This invention relates to structured application development system.
Consumer devices such as personal computers, smart phones, stereoscopic viewers, mixed reality viewers, etc. have a storage medium for storing an application and one or more processors that execute routines of the application. Such applications include operating systems and other applications such as games, browsers, etc. that perform a multitude of tasks.
Multi-core processor chips include more than one processor core. These processor cores may, for example, include a central processing unit (CPU), a graphic processing unit (GPU), vector processing, etc. When an application developer develops an application for running on multiple processors, the developer programs clock speeds for the various processors.
Each processor generates an amount of heat per unit time that increases as its clock speed goes up. A multi-processor chip can normally dispense of all the heat of one processor running at 100% of its maximum clock speed. However, when all the processors run at 100% of their maximum clock speed, a multi-core processor chip may not be able to dispense of all the heat that is generated by all the processors, which may cause damage to the circuitry of the processors of the multi-core processor chip. Specifications may exist for clock speeds of a multi-core processor chip that detail how the clock speeds should be limited to limit the maximum amount of heat that is generated by all of the processors per unit time. The danger exists that a developer may ignore the specifications, which will result in damage to the multi-core processor chip.
According to one aspect of the invention, a host computer system is provided that includes a host computer processor, a computer-readable medium connected to the host computer processor, and a set of instructions on the computer-readable medium, the set of instructions being readable by the host computer processor and including a structured application development system having a power profile data library on the computer-readable medium that includes a first reference intent a first power profile associated with the first reference intent and having a respective first maximum clock speed for a first processor and a respective second maximum clock speed for a second processor, a second reference intent, and a second power profile associated with the second reference intent and having a respective first maximum clock speed for the first processor and a respective second maximum clock speed for the second processor, the first maximum clock speed of the first power profile being different from the first maximum clock speed for the second power profile.
The invention also provides a method of operating a host computer system including storing a power profile data library on a computer-readable medium, the power profile data library including a first reference intent, a first power profile associated with the first reference intent and having a respective first maximum clock speed for a first processor and a respective second maximum clock speed for a second processor, a second reference intent, and a second power profile associated with the second reference intent and having a respective first maximum clock speed for the first processor and a respective second maximum clock speed for the second processor, the first maximum clock speed of the first power profile being different from the first maximum clock speed for the second power profile.
The invention further provides a consumer device that includes a multi-core processor chip having a body and a plurality of processors on the body, a computer-readable medium connected to the processors, and an application on the computer-readable medium, the application having a first section, the first section having, a first routine that is executable by the processors, and a first power profile having a respective maximum clock speed for each one of the processors, and a second section, the second section having a second routine that is executable by the processors, and a second power profile having a respective maximum clock speed for each one of the processors so that at least one of the processors has a maximum clock speed that changes from the first section to the second section, wherein the processors jointly generate a first amount of heat per unit time during the first section and a second amount of heat during the second section and the second amount of heat is less than 10% different than the first amount of heat.
The invention further provides a method of operating a consumer device that includes storing an application on the computer-readable medium connected to a plurality of processors on a body of a multi-core processor chip, the application having first and second sections, executing the first section with the processors, the first section having, a first routine that is executable by the processors, and a first power profile having a respective maximum clock speed for each one of the processors, and executing the second section with the processors, the second section having, a second routine that is executable by the processors, and a second power profile having a respective maximum clock speed for each one of the processors so that at least one of the processors has a maximum clock speed that changes from the first section to the second section, wherein the processors jointly generate a first amount of heat per unit time during the first section and a second amount of heat during the second section and the second amount of heat is less than 10% different than the first amount of heat.
The invention further provides a consumer device that includes first and second processors a computer-readable medium connected to the processors, and an application on the computer-readable medium, the application having a first section, the first section having a first routine that is executable by the first and second processors, and a first power profile, the first power profile having first and second maximum clock speeds for the first and second processors, and a second section, the second section having, a second routine that is executable by the first and second processors, and a second power profile, the second power profile having first and second maximum clock speeds for the first and second processors, the first maximum clock speed of the first power profile being different from the first maximum clock speed for the second power profile and the second maximum clock speed of the first power profile be different from the second maximum clock speed for the second power profile.
The invention is further described by way of example with reference to the accompanying drawings, wherein:
The host computer system 12 includes a structured application development system 18. The structured application development system 18 initially resides on a storage medium of the host computer system 12. Components of the structured application development system 18 are loaded into memory of the host computer system 12 as they are needed. Components of the structured application development system 18 include selected 80 data 52 that remain on the memory and various components of logic that are executable by a host computer processor of the host computer system 12 connected to the memory.
The structured application development system 18 includes a power profile data library 20, a structured intent system 22, a developer kit 24, and an application 26 that is being developed. The application 26 may not initially form part of the structured application development system 18. However, it is shown as part of the structured application development system 18 because it is constructed by the other components of the structured application development system 18 in conjunction with selections that are made by a developer on the developer computer system 14.
The power profile data library 20 has a first reference intent 28 and second reference intent 30. By way of example, the first reference intent 28 may be “graphics-intensive” and the second reference intent 30 may be “startup” or any other label designated to characterize demands or loads on equipment included in the system on which the program is running. The first reference intent 28 has a first power profile 32 associated therewith. The first power profile 32 has a first clock speed 34 for a first processor and a second clock speed 36 for a second processor. The first processor may, for example, be a graphic processing unit (GPU) and the second processor may be a central processing unit (CPU). If the first reference intent 28 is a graphics-intensive intent, then the first clock speed 34 for the GPU will be set high and the second clock speed 36 for the CPU will be set low. The clock speeds are selected in a manner that will limit the amount maximum of heat per unit time that the first and second processors jointly generate on a multi-core processor chip, while at the same time having each processor run at a clock speed that is optimal given the first reference intent 28.
The second reference intent 30 has a second power profile 38 associated therewith. The second power profile 38 has a first clock speed 40 for the first processor and a second clock speed 42 for the second processor. By way of example, the second reference intent 30 is a startup intent. For startup purposes the first clock speed 40 is set relatively low if the first processor is a GPU and the second clock speed 42 is set relatively high if the second processor is a CPU. The first and second clock speeds 40 and 42 are preemptively determined to keep the heat generated by the first and second processors below a maximum amount of heat per unit time if the first and second processors are on the same multi-core processor chip. What should be noted is that the first clock speed 34 of the first power profile 32 may be higher than the first clock speed 40 of the second power profile 38 and that the second clock speed 36 of the first power profile 32 may be lower than the second clock speed 42 of the second power profile 38.
The power profile data library 20 only has first and second power profiles 32 and 38. It should however be understood that the power profile data library 20 may include more power profiles, for example four power profiles, each power profile being associated with a respective reference intent.
Furthermore, the first power profile 32 and the second power profile 38 include clock speeds for only first and second processors. Each power profile may also include a clock speed for a third processor, a fourth processor, etc.
The structured intent system 22 includes a set of target intents 46, an intent selection interface 48, a power profile lookup 50 and selected data 52.
The set of target intents 46 includes a first target intent 56 and second target intent 58. The first target intent 56 may, for example, be “graphics-intensive” and the second target intent 58 may be “startup” and are therefore similar to the first and second reference intents 28 and 30 in the power profile data library 20.
The developer at the developer computer system 14 uses a browser that resides on the developer computer system 14 to access the intent selection interface 48 over the Internet 16. The intent selection interface 48 may, for example, be an interactive web page that is downloadable from the host computer system 12 over the Internet 16 on to the developer computer system 14 by the browser application and is viewable within a browser window on a display of the developer computer system 14. The intent selection interface 48 allows the developer to select sections of an application and select target intents for the respective sections.
At 60, the developer selects a first section 62 that will eventually form part of an application. The structured intent system 22 displays the first target intent 58 in the intent selection interface 48 as a first target intent 64 and the second target intent 58 as a second target intent 66. The developer is then prompted to select either the first target intent 64 or the second target intent 66 for association with the first section 62. It can be noted that the developer is not permitted to select both the first target intent 64 and the second target intent 66. The first target intent 64 and the second target intent 66 may, for example, be presented within the intent selection interface 48 in a drop down list that allows selection of only one of the first target intent 64 and the second target intent 66 and disallows selection of the other target intent. At 70, the developer makes a selection to associate the second target intent 66 (which is the same as the second target intent 58) with the first section 62. The first section 62 thus has the second target intent 66 associated therewith and the second target intent 66 is a startup-intensive target intent. The arrow 72 indicates the association of the second target intent 66 with the first section 62.
