Target detection

Information

  • Patent Grant
  • 9551704
  • Patent Number
    9,551,704
  • Date Filed
    Thursday, December 12, 2013
    10 years ago
  • Date Issued
    Tuesday, January 24, 2017
    7 years ago
  • CPC
  • Field of Search
    • US
    • 435 005000
    • 435 007220
    • 435 007310
    • 435 007320
    • 435 007330
    • 435 007340
    • 435 007350
    • 435 007360
    • 435 007370
    • 435 302100
    • 436 518000
    • 436 526000
    • 422 430000
    • CPC
    • C12Q1/68
    • C12Q1/70
    • G01N33/543
    • G01N33/53
    • G01N33/569
    • G01N33/571
    • C12M3/00
  • International Classifications
    • C12Q1/70
    • G01N33/53
    • G01N33/569
    • G01N33/571
    • C12M1/02
    • C12M3/00
    • G01N33/543
    • G01N33/553
    • G01N31/22
    • G01N33/52
Abstract
The invention generally relates to methods for indicating whether an assay for isolating targets is properly isolating and detecting targets. Methods of the invention involve obtaining a sample suspected of a containing target, introducing a detectable marker into the sample, conducting an assay using magnet particles to isolate the detectable marker and the target if it is present in the sample, determining the presence or absence of the target; and confirming that the assay functioned properly by determining presence or absence of the detectable marker.
Description
TECHNICAL FIELD

The invention relates to methods for indicating whether an assay properly isolated or separated a target, such as a pathogen, from a sample.


BACKGROUND

Blood-borne pathogens are a significant healthcare problem. A delayed or improper diagnosis of a bacterial infection can result in sepsis, a serious, and often deadly, inflammatory response to the infection. Sepsis is a leading cause of death in the United States. Early detection of bacterial infections in blood is the key to preventing the onset of sepsis. Traditional methods of detection and identification of blood-borne infection include blood culture and antibiotic susceptibility assays. Those methods typically require culturing cells, which can be expensive and can take as long as 72 hours. Often, septic shock will occur before cell culture results can be obtained.


Pathogens during active blood-borne infection or after antibiotic treatment are typically present in minute levels per mL of body fluid. Several techniques have been developed for isolation of pathogens in a body fluid sample, which include molecular detection methods, antigen detection methods, and metabolite detection methods. These conventional methods often require culturing specimens, such as performing an incubation or enrichment step, in order to detect the low levels of pathogens. The incubation/enrichment period is intended to allow for the growth of bacteria and an increase in bacterial cell numbers to more readily aid in isolation and identification. In many cases, a series of two or three separate incubations is needed to isolate the target bacteria. Moreover, enrichment steps require a significant amount of time (e.g., at least a few days to a week) and can potentially compromise test sensitivity by killing some of the cells sought to be measured.


To avoid incubation/enrichment periods and to reduce overall time, other techniques have been developed to rapidly isolate low levels of pathogens from body fluids. Those techniques often utilize antibody bound particles specific to a target pathogen and a sorting apparatus such as an affinity column or magnetic surface. Although successful at rapidly separating small amounts of pathogens from the bodily fluid, these techniques have multiple steps, such as binding targets to the particles, binding to target/particle complexes to a sorting apparatus, isolating bound target/particle complexes from the body fluid sample, in which a failure at any step can result in the inability to isolate pathogens that are present in the bodily fluid. That is, failure at any one step can result in a failed assay.


Currently, there is no effective way to distinguish between a successful assay that correctly identifies the absence of a pathogen and a failed assay in which a pathogen was present but just not isolated. Because the failure to detect and treat blood-borne pathogens can result in significant health problems, there is a need to develop a method for rapid isolation of pathogens from a sample, such as a blood sample, that indicates whether the assay properly isolated suspected pathogens.


SUMMARY

The invention generally relates to increasing the sensitivity of assays used to isolate pathogens at very low levels within a sample. Due to technological advances, it is now possible to isolate a single bacterium from a blood sample. For example, co-pending and co-assigned U.S. application Ser. No. 13/091,534 allows for detection of pathogens in a heterogeneous biological sample at levels from about 10 CFU/mL to about 1 CFL/mL. Methods of the invention account for the fact that, when isolating pathogens at such low pathogen levels, the difference between a failed assay (i.e. failure to identify a molecule present in the sample) and a positive assay (i.e. positively determining the presence of a molecule present) is often dependent upon the capture of a single target, e.g., pathogen species, meaning, that if a particular species is not captured, the assay reports a negative result. Methods of the invention provide for differentiating between negative and positive assays to increase the accuracy of target pathogen detection.


Methods of the invention involve obtaining a sample suspected of containing a target, e.g., pathogen. To decrease the reporting of a false negative result, a detectable marker is also added to the sample. An assay is conducted to detect the suspected pathogen using magnetic particles. The detectable marker's purpose is to be sufficiently similar to the pathogen such that the assay performs functionally in the same manner for the detectable marker and the pathogen. However, during the analysis of the captured complexes, the detectable marker can be distinguished from the pathogen. Therefore, this provides a quality assurance check on the assay to ensure that the assay is functioning properly or that the magnetic particles are correctly matched with the pathogen to be detected.


In certain embodiments, at least two sets of magnetic particles are employed. In those embodiments, members of a first set of magnetic particles are coupled to a binding entity specific to the target, e.g., a pathogen, and members of a second set of magnetic particles are conjugated to a binding entity specific to the detectable marker. Alternatively, magnetic particles including more than one binding moiety (e.g, a binding moiety that is specific to the target and a binding moiety that is specific to the detectable marker) can be introduced into the sample to bind the target and the detectable marker. At the analysis step of the assay, once the presence or absence of the target is determined, the presence or absence of the detectable marker is also determined, either concurrently or subsequent to detection of the target. In some embodiments, analysis allows for the simultaneous detection of the detectable marker and the pathogen. Based on the presence or absence of the detectable marker, a determination is made about whether the assay properly functioned. Detection of the detectable marker indicates a properly executed assay.


The presence of the marker indicates that the assay worked properly; and thus any detection of pathogen (or the absence of pathogen) is accurate and not the result of a failed assay. If analysis of the isolated portion of the sample contains the detectable marker, it can be concluded that the assay properly functioned and the assay was successfully performed. However, if the isolated portion of the sample lacks the presence of the detectable marker, then the assay did not function properly and the results should not be relied upon. In a particular instance, a detectable marker can be introduced into the sample to bind with a plurality of magnetic particles to determine whether the magnetic particles employed in the assay bind properly.


Any assay for separating targets from a sample is useful according to methods of invention, including assays that utilize affinity columns and magnetic fields to isolate pathogens. In one embodiment, the assay includes introducing into a biological sample a cocktail including a plurality of sets of magnetic particles, wherein members of at least one set comprise a binding agent specific for a pathogen and members of at least one set comprise a binding agent specific to the a detectable marker. In another embodiment, magnetic particles including two or more binding moieties, are used. In such embodiments, a first binding moiety on the particle is specific to the target, e.g., pathogen, and a second binding moiety on the particle is specific to the detectable marker. In either embodiment, any pathogen present in the sample and the detectable marker bind to their respective moieties, either on the same particle or on different particles. The sample is exposed to a magnetic field to isolate bound particles (i.e., those that bind pathogen or the marker) from other components of the sample. Once isolated, the presence of the detectable marker is determined. The presence of the marker indicates that the assay worked. Thus, if no pathogen is detected, it is not the result of a failure of the assay to work, thereby eliminating a false negative result.


Any convenient method is useful for detecting the detectable marker and pathogen, including PCR, microarray hybridization, and sequencing. In certain aspects, the presence or absence of the detectable marker is determined prior to determining the presence or absence of the suspected pathogen target. Detecting the detectable marker prior to detecting any isolated pathogen reduces the time and costs associated with detecting targets in a failed assay.


Samples suitable for use in methods of the invention include, but are not limited to, biological samples, such as tissue or body fluid. Targets within the sample include eukaryotic cells, prokaryotic cells, plant cells, animal cells, fungi, bacteria, and viruses. In certain aspects, the target is a pathogen. In addition, methods of the invention also contemplate nucleic acids, proteins, receptors, ligands, or any other known molecule as a target.


In certain aspects, the detectable marker is a microbe, including a viable or nonviable microbe. The detectable marker can be sufficiently similar to the target such that the assay performs functionally in the same manner for the detectable marker and the target. The detectable marker may be labeled or otherwise modified to allow for their differentiation from targets originally present in the sample. For example, but not by way of limitation, the detectable marker can be genetically modified so as to express a fluorescent protein, or alternatively, the detectable marker could be pre-stained with a persistent stain to allow their differentiation from microbes that are originally present in the fluid composition. In addition, the detectable marker may be chosen based on a chromogen dye specific reaction to the presence of the detectable marker.


Binding entities attached to magnetic particles can be selected at the convenience of the user. In a preferred embodiment, antibodies conjugated to the magnetic particles are used and may be either monoclonal or polyclonal antibodies. Since each set of particles is conjugated with antibodies having different specificities for different pathogens and detectable markers. Compositions of the invention may be provided such that each set of antibody conjugated to a particle is present at a concentration designed for detection of a specific pathogen and specific detectable marker in the sample. In certain embodiments, all of the sets are provided at the same concentration. Alternatively, the sets are provided at different concentrations.


To facilitate detection of the different sets of pathogen/magnetic particle complexes and the detectable marker/magnetic particle complexes, the particles may be differently labeled. Any detectable label may be used with compositions of the invention, such as fluorescent labels, radiolabels, enzymatic labels, and others. In particular embodiments, the detectable label is an optically-detectable label, such as a fluorescent label. Exemplary fluorescent labels include Cy3, Cy5, Atto, cyanine, rhodamine, fluorescein, coumarin, BODIPY, alexa, and conjugated multi-dyes. In one aspect, both the detectable marker and the magnetic particle can be labeled to facilitate detection of the detectable marker.


Any type of magnetic material is suitable for use in methods of the invention. Magnetic particles generally fall into two broad categories. The first category includes particles that are permanently magnetizable, or ferromagnetic; and the second category includes particles that demonstrate bulk magnetic behavior only when subjected to a magnetic field. The latter are referred to as magnetically responsive particles. Materials displaying magnetically responsive behavior are sometimes described as superparamagnetic. However, materials exhibiting bulk ferromagnetic properties, e.g., magnetic iron oxide, may be characterized as superparamagnetic when provided in crystals of about 30 nm or less in diameter. Larger crystals of ferromagnetic materials, by contrast, retain permanent magnet characteristics after exposure to a magnetic field and tend to aggregate thereafter due to strong particle-particle interaction. In certain embodiments, the particles are superparamagnetic particles. In other embodiments, the magnetic particles include at least 70% superparamagnetic particles by weight. In certain embodiments, the superparamagnetic particles are from about 100 nm to about 250 nm in diameter. In certain embodiments, the magnetic particle is an iron-containing magnetic particle. In other embodiments, the magnetic particle includes iron oxide or iron platinum.







DETAILED DESCRIPTION

The invention generally relates to using detectable markers to indicate whether an assay is properly functioning, for example, properly separating suspected targets from a sample. Accordingly, methods of the invention provide for differentiating between negative and positive assays to increase the reliability of target pathogen detection, i.e. providing an indication that the assay positively identified the presence or absence of a target analyte in a sample. Methods of the invention involve obtaining a sample suspect of containing targets, introducing a detectable marker into the sample, and conducting an assay using a plurality of magnetic particles to isolate targets and one or more detectable markers from the sample. The plurality of magnetic particles, can include different sets whereby at least one set of the magnetic particles is coupled to binding moieties (e.g., antibodies) specific to the suspected targets and at least one set of the magnetic particles is coupled to binding moieties (e.g., antibodies) specific to the detectable marker. In other embodiments, a plurality of magnetic particles include more than one binding moiety, (e.g., antibody) specific to the target and a binding moiety (e.g., antibody) specific to the detectable marker. After conducting the assay, methods of the invention provide for making a determination about the presence or absence of the targets in the sample based on the determination of the presence or absence of the detectable marker.


