This invention concerns a target device for firing practice as per the preamble to claim 1.
In firing practice and tactical exercises involving weapons equipped with thermal sights, target figures that exhibit as realistic a signature as possible are needed. As a result, target surfaces whose heat radiation properties are as similar to those of the actual targets as possible are sought after. The target surfaces may resemble, e.g. tank targets.
Known thermal targets constructed of modules comprise a foil of relatively high resistivity. To achieve the desired heat radiation, there is a need for a corresponding relatively high electrical voltage, which is undesirable from a safety standpoint. The modules can alternatively be equipped with a low-resistivity foil such as aluminum foil, and electrical current is applied at low voltage and high amperage. However, this design requires that a transformer be disposed at the target, and that extremely robust electrical wires connect the transformer to the modules, with the disadvantages entailed thereby.
SE 465 795 describes a known target device for firing practice with live ammunition. The target device is heated by an electrical current of moderate voltage and amperage. It is intended to withstand hits by live ammunition without its thermal properties being notably affected. The target device comprises a thermal target surface heated by an electrical current passing through same. The thermal target surface of the target device comprises a thin metal layer divided into two sections with relatively large current cross-sections to conduct electrical current back and forth. Between these two sections there is a third section with a relatively small current cross-section. The third section comprises a large number of current paths of a first type having high resistance that are disposed transversely to the prevailing direction of electrical current flow.
When a relatively large area of penetration is created in this target device, it has however been shown that electrical conductivity and consequently heat radiation is entirely or partly eliminated around the area of penetration The heat radiation from the target device thus no longer resembles the radiation from a real target.
One object of the present invention is to prolong the service life of the aforedescribed target devices by constructing them so that their thermal properties are affected less by hits from live ammunition.
This has been achieved by means of a target device for firing practice comprising at least one thermal target surface heated by an electrical current passing through same, wherein the thermal target surface comprises a number of current coils arranged so as to conduct the current from a first area of the target surface to a second area. The current coils are made of aluminum or some other electrically conductive metal and are preferably disposed in parallel in relation to one another. Each current coil contains current conductors disposed essentially in parallel with one another at a first distance from one another, which current conductors are connected with one another at their ends so that they form said current coil from the first area to the second area. Proximate current coils are mutually connected with one another via bridges. The bridges are preferably arranged at a second distance from one another that is greater than the first distance. For example, the second distance is five to ten times greater than the first distance, e.g. roughly 20 times greater.
According to a first variant, the thermal target surface comprises a first substrate on which the current coils are disposed. The substrate thus functions like a circuit board laminate. The substrate has high temperature resistance and is made of, e.g. polyester. A protective plastic film can also be disposed on the first substrate so that it covers the current coils. An insulating layer of foam rubber or some other heat-insulating material can be disposed on the surface of the first substrate facing the current coils, which insulating layer insulates the target surface from the underlying material. The function of the insulating layer is thus to prevent heat from being abducted, and to minimize energy losses. The current coils are closed in that current is conducted from the second area to the first. For example, at least one return conductor is disposed between the second and the first area, e.g. connected to one of the edges of the thermal surface, in order to conduct the current back.
According to another variant, the target device comprises, in addition to the first substrate and any plastic film, a return conductor that essentially covers the surface of the first substrate facing the current coils. With the return conductor realized in this way, it becomes extremely unsusceptible to breaks. In order for the current through the return conductor to be interrupted, essentially the entire width of the thermal surface must be penetrated and/or worn/split. The return conductor is made of aluminum or some other conductive metal. In addition, to further strengthen the target surface, the return-conducting surface can be disposed in contact with a second substrate made of, e.g. the same material as the first substrate. An insulating layer of foam rubber or some other heat-insulating material can be disposed on the surface of the second substrate facing the surface of the return-conducting surface.
The target device according to the invention withstands penetration without notable degradation of its heat-generating capacity, while at the same time also withstanding splitting effects, which normally occur in connection with penetration by high-velocity projectiles. When damage (projectile penetration, tearing, etc.) to the thermal target surface takes place, only local heating occurs around the actual damage. The target device is also simple and inexpensive to produce. According to the second embodiment, in which the target surface comprises a return conductor and a second substrate belonging to the return conductor, the target surface exhibits additional resistance to splitting.
The invention will be described in greater detail below with the help of exemplary embodiments, and with reference to the accompanying drawing. The figures show the following:
By virtue of the double substrate layers 7,9, the alternative heating mat described in conjunction with
In
The resistance values for the coils in the circuit layer pattern are chosen based on the desired output, the size of the surface is to be heated, and the applied voltage. A suitable output can fall within the range of 125-500 W/m2, e.g. 250 W/m2. All the coils in the circuit layer pattern preferably have the same dimensions, and thus the same resistance value per unit of length.
Number | Date | Country | Kind |
---|---|---|---|
0301360-4 | May 2003 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE04/00615 | 4/22/2004 | WO | 8/3/2006 |