At 74, the developer makes a selection for a second section 76 of an eventual application. The structured intent system 22 displays the first target intent 56 as a first target intent 78 and the second target intent 58 as a second target intent 80 so that the developer can make a selection between the first target intent 78 and the second target intent 80. Again, the developer is only permitted to select one of the first target intent 78 and the second target intent 80 at the exclusion of the other target intent. At 82, the developer makes a selection to associate the first target intent 78 (which is the same as the first target intent 56) with the second section 76. The arrow 84 indicates the association of the first target intent 78 with the second section 76.
The power profile lookup 50 uses the second target intent 66 of the first section 62 to determine a reference intent within the power profile data library 20. In the present example, the second target intent 66 matches the second reference intent 30 because they are both startup-intensive intents. The power profile lookup 50 then extracts the second power profile 38, including the first clock speed 40 and second clock speed 42, from the power profile data library 20. The power profile lookup 50 then stores the second power profile 38 as a second power profile 86 in the selected data 52. The power profile lookup 50 stores the first section 62 as a first section 88. The power profile lookup 50 also associates the second power profile 86 with the first section 88. As will be understood by one skilled in the art of data structures, the first section 88 and the first section 62 may be the exact same piece of data. However, for purposes of illustration and ease of explanation, the first section 62 and the first section 88 are shown as separate pieces of data.
Similarly, the power profile lookup 50 uses the first target intent 78 associated with the second section 76 to find a reference intent in the power profile data library 20. In the present example, the first target intent 78 matches the first reference intent 28 because they are both graphics-intensive intents. The power profile lookup 50 extracts the first power profile 32 associated with the first reference intent 28, including the first clock speed 34 and the second clock speed 36. The power profile lookup 50 then stores the first power profile 32 as a first power profile 90 within the selected data 52. The power profile lookup 50 stores the second section 76 as a second section 92 within the selected data 52. The power profile lookup 50 also associates the first power profile 90 with the second section 92 in the selected data 52.
The developer is not permitted to select clock speeds that are not represented in the respective power profiles 86 and 90. It is thus not possible for the developer to select clock speeds that, in combination, will result in too much heat being generated per unit time on a multi-core processor chip. The developer is, however, permitted to select a target intent for a respective section for purposes of tailoring the clock speeds of the respective processors without resulting in too much heat per unit time being generated by the processors in combination.
The developer kit 24 includes a set of tools 96, a tool selection interface 94, an application developer logic 100 and a power limiter logic 102.
The set of tools 96 are a set of basic tools that a developer requires to structure the components of sections of an application that are stored on a storage device of host computer system 12. The set of tools 96 is represented as Tool 1 to Tool 6. The developer at the developer computer system 14 downloads the tool selection interface 94 from the host computer system 12 for display on the developer computer system 14, similar to the way that the intent selection interface 48 was displayed. The tool selection interface 94 includes a first section 104 and a second section 106 that correspond to the first section 88 and the second section 92 in the selected data 52. The tools of the set of tools 96 are also displayed within the tool selection interface 94. At 108, the developer selects a first tool (Tool 3) for the first section 104. The developer subsequently proceeds to select further tools for the first section 104. The tools for the first section 104 are thus configurable by the developer in terms of their selection and their sequence. The developer also selects tools for the second section 106 in a configurable manner. The first section 104 and its tools and the second section 106 and its tools represent to the developer how the application will function in terms of its sections and the functionality of each section.
The application developer logic 100 creates first and second sections 112 and 114 in the application 26. The first section 112 corresponds to the first sections 62, 88 and 104. The second section 114 corresponds to the second sections 76, 92 and 106. The application developer logic 100 compiles the tools of the first section 104 as a first routine 118 and enters the first routine 118 within the first section 112 of the application 26. The application developer logic 100 compiles the tools of the second section 106 as a second routine 120 and enters the second routine 120 in the second section 114.
The power limiter logic 102 retrieves the second power profile 86 corresponding to the first section 88 from the selected data 52 and enters the second power profile 86 as a second power profile 122 as part of the first section 112 of the application 26. The power limiter logic 102 also retrieves the first power profile 90 corresponding to the second section 92 in the selected data 52 and enters the first power profile 90 as a first power profile 124 in the second section 114. The second power profile 122 of the first section 112 includes the first clock speed 40 for the first processor and second clock speed 42 for the second processor. The first power profile 124 of the second section 114 includes the first clock speed 34 for the first processor and the second clock speed 36 for the second processor. The first section 112 and the second section 114 thus each has a respective routine 118 and 120 and each has respective clock speeds for the first and second processors that are selected to be intent-specific and that are limited by the power limiter logic 102 to limit the generation of more than a predetermined amount of heat per unit time for the processors in combination.
As shown in
The consumer device 132 described herein may be a mixed reality system as described in U.S. patent application Ser. No. 14/331,218 which is incorporated by reference herein.
The exemplary computer system 900 includes a processor 930 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), or both), a main memory 932 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), and a static memory 934 (e.g., flash memory, static random access memory (SRAM, etc.), which communicate with each other via a bus 936.
The computer system 900 may further include a video display 938 (e.g., a liquid crystal displays (LCD) or a cathode ray tube (CRT)). The computer system 900 also includes an alpha-numeric input device 940 (e.g., a keyboard), a cursor control device 942 (e.g., a mouse), a disk drive unit 944, a signal generation device 946 (e.g., a speaker), and a network interface device 948.
The disk drive unit 944 includes a machine-readable medium 950 on which is stored one or more sets of instructions 952 (e.g., software) embodying any one or more of the methodologies or functions described herein. The software may also reside, completely or at least partially, within the main memory 932 and/or within the processor 930 during execution thereof by the computer system 900, the memory 932 and the processor 930 also constituting machine readable media. The software may further be transmitted or received over a network 954 via the network interface device 948.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative and not restrictive of the current invention, and that this invention is not restricted to the specific constructions and arrangements shown and described since modifications may occur to those ordinarily skilled in the art.