Presence of the detectable marker indicates that the magnetic particles are functioning properly and that all steps of the assay were performed accurately. A lack of the detectable marker indicates either malfunction of the magnetic particles, the employment of a non-binding magnetic particle, or error in execution of the assay. Because the detectable marker was placed into the sample, the subsequent determination of the presence or absence of the detectable marker indicates whether the assay properly bound the detectable marker to the magnetic particle or if the assay failed because it was unable to bind the detectable marker.


Methods of the invention involve collecting a sample, such as a tissue or body fluid. The sample may be collected in any clinically acceptable manner. A body fluid having a target can be collected in a container, such as a blood collection tube (e.g., VACUTAINER (test tube specifically designed for venipuncture, commercially available from Becton, Dickinson and company). In certain embodiments, a solution is added that prevents or reduces aggregation of endogenous aggregating factors, such as heparin in the case of blood.


A body fluid refers to a liquid material derived from, for example, a human or other mammal. Such body fluids include, but are not limited to, mucus, blood, plasma, serum, serum derivatives, bile, phlegm, saliva, sweat, amniotic fluid, mammary fluid, urine, sputum, and cerebrospinal fluid (CSF), such as lumbar or ventricular CSF. A body fluid may also be a fine needle aspirate. A body fluid also may be media containing cells or biological material. In particular embodiments, the fluid is blood.


A tissue is a mass of connected cells and/or extracellular matrix material, e.g. skin tissue, nasal passage tissue, CNS tissue, neural tissue, eye tissue, liver tissue, kidney tissue, placental tissue, mammary gland tissue, placental tissue, gastrointestinal tissue, musculoskeletal tissue, genitourinary tissue, bone marrow, and the like, derived from, for example, a human or other mammal and includes the connecting material and the liquid material in association with the cells and/or tissues. A sample may also be a fine needle aspirate or biopsied tissue. A sample also may be media containing cells or biological material.


Although directed towards the isolation and detection of pathogens, methods of the invention may be used to isolate and detect any target. The target analyte refers to the substance suspected to be present in the sample that will be captured and isolated by methods of the invention. The target may be bacteria, fungi, a protein, a cell (such as a cancer cell, a white blood cell a virally infected cell, or a fetal cell circulating in maternal circulation), a virus, a nucleic acid (e.g., DNA or RNA), a receptor, a ligand, a hormone, a drug, a chemical substance, or any molecule known in the art. In certain embodiments, the suspected target is a pathogenic bacterium, fungus, or virus. In other embodiments, the target is a gram positive or gram negative bacteria. Exemplary bacterial species that may be captured and isolated by methods of the invention include E. coli, Listeria, Clostridium, Mycobacterium, Shigella, Borrelia, Campylobacter, Bacillus, Salmonella, Staphylococcus, Enterococcus, Pneumococcus, Streptococcus, and a combination thereof.


Aspects of the invention involve introducing one or more detectable markers into the sample suspected of containing a target or pathogen. Any object capable of isolation and detection from a sample using an assay can be used as the detectable marker. In one embodiment, the detectable marker that has similar properties to the suspected pathogen or targets that one desires to isolate or capture. This ensures that the assay is essentially functioning the same for both the suspected targets and the detectable marker. Any concentration of detectable markers can be introduced into the sample. For example, the concentration of detectable markers introduced is the same as an estimated amount of targets or pathogens suspected of being present in the sample. In another example, 1 to 10 detectable markers are introduced per mL of sample fluid.


Suitable detectable markers for use in the invention include a bacteria, fungi, a protein, a cell (such as a cancer cell, a white blood cell a virally infected cell, or a fetal cell circulating in maternal circulation), a virus, a nucleic acid (e.g., DNA or RNA), a receptor, a ligand, a hormone, a drug, a chemical substance, or any molecule known in the art. Preferably, the detectable marker does not have cross reactivity with the suspected target. In certain aspects, the detectable marker is a microbe, or microorganism. In one embodiment, the microbe is a non-viable microbe or viable mircrobe.


The detectable marker may be labeled or otherwise modified to allow for their differentiation from targets or pathogens originally present in the sample. For example, but not by way of limitation, the detectable marker could be genetically modified so as to express a fluorescent protein, or alternatively, the detectable marker could be pre-stained with a persistent stain to allow their differentiation from microbes that are originally present in the sample fluid. In addition, the detectable marker microbe may be chosen based on a specific-reaction to a chromogen.


In one aspect, the detectable marker is pre-stained using the FISH method, which is a method of fluorescence-staining a microbe by using a nucleic acid probe and targeting a nucleic acid in a cell. This method does not require the step of extracting a nucleic acid from a microbe, and directly adds a fluorescence-labeled nucleic acid probe to a pretreated microbe to make the probe hybridize to an rRNA or chromosome DNA of a nucleic acid in a microbial cell. In general, an rRNA of a nucleic acid in a microbial cell is used as a probe target. There are several thousand to several hundred thousand rRNA copies in a microbial cell, and hence there are probe targets equal in number to the rRNA copies. For this reason, a large amount of fluorescent dye bonded to the nucleic acid probe is accumulated in the target microbial cell. When the fluorescent dye used in this case is irradiated with proper excitation light, only the target microbial cell emits fluorescence without changing its shape to allow its observation under the epifluorescent microscope.


In another aspect, the detectable marker may be genetically modified or engineered to include a protein or other marker capable of being visualized. For example, the detectable marker can be modified with the GFP (Green Fluorescent Protein) gene or Luciferase reported gene. In this manner, the DTMO may be visualized non-invasively using appropriate UV or other suitable illumination and imaging conditions.


Alternatively, in another embodiment, the detectable marker is not pre-labeled or dyed prior to being introduced into the sample, but rather the detectable marker is labeled or differentiated from the target after the assay for detection. For example, the detectable marker can be contacted with antibodies specific to the detectable marker, and the antibody is labeled either directly or indirectly with labels used in known immunoassays.


In another example, the detectable marker is chosen based on a chromogen's reaction to the detectable marker, i.e. the chromogen undergoes a change in color based on the presence of the microbe. Any of a variety of different types of microbes may generally be detected by microbe-sensitive chomogen such as bacteria, fungi, viruses, mold, yeast, etc, and can detect microbes of various different shapes, cell arrangements, and compositions. Microbe-sensitive chromogens suitable for use in methods of the invention include, for example, any chromogen that undergoes a readily detectable change in color based on the chromogen's interaction with microbe.


Microbe specific chromogens suitable for use in the invention include a light absorbing chromophore that is a light-absorbing portion of the chromogen responsible for the chromogen's change of color. Common chromophores include azo groups (e.g., azo dyes), polyene groups (e.g., carotene dye), and carbonyl groups (e.g., anthraquinone dyes), and the chromophores may be connected to a conjugated system. Solvatochromic dyes are a class of chromogen that can be used to detect microbes. U.S. Pat. No. 7,300,770 details various types and characteristics of microbe sensitive chromogens.


Suitable solvatochromic dyes may include, but are not limited to merocyanine dyes (e.g., mono-, di-, and tri-merocyanines), betaine dyes, such as 4-(2,4,6-triphenylpyridinium-1-yl)-2,6-diphenylphenolate (Reichardt's dye), 4-dicyanmethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM); 6-propionyl-2-(dimethylamino)naphthalene (PRODAN); 9-(diethylamino)-5H-benzo[a]phenox-azin-5-one (Nile Red); 4-(dicyanovinyl)julolidine (DCVJ); phenol blue; stilbazolium dyes; coumarin dyes; ketocyanine dyes; N,N-dimethyl-4-nitroaniline (NDMNA) and N-methyl-2-nitroaniline (NM2NA); Nile blue; 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS), and dapoxylbutylsulfonamide (DBS) and other dapoxyl analogs.


Still other suitable dyes that may be used in the present invention include, but are not limited to, 4-[2-N-substituted-1,4-hydropyridin-4-ylidine)ethylidene]cyclohexa-2,5-di-en-1-one, red pyrazolone dyes, azomethine dyes, indoaniline dyes, and mixtures thereof. and merocyanine dyes (e.g., mono-, di-, and tri-merocyanines) are one example of a type of solvatochromic dye.


Methods of the invention provide for conducting an assay to isolate any suspected targets or pathogens and the detectable markers from the sample. To ensure the assay is properly working, the steps for isolating the target or pathogens and the detectable markers should be the same. Assays suitable for use in methods of the invention include, for example, affinity chromatography assays and immunomagnetic assays. Affinity chromatography assays utilizes differences in cell surface macromolecules by passing sample fluids containing the cells through what is known as an affinity column, wherein the affinity column is typically a porous membrane containing binding moieties specific to the target. Examples of affinity chromatography column assays for separating pathogens from sample include those described in Ashok Kumar, Akshay Srivastava. Cell separation using cryogel-based affinity chromatography, Nature protocols 2010; 5:1737-1747; Brewster J. D., Isolation and concentration of Salmonellae with an immunoaffinity column, J Microbiol Methods. 2003 Oct;55(1):287-93; Wang et al. Open-Tubular Capillary Cell Affinity Chromatography: Single and Tandem Blood Cell Separation, Anal. Chem. 2008, 80, 2118-2124.


In one aspect, the assay includes introducing a plurality of magnetic particles to the sample. The magnetic particles are divided into at least two sets. Particles of at least one set includes a pathogen specific binding moieties and particles of at least one other set include detectable marker specific binding moieties. Other sets can be used with binding moieties specific to different targets, such as a third set specific to a second target, a fourth set specific to a third target, a fifth set specific to a fourth target, etc. The sample is allowed to incubate to allow the magnetic particles to bind to the pathogens and the detectable markers. After incubation, the sample is subject to a magnetic field to capture pathogen/magnetic particles complexes and detectable marker/magnetic particles complexes on a surface. Optionally, after the complexes are bound, the surface is washed with a wash solution that reduces particle aggregation, thereby isolating the complexes.


In another aspect of the invention, the assay includes introducing a plurality of the magnetic particles into the sample, where a particles includes more than one binding moiety. That is, a single particle includes at least two binding moieties. In such embodiments, a first binding moiety on the particle is specific for binding to the target, e.g., pathogen, and a second binding moiety is specific for binding to the detectable marker. Such particles are further described, for example in Zeng, H. and Sun, S. (2008), Syntheses, Properties, and Potential Applications of Multicomponent Magnetic Nanoparticles. Adv. Funct. Mater., 18: 391-400. doi: 10.1002/adfm.200701211; see also J. Mater. Chem., 2004,14, 1336-1341, DOI: 10.1039/B315103D, accepted 13 Feb. 2004, the content of each of which is incorporated by reference herein in its entirety.


In certain embodiments, the detectable marker and the pathogen have similar binding moieties such that a single binding moiety can bind to either the pathogen or the detectable marker.


In other embodiments, a magnetic particle may have two or more antibodies specific to different pathogens. In other embodiments, a magnetic particle may be conjugated to an antibody specific to a pathogen and a lectin specific to a different pathogen.


Composition used in methods of the invention may use any type of magnetic particle. Production of magnetic particles and particles for use with the invention are known in the art. See for example Giaever (U.S. Pat. No. 3,970,518), Senyi et al. (U.S. Pat. No. 4,230,685), Dodin et al. (U.S. Pat. No. 4,677,055), Whitehead et al. (U.S. Pat. No. 4,695,393), Benjamin et al. (U.S. Pat. No. 5,695,946), Giaever (U.S. Pat. No. 4,018,886), Rembaum (U.S. Pat. No. 4,267,234), Molday (U.S. Pat. No. 4,452,773), Whitehead et al. (U.S. Pat. No. 4,554,088), Forrest (U.S. Pat. No. 4,659,678), Liberti et al. (U.S. Pat. No. 5,186,827), Own et al. (U.S. Pat. No. 4,795,698), and Liberti et al. (WO 91/02811), the content of each of which is incorporated by reference herein in its entirety.


