Target sequence of RNA virus and use thereof

Information

  • Patent Grant
  • 12251434
  • Patent Number
    12,251,434
  • Date Filed
    Thursday, November 4, 2021
    3 years ago
  • Date Issued
    Tuesday, March 18, 2025
    a month ago
Abstract
The present invention provides a target sequence of an RNA virus. The target sequence is a nucleic acid sequence fragment in the gene sequence in the RNA virus containing 20-40 bases and having not less than 95% similarity to genome sequence of human or related species such as livestock and poultry. The above-mentioned target sequence of the RNA virus is selected from SEQ ID NO. 1-SEQ ID NO. 615. The present invention also relates to a primer composition for constructing the above-mentioned target sequence, biomaterials such as antisense RNA related to the above-mentioned target sequence, and related uses such as design of a vaccine lacking the target sequence. The virus fragment with the above-mentioned sequence constructed in the present invention has the function of interacting with human genomic DNA and is similar to viral miRNA. Moreover, the effect of overexpression of the target sequence of the RNA virus on the expression level of surrounding genes is verified, and a new concept that the above-mentioned target fragment is an important pathogenic substance of the RNA virus is proposed. The above-mentioned target sequence has important application value for the detection and diagnosis of RNA viruses, drug screening, as well as the treatment of diseases caused by RNA viruses and the design/optimization of vaccines and methods.
Description
REFERENCE TO A SEQUENCE LISTING SUBMITTED ELECTRONICALLY VIA EFS-WEB

The content of the electronically submitted sequence listing in ASCII text file (Name: 4969_0020000_Seglisting_ST25; Size: 269,003 bytes; and Date of Creation: Jan. 31, 2022) is herein incorporated by reference in its entirety.


TECHNICAL FIELD

The present invention relates to the field of biotechnology, in particular to a target sequence of an RNA virus and the use thereof.


BACKGROUND OF THE INVENTION

RNA viruses are also called RNA-type viruses, which refer to viruses whose genetic material is RNA. In the process of virus RNA replication, the activity of enzymes responsible for the error repair mechanism is very low to almost none, thereby leading to very fast mutation. Furthermore, vaccines are developed based on the stable nucleotides sequence or proteins of viruses, and therefore vaccines against RNA viruses are difficult to develop. The RNA viruses cannot be reproduced by themselves, and can be reproduced only in living cells. Common RNA viruses are: HIV, poliovirus, tobacco mosaic virus, SARS virus, MERS virus, ebola virus, severe acute respiratory syndrome-related coronavirus 2 (2019-nCoV), etc. Coronavirus is a type of unsegmented positive-sense RNA virus with an envelope, can infect a variety of hosts such as mammals and birds, and can cause mild to moderate respiratory diseases especially in humans. In the past two decades, the emergence of two highly pathogenic coronaviruses has appeared in the process of zoonotic infection: severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Corona Virus Disease 2019, referred to as “COVID-19” briefly, refers to pneumonia caused by the infection of 2019 severe acute respiratory syndrome-related coronavirus 2. COVID-19 is an acute infectious pneumonia. Researchers have discovered that its pathogen is a new type of β-coronavirus that has not previously been found in humans. The virus was subsequently named severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) by the World Health Organization (WHO). The initial symptoms of a patient with COVID-19 are mostly fever, fatigue and dry cough, and they gradually develop severe symptoms such as dyspnea. In some severe cases, acute respiratory distress syndrome, septic shock and even death may occur. As of Jul. 7, 2020, SARS-CoV-2 has continued to spread in 188 countries and regions around the world, causing more than 11.62 million confirmed cases and 538,000 deaths. There is currently no effective target specifically for coronavirus.