This application claims priority from U.S. Provisional Patent Application No. 62/802,140, filed on Feb. 6, 2019, all of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4344092 | Miller | Aug 1982 | A |
4652930 | Crawford | Mar 1987 | A |
4810080 | Grendol et al. | Mar 1989 | A |
4997268 | Dauvergne | Mar 1991 | A |
5007727 | Kahaney et al. | Apr 1991 | A |
5074295 | Willis | Dec 1991 | A |
5240220 | Elberbaum | Aug 1993 | A |
5251635 | Dumoulin et al. | Oct 1993 | A |
5410763 | Bolle | May 1995 | A |
5455625 | Englander | Oct 1995 | A |
5495286 | Adair | Feb 1996 | A |
5497463 | Stein et al. | Mar 1996 | A |
5682255 | Friesem et al. | Oct 1997 | A |
5826092 | Flannery | Oct 1998 | A |
5854872 | Tai | Dec 1998 | A |
5864365 | Sramek et al. | Jan 1999 | A |
5937202 | Crosetto | Aug 1999 | A |
6012811 | Chao et al. | Jan 2000 | A |
6016160 | Coombs et al. | Jan 2000 | A |
6076927 | Owens | Jun 2000 | A |
6117923 | Amagai et al. | Sep 2000 | A |
6124977 | Takahashi | Sep 2000 | A |
6191809 | Hori et al. | Feb 2001 | B1 |
6375369 | Schneider et al. | Apr 2002 | B1 |
6385735 | Wilson | May 2002 | B1 |
6538655 | Kubota | Mar 2003 | B1 |
6541736 | Huang et al. | Apr 2003 | B1 |
6757068 | Foxlin | Jun 2004 | B2 |
7046515 | Wyatt | May 2006 | B1 |
7051219 | Hwang | May 2006 | B2 |
7076674 | Cervantes | Jul 2006 | B2 |
7111290 | Yates, Jr. | Sep 2006 | B1 |
7119819 | Robertson et al. | Oct 2006 | B1 |
7219245 | Raghuvanshi | May 2007 | B1 |
7431453 | Hogan | Oct 2008 | B2 |
7542040 | Templeman | Jun 2009 | B2 |
7573640 | Nivon et al. | Aug 2009 | B2 |
7751662 | Kleemann | Jul 2010 | B2 |
7758185 | Lewis | Jul 2010 | B2 |
8060759 | Arnan | Nov 2011 | B1 |
8214660 | Capps, Jr. | Jul 2012 | B2 |
8246408 | Elliot | Aug 2012 | B2 |
8353594 | Lewis | Jan 2013 | B2 |
8508676 | Silverstein et al. | Aug 2013 | B2 |
8547638 | Levola | Oct 2013 | B2 |
8605764 | Rothaar et al. | Oct 2013 | B1 |
8619365 | Harris et al. | Dec 2013 | B2 |
8696113 | Lewis | Apr 2014 | B2 |
8733927 | Lewis | May 2014 | B1 |
8736636 | Kang | May 2014 | B2 |
8759929 | Shiozawa et al. | Jun 2014 | B2 |
8793770 | Lim | Jul 2014 | B2 |
8823855 | Hwang | Sep 2014 | B2 |
8847988 | Geisner et al. | Sep 2014 | B2 |
8874673 | Kim | Oct 2014 | B2 |
9010929 | Lewis | Apr 2015 | B2 |
9015501 | Gee | Apr 2015 | B2 |
9095437 | Boyden et al. | Aug 2015 | B2 |
9239473 | Lewis | Jan 2016 | B2 |
9244293 | Lewis | Jan 2016 | B2 |
9244533 | Friend et al. | Jan 2016 | B2 |
9383823 | Geisner et al. | Jul 2016 | B2 |
9489027 | Ogletree | Nov 2016 | B1 |
9519305 | Wolfe | Dec 2016 | B2 |
9581820 | Robbins | Feb 2017 | B2 |
9582060 | Balatsos | Feb 2017 | B2 |
9658473 | Lewis | May 2017 | B2 |
9671566 | Abovitz et al. | Jun 2017 | B2 |
9671615 | Vallius et al. | Jun 2017 | B1 |
9696795 | Marcolina et al. | Jul 2017 | B2 |
9874664 | Stevens et al. | Jan 2018 | B2 |
9955862 | Freeman et al. | May 2018 | B2 |
9978118 | Ozgumer et al. | May 2018 | B1 |
9996797 | Holz et al. | Jun 2018 | B1 |
10018844 | Levola et al. | Jul 2018 | B2 |
10151937 | Lewis | Dec 2018 | B2 |
10185147 | Lewis | Jan 2019 | B2 |
10218679 | Jawahar | Feb 2019 | B1 |
10436594 | Belt et al. | Oct 2019 | B2 |
10516853 | Gibson et al. | Dec 2019 | B1 |
10551879 | Richards et al. | Feb 2020 | B1 |
10578870 | Kimmel | Mar 2020 | B2 |
10698202 | Kimmel et al. | Jun 2020 | B2 |
10856107 | Mycek et al. | Oct 2020 | B2 |
10825424 | Zhang | Nov 2020 | B2 |
11190681 | Brook et al. | Nov 2021 | B1 |
11209656 | Choi et al. | Dec 2021 | B1 |
11236993 | Hall et al. | Feb 2022 | B1 |
20010010598 | Aritake et al. | Aug 2001 | A1 |
20020007463 | Fung | Jan 2002 | A1 |
20020063913 | Nakamura et al. | May 2002 | A1 |
20020071050 | Homberg | Jun 2002 | A1 |
20020108064 | Nunally | Aug 2002 | A1 |
20020122648 | Mule' et al. | Sep 2002 | A1 |
20020140848 | Cooper et al. | Oct 2002 | A1 |
20030028816 | Bacon | Feb 2003 | A1 |
20030048456 | Hill | Mar 2003 | A1 |
20030067685 | Niv | Apr 2003 | A1 |
20030077458 | Korenaga et al. | Apr 2003 | A1 |
20030115494 | Cervantes | Jun 2003 | A1 |
20030219992 | Schaper | Nov 2003 | A1 |
20030226047 | Park | Dec 2003 | A1 |
20040001533 | Tran | Jan 2004 | A1 |
20040021600 | Wittenberg | Feb 2004 | A1 |
20040025069 | Gary et al. | Feb 2004 | A1 |
20040042377 | Nikoloai et al. | Mar 2004 | A1 |
20040073822 | Greco | Apr 2004 | A1 |
20040073825 | Itoh | Apr 2004 | A1 |
20040111248 | Granny et al. | Jun 2004 | A1 |
20040174496 | Ji et al. | Sep 2004 | A1 |
20040186902 | Stewart | Sep 2004 | A1 |
20040201857 | Foxlin | Oct 2004 | A1 |
20040238732 | State et al. | Dec 2004 | A1 |
20040240072 | Schindler et al. | Dec 2004 | A1 |
20040246391 | Travis | Dec 2004 | A1 |
20040268159 | Aasheim et al. | Dec 2004 | A1 |
20050001977 | Zelman | Jan 2005 | A1 |
20050034002 | Flautner | Feb 2005 | A1 |
20050157159 | Komiya et al. | Jul 2005 | A1 |
20050177385 | Hull | Aug 2005 | A1 |
20050273792 | Inohara et al. | Dec 2005 | A1 |
20060013435 | Rhoads | Jan 2006 | A1 |
20060015821 | Jacques Parker et al. | Jan 2006 | A1 |
20060019723 | Vorenkamp | Jan 2006 | A1 |
20060038880 | Starkweather et al. | Feb 2006 | A1 |
20060050224 | Smith | Mar 2006 | A1 |
20060090092 | Verhulst | Apr 2006 | A1 |
20060126181 | Levola | Jun 2006 | A1 |
20060129852 | Bonola | Jun 2006 | A1 |
20060132914 | Weiss et al. | Jun 2006 | A1 |
20060179329 | Terechko | Aug 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060250322 | Hall et al. | Nov 2006 | A1 |
20060259621 | Ranganathan | Nov 2006 | A1 |
20060268220 | Hogan | Nov 2006 | A1 |
20070058248 | Nguyen et al. | Mar 2007 | A1 |
20070103836 | Oh | May 2007 | A1 |
20070124730 | Pytel | May 2007 | A1 |
20070159673 | Freeman et al. | Jul 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20070198886 | Saito | Aug 2007 | A1 |
20070204672 | Huang et al. | Sep 2007 | A1 |
20070213952 | Cirelli | Sep 2007 | A1 |
20070283247 | Brenneman et al. | Dec 2007 | A1 |
20080002259 | Ishizawa et al. | Jan 2008 | A1 |
20080002260 | Arrouy et al. | Jan 2008 | A1 |
20080043334 | Itzkovitch et al. | Feb 2008 | A1 |
20080046773 | Ham | Feb 2008 | A1 |
20080063802 | Maula et al. | Mar 2008 | A1 |
20080068557 | Menduni et al. | Mar 2008 | A1 |
20080146942 | Dala-Krishna | Jun 2008 | A1 |
20080173036 | Williams | Jul 2008 | A1 |
20080177506 | Kim | Jul 2008 | A1 |
20080205838 | Crippa et al. | Aug 2008 | A1 |
20080215907 | Wilson | Sep 2008 | A1 |
20080316768 | Travis | Dec 2008 | A1 |
20090153797 | Allon et al. | Jun 2009 | A1 |
20090224416 | Laakkonen et al. | Sep 2009 | A1 |
20090245730 | Kleemann | Oct 2009 | A1 |
20090310633 | Ikegami | Dec 2009 | A1 |
20100005326 | Archer | Jan 2010 | A1 |
20100056274 | Uusitalo et al. | Mar 2010 | A1 |
20100063854 | Purvis et al. | Mar 2010 | A1 |
20100079841 | Levola | Apr 2010 | A1 |
20100153934 | Lachner | Jun 2010 | A1 |
20100194632 | Raento | Aug 2010 | A1 |
20100232016 | Landa et al. | Sep 2010 | A1 |
20100232031 | Batchko et al. | Sep 2010 | A1 |
20100244168 | Shiozawa et al. | Sep 2010 | A1 |
20100296163 | Sarikko | Nov 2010 | A1 |
20110021263 | Anderson et al. | Jan 2011 | A1 |