Magnetic particles generally fall into two broad categories. The first category includes particles that are permanently magnetizable, or ferromagnetic; and the second category includes particles that demonstrate bulk magnetic behavior only when subjected to a magnetic field. The latter are referred to as magnetically responsive particles. Materials displaying magnetically responsive behavior are sometimes described as superparamagnetic. However, materials exhibiting bulk ferromagnetic properties, e.g., magnetic iron oxide, may be characterized as superparamagnetic when provided in crystals of about 30 nm or less in diameter. Larger crystals of ferromagnetic materials, by contrast, retain permanent magnet characteristics after exposure to a magnetic field and tend to aggregate thereafter due to strong particle-particle interaction. In certain embodiments, the particles are superparamagnetic particles. In certain embodiments, the magnetic particle is an iron containing magnetic particle. In other embodiments, the magnetic particle includes iron oxide or iron platinum.


In certain embodiments, the magnetic particles include at least about 10% superparamagnetic particles by weight, at least about 20% superparamagnetic particles by weight, at least about 30% superparamagnetic particles by weight, at least about 40% superparamagnetic particles by weight, at least about 50% superparamagnetic particles by weight, at least about 60% superparamagnetic particles by weight, at least about 70% superparamagnetic particles by weight, at least about 80% superparamagnetic particles by weight, at least about 90% superparamagnetic particles by weight, at least about 95% superparamagnetic particles by weight, or at least about 99% superparamagnetic particles by weight. In a particular embodiment, the magnetic particles include at least about 70% superparamagnetic particles by weight.


In certain embodiments, the superparamagnetic particles are less than 100 nm in diameter. In other embodiments, the superparamagnetic particles are about 150 nm in diameter, are about 200 nm in diameter, are about 250 nm in diameter, are about 300 nm in diameter, are about 350 nm in diameter, are about 400 nm in diameter, are about 500 nm in diameter, or are about 1000 nm in diameter. In a particular embodiment, the superparamagnetic particles are from about 100 nm to about 250 nm in diameter.


In certain embodiments, the particles (e.g., nanoparticles) incorporate magnetic materials, or magnetic materials that have been functionalized, or other configurations as are known in the art. In certain embodiments, nanoparticles may be used that include a polymer material that incorporates magnetic material(s), such as nanometal material(s). When those nanometal material(s) or crystal(s), such as Fe3O4, are superparamagnetic, they may provide advantageous properties, such as being capable of being magnetized by an external magnetic field, and demagnetized when the external magnetic field has been removed. This may be advantageous for facilitating sample transport into and away from an area where the sample is being processed without undue particle aggregation.


One or more or many different nanometal(s) may be employed, such as Fe3O4, FePt, or Fe, in a core-shell configuration to provide stability, and/or various others as may be known in the art. In many applications, it may be advantageous to have a nanometal having as high a saturated moment per volume as possible, as this may maximize gradient related forces, and/or may enhance a signal associated with the presence of the particles. It may also be advantageous to have the volumetric loading in a particle be as high as possible, for the same or similar reason(s). In order to maximize the moment provided by a magnetizable nanometal, a certain saturation field may be provided. For example, for Fe3O4 superparamagnetic particles, this field may be on the order of about 0.3T.


The size of the nanometal containing particle may be optimized for a particular application, for example, maximizing moment loaded upon a target, maximizing the number of particles on a target with an acceptable detectability, maximizing desired force-induced motion, and/or maximizing the difference in attached moment between the labeled target and non-specifically bound targets or particle aggregates or individual particles. While maximizing is referenced by example above, other optimizations or alterations are contemplated, such as minimizing or otherwise desirably affecting conditions.


In an exemplary embodiment, a polymer particle containing 80 wt % Fe3O4 superparamagnetic particles, or for example, 90 wt% or higher superparamagnetic particles, is produced by encapsulating superparamagnetic particles with a polymer coating to produce a particle having a diameter of about 250 nm.


In certain embodiments, the plurality of magnetic particles are divided into two or more sets, in which a first set of the particles has a target-specific binding moiety that allows for binding the target of interest in the sample, and a second set of the particles has a binding moiety that specifically binds of the detectable marker. In other embodiments, a plurality of magnetic particles include more than one binding moiety, e.g., a binding moiety (e.g., antibody) specific to the target and a binding moiety (e.g., antibody) specific to the detectable marker.


The target-specific moiety may be any molecule known in the art and will depend on the target to be captured and isolated. Exemplary target-specific binding moieties include nucleic acids, proteins, ligands, antibodies, aptamers, and receptors.


In particular embodiments, the target-specific binding moiety is an antibody, such as an antibody that binds a particular bacterium. General methodologies for antibody production, including criteria to be considered when choosing an animal for the production of antisera, are described in Harlow et al. (Antibodies, Cold Spring Harbor Laboratory, pp. 93-117, 1988). For example, an animal of suitable size such as goats, dogs, sheep, mice, or camels are immunized by administration of an amount of immunogen, such the target bacteria, effective to produce an immune response. An exemplary protocol is as follows. The animal is injected with 100 milligrams of antigen resuspended in adjuvant, for example Freund's complete adjuvant, dependent on the size of the animal, followed three weeks later with a subcutaneous injection of 100 micrograms to 100 milligrams of immunogen with adjuvant dependent on the size of the animal, for example Freund's incomplete adjuvant. Additional subcutaneous or intraperitoneal injections every two weeks with adjuvant, for example Freund's incomplete adjuvant, are administered until a suitable titer of antibody in the animal's blood is achieved. Exemplary titers include a titer of at least about 1:5000 or a titer of 1:100,000 or more, i.e., the dilution having a detectable activity. The antibodies are purified, for example, by affinity purification on columns containing protein G resin or target-specific affinity resin.


The technique of in vitro immunization of human lymphocytes is used to generate monoclonal antibodies. Techniques for in vitro immunization of human lymphocytes are well known to those skilled in the art. See, e.g., Inai, et al., Histochemistry, 99(5):335 362, May 1993; Mulder, et al., Hum. Immunol., 36(3):186 192, 1993; Harada, et al., J. Oral Pathol. Med., 22(4):145 152, 1993; Stauber, et al., J. Immunol. Methods, 161(2):157 168, 1993; and Venkateswaran, et al., Hybridoma, 11(6) 729 739, 1992. These techniques can be used to produce antigen-reactive monoclonal antibodies, including antigen-specific IgG, and IgM monoclonal antibodies.


Any antibody or fragment thereof having affinity and specific for the bacteria of interest is within the scope of the invention provided herein. Immunomagnetic particles against Salmonella are provided in Vermunt et al. (J. Appl. Bact. 72:112, 1992). Immunomagnetic particles against Staphylococcus aureus are provided in Johne et al. (J. Clin. Microbiol. 27:1631, 1989). Immunomagnetic particles against Listeria are provided in Skjerve et al. (Appl. Env. Microbiol. 56:3478, 1990). Immunomagnetic particles against Escherichia coli are provided in Lund et al. (J. Clin. Microbiol. 29:2259, 1991).


Methods for attaching the target-specific binding moiety to the magnetic particle are known in the art. Coating magnetic particles with antibodies is well known in the art; see for example Harlow et al. (Antibodies, Cold Spring Harbor Laboratory, 1988), Hunter et al. (Immunoassays for Clinical Chemistry, pp. 147-162, eds., Churchill Livingston, Edinborough, 1983), and Stanley (Essentials in Immunology and Serology, Delmar, pp. 152-153, 2002). Such methodology can easily be modified by one of skill in the art to bind other types of target-specific binding moieties to the magnetic particles. Certain types of magnetic particles coated with a functional moiety are commercially available from Sigma-Aldrich (St. Louis, Mo.).


Since each set of particles is conjugated with antibodies having different specificities for the suspected target or detectable marker, compositions used in methods of the invention may be provided such that each set of antibody conjugated particles is present at a concentration designed for detection of one or more different suspected targets and one or more detectable markers in the sample. In certain embodiments, sets for the suspected targets and detectable markers are provided at the same concentration. Alternatively, the sets are provided at different concentrations if, for example, there are more than one suspected targets in the sample. For example, compositions may be designed such that sets that bind gram positive bacteria are added to the sample at a concentration of 2×109 particles per/mL, while sets that bind gram negative bacteria are added to the sample at a concentration of 4×109 particles per/mL. Compositions used with methods of the invention are not affected by antibody cross-reactivity. However, in certain embodiments, sets are specifically designed such that there is no cross-reactivity between different antibodies and different sets.


Capture of a wide range of suspected pathogens or targets and the detectable marker simultaneously can be achieved by utilizing antibodies specific to target. Further, expanded reactivity can be achieved by mixing particles of different reactivity. The addition of high concentrations of non-specific particles does not interfere with the capture efficiency of target-specific particles.


In certain aspects, methods of the invention provide for differentially labeling the magnetic particles specific to the targets and the detectable marker for subsequent detection. Although the detectable marker can be detected on its own, the particle specific to the detectable marker is also labeled so that the detectable marker is subject to the same assay as the suspected pathogens. This is because aspects of the invention provide for conducting the same assay on the detectable markers as the suspected pathogens to ensure the assay functions essentially the same for both the detectable marker and the suspected pathogens. In this embodiment, the detectable marker can be detected on its own or through use of the detectable label attached to the magnetic particle.


To facilitate detection of the pathogen/magnetic particle complexes the particles may be differently labeled. Any detectable label may be used with compositions of the invention, such as fluorescent labels, radiolabels, enzymatic labels, and others. The detectable label may be directly or indirectly detectable. In certain embodiments, the exact label may be selected based, at least in part, on the particular type of detection method used. Exemplary detection methods include radioactive detection, optical absorbance detection, e.g., UV-visible absorbance detection, optical emission detection, e.g., fluorescence; phosphorescence or chemiluminescence; Raman scattering. Preferred labels include optically-detectable labels, such as fluorescent labels. Examples of fluorescent labels include, but are not limited to, 4-acetamido-4′-isothiocyanatostilbene-2,2′disulfonic acid; acridine and derivatives: acridine, acridine isothiocyanate; 5-(2′-aminoethyl)aminonaphthalene-1-sulfonic acid (EDANS); 4-amino-N-[3-vinylsulfonyl)phenyl]naphthalimide-3,5 disulfonate; N-(4-anilino-1-naphthyl)maleimide; anthranilamide; BODIPY; Brilliant Yellow; coumarin and derivatives; coumarin, 7-amino-4-methylcoumarin (AMC, Coumarin 120), 7-amino-4-trifluoromethylcouluarin (Coumaran 151); cyanine dyes; cyanosine; 4′,6-diaminidino-2-phenylindole (DAPI); 5′5″-dibromopyrogallol -sulfonaphthalein (Bromopyrogallol Red); 7-diethylamino-3-(4′-isothiocyanatophenyl)-4-methylcoumarin; diethylenetriamine pentaacetate; 4,4′-diisothiocyanatodihydro-stilbene-2,2′-disulfonic acid; 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid; 5-[dimethylamino]naphthalene-1-sulfonyl chloride (DNS, dansylchloride); 4-dimethylaminophenylazophenyl-4′-isothiocyanate (DABITC); eosin and derivatives; eosin, eosin isothiocyanate, erythrosin and derivatives; erythrosin B, erythrosin, isothiocyanate; ethidium; fluorescein and derivatives; 5-carboxyfluorescein (FAM), 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF), 2′,7′-dimethoxy-4′5′-dichloro-6-carboxyfluorescein, fluorescein, fluorescein isothiocyanate, QFITC, (XRITC); fluorescamine; IR144; IR1446; Malachite Green isothiocyanate; 4-methylumbelliferoneortho cresolphthalein; nitrotyrosine; pararosaniline; Phenol Red; B-phycoerythrin; o-phthaldialdehyde; pyrene and derivatives: pyrene, pyrene butyrate, succinimidyl 1-pyrene; butyrate quantum dots; Reactive Red 4 (Cibacron™ Brilliant Red 3B-A) rhodamine and derivatives: 6-carboxy-X-rhodamine (ROX), 6-carboxyrhodamine (R6G), lissamine rhodamine B sulfonyl chloride rhodamine (Rhod), rhodamine B, rhodamine 123, rhodamine X isothiocyanate, sulforhodamine B, sulforhodamine 101, sulfonyl chloride derivative of sulforhodamine 101 (Texas Red); N,N,N′,N′tetramethyl-6-carboxyrhodamine (TAMRA); tetramethyl rhodamine; tetramethyl rhodamine isothiocyanate (TRITC); riboflavin; rosolic acid; terbium chelate derivatives; Atto dyes, Cy3; Cy5; Cy5.5; Cy7; IRD 700; IRD 800; La Jolta Blue; phthalo cyanine; and naphthalo cyanine. Preferred fluorescent labels are cyanine-3 and cyanine-5. Labels other than fluorescent labels are contemplated by the invention, including other optically-detectable labels. Methods of linking fluorescent labels to magnetic particles or antibodies are known in the art.


