The present invention relates to a target extraction system, a target extraction method, an information processing apparatus, and a control method and control program of the information processing apparatus for extracting a target based on the reflected wave of a transmitted chirp wave.
In the above technical field, patent literatures 1 and 2 disclose techniques of obtaining the distance to a target based on the frequency difference between a transmitted chirp wave and a chirp wave reflected from the target. Furthermore, patent literature 3 and non-patent literatures 1 and 2 disclose techniques in which a dual-sweep signal that sweeps a frequency band twice the frequency band of a transmitted chirp wave in two cycles of the transmitted chirp wave is used as a heterodyne signal, and the reception wave signal of a chirp wave reflected from a target is multiplied by the heterodyne signal, thereby generating a beat frequency as the frequency difference between the heterodyne signal and the reception wave signal by performing heterodyne processing once regardless of a delay in the reception wave signal of the chirp wave.
Patent literature 1: Japanese Patent Publication No. 59-44593
Patent literature 2: Japanese Patent Laid-Open No. 63-208779
Patent literature 3: U.S. Pat. No. 7,149,148 B2
Non-patent literature 1: M.A. Do, “New dual-sweep receiver for CTFM sonar,” Ultrasonics 1986 Vol. 24 July
Non-patent literature 2: Yang Wang and Jun Yang, “Continuous Transmission Frequency Modulation Detection under Variable Sonar-Target Speed Conditions,” Sensors 2013, Mar. 13, 3549-3567
In the techniques described in the above literatures, however, a beat frequency necessary for target extraction, target speed estimation, and Doppler influence detection may overlap unnecessary frequencies in a heterodyne processing result, and thus the target extraction accuracy may be insufficient.
The present invention enables to provide a technique of solving the above-described problem.
One aspect of the present invention provides an information processing apparatus comprising:
a wave receiver that receives a reflected wave of a chirp wave reflected from a target, and outputs a reception wave signal;
a dual-sweep signal generator that generates a dual-sweep signal of the chirp wave, having a frequency which does not overlap a frequency band of the chirp wave; and
a heterodyne processor that generates a beat frequency by multiplying the reception wave signal and the dual-sweep signal as a heterodyne signal.
Another aspect of the present invention provides a control method of an information processing apparatus, comprising:
receiving a reflected wave of a chirp wave reflected from a target, and outputting a reception wave signal; and
generating a beat frequency by multiplying the reception wave signal and a dual-sweep signal of the chirp wave as a heterodyne signal, wherein a frequency of the dual-sweep signal does not overlap that of the chirp wave.
Still other aspect of the present invention provides a control program of an information processing apparatus, for causing a computer to execute a method, comprising:
receiving a reflected wave of a chirp wave reflected from a target, and outputting a reception wave signal; and
generating a beat frequency by multiplying the reception wave signal and a dual-sweep signal of the chirp wave as a heterodyne signal, wherein a frequency of the dual-sweep signal does not overlap that of the chirp wave.
Still other aspect of the present invention provides a target extraction system comprising:
a wave transmission apparatus that transmits a chirp wave; and
a wave reception apparatus that receives a reflected wave of the chirp wave reflected from a target, and extracts the target,
said wave reception apparatus comprising:
a wave receiver that receives the reflected wave, and outputs a reception wave signal; and
a heterodyne processor that generates a beat frequency by multiplying the reception wave signal and a dual-sweep signal of the chirp wave as a heterodyne signal, wherein a frequency of the dual-sweep signal does not overlap that of the chirp wave.
Still other aspect of the present invention provides a target extraction method comprising:
transmitting a chirp wave; and
extracting a target based on a frequency spectrum of a beat frequency generated by multiplying a reception wave signal obtained from a reflected wave of the chirp wave reflected from the target and a dual-sweep signal of the chirp wave as a heterodyne signal, wherein a frequency of the dual-sweep signal does not overlap that of the chirp wave.
According to the present invention, it is possible to improve the target extraction accuracy.
Preferred embodiments of the present invention will now be described in detail with reference to the drawings. It should be noted that the relative arrangement of the components, the numerical expressions and numerical values set forth in these embodiments do not limit the scope of the present invention unless it is specifically stated otherwise. Note that a “chirp wave” used in this specification indicates a wave whose frequency linearly changes. A wave whose frequency linearly rises will be referred to as an “up chirp wave” hereinafter, and a wave whose frequency linearly lowers will be referred to as a “down chirp wave” hereinafter. A wave obtained by repeating an up chirp wave and a down chirp wave is distinguished from a wave obtained by repeating only an up chirp wave or down chirp wave, and will be referred to as a “serrated chirp wave” hereinafter. A “dual-sweep signal” indicates a signal that linearly changes in a frequency band twice a frequency change in a chirp wave in a cycle twice the cycle of the chirp wave.