Nucleic acid is an important carrier for the storage and transmission of genetic information in organisms, and also plays an extremely important role in the regulation of biological functions. With people's deepening understanding of the structure and function of the nucleic acid, the value of nucleic acid as a target for drug design has been paid more and more attention by everyone. MicroRNA (miRNA) is a type of small single-stranded short-sequence RNA with a length of about 22-25 nucleotides, it does not code a protein, but the nucleotides at positions 2-8 from its 5′ end can bind to the 3′ UTR (3′ untranslated region) of homologous mRNA by means of incomplete base pairing. At first, it is believed that only the sequence in one of the strands of the miRNA hairpin structure has a regulatory effect to exert function by negatively regulating gene expression by inducing messenger RNA (mRNA) degradation and post-transcriptional gene silencing, and the other strand would be degraded. However, more and more evidences later show that the upper and lower strands of miRNA can function as an independent miRNA. In addition to negative regulation by miRNA, some cases reported that miRNA can promote gene expression or translation under special circumstances (Vasudevan et al., 2007, Vasudevan and Steitz, 2007, Place et al., 2008). XIAOM et al. found in 2015 that, for example, has-miR-26a-1, has-miR-3179, has-24-1, etc. can bind to an enhancer (the result was published in the journal RNABiology) and activate gene expression at the genome-wide level (XIAO M, LI J, LI W, et al. 2017. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol [J], 14: 1326-1334.). Our previous work has shown that this feature of miRNA is not a single case, but is suitable for many tissues and cells. When studying the epigenetic regulation mechanism of miRNA itself, 1594 miRNA precursors were systematically analyzed in 7 different tissues and cells. It was unexpectedly found that the positions of more than 300 miRNA precursors in the genome highly overlapped with that of the histone modification marker H3K4mel or H3K27ac of the enhancer. This allowed the inventors to link the two important molecular biological events, i.e., miRNA and enhancer that are both histocyte-specific (Xiao et al., 2017). Based on this, the inventors believe that miRNA is an important bifunctional molecule. When miRNA is located in the cytoplasm, it can act on the 3′ UTR region of mRNA, thereby blocking the translation of mRNA and exerting a negative regulatory effect on genes, like a fire extinguisher; in contrast, when miRNA is located in the nucleus, it changes the chromatin state of the enhancer by binding to the enhancer, thereby activating the transcriptional expression of genes, like an igniter. The inventors call the RNA that is located in the nucleus and has an activating effect as NamiRNA (nuclear activating miRNA). Based on this, the inventors propose a NamiRNA-enhancer-target gene network activation model to reveal the function of miRNA in the nucleus. Surprisingly, there is a direct positive regulatory relationship between NamiRNA and target genes, and NamiRNA is also involved in the biological behaviors such as the proliferation, migration and invasion of tumor cells.


Hyaluronic acid (HA) is one of the main components of glycosaminoglycan (GAG) in proteoglycans, is also one of the components of extracellular matrix (ECM) that has been studied extensively, and plays an important role in the function and development of normal tissues, comprising providing support and anchoring for cells, promoting signaling between cells, and promoting cell movement and migration. HA is synthesized by a type of integral membrane protein called HA synthase (hyaluronic acid synthase, HAS), of which there are three types in vertebrates: HAS1, HAS2 and HAS3. HA is extended by these enzymes which are capable of repeatedly adding glucuronic acid and N-acetylglucosamine to the nascent polysaccharide, and extruded through the cell membrane to enter the extracellular space. HA is a macromolecular viscous glycosaminoglycan that can be secreted by type II lung epithelial cells, endothelial cells and lung fibroblasts, wherein fibroblasts can be stimulated by pathogenic factors, such as oxygen free radicals, to synthesize large amounts of HA. The basic structure of HA is β-D gluconic acid and 2-acetyl-2-deoxy-D-glucose, which are linear chain molecular polymers of repeating disaccharides connected by β1.3 and β2.4 glucosidic hond, respectively, and are the most important glycosaminoglycan. HA is mainly distributed in the interstitium around capillaries and bronchioles in lung tissue, and is widely expressed in the extracellular matrix, and can also be expressed on the cell surface. The greatest function of hyaluronic acid is to absorb and store water. One molecule of hyaluronic acid can absorb 9 molecules of water. The increase of hyaluronic acid will undoubtedly aggravate the increase of local water. Studies have shown that HA can increase local edema and promote the inflammatory cascade, leading to leukocyte migration, proliferation and differentiation.


Hyaluronic acid synthase inhibitor (4-Methylumbelliferone, 4-MU) is a selective inhibitor of HA synthesis. 4-MU is a derivative of the coumarin family. Other coumarin derivatives, such as Marcumar® and Coumadin®, are mostly used as preventive drugs to reduce the occurrence of cardiovascular disease due to the anticoagulant mechanisms thereof.


ACE2 is a receptor of severe acute respiratory syndrome-related coronavirus 2, and the expression level thereof is closely related to the course of the diseases caused by severe acute respiratory syndrome-related coronavirus 2.


HAS1, HAS2, and HAS3 belong to the family of hyaluronic acid synthases, and the increase of their expression level and deposition in the extracellular matrix is closely related to the diseases caused by severe acute respiratory syndrome-related coronavirus 2 and the complications thereof.