The sample suspected of containing pathogens/targets and one or more detectable markers is then mixed with compositions as described above to generate a mixture that is allowed to incubate such that the plurality of magnetic particles bind to one or more suspected pathogens, if any, and one or more detectable markers in the sample. The mixture is allowed to incubate for a sufficient time to allow for the composition to bind to the pathogens and detectable markers. The process of binding the composition to the pathogen associates a magnetic moment with the pathogen, and thus allows the pathogen to be manipulated through forces generated by magnetic fields upon the attached magnetic moment.


In general, incubation time will depend on the desired degree of binding between the pathogen, detectable markers and the magnetic particles of the invention (e.g., the amount of moment that would be desirably attached to the pathogen), the amount of moment per target, the amount of time of mixing, the type of mixing, the reagents present to promote the binding and the binding chemistry system that is being employed. Incubation time can be anywhere from about 5 seconds to a few days. Exemplary incubation times range from about 10 seconds to about 2 hours. Binding occurs over a wide range of temperatures, generally between 15° C. and 40° C.


In certain embodiments, a buffer solution is added to the sample along with the compositions of the invention. An exemplary buffer includes Tris(hydroximethyl)-aminomethane hydrochloride at a concentration of about 75 mM. It has been found that the buffer composition, mixing parameters (speed, type of mixing, such as rotation, shaking etc., and temperature) influence binding. If labeled, it is important to maintain osmolality of the final solution (e.g., blood+buffer) to maintain high label efficiency. In certain embodiments, buffers used in methods of the invention are designed to prevent lysis of blood cells or any other cells, facilitate efficient binding of targets with magnetic particles and to reduce formation of particle aggregates. It has been found that the buffer solution containing 300 mM NaCl, 75 mM Tris-HCl pH 8.0 and 0.1% Tween 20 meets these design goals.


Without being limited by any particular theory or mechanism of action, it is believed that sodium chloride is mainly responsible for maintaining osmolality of the solution and for the reduction of non-specific binding of magnetic particle through ionic interaction. Tris(hydroximethyl)-aminomethane hydrochloride is a well-established buffer compound frequently used in biology to maintain pH of a solution. It has been found that 75 mM concentration is beneficial and sufficient for high binding efficiency. Likewise, Tween 20 is widely used as a mild detergent to decrease nonspecific attachment due to hydrophobic interactions. Various assays use Tween 20 at concentrations ranging from 0.01% to 1%. The 0.1% concentration appears to be optimal for the efficient labeling of bacteria, while maintaining blood cells intact.


Additional compounds can be used to modulate the capture efficiency by blocking or reducing non-specific interaction with blood components and either magnetic particles or pathogens. For example, chelating compounds, such as EDTA or EGTA, can be used to prevent or minimize interactions that are sensitive to the presence of Ca2+ or Mg2+ ions.


An alternative approach to achieve high binding efficiency while reducing time required for the binding step is to use static mixer, or other mixing devices that provide efficient mixing of viscous samples at high flow rates, such as at or around 5 mL/min. In one embodiment, the sample is mixed with binding buffer in ratio of, or about, 1:1, using a mixing interface connector. The diluted sample then flows through a mixing interface connector where it is mixed with target-specific nanoparticles. Additional mixing interface connectors providing mixing of sample and antigen-specific nanoparticles can be attached downstream to improve binding efficiency. The combined flow rate of the labeled sample is selected such that it is compatible with downstream processing.


After binding of the particles to the pathogen and detectable markers in the sample to form pathogen/magnetic particle complexes, a magnetic field is applied to the mixture to capture the complexes on a surface. Components of the mixture that are not bound to magnetic particles will not be affected by the magnetic field and will remain free in the mixture. Methods and apparatuses suitable for separating target/magnetic particle complexes and detectable marker/magnetic particles from other components of a mixture are known in the art. For example, a steel mesh may be coupled to a magnet, a linear channel or channels may be configured with adjacent magnets, or quadrapole magnets with annular flow may be used. Other methods and apparatuses for separating target/magnetic particle complexes from other components of a mixture are shown in Rao et al. (U.S. Pat. No. 6,551,843), Liberti et al. (U.S. Pat. No. 5,622,831), Hatch et al. (U.S. Pat. No. 6,514,415), Benjamin et al. (U.S. Pat. No. 5,695,946), Liberti et al. (U.S. Pat. No. 5,186,827), Wang et al. (U.S. Pat. No. 5,541,072), Liberti et al. (U.S. Pat. No. 5,466,574), and Terstappen et al. (U.S. Pat. No. 6,623,983), the content of each of which is incorporated by reference herein in its entirety.


In certain embodiments, the magnetic capture is achieved at high efficiency by utilizing a flow-through capture cell with a number of strong rare earth bar magnets placed perpendicular to the flow of the sample. When using a flow chamber with flow path cross-section 0.5 mm×20 mm (h×w) and 7 bar NdFeB magnets, the flow rate could be as high as 5 mL/min or more, while achieving capture efficiency close to 100%. In one embodiment, alternating magnetic fields are applied to the complexes to encourage binding of the complexes to the surface. Additionally, binding moieties specific to the target/magnetic particle complex and detectable marker/magnetic particle complex can be used to further enhance binding of complexes to the surface. Methods of capture using alternating magnetic fields and surface binding moieties are described in co-pending and co-owned U.S. patent application Ser. No. 12/855,147 (U.S. Patent Publication No. 2011-0262893).


The above described type of magnetic separation produces efficient capture of one or more targets and one more detectable markers and the removal of a majority of the remaining components of a sample mixture. However, such a process produces a sample that contains a very high percent of magnetic particles that are not bound to targets or detectable markers because the magnetic particles are typically added in excess, as well as non-specific target entities. Non-specific target entities may for example be bound at a much lower efficiency, for example 1% of the surface area, while a target of interest might be loaded at 50% or nearly 100% of the available surface area or available antigenic cites. However, even 1% loading may be sufficient to impart force necessary for trapping in a magnetic gradient flow cell or sample chamber.


For example, in the case of immunomagnetic binding of bacteria or fungi in a blood sample, the sample may include: bound targets and detectable markers at a concentration of about 1/mL or a concentration less than about 106/mL; background particles at a concentration of about 107/mL to about 1010/mL; and non-specific targets at a concentration of about 10/mL to about 105/mL.


The presence of magnetic particles that are not bound to targets or detectable marker and non-specific target entities on the surface along with the target/magnetic particle complexes detectable marker/magnetic particle complexes interferes with the ability to successfully detect or isolate the target of interest. The magnetic capture of the resulting mix, and close contact of magnetic particles with each other and bound targets, result in the formation of aggregate that is hard to dispense and which might be resistant or inadequate for subsequent processing or analysis steps. In order to remove magnetic particles that are not bound to target analytes and non-specific target entities, the surface may be washed with a wash solution that reduces particle aggregation, thereby isolating target/magnetic particle complexes from the magnetic particles that are not bound to target analytes and non-specific target entities. The wash solution minimizes the formation of the aggregates.


Any wash solution that imparts a net negative charge to the magnetic particle that is not sufficient to disrupt interaction between the target-specific moiety of the magnetic particle and the target analyte may be used. Without being limited by any particular theory or mechanism of action, it is believed that attachment of the negatively charged molecules in the wash solution to magnetic particles provides net negative charge to the particles and facilitates dispersal of non-specifically aggregated particles. At the same time, the net negative charge is not sufficient to disrupt strong interaction between the target-specific moiety of the magnetic particle and the target analyte (e.g., an antibody-antigen interaction). Exemplary solutions include heparin, Tris-HCl, Tris-borate-EDTA (TBE), Tris-acetate-EDTA (TAE), Tris-cacodylate, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid), PBS (phosphate buffered saline), PIPES (piperazine-N,N′-bis(2-ethanesulfonic acid), MES (2-N-morpholino)ethanesulfonic acid), Tricine (N-(Tri(hydroximethyl)methyl)glycine), and similar buffering agents. In certain embodiments, only a single wash cycle is performed. In other embodiments, more than one wash cycle is performed.


In particular embodiments, the wash solution includes heparin. For embodiments in which the body fluid sample is blood, the heparin also reduces probability of clotting of blood components after magnetic capture. The bound targets and detectable markers are washed with heparin-containing buffer 1-3 times to remove blood components and to reduce formation of aggregates.


Once the assay is complete and the target/magnetic particle complexes and detectable marker complexes are isolated from the sample, methods of the invention provide for detecting the presence of the detectable marker in order to indicate whether the assay is properly working. Detection of the detectable marker can be performed before, simultaneously, or subsequent the detection of the suspected targets. If the detectable marker is positively detected, the assay is working properly and the detection of suspected targets is positively confirmed. In other words, detection of the detectable marker indicates proper functionality of the magnetic particle and proper execution of the assay. If the detectable marker is not detected, then the assay or the magnetic particles failed in capturing the target and detectable marker. These results should not be relied upon, and can prompt quality assurance investigations and remedies. In certain aspects, the detectable marker is detected prior to detection of the targets. This allows one to confirm that the assay is working prior to expending resources for detecting targets in what may result in a failed assay. In certain aspects, the detectable marker and the target are detected simultaneously, negating the need for two analysis steps.


The detectable marker and target may be analyzed by a multitude of existing technologies, such as miniature NMR, Polymerase Chain Reaction (PCR), mass spectrometry, fluorescent labeling and visualization using microscopic observation, fluorescent in situ hybridization (FISH), growth-based antibiotic sensitivity tests, and variety of other methods that may be conducted with purified target without significant contamination from other sample components.


In one embodiment, the detectable marker is detected using the microbe sensitive chromogens discussed in detail above. After the assay, the remaining contents, i.e. magnetically captured detectable markers and targets, are placed in a final collection tube. To determine if the assay worked properly, a chromogen specific to the detectable marker is placed in the tube in such an amount to undergo a detectable color change in the presence of the detectable marker. If the color appears, this color change indicates that the detectable marker has been properly captured, indicating that the assay and magnetic particles functioned properly. Then the contents can be analyzed for the presence or absence of targets in the sample. In another embodiment, chromogens specific to the target are used to detect the presence or absence of the target.


In another embodiment, isolated target and/or detectable marker are lysed with a chaotropic solution, and DNA is bound to DNA extraction resin. After washing of the resin, the DNA is eluted and used in quantitative RT-PCR to detect the presence of the target and/or detectable marker.


In certain embodiments, magnetic particles are introduced into the sample, where the magnetic particles contain at least one set to bind to the binding specific moiety of the target and at least one set to bind to the binding specific moiety of the detectable target. A magnetic field is applied to the sample, thereby capturing the magnetic particles onto a surface. After the assay, the presence of the detectable marker is determined for proper functioning of the assay.