In this specification, a signal whose frequency linearly rises will be referred to as an “up dual-sweep signal” hereinafter, and a wave whose frequency linearly lowers will be referred to as a “down dual-sweep signal” hereinafter. Furthermore, a “beat frequency” indicates the frequency of a combined wave whose amplitude slowly, periodically changes when two waves with slightly different frequencies interfere with each other. In this example, the “beat frequency” corresponds to a frequency difference as a calculation result obtained by performing heterodyne processing of integrating a reception wave signal corresponding to a received chirp wave and a heterodyne signal corresponding to a transmitted chirp wave. The “heterodyne signal” includes a “dual-sweep signal”.
An information processing apparatus 100 according to the first embodiment of the present invention will be described with reference to
The information processing apparatus 100 is an apparatus for extracting a target based on the reflected wave of a transmitted chirp wave.
As shown in
According to this embodiment, it is possible to improve the target extraction accuracy by preventing a beat frequency necessary for target extraction, target speed estimation, and Doppler influence detection from overlapping unnecessary frequencies in a heterodyne processing result.
An information processing apparatus according to the second embodiment of the present invention will be described next. The information processing apparatus according to this embodiment executes generation and display of a beat frequency, extraction of a target, estimation of the speed of a moving target, correction of the Doppler influence, and the like using, as a heterodyne signal, a dual-sweep signal of a frequency band that does not overlap that of a chirp wave transmitted by a wave transmitter.
<<Overview of Processing of Embodiment>>
(Heterodyne Signal)
Note that
Referring to
A dual-sweep signal 230 of a new heterodyne signal shown in
(Transmission Wave Signal and Reception Wave Signal)
In a reception wave signal and heterodyne result in each timing chart, a solid line corresponds to a still object, and a broken line corresponds to a moving object.
(Heterodyne Processing Result in Technical Premise)
Referring to
In the heterodyne processing result 270, beat frequencies 271 respectively indicating a still object and moving object overlap unnecessary frequencies 272 during a time period 273. Consequently, visual identification is difficult, and separation cannot be performed by a filter. Therefore, during the time period 273, that is, while the distance to the target falls within a predetermined range, target extraction, distance estimation, and Doppler correction are difficult.
(Reception Wave Signal and Dual-Sweep Signal of Embodiment)
Referring to
(Heterodyne Processing Result in Embodiment)
In a heterodyne processing result 280 based on the dual-sweep signal 230 in
The frequency band of the target heterodyne processing result 290 does not overlap unnecessary frequencies 292. Thus, visual identification is easy, and separation can be readily performed by a filter. Therefore, target extraction, distance estimation, and Doppler correction are possible regardless of the distance to the target.
<<Functional Arrangement of Target Extraction System Including Information Processing Apparatus>>
A transmission wave generation unit 350 generates a chirp wave of a predetermined frequency band and a predetermined cycle, and transmits it. The chirp wave transmitted from the transmission wave generation unit 350 propagates through a propagation path 360, is reflected from the target, and is detected by a wave receiver 310 of the information processing apparatus 300. The propagation path 360 is the sea or the water such as a body but is not limited to this. Note that in
The information processing apparatus 300 includes the wave receiver 310, a dual-sweep signal generator 320, a heterodyne processor 330, and a spectrogram unit 340. The wave receiver 310 receives an acoustic wave which has propagated through the propagation path 360 and reached the wave receiver 310, and includes the chirp wave from the transmission wave generation unit 350.
The dual-sweep signal generator 320 generates, as a heterodyne signal, a dual-sweep signal whose frequency band does not overlap that of the chirp wave transmitted by the transmission wave generation unit 350 and is twice the frequency band of the transmission wave signal. Note that
The heterodyne processor 330 multiplies a reception wave signal output from the wave receiver 310 by the dual-sweep signal whose frequency band does not overlap that of the reception wave signal, thereby generating a beat frequency as the frequency difference between the reception wave signal and the dual-sweep signal. The spectrogram unit 340 generates, as a processing result of the heterodyne processor 330, a spectrogram (to be referred to as a spectrogram of the beat frequency hereinafter) from a frequency change obtained by replacing a frequency along the ordinate by the beat frequency, thereby facilitating identification of a reflected sound from the target in the reception wave signal.
Note that an output from the spectrogram unit 340 undergoes spectrogram display by an output unit 301, and is used by a calculator 302 for calculation of the distance to the target, estimation of a target speed, correction of the Doppler influence, and the like. The output unit 301 and the calculator 302 may be included in the information processing apparatus 300.
(Functional Arrangement of Transmission Wave Generation Unit)
The transmission wave generation unit 350 includes a signal generation unit 410, a digital-to-analog converter (DAC in
The digital-to-analog converter 420 converts the chirp wave generated by the signal generation unit 410 into an analog signal. The transmission wave processor 430 performs processing of, for example, amplifying the analog signal of the chirp wave. The wave transmitter 440 transmits, to the propagation path 360, the chirp wave according to the signal of the transmission wave processor 430.
