Pop-up targets are used in law enforcement and military training to improve the ability of shooters to hit a target in a desired location. Because pop-up targets are very light and flimsy to insure fast response, the whole structure vibrates violently whenever a bullet punctures its surface so that determining the hit point is not practical.
Determination of hit point on a pop-up target is difficult if not impossible in many instances with current sensing techniques. When hit by ballistics, target vibrations set up their own characteristic waveforms associated with the target itself rather than producing characteristic vibrations associated with a bullet passing through the plastic material of the target. The target twists and turns during the impact in a similar manner no matter where the bullet might hit.
Use of supersonic sound sensors allows accurate aim-point to be determined. However, if the projectile is not supersonic there is a problem. For indoor use, placement of shock sensors all over a target can be used, however, in a live fire range, damage to the sensors may be a considerable problem.
A target includes multiple segments that are vibrationaly isolated from each other. A vibration sensor is coupled to each segment to provide vibration signatures representative of a segment being impacted by a projectile.
In one embodiment, three segments are separated by a slot to provide the vibrational isolation, with a vibration sensor coupled to each segment.
A method includes creating a target in a desired shape out of a material that vibrates when impacted by a projectile. Slots are formed in the target to create segments that are vibrationaly dampened from each other. A vibration sensor is provided for each segment to sense vibrations in each segment resulting from a projectile impact of a section.
In the following description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments which may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the scope of the present invention. The following description of example embodiments is, therefore, not to be taken in a limited sense, and the scope of the present invention is defined by the appended claims.
A vibration sensor 135, 140, and 145 is provided at the base of each segment 110, 115, and 120 respectively in one embodiment to record a vibration signature along each of the three segments. The sensors may be accelerometers in one embodiment, or other type of sensor that can provide amplitude, phase, and timing information regarding their segment. A bullet impact point or hit segment can now be ascertained as a function of the vibration signatures. By locating the sensors at the base of the target, they are less likely to be damage by live gun fire.
In one embodiment, the segmented target 100 may be reinforced with adhesive material, such as tape on a backside of the target 100, as shown at 210 in
In some embodiments, an adhesive backed cloth is added back to the target to reestablish a link between the segments and restrict the “twisting” of the segmented target. The cloth material may significantly change the vibration across the slots separating segments so that accelerometers or acoustic sensors 135, 140, and 145 at the base of each section can differentiate the sector causing the most vibration and whose vibration phase shift is different from the other two sectors or segments not impacted.
By placing the sensors at the base of the segmented target 100, the possibility of a sensor being damaged is minimized, while still facilitating hit position to be registered. Sensor may of course be placed in other positions on the target as desired in further embodiments to detect vibrations. The segmented target with sensors may be constructed in a manner less expensive than a supersonic wave sensor. The segmented target need not change the shape of a non-instrumented aimpoint sensing target, providing design freedom in constructing targets. The target may have the sensors at the base of the target and may be further protected by a covering burm.
In one embodiment, the sensors provide vibration signals when a segment is impacted. The sensors may provide amplitude, phase, and timing information to a controller 150, such as circuitry or a processor to determine the hit segment. The controller 150 may also provide instructions to a motor 155 coupled to the target to drop the target as a function of the hit. A hit on section 110 in one embodiment would cause the target to drop, while one hit on 115 or 120 may not cause the target to drop. Multiple hits may also cause the target to drop if desired. The types and combinations of hits that would cause the target to drop may be varied as desired. The controller 150 may also be networked to a central controller that controls multiple targets, and may be raised or dropped under conditions set by the central controller.
In further embodiments, the slots may have a perforated structure as shown at 310 in
In still further embodiments, more than three segments may be provided, or a target may be segmented in two segments. The slots may be formed as parallel vertical slots, segmenting the target into vertical segments in one embodiment. In further embodiments, the slots may be formed to divide a target up into critical hit areas, and non-critical hit areas. Generally, the torso and head are critical hit areas for human shaped targets, and may be included in one segment. A portion of the legs of the target may be included to extend the segment to the base of the target where a sensor may be located in some embodiments. In further embodiments, segments need not be extended to the base, and sensors may be located to obtain vibration signatures from the segments.