In other embodiments, magnetic particles are introduced into the sample, where the magnetic particles are capable of binding to the target and to the detectable marker. Meaning, that each magnetic particle contains at least two different sites, wherein one site the target is bound and in a second site the detectable marker is bound. For example, each particle contains at least two types of binding moieties on each particle for binding the target and the detectable marker. After the assay, the presence of the detectable marker is determined for proper functioning of the assay.


In another embodiment, the detectable marker and target are removed from the magnetic particles to which they are bound and the processed sample is mixed with fluorescent labeled antibodies specific to each. After incubation, the reaction mixture is filtered through 0.2 μm to 1.0 μm filter to capture labeled detectable markers and targets while allowing majority of free beads and fluorescent labels to pass through the filter. The detectable markers and targets are visualized on the filter using microscopic techniques, e.g. direct microscopic observation, laser scanning or other automated methods of image capture. The presence of detectable markers and target is detected through image analysis. After the results of the assay are confirmed based on the positive presence of the detectable marker, any targets isolated from the sample can be further characterized using PCR or genomic methods.


If the targets are bacteria, detection of the bacteria can be performed by use of nucleic acid probes following procedures which are known in the art. Suitable procedures for detection of bacteria using nucleic acid probes are described, for example, in Stackebrandt et al. (U.S. Pat. No. 5,089,386), King et al. (WO 90/08841), Foster et al. (WO 92/15883), and Cossart et al. (WO 89/06699), each of which is hereby incorporated by reference.


A suitable nucleic acid probe assay generally includes sample treatment and lysis, hybridization with selected probe(s), hybrid capture, and detection. Lysis of the bacteria is necessary to release the nucleic acid for the probes. The nucleic acid target molecules are released by treatment with any of a number of lysis agents, including alkali (such as NaOH), guanidine salts (such as guanidine thiocyanate), enzymes (such as lysozyme, mutanolysin and proteinase K), and detergents. Lysis of the bacteria, therefore, releases both DNA and RNA, particularly ribosomal RNA and chromosomal DNA both of which can be utilized as the target molecules with appropriate selection of a suitable probe. Use of rRNA as the target molecule(s), may be advantageous because rRNAs constitute a significant component of cellular mass, thereby providing an abundance of target molecules. The use of rRNA probes also enhances specificity for the bacteria of interest, that is, positive detection without undesirable cross-reactivity which can lead to false positives or false detection.


Hybridization includes addition of the specific nucleic acid probes. In general, hybridization is the procedure by which two partially or completely complementary nucleic acids are combined, under defined reaction conditions, in an anti-parallel fashion to form specific and stable hydrogen bonds. The selection or stringency of the hybridization/reaction conditions is defined by the length and base composition of the probe/target duplex, as well as by the level and geometry of mis-pairing between the two nucleic acid strands. Stringency is also governed by such reaction parameters as temperature, types and concentrations of denaturing agents present and the type and concentration of ionic species present in the hybridization solution.


The hybridization phase of the nucleic acid probe assay is performed with a single selected probe or with a combination of two, three or more probes. Probes are selected having sequences which are homologous to unique nucleic acid sequences of the target organism. In general, a first capture probe is utilized to capture formed hybrid molecules. The hybrid molecule is then detected by use of antibody reaction or by use of a second detector probe which may be labelled with a radioisotope (such as phosphorus-32) or a fluorescent label (such as fluorescein) or chemiluminescent label.


Detection of bacteria of interest can also be performed by use of PCR techniques. A suitable PCR technique is described, for example, in Verhoef et al. (WO 92/08805). Such protocols may be applied directly to the bacteria captured on the magnetic beads. The bacteria are combined with a lysis buffer and collected nucleic acid target molecules are then utilized as the template for the PCR reaction.


For detection of the selected bacteria by use of antibodies, isolated bacteria are contacted with antibodies specific to the bacteria of interest. As noted above, either polyclonal or monoclonal antibodies can be utilized, but in either case have affinity for the particular bacteria to be detected. These antibodies will adhere/bind to material from the specific target bacteria. With respect to labeling of the antibodies, these are labeled either directly or indirectly with labels used in other known immunoassays. Direct labels may include fluorescent, chemiluminescent, bioluminescent, radioactive, metallic, biotin or enzymatic molecules. Methods of combining these labels to antibodies or other macromolecules are well known to those in the art. Examples include the methods of Hijmans, W. et al. (1969), Clin. Exp. Immunol. 4, 457-, for fluorescein isothiocyanate, the method of Goding, J. W. (1976), J. Immunol. Meth. 13, 215-, for tetramethylrhodamine isothiocyanate, and the method of Ingrall, E. (1980), Meth. in Enzymol. 70, 419-439 for enzymes.


INCORPORATION BY REFERENCE

References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.


EQUIVALENTS

Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.

Claims
  • 1. A method for detecting a pathogen and confirming proper functioning of an assay, the method comprising obtaining a sample suspected of containing a pathogen;introducing a detectable marker into the sample;introducing magnetic particles into the sample;incubating the sample to allow for coupling of the detectable marker and the pathogen to the magnetic particles, wherein the detectable marker and the pathogen couple to separate binding moieties;conducting an assay using the magnetic particles to isolate and determine presence of both the detectable marker from the sample and the pathogen, wherein the presence of the pathogen is determined separate from the presence of the detectable marker, and wherein determination of the presence of the detectable marker confirms proper functioning of the assay.
  • 2. The method of claim 1, wherein the magnetic particles are divided into a first set and a second set.
  • 3. The method of claim 2, wherein the first and second sets of magnetic particles are labeled.
  • 4. The method of claim 3, wherein, the labels are different between the first set and second set.
  • 5. The method of claim 2, wherein members of the first set of magnetic particles are coupled to a binding moiety specific to the pathogen to form magnetic particle/pathogen complexes, and members of the second set of magnetic particles are coupled to a binding moiety specific to the detectable marker to form a magnetic particle/detectable marker complex.
  • 6. The method of claim 5, wherein the assay comprises exposing the magnetic particle/pathogen complexes and the magnetic particle/detectable marker complexes to a magnetic field.
  • 7. The method of claim 6, wherein the assay further comprises flowing the sample through a channel comprising surface binding moieties specific to the pathogen and to the detectable marker attached to a surface of the channel; and binding the pathogen/magnetic particle complexes and detectable marker/magnetic particle complex to the surface of the channel, wherein the step of applying a magnetic field brings the pathogen/magnetic particle complexes and detectable marker/magnetic particle complexes into proximity of the surface to facilitate binding of the pathogen/magnetic particle complexes and the detectable marker/magnetic particle complex to the surface of the channel; andwashing away unbound magnetic particles and unbound sample components.
  • 8. The method of claim 1, wherein the detectable marker comprises a microbe.
  • 9. The method of claim 8, wherein the microbe is detectable via a microbe-sensitive chromogen.
  • 10. The method of claim 1, wherein a plurality of the magnetic particles comprise two or more different binding moieties.
  • 11. The method of claim 10, wherein a first binding moiety is specific to the pathogen, and a second binding moiety is specific to the detectable marker.
  • 12. The method of claim 11, wherein the assay comprises exposing the magnetic particles to a magnetic field.
  • 13. The method of claim 12, wherein the assay further comprises flowing the sample through a channel comprising surface binding moieties specific to the pathogen and to the detectable marker attached to a surface of the channel; and binding the magnetic particles to the surface of the channel, wherein the step of applying a magnetic field brings the magnetic particles containing the pathogen/magnetic particle complexes and detectable marker/magnetic particle complexes into proximity of the surface to facilitate binding of magnetic particles to the surface of the channel; andwashing away unbound magnetic particles and unbound sample components.
RELATED APPLICATION

The present application claims the benefit of and priority to U.S. provisional application Ser. No. 61/739,577 filed Dec. 19, 2012, the content of which is incorporated by reference herein in its entirety.