Note that
The chirp wave table 412 stores a wave type 422 and a frequency band 423 and cycle 424 of the wave in association with a use wave flag 421 indicating a chirp wave to be used. Referring to
In
(Functional Arrangement of Dual-Sweep Signal Generator)
The dual-sweep signal generator 320 includes a transmitted chirp wave information acquirer 510, a dual-sweep signal frequency generator 520, an oscillator 530 on the low-frequency side of a dual-sweep signal, an oscillator 540 on the high-frequency side of the dual-sweep signal, and a signal combiner 550. If a chirp wave to be transmitted changes, the transmitted chirp wave information acquirer 510 acquires the information (up or down, frequency band, and cycle) of the chirp wave to generate a dual-sweep signal. Note that if the chirp wave to be transmitted is known and fixed, the transmitted chirp wave information acquirer 510 is not necessary.
The dual-sweep signal frequency generator 520 includes a dual-sweep signal table 521, and generates, based on the transmitted chirp wave, frequency data of the dual-sweep signal whose frequency band does not overlap that of the chirp wave. In accordance with the output of the dual-sweep signal frequency generator 520, the oscillators 530 and 540 respectively generate signals each of which has the same degree of frequency change as that of the chirp wave and in each of which a frequency change continues without overlapping the frequency band of the transmitted chirp wave. The signal combiner 550 combines the outputs of the oscillators 530 and 540, and outputs a dual-sweep signal whose frequency band does not overlap that of the transmitted chirp wave.
Note that
The dual-sweep signal table 521 stores a frequency band 503 and a cycle 504, which are set based on a signal type 501 and a transmitted use chirp wave 502. The signal type 501 includes a low-frequency side and a high-frequency side for one dual-sweep signal.
The use chirp wave 502 stores the chirp wave information acquired by the transmitted chirp wave information acquirer 510.
In the frequency band 503, a frequency band which does not overlap that of the chirp wave and is close to that of the chirp wave is set based on the transmitted chirp wave information. The frequency bands 503 on the low- and high-frequency sides are continuous. Furthermore, the same cycle as that of the chirp wave is set in the cycle 504.
(Functional Arrangement of Heterodyne Processor)
The heterodyne processor 330 includes a reception wave signal acquirer 610, a dual-sweep signal acquirer 620, a multiplier 630, and an optional unnecessary signal removal filter 640.
The reception wave signal acquirer 610 acquires the reception wave signal from the wave receiver 310. The dual-sweep signal acquirer 620 acquires the dual-sweep signal from the dual-sweep signal generator 320. The multiplier 630 generates a beat frequency as a difference frequency by multiplying the reception wave signal by the dual-sweep signal.
Based on a filter parameter table 641 predicted based on the chirp wave and the dual-sweep signal, the unnecessary signal removal filter 640 removes frequency components unnecessary for target extraction, which are included in the output of the multiplier 630. Note that if the chirp signal and the dual-sweep signal are known and fixed, the filter parameter table 641 is not necessary.
The filter parameter table 641 stores a filter frequency band 604 of each filter type 601, which is estimated based on a use chirp wave 602 and a use dual-sweep signal 603. Note that the filter frequency band 604 may store a plurality of frequency bands including unnecessary frequencies.
(Functional Arrangement of Spectrogram Unit)
The spectrogram unit 340 includes a fast Fourier transformer (FFT: Fast Fourier Transform in
<<Hardware Arrangement of Information Processing Apparatus>>
Referring to
The RAM 840 is a random access memory used by the CPU 810 as a work area for temporary storage. An area to store data necessary for implementation of the embodiment is allocated to the RAM 840. Transmitted chirp wave data 841 is data of the chirp wave transmitted by the transmission wave generation unit 350, which indicates an up or down chirp wave, frequency band, and cycle. Reception wave signal data 842 is data of the signal received by the wave receiver 310. Heterodyne signal data 843 is data of the dual-sweep signal which has been generated based on the transmitted chirp wave and is used for heterodyne processing. Heterodyne processing data (beat frequency) 844 is data representing the beat frequency of the heterodyne processing result. Spectrogram data 845 is data of the spectrogram processing result of the beat frequency. Target distance data 846 is distance data to the target, which has been calculated based on the spectrogram data 845. Target speed data 847 is data of the moving speed of the target calculated based on the spectrogram data 845.
The storage 850 stores a database and various parameters, or the following data or programs necessary for implementation of the embodiment. The dual-sweep signal table 521 stores data of a frequency change in the dual-sweep signal, as shown in
The filter parameter table 641 stores the parameters of the unnecessary signal removal filter, as shown in
The storage 850 stores the following programs. An information processing apparatus control program 852 is a control program for controlling the overall information processing apparatus 300. A heterodyne signal generation module 853 is a module for generating a dual-sweep signal, corresponding to the transmitted chirp wave, whose frequency band does not overlap that of the chirp wave. A heterodyne processing module 854 is a module for performing heterodyne processing using the reception wave signal and the dual-sweep signal.