FBXO15 is a member of the F-box protein family, and the expression level thereof is closely related to the inflammatory response.


MYL9 is myosin light chain 9, and the expression level thereof is closely related to inflammatory response.


KALRN is a RhoGEF kinase, and the expression level thereof is related to the progression of sarcoidosis and inflammation of multiple organs such as kidney and lung.


ATP8B1 is a member of the type P cation transport ATPase family, and the expression level thereof is closely related to the inflammatory response.


IGF2R is a receptor for insulin-like growth factor 2 and mannose 6-phosphate, and the expression level thereof is closely related to the inflammatory response.


C5AR1 is complement component 5a receptor 1, and the expression level thereof is closely related to the regulation of the inflammatory response.


EPAS1 is endothelial PAS domain protein 1, and the expression level thereof is closely related to the regulation of the inflammatory response.


TIMM21 is internal mitochondrial membrane translocase 21, and the expression level thereof is closely related to the regulation of the inflammatory response.


So far, the mechanism of severe acute respiratory syndrome caused by RNA viruses, especially severe acute respiratory syndrome-related coronavirus 2, is not clear. There are also many problems in understanding the pathogenic mechanism and designing or producing vaccines of other related RNA viruses. In addition, the diseases caused by RNA viruses lack effective treatment drugs and treatment regimens, and the virus virulence and susceptible populations are difficult to determine. There is an urgent need to study the pathogenic mechanism of RNA viruses, and develop the detection for the pathogenicity and population susceptibility of RNA viruses, seek for specific drugs and treatment regimens for RNA viruses, prepare RNA virus vaccines with high efficiency and low toxicity, and propose practical Chinese solutions for humans to overcome RNA virus infections.


SUMMARY OF THE INVENTION

The RNA sequence of severe acute respiratory syndrome-related coronavirus 2 has about 30,000 bases. The inventors found that, when comparing severe acute respiratory syndrome-related coronavirus 2 with the human genome in the early stage, the nucleic acid sequence of severe acute respiratory syndrome-related coronavirus 2 contains 5 human genome sequences, ranging in length from 24-28 bp. These 5 sequences are extremely conserved and identical in humans and primates. The conservation of the 5 sequences suggests that they are of great significance. In order to facilitate the research on the function and use of the above-mentioned conservative sequences, the inventors named the above-mentioned conservative sequences as HISs (Human Insert Sequences).


Furthermore, the inventors found that there are 3 and 2 human genome sequences (HIS) in the genomes of SARS and MERS viruses, respectively. The location distribution of HIS in the genomes of severe acute respiratory syndrome-related coronavirus 2, SARS, and MERS viruses is mainly in the enhancer region in human, suggesting that HISs are related to gene activation; there are a large number of inflammatory factor genes in the upstream and downstream 200K range of the enhancer where the HIS in SARS-CoV-2 is located; the RNA region where HIS is located can form a virus derived hairpin structure. It is found from further analysis that HIS can form a hairpin structure with miRNA precursor characteristics; based on HIS, most of target genes in relation to HIS are also related to inflammatory factors by means of bioinformatics analysis and prediction; the HIS target area of SARS virus and severe acute respiratory syndrome-related coronavirus 2 has hyaluronic acid synthase (HAS) genes; According to the NamiRNA-enhancer-gene activation theory (Xiao et al., 2017) discovered and proposed by the inventors in the previous research work, the inventors believe that the HIS sequences of severe acute respiratory syndrome-related coronavirus 2 and SARS virus will activate inflammatory factors after the human body being infected with the viruses, which causes a storm of inflammatory factors and may produce excessive hyaluronic acid by activating hyaluronic acid synthase to cause ground-glass changes in lung and then lead to ARDS. In view of the fact that the HIS sequences in severe acute respiratory syndrome-related coronavirus 2 are an important material basis and an important pathogenesis for the pathogenicity of the coronavirus, the inventors further confirm by experiments that the HIS sequences in SARS-COV-2, SARS-COV and MERS virus, when overexpressed in cells, can activate the expression of HAS and inflammatory factors, and increase the production of the extracellular hyaluronic acid. More importantly, it is found that the content of hyaluronic acid in the serum of a patient with COVID-19 is closely related to the severity of the patient's condition. The inventors believe that the target sequences of the virus can also cause changes in hematological indicators and can be used for clinical detection of patient's condition combined with clinical data. Therefore, the targets in coronaviruses can be used in clinical diagnosis, drug therapy design against this target and possible design/optimization of vaccines. The development of such targets can be extended to other RNA viruses, and similar results are obtained by verifying with the typical coronaviruses, HIV, zika virus and ebola virus. In particular, the regions where the HIS sequences of other RNA viruses pair with the human genome are mostly related to the pathogenicity and characteristics of such RNA viruses.