US Referenced Citations (323)
Number Name Date Kind
3970518 Giaever Jul 1976 A
4018886 Giaever Apr 1977 A
4180563 Fauve Dec 1979 A
4230685 Senyei et al. Oct 1980 A
4267234 Rembaum May 1981 A
4434237 Dinarello Feb 1984 A
4452773 Molday Jun 1984 A
4551435 Liberti et al. Nov 1985 A
4554088 Whitehead et al. Nov 1985 A
4659678 Forrest et al. Apr 1987 A
4677055 Dodin et al. Jun 1987 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4695393 Chagnon et al. Sep 1987 A
4795698 Owen et al. Jan 1989 A
4901018 Lew Feb 1990 A
4925788 Liberti May 1990 A
4942124 Church Jul 1990 A
4988617 Landegren et al. Jan 1991 A
5047321 Loken et al. Sep 1991 A
5057413 Terstappen et al. Oct 1991 A
5108933 Liberti et al. Apr 1992 A
5136095 Tarnowski et al. Aug 1992 A
5149625 Church et al. Sep 1992 A
5164297 Josephson et al. Nov 1992 A
5186827 Liberti et al. Feb 1993 A
5200084 Liberti et al. Apr 1993 A
5229724 Zeiger Jul 1993 A
5234816 Terstappen Aug 1993 A
5242794 Whiteley et al. Sep 1993 A
5254460 Josephson et al. Oct 1993 A
5338687 Lee et al. Aug 1994 A
5342790 Levine et al. Aug 1994 A
5460979 Levine et al. Oct 1995 A
5466574 Liberti et al. Nov 1995 A
5494810 Barany et al. Feb 1996 A
5512332 Liberti et al. Apr 1996 A
5541072 Wang et al. Jul 1996 A
5583024 McElroy et al. Dec 1996 A
5583033 Terstappen et al. Dec 1996 A
5597531 Liberti et al. Jan 1997 A
5604097 Brenner Feb 1997 A
5605805 Verwer et al. Feb 1997 A
5622831 Liberti et al. Apr 1997 A
5622853 Terstappen et al. Apr 1997 A
5636400 Young Jun 1997 A
5646001 Terstappen et al. Jul 1997 A
5654636 Sweedler et al. Aug 1997 A
5660990 Rao et al. Aug 1997 A
5674713 McElroy et al. Oct 1997 A
5677133 Oberhardt Oct 1997 A
5681478 Lea et al. Oct 1997 A
5684401 Peck et al. Nov 1997 A
5695934 Brenner Dec 1997 A
5695946 Benjamin et al. Dec 1997 A
5698271 Liberti et al. Dec 1997 A
5700673 McElroy et al. Dec 1997 A
5741714 Liberti Apr 1998 A
5768089 Finnigan Jun 1998 A
5770461 Sakazume et al. Jun 1998 A
5773307 Colin et al. Jun 1998 A
5776710 Levine et al. Jul 1998 A
5795470 Wang et al. Aug 1998 A
5821066 Pyle Oct 1998 A
5834217 Levine et al. Nov 1998 A
5840580 Terstappen et al. Nov 1998 A
5846719 Brenner et al. Dec 1998 A
5863722 Brenner Jan 1999 A
5866099 Owen et al. Feb 1999 A
5869252 Bouma et al. Feb 1999 A
5876593 Liberti et al. Mar 1999 A
5925573 Colin et al. Jul 1999 A
5935825 Nishimura et al. Aug 1999 A
5948412 Murphy Sep 1999 A
5955583 Beavo et al. Sep 1999 A
5985153 Dolan et al. Nov 1999 A
5993665 Terstappen et al. Nov 1999 A
6013188 Terstappen et al. Jan 2000 A
6013532 Liberti et al. Jan 2000 A
6060882 Doty May 2000 A
6097188 Sweedler et al. Aug 2000 A
6100099 Gordon et al. Aug 2000 A
6120856 Liberti et al. Sep 2000 A
6136182 Dolan et al. Oct 2000 A
6138077 Brenner Oct 2000 A
6146838 Williams et al. Nov 2000 A
6150516 Brenner et al. Nov 2000 A
6172214 Brenner Jan 2001 B1
6172218 Brenner Jan 2001 B1
6194900 Freeman et al. Feb 2001 B1
6228624 Terstappen May 2001 B1
6235475 Brenner et al. May 2001 B1
6236205 Ludeke et al. May 2001 B1
6242915 Hurd Jun 2001 B1
6265150 Terstappen et al. Jul 2001 B1
6287791 Terstappen et al. Sep 2001 B1
6307372 Sugarman et al. Oct 2001 B1
6326787 Cowgill Dec 2001 B1
6348318 Valkirs Feb 2002 B1
6352828 Brenner Mar 2002 B1
6361749 Terstappen et al. Mar 2002 B1
6361944 Mirkin et al. Mar 2002 B1
6365362 Terstappen et al. Apr 2002 B1
6397094 Ludeke et al. May 2002 B1
6404193 Dourdeville Jun 2002 B1
6456072 Webb et al. Sep 2002 B1
6469636 Baird et al. Oct 2002 B1
6487437 Viswanathan et al. Nov 2002 B1
6495357 Fuglsang et al. Dec 2002 B1
6512941 Weiss et al. Jan 2003 B1
6514415 Hatch et al. Feb 2003 B2
6551843 Rao et al. Apr 2003 B1
6555324 Olweus et al. Apr 2003 B1
6582938 Su et al. Jun 2003 B1
6587706 Viswanathan Jul 2003 B1
6594517 Nevo Jul 2003 B1
6620627 Liberti et al. Sep 2003 B1
6623982 Liberti et al. Sep 2003 B1
6623983 Terstappen et al. Sep 2003 B1
6645731 Terstappen et al. Nov 2003 B2
6660159 Terstappen et al. Dec 2003 B1
6696838 Raftery et al. Feb 2004 B2
6700379 Peck et al. Mar 2004 B2
6788061 Sweedler et al. Sep 2004 B1
6790366 Terstappen et al. Sep 2004 B2
6818395 Quake et al. Nov 2004 B1
6822454 Peck et al. Nov 2004 B2
6845262 Albert et al. Jan 2005 B2
6858384 Terstappen et al. Feb 2005 B2
6867021 Maes et al. Mar 2005 B2
6876200 Anderson et al. Apr 2005 B2
6890426 Terstappen et al. May 2005 B2
6898430 Liberti et al. May 2005 B1
6914538 Baird et al. Jul 2005 B2
6958609 Raftery et al. Oct 2005 B2
7011794 Kagan et al. Mar 2006 B2
7056657 Terstappen et al. Jun 2006 B2
7078224 Bitner et al. Jul 2006 B1
7096057 Hockett et al. Aug 2006 B2
7141978 Peck et al. Nov 2006 B2
7169560 Lapidus et al. Jan 2007 B2
7200430 Thomas et al. Apr 2007 B2
7202667 Barbic Apr 2007 B2
RE39793 Brenner Aug 2007 E
7271592 Gerald, II et al. Sep 2007 B1
7274191 Park et al. Sep 2007 B2
7282180 Tibbe et al. Oct 2007 B2
7282337 Harris Oct 2007 B1
7282350 Rao et al. Oct 2007 B2
7304478 Tsuda et al. Dec 2007 B2
7332288 Terstappen et al. Feb 2008 B2
7345479 Park et al. Mar 2008 B2
7393665 Brenner Jul 2008 B2
7403008 Blank et al. Jul 2008 B2
7405567 McDowell Jul 2008 B2
7432105 Song Oct 2008 B2
7523385 Nguyen et al. Apr 2009 B2
7537897 Brenner et al. May 2009 B2
7544473 Brenner Jun 2009 B2
7564245 Lee Jul 2009 B2
7666308 Scholtens et al. Feb 2010 B2
7688777 Liberti, Jr. et al. Mar 2010 B2
7764821 Coumans et al. Jul 2010 B2
7776618 Nazareth Aug 2010 B2
7815863 Kagan et al. Oct 2010 B2
7828968 Tibbe et al. Nov 2010 B2
7863012 Rao et al. Jan 2011 B2
7901950 Connelly et al. Mar 2011 B2
7943397 Tibbe et al. May 2011 B2
8067938 McDowell Nov 2011 B2
8102176 Lee Jan 2012 B2
8110101 Tibbe et al. Feb 2012 B2
8111669 Liberti, Jr. et al. Feb 2012 B2
8128890 Droog et al. Mar 2012 B2
8841104 Dryga et al. Sep 2014 B2
8889368 Barbreau et al. Nov 2014 B2
20010018192 Terstappen et al. Aug 2001 A1
20020009759 Terstappen et al. Jan 2002 A1
20020012669 Presnell et al. Jan 2002 A1
20020098531 Thacker Jul 2002 A1
20020130661 Raftery et al. Sep 2002 A1
20020132228 Terstappen et al. Sep 2002 A1
20020141913 Terstappen et al. Oct 2002 A1
20020164629 Quake et al. Nov 2002 A1
20020164659 Rao et al. Nov 2002 A1
20020172987 Terstappen et al. Nov 2002 A1
20030003441 Colston et al. Jan 2003 A1
20030022231 Wangh et al. Jan 2003 A1
20030054376 Mullis et al. Mar 2003 A1
20030088181 Gleich May 2003 A1
20030092029 Josephson et al. May 2003 A1
20030129676 Terstappen et al. Jul 2003 A1
20030203507 Liberti et al. Oct 2003 A1
20030206577 Liberti et al. Nov 2003 A1
20030222648 Fan Dec 2003 A1
20040004043 Terstappen et al. Jan 2004 A1
20040018611 Ward et al. Jan 2004 A1
20040072269 Rao et al. Apr 2004 A1
20040076990 Picard et al. Apr 2004 A1
20040087032 Chandler et al. May 2004 A1
20040101443 Kagan et al. May 2004 A1
20040118757 Terstappen et al. Jun 2004 A1
20040151629 Pease et al. Aug 2004 A1
20050003464 Tibbe et al. Jan 2005 A1
20050006990 Williquette et al. Jan 2005 A1
20050026144 Maes et al. Feb 2005 A1
20050043521 Terstappen et al. Feb 2005 A1
20050069900 Lentrichia Mar 2005 A1
20050079520 Wu Apr 2005 A1
20050111414 Liberti et al. May 2005 A1
20050128985 Liberti et al. Jun 2005 A1
20050181353 Rao et al. Aug 2005 A1
20050181463 Rao et al. Aug 2005 A1
20050245814 Anderson et al. Nov 2005 A1
20060024756 Tibbe et al. Feb 2006 A1
20060115380 Kagan et al. Jun 2006 A1
20060129327 Kim et al. Jun 2006 A1
20060147901 Jan et al. Jul 2006 A1
20060194192 Rao et al. Aug 2006 A1
20060233712 Penades et al. Oct 2006 A1
20060257847 Scholtens et al. Nov 2006 A1
20060257945 Masters et al. Nov 2006 A1
20060281094 Squirrell et al. Dec 2006 A1
20070037173 Allard et al. Feb 2007 A1
20070037231 Sauer-Budge et al. Feb 2007 A1
20070090836 Xiang et al. Apr 2007 A1
20070114181 Li et al. May 2007 A1
20070116602 Lee May 2007 A1
20070117158 Coumans et al. May 2007 A1
20070152669 Park et al. Jul 2007 A1
20070152670 Park et al. Jul 2007 A1
20070154960 Connelly et al. Jul 2007 A1
20070166835 Bobrow et al. Jul 2007 A1
20070183935 Clemmens et al. Aug 2007 A1
20070231926 Ikeda Oct 2007 A1
20070296413 Park et al. Dec 2007 A1
20080026451 Braman et al. Jan 2008 A1
20080042650 McDowell Feb 2008 A1
20080081330 Kahvejian Apr 2008 A1
20080099715 Adams et al. May 2008 A1
20080113350 Terstappen May 2008 A1
20080199851 Egan et al. Aug 2008 A1
20080204011 Shoji Aug 2008 A1
20080204022 Sillerud et al. Aug 2008 A1
20080272788 McDowell Nov 2008 A1
20080286838 Yuan et al. Nov 2008 A1
20080315875 Sillerud Dec 2008 A1
20090026082 Rothberg et al. Jan 2009 A1
20090061456 Allard et al. Mar 2009 A1
20090061476 Tibbe et al. Mar 2009 A1
20090061477 Tibbe et al. Mar 2009 A1
20090127589 Rothberg et al. May 2009 A1
20090134869 Lee May 2009 A1
20090136946 Connelly et al. May 2009 A1
20090146658 McDowell et al. Jun 2009 A1
20090148847 Kokoris et al. Jun 2009 A1
20090156572 Ikeura et al. Jun 2009 A1
20090173681 Siddiqi Jul 2009 A1
20090191535 Connelly et al. Jul 2009 A1
20090227044 Dosev et al. Sep 2009 A1
20090246796 Bernard et al. Oct 2009 A1
20090256572 McDowell Oct 2009 A1
20090258365 Terstappen et al. Oct 2009 A1
20090286264 Scholtens et al. Nov 2009 A1
20100035252 Rothberg et al. Feb 2010 A1
20100068723 Jovanovich et al. Mar 2010 A1
20100072994 Lee et al. Mar 2010 A1
20100129785 Pris et al. May 2010 A1
20100137143 Rothberg et al. Jun 2010 A1
20100144005 Bin Kingombe et al. Jun 2010 A1
20100188073 Rothberg et al. Jul 2010 A1
20100197507 Rothberg et al. Aug 2010 A1
20100219824 Sillerud et al. Sep 2010 A1
20100225315 McDowell Sep 2010 A1
20100282617 Rothberg et al. Nov 2010 A1
20100282788 Liberti Nov 2010 A1
20100300559 Schultz et al. Dec 2010 A1
20100300895 Nobile et al. Dec 2010 A1
20100301398 Rothberg et al. Dec 2010 A1
20100304982 Hinz et al. Dec 2010 A1
20100326587 Kagan et al. Dec 2010 A1
20110014686 Tibbe et al. Jan 2011 A1
20110018538 Lee Jan 2011 A1
20110044527 Tibbe et al. Feb 2011 A1
20110046475 Assif et al. Feb 2011 A1
20110052037 Coumans et al. Mar 2011 A1
20110059444 Stromberg et al. Mar 2011 A1
20110070586 Slezak et al. Mar 2011 A1
20110086338 Hwang et al. Apr 2011 A1
20110091987 Weissleder et al. Apr 2011 A1
20110098623 Zhang et al. Apr 2011 A1
20110104718 Rao et al. May 2011 A1
20110183398 Dasaratha et al. Jul 2011 A1
20110262893 Dryga et al. Oct 2011 A1
20110262925 Dryga et al. Oct 2011 A1
20110262926 Esch et al. Oct 2011 A1
20110262927 Dryga et al. Oct 2011 A1
20110262932 Esch et al. Oct 2011 A1
20110262933 Dryga et al. Oct 2011 A1
20110262989 Clarizia et al. Oct 2011 A1
20110263833 Dryga et al. Oct 2011 A1
20110300551 Rao et al. Dec 2011 A1