A spectrogram module 855 is a module for generating a spectrogram of the beat frequency of the heterodyne processing result. A target distance calculation module 856 is a module for calculating the distance to the target based on the spectrogram of the beat frequency. A target speed calculation module 857 is a module for calculating the moving speed of the target based on the spectrogram of the beat frequency.
An input/output interface 860 interfaces input/output data with an input/output device.
The input/output interface 860 is connected to the wave receiver 310, a display unit 861, an operation unit 862 such as a keyboard, touch panel, and pointing device, a GPS position determiner 863, and the like.
Note that programs and data which are associated with the general-purpose functions of the information processing apparatus 300 and other feasible functions are not shown in the RAM 840 or the storage 850 of
<<Processing Procedure of Information Processing Apparatus>>
In step S901, the information processing apparatus 300 acquires a transmitted chirp wave or its parameters. Note that if the transmitted chirp wave is known and fixed, step S901 can be skipped. In step S903, the information processing apparatus 300 generates a dual-sweep signal whose frequency band does not overlap that of the chirp wave. In step S905, the information processing apparatus 300 receives the chirp wave transmitted and reflected by the target. In step S907, the information processing apparatus 300 executes heterodyne processing using the received chirp wave and the dual-sweep signal. In step S909, the information processing apparatus 300 generates a spectrogram of a beat frequency of a heterodyne processing result, and outputs it. Note that in step S911, the information processing apparatus 300 optionally calculates a target distance and target speed based on the spectrogram of the beat frequency.
(Dual-Sweep Signal Generation Processing)
In step S1011, the information processing apparatus 300 generates the first copy signal whose frequency band does not overlap that of the transmitted chirp wave. Note that the copy signal indicates that it has the same degree of frequency change, as shown in
(Heterodyne Processing and Spectrogram Processing)
In step S1021, the information processing apparatus 300 acquires the reception wave signal. In step S1023, the information processing apparatus 300 acquires the dual-sweep signal.
In step S1025, the information processing apparatus 300 generates a beat frequency by multiplying the reception signal by the dual-sweep signal. Note that in step S1027, the information processing apparatus 300 optionally removes unnecessary frequencies using a filter.
In step S1029, the information processing apparatus 300 performs fast Fourier transform processing for the beat frequency, thereby generating a frequency spectrum. In step S1031, the information processing apparatus 300 generates a spectrogram based on the frequency spectrum.
In step S1033, the information processing apparatus 300 outputs the generated spectrogram.
According to this embodiment, it is possible to separate a signal necessary for target extraction and an unnecessary signal from a heterodyne result, thereby effectively extracting the target.
An information processing apparatus according to the third embodiment of the present invention will be described next. The information processing apparatus according to this embodiment is different from that according to the second embodiment in that a plurality of chirp waves are transmitted. The remaining components and operations are the same as those in the second embodiment. Hence, the same reference numerals denote the same components and operations, and a detailed description thereof will be omitted.
<<Overview of Processing of Embodiment>>
(Transmission Wave Signal and Reception Wave Signal)
In this embodiment, it is possible to separate a signal necessary for target extraction and an unnecessary signal from a heterodyne result by preventing the frequency band of a heterodyne dual-sweep signal from overlapping those of the plurality of transmitted chirp waves.
(Reception Wave Signal and Up Heterodyne Signal)
(Reception Wave Signal and Down Heterodyne Signal)
Note that it is understood from the heterodyne processing results shown in
<<Functional Arrangement of Target Extraction System Including Information Processing Apparatus>>
A transmission wave generation unit 1250 generates a plurality of chirp waves of predetermined frequency bands and predetermined cycles, and transmits them. This example will explain an example in which two chirp waves whose frequencies change in an inverted “V”-shaped pattern are transmitted. The present invention, however, is not limited to this.
The information processing apparatus 1200 includes a wave receiver 310, a dual-sweep signal generator 1220, a heterodyne processor 1230, and a spectrogram unit 340. The dual-sweep signal generator 1220 generates, as a heterodyne signal, a dual-sweep signal whose frequency band does not overlap those of the plurality of chirp waves transmitted by the transmission wave generation unit 1250 and is twice that of each transmission wave signal. Note that
The heterodyne processor 1230 multiplies a plurality of reception wave signals output from the wave receiver 310 by the dual-sweep signal whose frequency band does not overlap those of the plurality of reception wave signals, thereby generating beat frequencies as the frequency differences between the reception wave signals and the dual-sweep signal.