20110022870 | McGrane | Jan 2011 | A1 |
20110050655 | Mukawa | Mar 2011 | A1 |
20110122240 | Becker | May 2011 | A1 |
20110145617 | Thomson | Jun 2011 | A1 |
20110170801 | Lu et al. | Jul 2011 | A1 |
20110218733 | Hamza et al. | Sep 2011 | A1 |
20110286735 | Temblay | Nov 2011 | A1 |
20110291969 | Rashid et al. | Dec 2011 | A1 |
20120011389 | Driesen | Jan 2012 | A1 |
20120050535 | Densham et al. | Mar 2012 | A1 |
20120075501 | Oyagi et al. | Mar 2012 | A1 |
20120081392 | Arthur | Apr 2012 | A1 |
20120089854 | Breakstone | Apr 2012 | A1 |
20120113235 | Shintani | May 2012 | A1 |
20120127062 | Bar-Zeev et al. | May 2012 | A1 |
20120154557 | Perez et al. | Jun 2012 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20120246506 | Knight | Sep 2012 | A1 |
20120249416 | Maciocci et al. | Oct 2012 | A1 |
20120249741 | Maciocci et al. | Oct 2012 | A1 |
20120260083 | Andrews | Oct 2012 | A1 |
20120307075 | Margalitq | Dec 2012 | A1 |
20120307362 | Silverstein et al. | Dec 2012 | A1 |
20120314959 | White et al. | Dec 2012 | A1 |
20120320460 | Levola | Dec 2012 | A1 |
20120326948 | Crocco et al. | Dec 2012 | A1 |
20130021486 | Richardon | Jan 2013 | A1 |
20130050833 | Lewis et al. | Feb 2013 | A1 |
20130051730 | Travers et al. | Feb 2013 | A1 |
20130502058 | Liu et al. | Feb 2013 | |
20130077049 | Bohn | Mar 2013 | A1 |
20130077170 | Ukuda | Mar 2013 | A1 |
20130094148 | Sloane | Apr 2013 | A1 |
20130129282 | Li | May 2013 | A1 |
20130169923 | Schnoll et al. | Jul 2013 | A1 |
20130205126 | Kruglick | Aug 2013 | A1 |
20130268257 | Hu | Oct 2013 | A1 |
20130278633 | Ahn et al. | Oct 2013 | A1 |
20130318276 | Dalal | Nov 2013 | A1 |
20130336138 | Venkatraman et al. | Dec 2013 | A1 |
20130342564 | Kinnebrew et al. | Dec 2013 | A1 |
20130342570 | Kinnebrew et al. | Dec 2013 | A1 |
20130342571 | Kinnebrew et al. | Dec 2013 | A1 |
20130343408 | Cook | Dec 2013 | A1 |
20140013098 | Yeung | Jan 2014 | A1 |
20140016821 | Arth et al. | Jan 2014 | A1 |
20140022819 | Oh et al. | Jan 2014 | A1 |
20140082526 | Park et al. | Mar 2014 | A1 |
20140119598 | Ramachandran et al. | May 2014 | A1 |
20140126769 | Reitmayr et al. | May 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140149573 | Tofighbakhsh et al. | May 2014 | A1 |
20140168260 | O'Brien et al. | Jun 2014 | A1 |
20140267419 | Ballard et al. | Sep 2014 | A1 |
20140274391 | Stafford | Sep 2014 | A1 |
20140282105 | Nordstrom | Sep 2014 | A1 |
20140359589 | Kodsky et al. | Dec 2014 | A1 |
20150005785 | Olson | Jan 2015 | A1 |
20150009099 | Queen | Jan 2015 | A1 |
20150097719 | Balachandreswaran et al. | Apr 2015 | A1 |
20150123966 | Newman | May 2015 | A1 |
20150130790 | Vazquez, II et al. | May 2015 | A1 |
20150134995 | Park | May 2015 | A1 |
20150138248 | Schrader | May 2015 | A1 |
20150155939 | Oshima et al. | Jun 2015 | A1 |
20150168221 | Mao et al. | Jun 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150235431 | Schowengerdt | Aug 2015 | A1 |
20150253651 | Russell et al. | Sep 2015 | A1 |
20150256484 | Cameron | Sep 2015 | A1 |
20150269784 | Miyawaki et al. | Sep 2015 | A1 |
20150294483 | Wells et al. | Oct 2015 | A1 |
20150301955 | Yakovenko et al. | Oct 2015 | A1 |
20150338915 | Publicover et al. | Nov 2015 | A1 |
20150355481 | Hilkes et al. | Dec 2015 | A1 |
20160004102 | Nisper et al. | Jan 2016 | A1 |
20160027215 | Burns et al. | Jan 2016 | A1 |
20160033770 | Fujimaki et al. | Feb 2016 | A1 |
20160077338 | Robbins et al. | Mar 2016 | A1 |
20160085285 | Mangione-Smith | Mar 2016 | A1 |
20160085300 | Robbins et al. | Mar 2016 | A1 |
20160093099 | Bridges | Mar 2016 | A1 |
20160093269 | Buckley et al. | Mar 2016 | A1 |
20160123745 | Cotier et al. | May 2016 | A1 |
20160155273 | Lyren et al. | Jun 2016 | A1 |
20160180596 | Gonzalez del Rosario | Jun 2016 | A1 |
20160191887 | Casas | Jun 2016 | A1 |
20160202496 | Billetz et al. | Jul 2016 | A1 |
20160217624 | Finn et al. | Jul 2016 | A1 |
20160266412 | Yoshida | Sep 2016 | A1 |
20160267708 | Nistico et al. | Sep 2016 | A1 |
20160300388 | Stafford et al. | Oct 2016 | A1 |
20160321551 | Priness et al. | Nov 2016 | A1 |
20160327798 | Xiao et al. | Nov 2016 | A1 |
20160334279 | Mittleman et al. | Nov 2016 | A1 |
20160357255 | Lindh et al. | Dec 2016 | A1 |
20160370404 | Quadrat et al. | Dec 2016 | A1 |
20160370510 | Thomas | Dec 2016 | A1 |
20170038607 | Camara | Feb 2017 | A1 |
20170060225 | Zha | Mar 2017 | A1 |
20170061696 | Li et al. | Mar 2017 | A1 |
20170100664 | Osterhout et al. | Apr 2017 | A1 |
20170115487 | Travis | Apr 2017 | A1 |
20170122725 | Yeoh et al. | May 2017 | A1 |
20170127295 | Black et al. | May 2017 | A1 |
20170131569 | Aschwanden et al. | May 2017 | A1 |
20170147066 | Katz et al. | May 2017 | A1 |
20170160518 | Lanman et al. | Jun 2017 | A1 |
20170185261 | Perez et al. | Jun 2017 | A1 |
20170192239 | Nakamura et al. | Jul 2017 | A1 |
20170205903 | Miller et al. | Jul 2017 | A1 |
20170206668 | Poulos et al. | Jul 2017 | A1 |
20170213388 | Margolis et al. | Jul 2017 | A1 |
20170219841 | Popovich et al. | Aug 2017 | A1 |
20170232345 | Rofougaran et al. | Aug 2017 | A1 |
20170235126 | DiDomenico | Aug 2017 | A1 |
20170235142 | Wall et al. | Aug 2017 | A1 |
20170235144 | Piskunov et al. | Aug 2017 | A1 |
20170235147 | Kamakura | Aug 2017 | A1 |
20170243403 | Daniels et al. | Aug 2017 | A1 |
20170254832 | Ho et al. | Sep 2017 | A1 |
20170256096 | Faaborg et al. | Sep 2017 | A1 |
20170270712 | Tyson et al. | Sep 2017 | A1 |
20170281054 | Stever et al. | Oct 2017 | A1 |
20170287376 | Bakar et al. | Oct 2017 | A1 |
20170293141 | Schowengerdt et al. | Oct 2017 | A1 |
20170307886 | Stenberg et al. | Oct 2017 | A1 |
20170307891 | Bucknor et al. | Oct 2017 | A1 |
20170312032 | Amanatullah et al. | Nov 2017 | A1 |
20170329137 | Tervo | Nov 2017 | A1 |
20170332098 | Rusanovskyy et al. | Nov 2017 | A1 |
20170357332 | Balan et al. | Dec 2017 | A1 |
20170371394 | Chan | Dec 2017 | A1 |
20170371661 | Sparling | Dec 2017 | A1 |
20180014266 | Chen | Jan 2018 | A1 |
20180044173 | Netzer | Feb 2018 | A1 |
20180052007 | Teskey et al. | Feb 2018 | A1 |
20180052501 | Jones, Jr. et al. | Feb 2018 | A1 |
20180059305 | Popovich et al. | Mar 2018 | A1 |
20180067779 | Pillalamarri et al. | Mar 2018 | A1 |
20180070855 | Eichler | Mar 2018 | A1 |
20180082480 | White et al. | Mar 2018 | A1 |
20180088185 | Woods et al. | Mar 2018 | A1 |
20180102981 | Kurtzman | Apr 2018 | A1 |
20180108179 | Tomlin et al. | Apr 2018 | A1 |
20180131907 | Schmirier et al. | May 2018 | A1 |
20180136466 | Ko | May 2018 | A1 |
20180151796 | Akahane | May 2018 | A1 |
20180188115 | Hsu et al. | Jul 2018 | A1 |
20180190017 | Mendez et al. | Jul 2018 | A1 |
20180191990 | Motoyama et al. | Jul 2018 | A1 |
20180250589 | Cossairt et al. | Sep 2018 | A1 |
20180284877 | Klein | Oct 2018 | A1 |
20180357472 | Dreessen | Dec 2018 | A1 |
20190005069 | Filgueiras de Arajuo et al. | Jan 2019 | A1 |
20190011691 | Peyman | Jan 2019 | A1 |
20190056591 | Tervo et al. | Feb 2019 | A1 |
20190087015 | Lam et al. | Mar 2019 | A1 |
20190101758 | Zhu et al. | Apr 2019 | A1 |