20110301042 Steinmann et al. Dec 2011 A1
20120045828 Davis et al. Feb 2012 A1
20120094275 Rao et al. Apr 2012 A1
20120100546 Lowery, Jr. et al. Apr 2012 A1
20120112744 McDowell et al. May 2012 A1
20130109590 Clarizia et al. May 2013 A1
20130196341 Neely et al. Aug 2013 A1
20130203634 Jovanovich et al. Aug 2013 A1
20130224884 Briand Aug 2013 A1
20130316355 Dryga et al. Nov 2013 A1
20140100136 Clarizia et al. Apr 2014 A1
20140170021 Dryga Jun 2014 A1
20140170639 Norvell Jun 2014 A1
20140170640 Dykes Jun 2014 A1
20140170641 Macemon Jun 2014 A1
20140170652 Sitdikov et al. Jun 2014 A1
20140170667 Dykes et al. Jun 2014 A1
20140170669 Vandervest Jun 2014 A1
20140170727 Dryga et al. Jun 2014 A1
20140171340 Dykes et al. Jun 2014 A1
20150212079 Dryga et al. Jul 2015 A1
Foreign Referenced Citations (27)
Number Date Country
2 342 047 Sep 2001 CA
WO2012010251 Jan 2012 DE
1 304 581 Apr 2003 EP
9102811 Mar 1991 WO
9208805 May 1992 WO
9531481 Nov 1995 WO
9820148 May 1998 WO
9953320 Oct 1999 WO
0173460 Oct 2001 WO
02098364 Dec 2002 WO
2005026762 Mar 2005 WO
2005106480 Nov 2005 WO
WO2007011936 Jan 2007 WO
2007018601 Feb 2007 WO
2007123345 Nov 2007 WO
2007135099 Nov 2007 WO
2007123342 Nov 2007 WO
2008119054 Oct 2008 WO
2008139419 Nov 2008 WO
2009048673 Apr 2009 WO
2009055587 Apr 2009 WO
2009122216 Oct 2009 WO
2011019874 Feb 2011 WO
2011133630 Oct 2011 WO
2011133632 Oct 2011 WO
2011133759 Oct 2011 WO
2011133760 Oct 2011 WO
Non-Patent Literature Citations (154)
Entry
Cheng et al, Concentration and detection of bacteria in virtual environmental samples based on non-immunomagnetic separation and quantum dots by using a laboratory-made system, 2012, Proc. of SPIE, 82310Y-1-82310Y-18.
Cheng et al, Concentration and detection of bacteria in virtual environmental samples based on non-immunomagnetic separation and quantum dots by using a laboratory-made system, 2012, Proc. of SPIE, 82310Y-1-82310Y-18, Publication date support document, 2012, pp. 1-3.
Ohno et al, Effects of Blood Group Antigen-Binding Adhesin Expression during Helicobacter pylori Infection of Mongolian Gerbils, 2011, The Journal of Infectious Diseases, 203, 726-735.
Frengen et al, Dual analyte assay based on particle types of different size measured by flow cytometry, 1995, Journal of Immunological Methods, 178, 141-151.
Liandris et al, Detection of Pathogenic Mycobacteria Based on Functionalized Quantum Dots Coupled with Immunomagnetic Separation, 2011, PLoS one, 6, e20026, pp. 1-6.
Abagram, Principles of Nuclear Magnetism, Carendon Press, Oxford, 1961, pp. 71-83.
Armenean, et al., NMR Radiofrequency Microcoil Design: Electromagnetic Simulation Usefulness, Compes Rendus Biologies, 325(4):457-463 (2002).
Armenean, et al., Solenoidal and Planar Microcoils for NMR Spectroscopy, Proc. of the 25th Annual Int. Conf. of the IEEE Eng. in Med. and Bio. Soc., Cancun, Mexico, Sep. 17, 2003, pp. 3045-3048.
Behnia and Webb, Limited-Sample NMR Using Solenoidal Microcoils, Perfluorocarbon Plugs, and Capillary Spinning, Anal. Chem., 70:5326-5331 (1998).
Byrne, et al., Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins, Sensors, 9:4407-4445 (2009).
Chapman, et al., Use of commercial enzyme immunoassays and immunomagnetic separation systems for detecting Escherichia coli O157 in bovine fecal samples, Applied and Environmental Microbiology, 63(7):2549-2553 (1997).
Ciobanu and Pennington, 3D Micron-scale MRI of Single Biological Cells, Solid State Nucl. Magn. Reson., 25:138-141 (2004).
Cross, et al., Choice of Bacteria in Animal Models of Sepsis, Infec. Immun. 61(7):2741-2747 (1983).
Djukovic, et al., Signal Enhancement in HPLC/Microcoil NMR Using Automated Column Trapping, Anal. Chem., 18:7154-7160 (2006).
Drancourt, et al., Diagnosis of Mediterranean Spotted Fever by Indirect Immunofluorescence of Rickettsia conorii in circulating Endothelial Cells Isolated with Monoclonal Antibody-Coated Immunomagnetic Beads, J. Infectious Diseases, 166(3):660-663, 1992.
Fan, et al., Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays, Science, 304:567 (2004).
Fu, et al., Rapid Detection of Escherichia coli O157:H7 by Immunogmagnetic Separation and Real-time PCR, Int. J. Food Microbiology, 99(1):47-57, (2005).
Fukushima et al., Experimental Pulse NMR: A Nuts and Bolts Approach, Addison-Wesley, Reading, Mass., 1981.
Goding, J.W., Conjugation of antibodies with fluorochromes: modifications to the standard methods, J. Immunol. Meth., 13:215 (1976).
Goloshevsky, et al., Development of Low Field Nuclear Magnetic Resonance Microcoils, Rev. Sci. Inst.., 76:024101-1 to 024101-6 (2005).
Goloshevsky, et al., Integration of Biaxial Planar Gradient Coils and an RF Microcoil for NMR Flow Imaging, Meas. Sci. Technol., 16:505-512 (2005).
Grant, et al., Analysis of Multilayer Radio Frequency Microcoils for Nuclear Magnetic Resonance Spectroscopy, IEEE Trans. Magn., 37:2989-2998 (2001).
Grant, et al., NMR Spectroscopy of Single Neurons, Magn. Reson. Med., 44:19-22 (2000).
Halbach, Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material, Nuclear Instrum Methods, 169:1-10 (1980).
Harada, et al., Monoclonal antibody G6K12 specific for membrane-associated differentiation marker of human stratified squamous epithelia and squamous cell carcinoma, J. Oral. Pathol. Med., 22(4):1145-152 (1993).
Harlow, et al., 1988, ‘Antibodies’, Cold Spring Harbor Laboratory, pp. 93-117.
Hijmans, et al., An immunofluorescence procedure for the detection of intracellular immunoglobulins, Clin. Exp. Immunol., 4:457 (1969).
Hirsch, et al., Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation, Anal. Biochem., 208(2):343-57 (2002).
Hoult and Richards, The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment, J. Magn. Reson., 24:71-85 (1976).
Hunter, et al., Immunoassays for Clinical Chemistry, pp. 147-162, Churchill Livingston, Edinborough (1983).
Inai, et al., Immunohistochemical detection of an enamel protein-related epitope in rat bone at an early stage of osteogenesis, Histochemistry, 99(5):335-362 (1993).
Engvall, Enzyme immunoassay ELISA and EMIT, Meth. in Enzymol., 70:419-439 (1980).
ISR and Written Opinion in PCT/US2008/058518, mailed Jul. 7, 2008, 21 pages.
ISR and Written Opinion in PCT/US2008/062473, mailed Oct. 29, 2008, 20 pages.
ISR and Written Opinion in PCT/US2008/080983, mailed Mar. 3, 2009, 14 pages.
ISR and Written Opinion in PCT/US2009/067577, mailed Feb. 5, 2010, 13 pages.
International Search Report in PCT/US2011/33184, mailed Jul. 25, 2011, 2 pages.
International Search Report in PCT/US2011/33186, mailed Jun. 22, 2011, 1 page.
ISR and Written Opinion in PCT/US2011/48447, mailed Dec. 22, 2011, 7 pages.
ISR and Written Opinion in PCT/US2011/48452, mailed Dec. 22, 2011, 7 pages.
International Search Report in PCT/US2011/33411, mailed Jun. 22, 2011, 1 page.
International Search Report in PCT/US2011/33410, mailed Jul. 19, 2011, 2 pages.
Johne, et al., Staphylococcus aureus exopolysaccharide in vivo demonstrated by immunomagnetic separation and alectron microscopy, J. Clin. Microbiol. 27:1631-1635 (1989).
Johnson, Thermal Agitation of Electricity in Conductors, Phys. Rev., 32:97-109 (1928).
Kaittanis, et al., One-step nanoparticle mediated bacterial detection with magentic relaxation, Nano Lett., 7(2):381-383 (2007).
Lee, et al., Chip-NRM Biosensor for detection and molecular analysis of cells, Nature Medicine, 14(8):869-874 (2008).
Lund, et al., Immunomagnetic separation and DNA hybridization for detection of enterotoxigenic Escherichia coli in a piglet model, J. Clin. Microbiol., 29:2259-2262 (1991).
Magin, et al., Miniature Magnetic Resonance Machines, IEEE Spectrum 34(10):51-61 (1997).
Malba, et al., Laser-lathe Lithography—A Novel Method for Manufacturing Nuclear Magnetic Resonance Microcoils, Biomed. Microdev., 5:21-27 (2003).
Massin, et al., Planar Microcoil-based magnetic resonance imaging of cells, Transducers '03, The 12th Int. Conf. on Solid State Sensors, Actuators, and Microsystems, Boston, Jun. 8-12, pp. 967-970 (2003).
Massin, et al., Planar Microcoil-based Microfluidic NMR Probes, J. Magn. Reson., 164:242-255 (2003).
McDowell, et al., Low-Field Micro-Coil Probe Development for Portable NMR, 8th ICMRM, The Heidelberg conference, Mibu, Japan, Aug. 22-26, 2005, Conference Program Abstract, 1 page.
McDowell, et al., Operating Nanoliter Scale NMR Microcoils in a Itesla Field, J. Mag. Reson., 188(1):74-82 (2007).
Minard, et al., Solenoidal Microcoil Design, Part I: Optimizing RF Homogeneity and coil dimensions, Concepts in Magn. Reson., 13(2):128-142 (2001).
Moresi and Magin, Miniature Permanent Magnet for Table-top NMR, Concept. Magn. Res., 19B:35-43 (2003).
Sista et al., 2008, Heterogeneous Immunoassays Using Magnetic beads on a Digital Microfluidic Platform, Lab Chip 8 (2):2188-2196.
Butter et al., 2002, Synthesis and properties of iron ferrofluids, J. Magn. Magn. Mater. 252:1-3.
Lu et al., 2007, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed. 46:1222-1244.
Matar et al., 1990, Magnetic particles derived from iron nitride, IEEE Transactions on magnetics 26(1):60-62.
Cold Spring Harbor Protocols, Recipe for Dulbecco's phosphate-buffered saline (Dulbecco's PBS, 2009, retrieved from http://cshprotocols.cshlp.Org/content/2009/3/pdb.rec11725. full?text—only=true on Mar. 9, 2015, one page.
Barmy F. (1991) PNAS 88:189-193.
Narang et al., Methods Enzymol., 68:90 (1979).
Brown et al., Methods Enzymol., 68:109 (1979).
DNA Replication 2nd edition, Komberg and Baker, W.H. Freeman, New York, NY (1991).
Barany et al., Gene, 108:1 (1991).
Hinnisdales et al., Biotechniques Res., 19:4193 (1996).
Myers and Gelfand, Biochemistry 30:7661 (1991).
Stenish and McGowan, Biochim Biophys Acta, 475:32 (1977).
Levin, Cell 88:5-8 (1997).
Kleinstruer, “Microfluidics and Nanofluidics: Theory and Selected Applications,” John Wiley & Sons, 2013.
Maniatis et al., Molecular Cloning: A Laboratory Manual, 1982, Cold Spring Harbor, NY, pp. 280-281.
Sambrook and Russell, Molecular Cloning: A Laboratory Manual 3Ed, Cold Spring Harbor Laboratory Press, 2001.
Barany, F., Genome research, 1:5-16 (1991).
Margulies et al., Nature, 437: 376-380 (2005).
Olsvik—et—al—Magnetic—Seperation—Techniques—in—Diagnostic—Microbiology—Clinical—Microbiol—Rev—1994—7—43—54.
Chandler et al., Automated immunomagnetic separation and microarray detection of E. Coli O157:H7 from poultry carcass rinse, Int. J. Food Micro., 70 (2001) 143-154.