(Functional Arrangement of Transmission Wave Generation Unit)
The transmission wave generation unit 1250 includes a signal generation unit 1310, a digital-to-analog converter (DAC in
Note that
The chirp wave table 1312 stores a wave type 1322 and a frequency band 1323 and cycle 1324 of the wave in association with a use wave flag 1321 indicating a chirp wave to be used.
In the use wave flag 1321, ο indicates a use wave and x indicates a disuse wave. The wave type 1322 includes an up chirp wave whose frequency linearly rises, a down chirp wave whose frequency linearly lowers, and a serrated chirp wave obtained by alternately repeating an up chirp wave and a down chirp wave. In this example, a plurality of chirp waves to be used are stored in association with each use wave flag 1321.
In
(Functional Arrangement of Dual-Sweep Signal Generator)
The dual-sweep signal generator 1220 includes a transmitted up chirp wave information acquirer 1410, a dual-sweep signal frequency generator 1420, an oscillator 1430 on the low-frequency side of the dual-sweep signal, an oscillator 1440 on the high-frequency side of the dual-sweep signal, and a signal combiner 1450. The dual-sweep signal generator 1220 also includes a transmitted down chirp wave information acquirer 1460, an oscillator 1470 on the low-frequency side of the dual-sweep signal, an oscillator 1480 on the high-frequency side of the dual-sweep signal, and a signal combiner 1490.
Note that the transmitted up chirp wave information acquirer 1410 and the transmitted down chirp wave information acquirer 1460 may be integrated into one chirp wave information acquirer. If the chirp waves to be transmitted are known and fixed, the chirp wave information acquirers are not necessary.
The dual-sweep signal frequency generator 1420 includes a dual-sweep signal table 1421, and generates, based on the plurality of transmitted chirp waves, frequency data of dual-sweep signals whose frequency bands do not overlap those of the plurality of chirp waves. In accordance with the output of the dual-sweep signal frequency generator 1420, the oscillators 1430 and 1440 respectively generate signals each of which has the same degree of frequency change as that of the up chirp wave and in each of which a frequency change continues without overlapping the frequency bands of the plurality of transmitted chirp waves. The signal combiner 1450 combines the outputs of the oscillators 1430 and 1440, and outputs an up dual-sweep signal whose frequency band does not overlap those of the plurality of transmitted chirp waves. On the other hand, in accordance with the output of the dual-sweep signal frequency generator 1420, the oscillators 1470 and 1480 respectively generate signals each of which has the same degree of frequency change as that of the down chirp wave and in each of which a frequency change continues without overlapping the frequency bands of the plurality of transmitted chirp waves. The signal combiner 1490 combines the outputs of the oscillators 1470 and 1480, and outputs a down dual-sweep signal whose frequency band does not overlap those of the plurality of transmitted chirp waves.
Note that
The dual-sweep signal table 1421 stores a frequency band 1404 and a cycle 1405, which are set based on a signal type 1401, a transmitted use chirp wave 1402, and another chirp wave 1403. Note that the other chirp wave 1403 is not limited to one chirp wave. The signal type 1401 includes a low-frequency side and a high-frequency side for one dual-sweep signal. The use chirp wave 1402 and the other chirp wave 1403 store the pieces of chirp wave information acquired by the transmitted up chirp wave information acquirer 1410 and transmitted down chirp wave information acquirer 1460.
In the frequency band 1404, frequency bands which do not overlap those of the plurality of chirp waves and are close to those of the plurality of chirp waves are set based on the information of the transmitted use chirp wave 1402. The frequency bands 1404 on the low-frequency and high-frequency sides are continuous. Furthermore, the same cycle as that of the use chirp wave is set in the cycle 1405.
(Functional Arrangement of Heterodyne Processor)
The heterodyne processor 1230 includes a reception wave signal acquirer 1510, an up dual-sweep signal acquirer 1520, a multiplier 1530, and an optional unnecessary signal removal filter 1540. The heterodyne processor 1230 also includes a down dual-sweep signal acquirer 1550, a multiplier 1560, and an optional unnecessary signal removal filter 1570.
The reception wave signal acquirer 1510 acquires a reception wave signal including a plurality of chirp waves from the wave receiver 310. The up dual-sweep signal acquirer 1520 acquires the up dual-sweep signal from the dual-sweep signal generator 1220. On the other hand, the down dual-sweep signal acquirer 1550 acquires the down dual-sweep signal from the dual-sweep signal generator 1220. The multiplier 1530 multiplies the reception wave signal by the up dual-sweep signal to generate a beat frequency as a difference frequency. On the other hand, the multiplier 1560 multiplies the reception wave signal by the down dual-sweep signal to generate a beat frequency as a difference frequency.