20190158926 | Kang et al. | May 2019 | A1 |
20190172216 | Ninan et al. | Jun 2019 | A1 |
20190178654 | Hare | Jun 2019 | A1 |
20190196690 | Chong et al. | Jun 2019 | A1 |
20190219815 | Price et al. | Jul 2019 | A1 |
20190243123 | Bohn | Aug 2019 | A1 |
20190318540 | Piemonte et al. | Oct 2019 | A1 |
20190321728 | Imai et al. | Oct 2019 | A1 |
20190347853 | Chen et al. | Nov 2019 | A1 |
20200098188 | Bar-Zeev et al. | Mar 2020 | A1 |
20200110928 | Al Jazaery et al. | Apr 2020 | A1 |
20200117267 | Gibson et al. | Apr 2020 | A1 |
20200117270 | Gibson et al. | Apr 2020 | A1 |
20200202759 | Ukai et al. | Jun 2020 | A1 |
20200309944 | Thoresen et al. | Oct 2020 | A1 |
20200356161 | Wagner | Nov 2020 | A1 |
20200368616 | Delamont | Nov 2020 | A1 |
20200409528 | Lee | Dec 2020 | A1 |
20210008413 | Asikainen et al. | Jan 2021 | A1 |
20210033871 | Jacoby et al. | Feb 2021 | A1 |
20210041951 | Gibson et al. | Feb 2021 | A1 |
20210053820 | Gurin et al. | Feb 2021 | A1 |
20210142582 | Jones et al. | May 2021 | A1 |
20210158627 | Cossairt et al. | May 2021 | A1 |
20210173480 | Osterhout et al. | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
107683497 | Feb 2018 | CN |
0535402 | Apr 1993 | EP |
0632360 | Jan 1995 | EP |
1215522 | Jun 2002 | EP |
1494110 | Jan 2005 | EP |
1938141 | Jul 2008 | EP |
1943556 | Jul 2008 | EP |
2290428 | Mar 2011 | EP |
2350774 | Aug 2011 | EP |
1237067 | Jan 2016 | EP |
3139245 | Mar 2017 | EP |
3164776 | May 2017 | EP |
3236211 | Oct 2017 | EP |
2723240 | Aug 2018 | EP |
2499635 | Aug 2013 | GB |
2542853 | Apr 2017 | GB |
2003-029198 | Jan 2003 | JP |
2007-012530 | Jan 2007 | JP |
2009-244869 | Oct 2009 | JP |
2012-015774 | Jan 2012 | JP |
2016-85463 | May 2016 | JP |
6232763 | Nov 2017 | JP |
6333965 | May 2018 | JP |
20050010775 | Jan 2005 | KR |
101372623 | Mar 2014 | KR |
201803289 | Jan 2018 | TW |
2002071315 | Sep 2002 | WO |
WO-2004095248 | Nov 2004 | WO |
2006132614 | Dec 2006 | WO |
2007085682 | Aug 2007 | WO |
2007102144 | Sep 2007 | WO |
2008148927 | Dec 2008 | WO |
2009101238 | Aug 2009 | WO |
WO-2012030787 | Mar 2012 | WO |
2013049012 | Apr 2013 | WO |
WO-2013062701 | May 2013 | WO |
2015143641 | Oct 2015 | WO |
2016054092 | Apr 2016 | WO |
2017004695 | Jan 2017 | WO |
2017120475 | Jul 2017 | WO |
2018044537 | Mar 2018 | WO |
2018087408 | May 2018 | WO |
2018097831 | May 2018 | WO |
2018166921 | Sep 2018 | WO |
2019148154 | Aug 2019 | WO |
2020010226 | Jan 2020 | WO |
Entry |
---|
Dermer et al., “Apparatus and method for power throttling in a microprocessor using a closed loop feedback system”, 2002 (Year: 2002). |
Gold et al., “Apparatus and method for automatic cpu speed control”, 2000 (Year: 2000). |
Jusufovic et al., “State Machine for low noise clocking of high frequency clocks”, 2016 (Year: 2016). |
Levitt et al., “Processor core communications in multi-core processors”, 2013 (Year: 2013). |
Midkiff et al., “Power profiling”, 2006 (Year: 2006). |
Mrad et al., “A framework for System Level Low Power Design Space Exploration”, 2017 (Year: 2017). |
Stant et al., “Power conservation in microprocessor controlled devices”, 1991 (Year: 1991). |
TechTarget, “multi-processor”, 2013 (Year: 2013). |
Weissel et al., “Process Cruise Control”, 2002 (Year: 2002). |
International Search Report and Written Opinion dated Jun. 15, 2020, International PCT Patent Application No. PCT/US2020/017023, (13 pages). |
Weissel, et al., “Process cruise control: event-driven clock scaling for dynamic power management”, Proceedings of the 2002 international conference on Compilers, architecture, and synthesis for embedded systems. Oct. 11, 2002 (Oct. 11, 2002) Retrieved on May 16, 2020 (May 16, 2020) from <URL: https://dl.acm.org/doi/pdf/10.1145/581630.581668>, p. 238-246. |
Invitation to Pay Additional Fees dated Apr. 3, 2020, International Patent Application No. PCT/US20/17023, (2 pages). |
“ARToolKit: Hardware”, https://web.archive.org/web/20051013062315/http://www.hitl.washington.edu:80/artoolkit/documentation/hardware.htm (downloaded Oct. 26, 2020), Oct. 13, 2015, (3 pages). |
Communication Pursuant to Rule 164(1) EPC dated Jul. 27, 2021, European Patent Application No. 19833664.6 , (11 pages). |
European Search Report dated Oct. 15, 2020, European Patent Application No. 20180623.9 , (10 pages). |
Extended European Search Report dated Jan. 22, 2021, European Patent Application No. 18890390.0 , (11 pages). |
Extended European Search Report dated Nov. 3, 2020, European Patent Application No. 18885707.2 , (7 pages). |
Extended European Search Report dated Jun. 30, 2021, European Patent Application No. 19811971.1 , (9 pages). |
Extended European Search Report dated Mar. 4, 2021, European Patent Application No. 19768418.6 , (9 pages). |
Extended European Search Report dated Nov. 4, 2020, European Patent Application No. 20190980.1 , (14 pages). |
Extended European Search Report dated Jul. 16, 2021, European Patent Application No. 19810142.0 , (14 pages). |
Extended European Search Report dated Jul. 30, 2021, European Patent Application No. 19839970.1 , (7 pages). |
Final Office Action dated Jun. 15, 2021, U.S. Appl. No. 16/928,313 , (42 pages). |
Final Office Action dated Mar. 1, 2021, U.S. Appl. No. 16/214,575 , (29 pages). |
Final Office Action dated Mar. 19, 2021, U.S. Appl. No. 16/530,776 , (25 pages). |
Final Office Action dated Nov. 24, 2020, U.S. Appl. No. 16/435,933 , (44 pages). |
International Search Report and Written Opinion dated Feb. 12, 2021, International Application No. PCT/US20/60555 , (25 pages). |
International Search Report and Written Opinion dated Feb. 2, 2021, International PCT Patent Application No. PCT/US20/60550 , (9 pages). |
International Search Report and Written Opinion dated Dec. 3, 2020, International Patent Application No. PCT/US20/43596 , (25 pages). |
Non Final Office Action dated Jan. 26, 2021, U.S. Appl. No. 16/928,313 , (33 pages). |
Non Final Office Action dated Jan. 27, 2021, U.S. Appl. No. 16/225,961 , (15 pages). |
Non Final Office Action dated Jul. 9, 2021, U.S. Appl. No. 17/002,663 , (43 pages). |
Non Final Office Action dated Jul. 9, 2021, U.S. Appl. No. 16/833,093 , (47 pages). |
Non Final Office Action dated Jun. 10, 2021, U.S. Appl. No. 16/938,782 , (40 Pages). |
Non Final Office Action dated Jun. 29, 2021, U.S. Appl. No. 16/698,588 , (58 pages). |
Non Final Office Action dated Mar. 3, 2021, U.S. Appl. No. 16/427,337 , (41 pages). |
Non Final Office Action dated May 26, 2021, U.S. Appl. No. 16/214,575 , (19 pages). |
Non Final Office Action dated Nov. 5, 2020, U.S. Appl. No. 16/530,776 , (45 pages). |
“Phototourism Challenge”, CVPR 2019 Image Matching Workshop. https://image matching-workshop. github.io. , (16 pages). |
Altwaijry , et al. , “Learning to Detect and Match Keypoints with Deep Architectures”, Proceedings of the British Machine Vision Conference (BMVC), BMVA Press, Sep. 2016, [retrieved on Jan. 8, 2021 (Jan. 8, 2021 )] < URL: http://www.bmva.org/bmvc/2016/papers/paper049/index.html >, en lire document, especially Abstract. |
