With respect to the target foil 228, a thickness of the target foil 228 may be between 0.01 mm and 0.05 mm. In particular embodiments, a thickness of the target foil 228 may be between 0.02 mm and 0.03 mm. In some embodiments, the front foil 240 is at least three times (3X) thicker than the target foil 228 or at least five times (5X) thicker than the target foil 228. However, the front foil 240 may have other thicknesses, such as being less than 5X or less than 3X thicker than the target foil 228.
Although the front foil 240 may be characterized as a degrader foil in some embodiments, the front foil 240 may not be a degrader foil in other embodiments. For instance, the front foil 240 may not substantially reduce or only nominally reduce the energy level of the particle beam P. In such instances, the front foil 240 may have characteristics (e.g., thickness and/or composition) that are similar to characteristics of the target foil 228.
The losses in the front foil 240 correspond to thermal energy that is generated within the front foil 240. The thermal energy generated within the front foil 240 may be absorbed by the body section 204, including the grid section 238, and conveyed to the cooling network 242 where the thermal energy is transferred from the target body 201.
Although some thermal energy may be generated within the target foil 228 when the particle beam is incident thereon, a majority of the thermal energy from the target foil 228 may be generated within the production chamber 218 when the particle beam P is incident on the target material. The production chamber 218 is defined by an interior surface 266 of the target insert 220 and the target foil 228. As the particle beam P collides with the target material, thermal energy is generated. This thermal energy may be conveyed or transferred through the target foil 228, into the body section 204, and absorbed by the cooling medium flowing through the cooling network 242.
During operation of the target assembly 200, the different cavities may experience different pressures. For example, as the particle beam P is incident upon the target material, the first passage segment 260 may have a first operating pressure, the second passage segment may 262 may have a second operating pressure, and the production chamber 218 may have a third operating pressure. The first passage segment 262 is in flow communication with the particle accelerator, which may be evacuated. Due to the thermal energy and bubbles generated within the production chamber 218, the third operating pressure may be significantly large. In the illustrated embodiment, the second operating pressure may be a function of the operating temperature of the grid section 238. Thus, the first operating pressure may be less than the second operating pressure and the second operating pressure may be less than the third operating pressure.
The grid sections 225, 238 are configured to intimately engage opposite sides of the front foil 240. In addition, the interior walls 282 may prevent the pressure differential between the second passage segment 262 and the first passage segment 260 from moving the front foil 240 away from the interior walls 284. The interior walls 284 may prevent the pressure differential between the production chamber 218 and the second passage segment 262 from moving the target foil 228 into the second passage segment 262. The larger pressure in the production chamber 218 forces the target foil 228 against the interior walls 284. Accordingly, the interior walls 284 may intimately engage the front foil 240 and the target foil 228 and absorb thermal energy therefrom. Also show in
In particular embodiments, the target assembly 200 is configured to generate isotopes that are disposed within a liquid that may be harmful to the particle accelerator. For example, the starting material for generating 68Ga isotopes may include a highly acidic solution. To impede the flow of this solution, the front foil 240 may entirely cover the beam passage 221 such that the first passage segment 260 and the second passage segment 262 are not in flow communication. In this manner, unwanted acidic material may not inadvertently flow from the production chamber 218, through the second and first passage segments 262, 260, and into the particle accelerator. To decrease this likelihood, the front foil 240 may be more resistant to rupture. For instance, the front foil 240 may comprise a material having a greater structural integrity (e.g., aluminum) and a thickness that reduces the likelihood of rupture.
In other embodiments, the target assembly 200 is devoid of the target foil 228, but includes the front foil 240. In such embodiments, the grid section 238 may form a part of the production chamber. For example, the target material may be a gas and be located within a production chamber that is defined between the front foil 240 and cavity 222. The grid section 238 may be disposed in the production chamber. In such embodiments, only a single foil (e.g., the front foil 240) is used during production and the single foil is held between the two grid sections 225, 238.
With respect to
The method also includes directing, at 354, the particle beam onto the target material. The particle beam passes through a foil that is positioned between the first and second grid sections at the interface. Each of the first and second grid sections has interior walls that define grid channels through the first and second grid sections, respectively. The particle beam is configured to pass through the grid channels toward the production chambers. The interior walls of the first and second grid sections engage opposite sides of the foil. Optionally, the foil is a first foil and the target body includes a second foil that engages the back side of the second grid section and faces the production chamber. The particle beam passes through the second foil. Optionally, the method does not include directing a cooling medium between the first and second foils.
Embodiments described herein are not intended to be limited to generating radioisotopes for medical uses, but may also generate other isotopes and use other target materials. Also the various embodiments may be implemented in connection with different kinds of cyclotrons having different orientations (e.g., vertically or horizontally oriented), as well as different accelerators, such as linear accelerators or laser induced accelerators instead of spiral accelerators. Furthermore, embodiments described herein include methods of manufacturing the isotope production systems, target systems, and cyclotrons as described above.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the inventive subject matter without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the inventive subject matter should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112(f) unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This written description uses examples to disclose the various embodiments, and also to enable a person having ordinary skill in the art to practice the various embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the various embodiments is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if the examples have structural elements that do not differ from the literal language of the claims, or the examples include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The foregoing description of certain embodiments of the present inventive subject matter will be better understood when read in conjunction with the appended drawings. To the extent that the figures illustrate diagrams of the functional blocks of various embodiments, the functional blocks are not necessarily indicative of the division between hardware circuitry. Thus, for example, one or more of the functional blocks (for example, processors or memories) may be implemented in a single piece of hardware (for example, a general purpose signal processor, microcontroller, random access memory, hard disk, or the like). Similarly, the programs may be stand-alone programs, may be incorporated as subroutines in an operating system, may be functions in an installed software package, or the like. The various embodiments are not limited to the arrangements and instrumentality shown in the drawings.