Bruno et al., “Development of an Immunomagnetic Assay System for Rapid Detection of Bacteria and Leukocytes in Body Fluids,” J Mol Recog, 9 (1996) 474-479.
Andreassen, Jack, “One micron magnetic beads optimised for automated immunoassays” as Published in CLI Apr. 2005, retrieved from http://www.cli-online.com/uploads/tx—ttproducts/datasheet/one-micron-magnetic-beads-optimised-for-automatedimmunoassays.pdf on Dec. 28, 2015, four pages.
Safarik et al., “The application of magnetic separations in applied Microbiology” Journal of Applied Bacteriology 1995, 78, 575-585.
Dam et al. “Garlic (Allium sativum) Lectins Bind to High Mannose Oligosaccharide Chains”, Journal of Biological chemistry vol. 273, No. 10, Issue of Mar. 6, pp. 5528-5535, 1998.
Fenwick et al., 1986, Mechanisms Involved in Protection Provided by Immunization against Core Lipopolysaccarides of Escherichia coli J5 from Lethal Haemophilus pleuropneumoniae Infections in Swine, Infection and Immunity 53 (2):298-304.
Yu et al. “Development of a Magnetic Microplate Chemifluorimmunoassay for Rapid Detection of Bacteria and Toxin in Blood”, Analytical Biochemistry 261 (1998), pp. 1-7.
The United States Naval Research Laboratory (NRL), “The FABS Device: Magnetic Particles”, retrieved from http://www.nrl.navy.mil/chemistry/6170/6177/beads.php on Jan. 8, 2013, two pages.
Life Technologies, “Dynabeads® for Immunoassay IVD”, retrieved from http://www.invitrogen.com/site/us/en/home/Productsand-Services/Applications/Diagnostics-Clinical-Research/Bead-based-IVD-Assays/Bead-based-Imunoassay-IVD.html on May 29, 2013, four pages.
Campuzano, et al., Bacterial Isolation by Lectin Modified Microengines, Nano Lett. Jan. 11, 2012; 12(1): 396-401.
Agrawal et al., 1990, Tetrahedron Letters 31:1543-46.
Harkins and Harrigan, “Labeling of Bacterial Pathogens for Flow Cytometric Detection and Enumeration” Curr Prot Cytom (2004) 11.17.1-11.17.20.
Takagi et al., Appl. Environ. Microbiol. 63:4504 (1997).
Cariello et al., Nucl Acids Res, 19:4193 (1991).
Lecomte et al. Nucl Acids Res. 11:7505 (1983).
Cann et al., Proc. Natl. Acad. Sci. 95:14250 (1998).
Braslavsky et al., PNAS, 100:3690-3694 (2003).
Moudrianakis et al., Proc. Natl. Acad. Sci. 53:564-71 (1965).
Vandeventer, J. Clin. Microbiol. Jul. 2011, 49(7):2533-39.
Carroll, N. M., E. E Jaeger, et al. (2000). “Detection of and discrimination between grampositive and gram-negative bacteria in intraocular samples by using nested PCR.” J Clin 15 Microbiol 38(5): 1753-1757.
Klaschik, S., L. E. Lehmann, et al. (2002). “Real-time PCR for detection and differentiation of gram-positive and gram-negative bacteria.” J Clin Microbiol 40(11): 4304-4307.
Chien et al., J. Bacteriol, 127:1550 (1976).
Nordstrom et al., J. Biol. Chem. 256:3112 (1981).
Elnifro, Elfath M., et al. “Multiplex PCR: optimization and application in diagnostic virology.” Clinical Microbiology Reviews 13.4 (2000): 559-570.
Soni et al., Clin Chem 53:1996-2001 (2007).
Diaz et al., Braz J. Med. Res., 31:1239 (1998).
Verma, Biochim Biophys Acta. 473:1-38 (1977).
Harris et al., Science 320:106-109 (2008).
Dover, Jason E., et al. “Recent advances in peptide probe-based biosensors for detection of infectious agents.” Journal of microbiological methods 78.1 (2009): 10-19.
Mulder, et al., Characterization of two human monoclonal antibodies reactive with HLA-B12 and HLA-B60, respectively, raised by in vitro secondary immunization of peripheral blood lymphocytes, Hum. Immunol., 36 (3):186-192 (1993).
Nyquist, Thermal Agitation of Electrical Charge in Conductors, Phys. Rev., 32:110-113 (1928).
Margin, et al., High resolution microcoil 1H-NMR for mass-limited, nanoliter-vol. samples, Science, 270:1967 (1995).
Olson, et al., High-resolution microcoil NMR for analysis of mass-limited, nanoliter samples, Anal. Chem., 70:645-650 (1998).
Pappas, et al., Cellular Separations: A Review of New Challenges in Analytical Chemistry, Analytica Chimica Acta, 601 (1):26-35 (2007).
Peck, et al., Design and Analysis of Microcoils for NMR Microscopy, J. Magn. Reson. B 108:114-124 (1995).
Peck, et al., RF Microcoils patterned using microlithographic techniques for use as microsensors in NMR, Proc. 15th Ann. Int. Conf. of the IEEE, Oct. 28-31, pp. 174-175 (1993).
Perez, et al., Viral-induced self-assembly of magnetic nanoparticle allows detection of viral particles in biological media, J. Am. Chem. Soc., 125:10192-10193 (2003).
Qiu, et al., Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics, Talanta, 79:787-795 (2009).
Rogers, et al., Using microcontact printing to fabricate microcoils on capillaries for high resolution proton nuclear magnetic resonance on nanoliter volumes, Appl. Phys. Lett., 70:2464-2466 (1997).
Seeber, et al., Design and Testing of high sensitivity Microreceiver Coil Apparatus for Nuclear Magnetic Resonance and Imaging, Rev. Sci. Inst., 72:2171-2179 (2001).
Seeber, et al., Triaxial Magnetic Field Gradient System for Microcoil Magnetic Resonance Imaging, Rev. Sci. Inst., 71:4263-4272 (2000).
Sillerud, et al., 1H NMR Detection of Superparamagnetic Nanoparticles at 1 T using a Microcoil and Novel Tuning circuit, J. Magn. Reson. 181:181-190 (2006).
Skjerve, et al., Detection of Listeria monocytogenes in foods by immunomagnetic separation, Appl. Env. Microbiol., 56:3478 (1990).
Sorli, et al., Micro-spectrometer for NMR: analysis of small quantities in vitro, Meas. Sci. Technol., 15:877-880 (2004).
Stanley, Essentials in Immunology and Serology, Delmar, pp. 153-153 (2002).
Stauber, et al., Rapid generation of monoclonal antibody-secreting hybridomas against African horse sickness virus by in vitro immunization ion and the fusion/cloning technique, J. Immunol. Methods, 161(2): 157-168 (1993).
Stocker, et al., Nanoliter volume, high-resolution NMR Microspectroscopy using a 60 um planer microcoil, IEEE Trans. Ehomed. Eng., 44:1122-1127 (1997).
Wu, et al., 1H-NMR Spectroscopy on the Nanoliter Scale for Static and On-Line Measurements, Anal. Chem., 66:3849 (1994).
Zhao, et al., A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles, PNAS, 101 (42):15027-15032 (2004).
Zordan, et al., Detection of Pathogenic E. coli O157:H7 by a Hybrid Microfluidic SPR and Molecular Imaging Cytometry Device, Cytometry A, 75A:155-162 (2009).
Extended European Search Report, issued on Oct. 15, 2013 for EP application No. 11772606.7.
International Search Report issued in PCT/US2013/076649, mailed on Feb. 27, 2014.
Chungang Wang et al. “Multifunctional Magnetic-OPtical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens”, Small, vol. 6, No. 2 Jan. 18, 2010, pp. 283-289.
Madonna A J, et al. “Detection of Bacteria from Biological Mixtures Using Immunomagnetic Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry”, Rapid Communications in Mass Spectrometry, John Wiley & Sons, GB, vol. 15, No. 13, Jan. 1, 2001, pp. 1068-1074.
Extended European Search Report issued in EP 11864030.9, mailed on Aug. 20, 2014.
Fung, M-C., et al. PCR amplification of mRNA directly from a crude cell lysate prepared by thermophilic protease digestion, Nucleic Acids Research, vol. 19 (15), p. 4300, 1991.
Dynabeads® for Immunoassay IVD, retrieved from http://www.in vitrogen.com/site/i3s/en/home/Products-and-Services/Applications/DiagnosticsClinical-Research/Bead-based-IVD-Assays/Bead-based-Immunoassav-iVD.html on May 29, 2013, four pages).
Burtis et al. (Burtis, C.A. (Ed.), Tietz Textbook of Clinical Chemistry, 3rd Edition (1999), W.B. Saunders Company, Philadelphia, PA, pp. 1793-1794).
Subramanian, et al., RF Microcoil Design for Practical NMR of Mass-Limited Samples, J. Magn. Reson., 133:227-231 (1998).
Taktak, et al., Multiparameter Magnetic Relaxation Switch Assays, Analytical Chemistry, 79(23):8863-8869 (2007).
Torensama, et al., Monoclonal Antibodies Specific for the Phase-Variant O-Acetylated Ki Capsule of Escerichia coli, J. Clin. Microbiol., 29(7):1356-1358 (1991).
Trumbull, et al., Integrating microfabricated fluidic systems and NMR spectroscopy, IEEE Trans. Biomed. Eng., 47 (1):3-7 (2000).
Van Bentum, et al., Towards Nuclear Magnetic Resonance (MU)-Spectroscopy and (MU)-Imaging, Analyst, Royal Society of Chemistry, London, 129(9):793-803 (2004).
Venkateswaran, et al., Production of Anti-Fibroblast Growth Factor Receptor Monoclonal Antibodies by In Vitro Immunization, Hybridoma, 11(6):729-739 (1992).
Vermunt, et al., Isolation of salmonelas by immunomagnetic separation, J. Appl. Bact., 72:112-118 (1992).
Wang and Irudayaraj, Multifunctional Magnetic-Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens, Small, 6(2):283-289 (2010).
Webb and Grant, Signal-to-Noise and Magnetic Susceptibility Trade-offs in Solenoidal Microcoils for NMR, J. Magn. Reson. B, 113:83-87 (1996).
Wensink, et al., High Signal to Noise Ratio in Low-field NMR on a Chip: Simulations and Experimental Results, 17th IEEE MEMS, 407-410 (2004).
Williams and Wang, Microfabrication of an electromagnetic power micro-relay using SU-8 based UV-LIGA technology, Microsystem Technologies, 10(10):699-705 (2004).
Cooper et al., 2011, A micromagnetic flux concentrator device for isolation and visualization of pathogens. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Oct. 2-6, 2011, Seattle, Washington, USA.
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13 (14):3245-3260.
Moreira et al., 2008, Detection of Salmonella typhimurium in Raw Meats using In-House Prepared Monoclonal Antibody Coated Magnetic Beads and PCR Assay of the fimA Gene. Journal of Immunoassay & Immunochemistry 29:58-69.
Yeung et al., 2002, Quantitative Screening of Yeast Surface-Displayed Polypeptide Libraries by Magnetic Bead Capture. Biotechnol. 18:212-220.
International Search Report for PCT/US2013/076649 with an International filed of Dec. 19, 2013, 2 pages.
ISR and Written Opinion in PCT/US2008/058518, date of issuance Sep. 29, 2009, 15 pages.
Gu et al., 2003, Using Biofunctional Magentic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration, J. Am. Chem. Soc., 125:15702-15703.
Gu et al., 2006, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chem. Commun.:941-949.
Heijnen et al., 2009, Method for rapid detection of viable Escherichia coli in water using real-time NASBA, Water Research, 43:3124-3132.
Li et al., 2010, Chemiluminescent Detect of E. coli O157:H7 Using Immunological Method Based on Magnetic Nanoparticles, J. of Nanoscience and Nanotechnology 10:696-701.
Related Publications (1)
Number Date Country
20140170639 A1 Jun 2014 US
Provisional Applications (1)
Number Date Country
61739577 Dec 2012 US