Arandjelović, Relja , et al. , “Three things everyone should know to improve object retrieval”, CVPR, 2012 , (8 pages). |
Azuma, Ronald T. , “A Survey of Augmented Reality”, Presence: Teleoperators and Virtual Environments 6, 4 (Aug. 1997), 355-385; https://web.archive.org/web/20010604100006/http://www.cs.unc.edu/˜azuma/ARpresence.pdf (downloaded Oct. 26, 2020). |
Azuma, Ronald T. , “Predictive Tracking for Augmented Reality”, Department of Computer Science, Chapel Hill NC; TR95-007, Feb. 1995 , 262 pages. |
Battaglia, Peter W, et al. , “Relational inductive biases, deep learning, and graph networks” , arXiv:1806.01261, Oct. 17, 2018 , pp. 1-40. |
Berg, Alexander C , et al. , “Shape matching and object recognition using low distortion correspondences”, In CVPR, 2005 , (8 pages). |
Bian, Jiawang , et al. , “GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence.”, In CVPR (Conference on Computer Vision and Pattern Recognition), 2017 , (10 pages). |
Bimber, Oliver , et al. , “Spatial Augmented Reality: Merging Real and Virtual Worlds”, https://web.media.mit.edu/˜raskar/book/BimberRaskarAugmentedRealityBook.pdf; published by A K Peters/CRC Press (Jul. 31, 2005); eBook (3rd Edition, 2007) , (393 pages). |
Brachmann, Eric , et al. , “Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses”, In ICCV (International Conference on Computer Vision ), arXiv:1905.04132v2 [cs.CV] Jul. 31, 2019 , (17 pages). |
Butail , et al. , “Putting the fish in the fish tank: Immersive VR for animal behavior experiments”, In: 2012 IEEE International Conference on Robotics and Automation. May 18, 2012 (May 18, 2012) Retrieved on Nov. 14, 2020 (Nov. 14, 2020) from <http:/lcdcl.umd.edu/papers/icra2012.pdf> entire document. |
Caetano, Tibério S , et al. , “Learning graph matching” , IEEE TPAMI, 31(6):1048-1058, 2009. |
Cech, Jan , et al. , “Efficient sequential correspondence selection by cosegmentation”, IEEE TPAMI, 32(9):1568-1581, Sep. 2010. |
Cuturi, Marco , “Sinkhorn distances: Lightspeed computation of optimal transport”, NIPS, 2013 , (9 pages). |
Dai, Angela , et al. , “ScanNet: Richly-annotated 3d reconstructions of indoor scenes”, In CVPR, arXiv:1702.04405v2 [cs.CV] Apr. 11, 2017 , (22 pages). |
Deng, Haowen , et al. , “PPFnet: Global context aware local features for robust 3d point matching” , In CVPR, arXiv:1802.02669v2 [cs.CV] Mar. 1, 2018 , (12 pages). |
Detone, Daniel , et al. , “Deep image homography estimation”, In RSS Work-shop: Limits and Potentials of Deep Learning in Robotics, arXiv:1606.03798v1 [cs.CV] Jun. 13, 2016 , (6 pages). |
Detone, Daniel , et al. , “Self-improving visual odometry” , arXiv:1812.03245, Dec. 8, 2018 , (9 pages). |
Detone, Daniel , et al. , “SuperPoint: Self-supervised interest point detection and description”, In CVPR Workshop on Deep Learning for Visual SLAM, arXiv:1712.07629v4 [cs.CV] Apr. 19, 2018 , (13 pages). |
Dusmanu, Mihai , et al. , “D2-net: A trainable CNN for joint detection and description of local features” , CVPR, arXiv:1905.03561v1 [cs.CV] May 9, 2019 , (16 pages). |
Ebel, Patrick , et al. , “Beyond cartesian representations for local descriptors”, ICCV, arXiv:1908.05547v1 [cs.CV] Aug. 15, 2019 , (11 pages). |
Fischler, Martin A , et al. , “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the ACM, 24(6): 1981 , pp. 381-395. |
Gilmer, Justin , et al. , “Neural message passing for quantum chemistry”, In ICML, arXiv:1704.01212v2 [cs.LG] Jun. 12, 2017 , (14 pages). |
Giuseppe, Donato , et al. , “Stereoscopic helmet mounted system for real time 3D environment reconstruction and indoor ego—motion estimation”, Proc. SPIE 6955, Head- and Helmet-Mounted Displays XIII: Design and Applications , 69550P. |
Hartley, Richard , et al. , “Multiple View Geometry in Computer Vision” , Cambridge University Press, 2003 , pp. 1-673. |
Jacob, Robert J.K. , “Eye Tracking in Advanced Interface Design”, Human-Computer Interaction Lab, Naval Research Laboratory, Washington, D.C., date unknown. 2003 , pp. 1-50. |
Lee , et al. , “Self-Attention Graph Pooling”, Cornell University Library/Computer Science/Machine Learning, Apr. 17, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1904.08082 >, entire document. |
Lee, Juho , et al. , “Set transformer: A frame-work for attention-based permutation-invariant neural networks” , ICML, arXiv:1810.00825v3 [cs.LG] May 26, 2019 , (17 pages). |
Leordeanu, Marius , et al. , “A spectral technique for correspondence problems using pairwise constraints”, Proceedings of (ICCV) International Conference on Computer Vision, vol. 2, pp. 1482-1489, Oct. 2005 , (8 pages). |
Li, Yujia , et al. , “Graph matching networks for learning the similarity of graph structured objects” , ICML, arXiv:1904.12787v2 [cs.LG] May 12, 2019 , (18 pages). |
Li, Zhengqi , et al. , “Megadepth: Learning single-view depth prediction from internet photos” , In CVPR, fromarXiv: 1804.00607v4 [cs.CV] Nov. 28, 2018 , (10 pages). |
Libovicky , et al. , “Input Combination Strategies for Multi-Source Transformer Decoder”, Proceedings of the Third Conference on Machine Translation (WMT). vol. 1: Research Papers, Belgium, Brussels, Oct. 31-Nov. 1, 2018; retrieved on Jan. 8, 2021 (Jan. 8, 2021 ) from < URL: https://doi.org/10.18653/v1/W18-64026 >, entire document. |
Loiola, Eliane Maria, et al. , “A survey for the quadratic assignment problem”, European journal of operational research, 176(2): 2007 , pp. 657-690. |
Lowe, David G , “Distinctive image features from scale-invariant keypoints”, International Journal of Computer Vision, 60(2): 91-110, 2004 , (28 pages). |
Luo, Zixin , et al. , “ContextDesc: Local descriptor augmentation with cross-modality context”, CVPR, arXiv:1904.04084v1 [cs.CV] Apr. 8, 2019 , (14 pages). |
Molchanov, Pavlo , et al. , “Short-range FMCW monopulse radar for hand-gesture sensing”, 2015 IEEE Radar Conference (RadarCon) (2015) , pp. 1491-1496. |
Munkres, James , “Algorithms for the assignment and transportation problems”, Journal of the Society for Industrial and Applied Mathematics, 5(1): 1957 , pp. 32-38. |
Ono, Yuki , et al. , “LF-Net: Learning local features from images”, 32nd Conference on Neural Information Processing Systems (NIPS 2018), arXiv:1805.09662v2 [cs.CV] Nov. 22, 2018 , (13 pages). |
Paszke, Adam , et al. , “Automatic differentiation in Pytorch”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA , (4 pages). |
Peyré, Gabriel , et al. , “Computational Optimal Transport”, Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019; arXiv:1803.00567v4 [stat.ML] Mar. 18, 2020 , (209 pages). |
Qi, Charles Ruizhongtai, et al. , “Pointnet++: Deep hierarchical feature learning on point sets in a metric space.”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. , (10 pages). |
Qi, Charles R , et al. , “Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation” , CVPR, arXiv:1612.00593v2 [cs.CV] Apr. 10, 201 , (19 pages). |
Radenović, Filip , et al. , “Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking” , CVPR, arXiv:1803.11285v1 [cs.CV] Mar. 29, 2018 , (10 pages). |