Based on a filter parameter table 1541 predicted based on the plurality of chirp waves and the up dual-sweep signal, the unnecessary signal removal filter 1540 removes frequency components unnecessary for target extraction, which are included in the output of the multiplier 1530. On the other hand, based on a filter parameter table 1571 predicted based on the plurality of chirp waves and the down dual-sweep signal, the unnecessary signal removal filter 1570 removes frequency components unnecessary for target extraction, which are included in the output of the multiplier 1560. Note that the filter parameter tables 1541 and 1571 may be integrated into one table capable of identifying each parameter. If the plurality of chirp waves and the dual-sweep signals are known and fixed, the filter parameter tables 1541 and 1571 are not necessary.
Each of the filter parameter tables 1541 and 1571 stores a filter frequency band 1504 of each filter type 1501, which is estimated based on a use chirp wave 1502 and a use dual-sweep signal 1503. Note that the filter frequency band 1504 may store a plurality of frequency bands including unnecessary frequencies.
<<Processing Procedure of Transmission Wave Generation Unit>>
In step S1601, the transmission wave generation unit 1250 acquires the parameters (up/down, frequency band, and cycle) of the first chirp wave from the chirp wave table 1312. In step S1603, the transmission wave generation unit 1250 generates the first chirp wave.
In step S1605, in this example, the transmission wave generation unit 1250 acquires, from the chirp wave table 1312, the parameters (up/down, frequency band, and cycle) of the second chirp wave whose frequency band is different from that of the first chirp wave and which has the up/down parameter opposite to that of the first chirp wave. In step S1607, the transmission wave generation unit 1250 generates the second chirp wave.
In step S1609, the transmission wave generation unit 1250 transmits the first and second chirp waves. Note that the combination of two chirp waves or the number of chirp waves is not limited to that in this example.
(Dual-Sweep Signal Generation Processing)
In step S1611, the information processing apparatus 1200 acquires the transmitted first and second chirp waves or their parameters. In step S1613, the information processing apparatus 1200 generates the first copy signal of the first chirp wave and the second copy signal of the second chirp wave, whose frequency bands do not overlap those of the first and second chirp waves. Note that each copy signal indicates that it has the same degree of frequency change, as shown in
In step S1615, the information processing apparatus 1200 generates the third and fourth copy signals whose frequency bands do not overlap those of the plurality of transmitted chirp waves and continue to that of the first or second copy signal. In step S1617, the information processing apparatus 1200 generates the first dual-sweep signal whose frequency band does not overlap those of the plurality of transmitted chirp waves by adding the first and third copy signals. In step S1618, the information processing apparatus 1200 generates the second dual-sweep signal whose frequency band does not overlap those of the plurality of transmitted chirp waves by adding the second and fourth copy signals. In step S1619, the information processing apparatus 1200 outputs the generated first and second dual-sweep signals to the heterodyne processor 1230.
<<Transmission Wave Generation Conditions>>
The first condition is that a chirp wave does not enter a region to which a frequency change in heterodyne signal is translated (see a frequency change 1710). Conversely, a heterodyne signal does not enter a region to which a frequency change in a chirp wave is translated.
The second condition is that two chirp waves are combined by shifting their cycles by a half to reduce a wasted use band to half, as compared with the inverted “V” shape obtained when the cycles of the chirp waves coincide with each other (see frequency changes 1720 and 1730).
By separating a plurality of chirp waves to have predetermined frequency intervals by a band filter before transmission, it is possible to generate a plurality of chirp waves for which an unnecessary frequency spectrum of the beat frequency is reduced with a simple arrangement (see a frequency change 1740).
<<Target Object Speed Estimation and Doppler Influence Correction>>
A frequency change 1810 shown in
In this case, Fsu represents the frequency of the transmitted up chirp wave, Fsd represents the frequency of transmitted down chirp wave, Fru represents the frequency of the received up chirp wave, Frd represents the frequency of the received down chirp wave, and D represents a Doppler deviation ratio. All of these pieces of information can be acquired from, for example,
Therefore, transmitting a plurality of chirp waves makes it possible to perform target speed calculation (estimation) by executing processing once.
A frequency change 1820 shown in
The Doppler deviation ratio D can be calculated by D=(Fru+Frd)/(Fsu+Fsd)=(Fru+Frd)/2Fc. Therefore, transmitting a plurality of chirp waves makes it possible to correct the influence of the Doppler effect by performing processing once.
Note that a case in which two chirp waves are used has been described above. However, it is apparent that not two but three or more chirp waves may be used. Obtaining a plurality of heterodyne results allows statistical processing such as averaging, and can also improve the measurement accuracy.
According to this embodiment, it is possible to separate a signal necessary for target extraction and an unnecessary signal from heterodyne results, and obtain different results of the Doppler influence at once, thereby effectively performing target extraction, target speed estimation, and Doppler influence correction.