In the embodiment shown in
As shown in
The system bus 523 can be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system memory can also be referred to as simply the memory, and, in some embodiments, includes read-only memory (ROM) 524 and random-access memory (RAM) 525. A basic input/output system (BIOS) program 526, containing the basic routines that help to transfer information between elements within the computer 520, such as during start-up, may be stored in ROM 524. The computer 520 further includes a hard disk drive 527 for reading from and writing to a hard disk, not shown, a magnetic disk drive 528 for reading from or writing to a removable magnetic disk 529, and an optical disk drive 530 for reading from or writing to a removable optical disk 531 such as a CD ROM or other optical media.
The hard disk drive 527, magnetic disk drive 528, and optical disk drive 530 couple with a hard disk drive interface 532, a magnetic disk drive interface 533, and an optical disk drive interface 534, respectively. The drives and their associated computer-readable media provide non volatile storage of computer-readable instructions, data structures, program modules and other data for the computer 520. It should be appreciated by those skilled in the art that any type of computer-readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only memories (ROMs), redundant arrays of independent disks (e.g., RAID storage devices) and the like, can be used in the exemplary operating environment.
A plurality of program modules can be stored on the hard disk, magnetic disk 529, optical disk 531, ROM 524, or RAM 525, including an operating system 535, one or more application programs 536, other program modules 537, and program data 538. Programming for implementing one or more processes or method described herein may be resident on any one or number of these computer-readable media.
A user may enter commands and information into computer 520 through input devices such as a keyboard 540 and pointing device 542. Other input devices (not shown) can include a microphone, joystick, game pad, satellite dish, scanner, or the like. These other input devices are often connected to the processing unit 521 through a serial port interface 546 that is coupled to the system bus 523, but can be connected by other interfaces, such as a parallel port, game port, or a universal serial bus (USB). A monitor 547 or other type of display device can also be connected to the system bus 523 via an interface, such as a video adapter 548. The monitor 547 can display a graphical user interface for the user. In addition to the monitor 547, computers typically include other peripheral output devices (not shown), such as speakers and printers.
The computer 520 may operate in a networked environment using logical connections to one or more remote computers or servers, such as remote computer 549. These logical connections are achieved by a communication device coupled to or a part of the computer 520; the invention is not limited to a particular type of communications device. The remote computer 549 can be another computer, a server, a router, a network PC, a client, a peer device or other common network node, and typically includes many or all of the elements described above I/O relative to the computer 520, although only a memory storage device 550 has been illustrated. The logical connections depicted in
When used in a LAN-networking environment, the computer 520 is connected to the LAN 551 through a network interface or adapter 553, which is one type of communications device. In some embodiments, when used in a WAN-networking environment, the computer 520 typically includes a modem 554 (another type of communications device) or any other type of communications device, e.g., a wireless transceiver, for establishing communications over the wide-area network 552, such as the internet. The modem 554, which may be internal or external, is connected to the system bus 523 via the serial port interface 546. In a networked environment, program modules depicted relative to the computer 520 can be stored in the remote memory storage device 550 of remote computer, or server 549. It is appreciated that the network connections shown are exemplary and other means of, and communications devices for, establishing a communications link between the computers may be used including hybrid fiber-coax connections, T1-T3 lines, DSL's, OC-3 and/or OC-12, TCP/IP, microwave, wireless application protocol, and any other electronic media through any suitable switches, routers, outlets and power lines, as the same are known and understood by one of ordinary skill in the art.
The Abstract is provided to comply with 37 C.F.R. §1.72(b) is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2939706 | Skaredoff | Jun 1960 | A |
3479032 | Andersson et al. | Nov 1969 | A |
3805030 | Wichinsky et al. | Apr 1974 | A |
4934937 | Judd | Jun 1990 | A |
5095433 | Botarelli et al. | Mar 1992 | A |
5320358 | Jones | Jun 1994 | A |
5447315 | Perkins | Sep 1995 | A |
20030109302 | Rist | Jun 2003 | A1 |
20050091958 | Zehavi et al. | May 2005 | A1 |
20090102129 | Isoz et al. | Apr 2009 | A1 |
20100320691 | McNelis et al. | Dec 2010 | A1 |
Entry |
---|
“Wikipedia Fiberglass”. From Wikipedia, The Free Encylopedia. [online], [retrieved on Jan. 3, 2013]. Retrieved from the Internet <URL:http://en.wikipedia.org/wiki/Fiberglass>. 7 pages. |
Number | Date | Country | |
---|---|---|---|
20120091660 A1 | Apr 2012 | US |