Raguram, Rahul , et al. , “A comparative analysis of ransac techniques leading to adaptive real-time random sample consensus”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part I , (15 pages). |
Ranftl, René , et al. , “Deep fundamental matrix estimation”, European Conference on Computer Vision (ECCV), 2018 , (17 pages). |
Revaud, Jerome , et al. , “R2D2: Repeatable and Reliable Detector and Descriptor”, In NeurIPS, arXiv:1906.06195v2 [cs.CV] Jun. 17, 2019 , (12 pages). |
Rocco, Ignacio , et al. , “Neighbourhood Consensus Networks”, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada, arXiv:1810.10510v2 [cs.CV] Nov. 29, 2018 , (20 pages). |
Rublee, Ethan , et al. , “ORB: An efficient alternative to SIFT or SURF”, Proceedings of the IEEE International Conference on Computer Vision. 2564-2571. 2011; 10.1109/ICCV.2011.612654 , (9 pages). |
Sarlin , et al. , “SuperGlue: Learning Feature Matching with Graph Neural Networks”, Cornell University Library/Computer Science/ Computer Vision and Pattern Recognition, Nov. 26, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1911.11763 >, entire document. |
Sattler, Torsten , et al. , “SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter” , ICCV, 2009: 2090-2097. , (8 pages). |
Schonberger, Johannes Lutz, et al. , “Pixelwise view selection for un-structured multi-view stereo, Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Oct. 11-14, 2016, Proceedings, Part III”, pp. 501-518, 2016. |
Schonberger, Johannes Lutz, et al. , “Structure-from-motion revisited” , Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104-4113 , (11 pages). |
Sheng, Liu , et al. , “Time-multiplexed dual-focal plane head-mounted display with a liquid lens” , Optics Letters, Optical Society of Amer I Ca, US, vol. 34, No. 11, Jun. 1, 2009 (Jun. 1, 2009), XP001524475, ISSN: 0146-9592 , pp. 1642-1644. |
Sinkhorn, Richard , et al. , “Concerning nonnegative matrices and doubly stochastic matrices.”, Pacific Journal of Mathematics, 1967 , pp. 343-348. |
Tanriverdi, Vildan , et al. , “Interacting With Eye Movements in Virtual Environments”, Department of Electrical Engineering and Computer Science, Tufts University; Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 2000 , pp. 1-8. |
Thomee, Bart , et al. , “YFCC100m: The new data in multimedia research”, Communications of the ACM, 59(2):64-73, 2016; arXiv:1503.01817v2 [cs.MM] Apr. 25, 2016 , (8 pages). |
Torresani, Lorenzo , et al. , “Feature correspondence via graph matching: Models and global optimization”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part II , (15 pages). |
Tuytelaars, Tinne , et al. , “Wide baseline stereo matching based on local, affinely invariant regions”, BMVC, 2000 , pp. 1-14. |
Ulyanov, Dmitry , et al. , “Instance normalization: The missing ingredient for fast stylization” , arXiv:1607.08022v3 [cs.CV] Nov. 6, 2017 , (6 pages). |
Vaswani, Ashish , et al. , “Attention is all you need” , 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1706.03762v5 [cs.CL] Dec. 6, 2017 , (15 pages). |
Veli{hacek over (c)}kovi{hacek over (c)}, Petar , et al. , “Graph attention networks” , ICLR, arXiv:1710.10903v3 [stat.ML] Feb. 4, 2018 , (12 pages). |
Villani, Cédric , “Optimal transport: old and new”, vol. 338. Springer Science & Business Media, Jun. 2008 , pp. 1-998. |
Wang, Xiaolong , et al. , “Non-local neural networks”, CVPR, arXiv:1711.07971v3 [cs.CV] Apr. 13, 2018 , (10 pages). |
Wang, Yue , et al. , “Deep Closest Point: Learning representations for point cloud registration” , ICCV, arXiv:1905.03304v1 [cs.CV] May 8, 2019 , (10 pages). |
Wang, Yue , et al. , “Dynamic Graph CNN for learning on point clouds”, ACM Transactions on Graphics, arXiv:1801.07829v2 [cs.CV] Jun. 11, 2019 , (13 pages). |
Yi, Kwang Moo, et al. , “Learning to find good correspondences”, CVPR, arXiv:1711.05971v2 [cs.CV] May 21, 2018 , (13 pages). |
Yi, Kwang Moo , et al. , “Lift: Learned invariant feature transform”, ECCV, arXiv:1603.09114v2 [cs.CV] Jul. 29, 2016 , (16 pages). |
Zaheer, Manzil , et al. , “Deep Sets”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1703.06114v3 [cs.LG] Apr. 14, 2018 , (29 pages). |
Zhang, Jiahui, et al. , “Learning two-view correspondences and geometry using order-aware network” , ICCV; aarXiv:1908.04964v1 [cs.CV] Aug. 14, 2019 , (11 pages). |
Zhang, Li, et al. , “Dual graph convolutional net-work for semantic segmentation”, BMVC, 2019; arXiv:1909.06121v3 [cs.CV] Aug. 26, 2020 , (18 pages). |
Communication Pursuant to Article 94(3) EPC dated Sep. 4, 2019, European Patent Application No. 10793707.0, (4 pages). |
Examination Report dated Jun. 19, 2020, European Patent Application No. 20154750.2, (10 pages). |
Extended European Search Report dated May 20, 2020, European Patent Application No. 20154070.5, (7 pages). |
Extended European Search Report dated Jun. 12, 2017, European Patent Application No. 16207441.3, (8 pages). |
Final Office Action dated Aug. 10, 2020, U.S. Appl. No. 16/225,961, (13 pages). |
Final Office Action dated Dec. 4, 2019, U.S. Appl. No. 15/564,517, (15 pages). |
Final Office Action dated Feb. 19, 2020, U.S. Appl. No. 15/552,897, (17 pages). |
International Search Report and Written Opinion dated Mar. 12, 2020, International PCT Patent Application No. PCT/US19/67919, (14 pages). |
International Search Report and Written Opinion dated Aug. 15, 2019, International PCT Patent Application No. PCT/US19/33987, (20 pages). |
International Search Report and Written Opinion dated Oct. 16, 2019, International PCT Patent Application No. PCT/US19/43097, (10 pages). |
International Search Report and Written Opinion dated Oct. 16, 2019, International PCT Patent Application No. PCT/US19/36275, (10 pages). |
International Search Report and Written Opinion dated Oct. 16, 2019, International PCT Patent Application No. PCT/US19/43099, (9 pages). |
International Search Report and Written Opinion dated Jun. 17, 2016, International PCT Patent Application No. PCT/FI2016/050172, (9 pages). |
International Search Report and Written Opinion dated Oct. 22, 2019, International PCT Patent Application No. PCT/US19/43751, (9 pages). |
International Search Report and Written Opinion dated Dec. 23, 2019, International PCT Patent Application No. PCT/US19/44953, (11 pages). |
International Search Report and Written Opinion dated May 23, 2019, International PCT Patent Application No. PCT/US18/66514, (17 pages). |
International Search Report and Written Opinion dated Sep. 26, 2019, International PCT Patent Application No. PCT/US19/40544, (12 pages). |
International Search Report and Written Opinion dated Aug. 27, 2019, International PCT Application No. PCT/US2019/035245, (8 pages). |
International Search Report and Written Opinion dated Dec. 27, 2019, International Application No. PCT/US19/47746, (16 pages). |
International Search Report and Written Opinion dated Sep. 30, 2019, International Patent Application No. PCT/US19/40324, (7 pages). |
International Search Report and Written Opinion dated Sep. 4, 2020, International Patent Application No. PCT/US20/31036, (13 pages). |