An information processing apparatus according to the fourth embodiment of the present invention will be described next. The information processing apparatus according to this embodiment is different from that according to the third embodiment in that a reception wave signal of a plurality of chirp waves is separated to perform heterodyne processing. That is, in this embodiment, a reception wave is separated by a band separation filter to perform different heterodyne processes for respective chirps. Beat frequencies obtained by the heterodyne processes are combined using a band filter and the like so as not to overlap each other. A beat frequency change image is obtained for each heterodyne result, and these two beat frequency change images are combined. The remaining components and operations are the same as those in the second and third embodiments. Hence, the same reference numerals denote the same components and operations, and a detailed description thereof will be omitted.
<<Overview of Processing of Embodiment>>
(Separation of Reception Wave Signal)
A frequency change 1910 shows a case in which if a reception wave signal is formed from three chirp waves, it is separated into three reception wave signals by a band separation filter, heterodyne processing is performed for each of the separated reception wave signals using a dual-sweep signal whose frequency band does not overlap that of the reception wave signal, and the thus obtained signals are combined later.
According to this embodiment, it is possible to generate a dual-sweep signal whose frequency band does not overlap that of each reception wave signal, and thus the frequency band can be effectively used.
(Separated Up Reception Wave Signal and Up Heterodyne Signal, and Separated Down Reception Wave Signal and Down Heterodyne Signal)
Referring to
(Heterodyne Processing Results in Embodiment)
Referring to
<<Functional Arrangement of Target Extraction System Including Information Processing Apparatus>>
The information processing apparatus 2000 includes a band separation filter 2070, a filter parameter table 2011 for the band separation filter 2070, an up chirp wave dual-sweep signal generator 2021, and a down chirp wave dual-sweep signal generator 2022.
Furthermore, the information processing apparatus 2000 includes an up multiplier 2031, a down multiplier 2032, an up chirp wave bandpass filter 2081, a down chirp wave bandpass filter 2082, a filter parameter table 2012 for the bandpass filters, and a heterodyne processing result combiner 2090.
The band separation filter 2070 separates a reception wave signal into an up reception wave signal and a down reception wave signal in accordance with the filter parameter table 2011. The up chirp wave dual-sweep signal generator 2021 generates an up dual-sweep signal whose frequency band does not overlap that of the transmitted up chirp wave in correspondence with the up chirp wave. On the other hand, the down chirp wave dual-sweep signal generator 2022 generates a down dual-sweep signal whose frequency band does not overlap that of the transmitted down chirp wave in correspondence with the down chirp wave. The up multiplier 2031 generates a beat frequency by multiplying the up reception wave signal by the up dual-sweep signal. On the other hand, the down multiplier 2032 generates a beat frequency by multiplying the down reception wave signal by the down dual-sweep signal.
The up chirp wave bandpass filter 2081 removes unnecessary frequencies from the output of the up multiplier 2031 in accordance with the filter parameter table 2012. On the other hand, the down chirp wave bandpass filter 2082 removes unnecessary frequencies from the output of the down multiplier 2032 in accordance with the filter parameter table 2012. The heterodyne processing result combiner 2090 combines the beat frequencies obtained by removing the unnecessary frequencies (see
Note that each of the filter parameter tables 2011 and 2012 may be included in the band separation filter 2070, or the chirp wave bandpass filter 2081 or 2082. Alternatively, the filter parameter tables may be integrated into one table. If the plurality of chirp waves and the plurality of dual-sweep signals are known and fixed, the filter parameter tables are not necessary.
(Functional Arrangement of Band Separation Filter)
The band separation filter 2070 includes an up chirp wave bandpass filter 2171 and a down chirp wave bandpass filter 2172. The band separation filter 2070 separates a reception wave signal into reception wave signals corresponding to a plurality of transmitted chirp waves in accordance with the filter parameter table 2011.
The filter parameter table 2011 stores a separated frequency band 2103 in association with a filter type 2101 and a use chirp wave 2102.
(Filter Parameters for Bandass Filters)
The filter parameter table 2012 stores a frequency band 2204 of an unnecessary signal in association with a type 2201 of unnecessary signal removal filter, a use chirp wave 2202, and a use dual-sweep signal 2203. Note that the plurality of frequency bands 2204 may be set depending on the use chirp wave 2202 and the use dual-sweep signal 2203.
<<Processing Procedure of Information Processing Apparatus>>
In step S2301, the information processing apparatus 2000 acquires up and down chirp waves or their parameters. Note that if three or more chirp waves are used, data of each chirp wave is acquired. In step S2303, the information processing apparatus 2000 generates an up dual-sweep signal corresponding to the transmitted up chirp wave.
In step S2304, the information processing apparatus 2000 generates a down dual-sweep signal corresponding to the transmitted down chirp wave. Note that the processes in steps S2303 and S2304 are the same as those in
In step S2306, the information processing apparatus 2000 band-separates the reception wave signal into an up reception wave signal and a down reception wave signal. In step S2307, the information processing apparatus 2000 executes up heterodyne processing of multiplying the up reception wave signal by the up dual-sweep signal. In step S2308, the information processing apparatus 2000 executes down heterodyne processing of multiplying the down reception wave signal by the down dual-sweep signal. Note that the processes in steps S2307 and S2308 are the same as those in steps S1021 to S1027 in
According to this embodiment, since a reception wave of a plurality of chirp waves is separated to perform heterodyne processing, the chirp waves and heterodyne signals can be set in narrow frequency bands. Thus, it is possible to effectively perform target extraction, target speed estimation, and Doppler influence correction.
An information processing apparatus according to the fifth embodiment of the present invention will be described next. The information processing apparatus according to this embodiment is different from those according to the second to fourth embodiments in that a transmitted chirp wave is used as a dual-sweep signal. The remaining components and operations are the same as those in the second to fourth embodiments. Hence, the same reference numerals denote the same components and operations, and a detailed description thereof will be omitted.
<<Overview of Processing of Embodiment>>
(Transmission Wave Signal and Reception Wave Signal)
Referring to
(Reception Wave Signal and Dual-Sweep Signal)
(Heterodyne Processing Result in Information Processing Apparatus)
As shown in
<<Functional Arrangement of Transmission Wave Generation Unit>>
The transmission wave generation unit 2550 includes a signal generation unit 2510, a digital-to-analog converter (DAC in
Note that
The chirp wave table 2512 stores a wave type 2522 and a frequency band 2523 and cycle 2524 of the wave in association with a use wave flag 2521 indicating a chirp wave to be used.
Referring to
(Dual-Sweep Signal Table)
The dual-sweep signal table 2621 stores a frequency band 2604 which does not overlap that of the dual-sweep chirp wave, and a cycle 2605 in association with a type 2601 of dual-sweep signal and a low-frequency side 2602 and high-frequency side 2603 of the dual-sweep chirp wave to be used.
<<Processing Procedure of Transmission Wave Generation Unit>>
In step S2705, the transmission wave generation unit 2550 generates parameters of the second chirp wave whose frequency band continues to that of the first chirp wave generated in step S1603 and which has the same up/down parameter as that of the first chirp wave. In step S1607, the transmission wave generation unit 2550 generates the second chirp wave.
According to this embodiment, since a plurality of processing results are output by performing heterodyne processing and spectrogram processing once, it is possible to effectively perform target extraction, target speed estimation, and Doppler influence correction with a simple arrangement.
An information processing apparatus according to the sixth embodiment of the present invention will be described next. The information processing apparatus according to this embodiment is different from those according to the second to fifth embodiments in that the information processing apparatus includes a wave transmitter. The remaining components and operations are the same as those in the second to fifth embodiments. Hence, the same reference numerals denote the same components and operations, and a detailed description thereof will be omitted.
<<Functional Arrangement of Information Processing Apparatus>>
Referring to
Furthermore, the arrangement can be simplified by integrating the transmission wave generator 2850 and a dual-sweep signal generator 320 as a signal generation unit 2810. All the components of an output unit 301 and calculator 302 can be included in the information processing apparatus 2800.
According to this embodiment, since it is possible to correctly adjust a chirp wave to be transmitted and a dual-sweep signal to undergo heterodyne processing, it is possible to perform target extraction, target speed estimation, and Doppler influence correction with higher accuracy.
Note that the target extraction method using an acoustic wave or ultrasonic wave, which has been described above, can be used for a technique of making robots pass each other without crashing and a vehicle collision avoidance technique. However, the present invention is not limited to them, and can be used to, for example, monitor an intruder in an office or the like, detect the motion of a person in a gymnasium, and monitor an obstacle in the water. In many cases, an ultrasonic wave cannot be used for monitoring in the water such as a port since it attenuates easily. However, the present invention is applicable to the principles of a target object detection method, distance measurement method, and speed measurement method using an acoustic wave called active sonar. Therefore, by appropriately setting a carrier frequency (center frequency), waveform length, modulated wave frequency, and the like suitable for the water, it is possible to obtain the same effects as those of the present invention. Furthermore, a transmission waveform according to the present invention can also be used for radar using a radio wave.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
The present invention is applicable to a system including a plurality of devices or a single apparatus. The present invention is also applicable even when an information processing program for implementing the functions of the embodiments is supplied to the system or apparatus directly or from a remote site. Hence, the present invention also incorporates the program installed in a computer to implement the functions of the present invention by the computer, a medium storing the program, and a WWW (World Wide Web) server that causes a user to download the program. Especially, the present invention incorporates at least a non-transitory computer readable medium storing a program that causes a computer to execute processing steps included in the above-described embodiments.
This application claims the benefit of Japanese Patent Application No. 2014-048144 filed on Mar. 11, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-048144 | Mar 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/084613 | 12/26/2014 | WO | 00 |