International Search Report and Written Opinion dated Jun. 5, 2020, International Patent Application No. PCT/US20/19871, (9 pages). |
International Search Report and Written Opinion dated Aug. 8, 2019, International PCT Patent Application No. PCT/US2019/034763, (8 pages). |
International Search Report and Written Opinion dated Oct. 8, 2019, International PCT Patent Application No. PCT/US19/41151, (7 pages). |
International Search Report and Written Opinion dated Jan. 9, 2020, International Application No. PCT/US19/55185, (10 pages). |
International Search Report and Written Opinion dated Feb. 28, 2019, International Patent Application No. PCT/US18/64686, (8 pages). |
International Search Report and Written Opinion dated Feb. 7, 2020, International PCT Patent Application No. PCT/US2019/061265, (11 pages). |
International Search Report and Written Opinion dated Jun. 11, 2019, International PCT Application No. PCT/US19/22620, (7 pages). |
Invitation to Pay Additional Fees dated Aug. 15, 2019, International PCT Patent Application No. PCT/US19/36275, (2 pages). |
Invitation to Pay Additional Fees dated Sep. 24, 2020, International Patent Application No. PCT/US2020/043596, (3 pages). |
Invitation to Pay Additional Fees dated Oct. 22, 2019, International PCT Patent Application No. PCT/US19/47746, (2 pages). |
Invitation to Pay Additional Fees dated Oct. 17, 2019, International PCT Patent Application No. PCT/US19/44953, (2 pages). |
Non Final Office Action dated Aug. 21, 2019, U.S. Appl. No. 15/564,517, (14 pages). |
Non Final Office Action dated Jul. 27, 2020, U.S. Appl. No. 16/435,933, (16 pages). |
Non Final Office Action dated Jun. 17, 2020, U.S. Appl. No. 16/682,911, (22 pages). |
Non Final Office Action dated Jun. 19, 2020, U.S. Appl. No. 16/225,961, (35 pages). |
Non Final Office Action dated Nov. 19, 2019, U.S. Appl. No. 16/355,611, (31 pages). |
Non Final Office Action dated Oct. 22, 2019, U.S. Appl. No. 15/859,277, (15 pages). |
Non Final Office Action dated Sep. 1, 2020, U.S. Appl. No. 16/214,575, (40 pages). |
Notice of Allowance dated Mar. 25, 2020, U.S. Appl. No. 15/564,517, (11 pages). |
Notice of Allowance dated Oct. 5, 2020, U.S. Appl. No. 16/682,911, (27 pages). |
Notice of Reason of Refusal dated Sep. 11, 2020 with English translation, Japanese Patent Application No. 2019-140435, (6 pages). |
Summons to attend oral proceedings pursuant to Rule 115(1) EPC dated Jul. 15, 2019, European Patent Application No. 15162521.7, (7 pages). |
Aarik, J. et al., “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition”, Thin Solid Films; Publication [online). May 19, 1998 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.sciencedirect.com/science/article/pii/S0040609097001351?via%3Dihub>; DOI: 10.1016/S0040-6090(97)00135-1; see entire document, (2 pages). |
Azom, , “Silica—Silicon Dioxide (SiO2)”, AZO Materials; Publication [Online]. Dec. 13, 2001 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?ArticleID=1114>, (6 pages). |
Goodfellow, , “Titanium Dioxide—Titania (TiO2)”, AZO Materials; Publication [online]. Jan. 11, 2002 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?ArticleID=1179>, (9 pages). |
Levola, T. , “Diffractive Optics for Virtual Reality Displays”, Journal of the SID Eurodisplay 14/05, 2005, XP008093627, chapters 2-3, Figures 2 and 10, pp. 467-475. |
Levola, Tapani , “Invited Paper: Novel Diffractive Optical Components for Near to Eye Displays—Nokia Research Center”, SID 2006 Digest, 2006 SID International Symposium, Society for Information Display, vol. XXXVII, May 24, 2005, chapters 1-3, figures 1 and 3, pp. 64-67. |
Memon, F. et al., “Synthesis, Characterization and Optical Constants of Silicon Oxycarbide”, EPJ Web of Conferences; Publication [online). Mar. 23, 2017 [retrieved Feb. 19, 2020).<URL: https://www.epj-conferences.org/articles/epjconf/pdf/2017/08/epjconf_nanop2017_00002.pdf>; DOI: 10.1051/epjconf/201713900002, (8 pages). |
Spencer, T. et al., “Decomposition of poly(propylene carbonate) with UV sensitive iodonium 11 salts”, Polymer Degradation and Stability; (online]. Dec. 24, 2010 (retrieved Feb. 19, 2020]., <URL: http:/fkohl.chbe.gatech.edu/sites/default/files/linked_files/publications/2011Decomposition%20of%20poly(propylene%20carbonate)%20with%20UV%20sensitive%20iodonium%20salts,pdf>; DOI: 10, 1016/j.polymdegradstab.2010, 12.003, (17 pages). |
Jacob, Robert J. , “Eye Tracking in Advanced Interface Design”, Human-Computer Interaction Lab, Naval Research Laboratory, Washington, D.C., date unknown. 2003, pp. 1-50. |
Communication Pursuant to Article 94(3) EPC dated Jan. 4, 2022, European Patent Application No. 20154070.5, (8 pages). |
Extended European Search Report dated Jan. 28, 2022, European Patent Application No. 19815876.8, (9 pages). |
Extended European Search Report dated Jan. 4, 2022, European Patent Application No. 19815085.6, (9 pages). |
Final Office Action dated Feb. 23, 2022, U.S. Appl. No. 16/748,193, (23 pages). |
Final Office Action dated Feb. 3, 2022, U.S. Appl. No. 16/864,721, (36 pages). |
Non Final Office Action dated Apr. 1, 2022, U.S. Appl. No. 17/256,961, (65 pages). |
Non Final Office Action dated Mar. 31, 2022, U.S. Appl. No. 17/257,814, (60 pages). |
Communication Pursuant to Article 94(3) EPC dated Oct. 21, 2021, European Patent Application No. 16207441.3, (4 pages). |
Extended European Search Report dated Oct. 27, 2021, European Patent Application No. 19833664.6, (10 pages). |
Extended European Search Report dated Sep. 20, 2021, European Patent Application No. 19851373.1, (8 pages). |
Extended European Search Report dated Sep. 28, 2021, European Patent Application No. 19845418.3, (13 pages). |
Final Office Action dated Sep. 17, 2021, U.S. Appl. No. 16/938,782, (44 pages). |
Non Final Office Action dated Aug. 4, 2021, U.S. Appl. No. 16/864,721, (51 pages). |
Non Final Office Action dated Sep. 20, 2021, U.S. Appl. No. 17/105,848, (56 pages). |
Non Final Office Action dated Sep. 29, 2021, U.S. Appl. No. 16/748,193, (62 pages). |
Communication according to Rule 164(1) EPC dated Feb. 23, 2022, European Patent Application No. 20753144.3, (11 pages). |
Extended European Search Report dated Mar. 22, 2022, European Patent Application No. 19843487.0, (14 pages). |
First Office Action dated Feb. 11, 2022 with English translation, Chinese Patent Application No. 201880089255.6, (17 pages). |
First Office Action dated Mar. 14, 2022 with English translation, Chinese Patent Application No. 201880079474.6, (11 pages). |
Non Final Office Action dated Apr. 11, 2022, U.S. Appl. No. 16/938,782, (52 pages). |
Non Final Office Action dated Apr. 12, 2022, U.S. Appl. No. 17/262,991, (60 pages). |
Non Final Office Action dated Mar. 9, 2022, U.S. Appl. No. 16/870,676, (57 pages). |
“Extended European Search Report dated May 16, 2022”, European Patent Application No. 19871001.4, (9 pages). |
“Extended European Search Report dated May 30, 2022”, European Patent Application No. 20753144.3, (10 pages). |
Number | Date | Country | |
---|---|---|---|
20200252448 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62802140 | Feb 2019 | US |