Comparing with the prior art, the above technical solutions are used in the present invention, and the following technical effects are achieved:


In the present invention, the gene sequence of the RNA virus is aligned with the human genome to screen out multiple target sequences with not less than 95% similarity to the human genome (i.e., more than 95% of complementary pairing) and stable structure, and the successfully constructed virus fragment has the function of interacting with human genomic DNA and is similar to viral miRNA. In addition, the effect of overexpression of the target sequences of the RNA virus on the expression level of surrounding genes has been verified. The above-mentioned screening and verification have good application value in the diagnosis and detection of RNA viruses, screening of drugs for the treatment of conditions caused by RNA viruses, and design/optimization of vaccines.


The RNA viruses involved in the present invention comprise RNA viruses that infect humans, RNA viruses that infect poultry, livestock, and zoonotic animals. Specifically, the target sequence consistent with the human genome is named HIS (Human Insert Sequence), the target sequence consistent with the chicken genome is named CIS (Chicken Insert Sequence), and the target sequence consistent with the pig genome is named PIS (Pig Insert Sequence), the target sequence consistent with the dog genome is named DIS (Dog Insert Sequence), and the target sequence consistent with mallard genome is named MIS (Mallard Insert Sequence). The specific target sequences of these viruses, as same as that of SARS-COV-2, can activate gene expression through an enhancer, and are closely related to diseases caused by viruses in humans and other species, and then can be used as targets for the determination of virus virulence. The antisense RNA sequences of the specific target sequences can be used for drug development, and deletion of the target sequences is an important strategy for the design of an attenuated vaccine.


The present invention overcomes the defects in the prior art, provides a target sequence of an RNA virus which has the function of interacting with the human genome, and verifies the effect of overexpression of the target sequence of the RNA virus on the expression level of surrounding genes.


The target sequence and the antisense RNA sequence thereof are developed and used for the diagnosis and treatment of RNA viruses and the design/optimization of vaccines.


In order to achieve the above objective, the following technical solutions are used in the present invention:


In the first aspect, the present invention provides a target sequence of an RNA virus. The target sequence is a nucleic acid sequence fragment in the nucleotide sequence of the RNA virus containing not less than 20-40 bases and having not less than 95% similarity to human genome sequence (i.e., more than 95% identity or complementary pairing).


In order to further optimize the above-mentioned target sequence of the RNA virus, the technical measures used in the present invention also comprise: further, the RNA virus comprises but is not limited to: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome-related coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), zika virus, ebola virus, HIV, norwalk virus, alkhurma virus, enterovirus, kemerovo virus, coxsackievirus, hepatitis A virus, dengue virus 2, rubella virus, marburg marburgvirus, poliovirus, respiratory syncytial virus, mumps virus, australian bat lyssavirus, andes virus, powassan virus, langat virus, eyach virus, colorado tick fever virus, lassa virus, omsk hemorrhagic fever virus, machupo virus, junin virus, guanarito virus, sin nombre virus, hantaan virus, puumala virus, dobrava virus, seoul virus, crimean-congo hemorrhagic fever virus, sabia virus, thogoto virus, european bat lyssavirus 1, european bat lyssavirus 2, chapare virus, rotavirus, tai forest ebolavirus, bundibugyo ebolavirus, rift valley fever virus, irkut virus, influenza A virus, bayou virus, kyasanur forest disease virus, black creek canal virus, japanese encephalitis virus, duvenhage lyssavirus, Lujo mammarenavirus, measles morbillivirus, tick-borne encephalitis virus, avian influenza virus, swine influenza virus, Rabies virus, etc.


Further, the target sequence of the RNA virus is selected from any one or more of SEQ ID NO. 1-SEQ ID NO. 615. Further, the target sequence of the severe acute respiratory syndrome-related coronavirus 2 comprises SEQ ID NO. 1-SEQ ID NO. 6; and/or, the target sequence of severe acute respiratory syndrome-related coronavirus comprises SEQ ID NO. 7-SEQ ID NO. 9; and/or, the target sequence of middle east respiratory syndrome coronavirus comprises SEQ ID NO. 10, SEQ ID NO. 11; and/or, the target sequence of zika virus comprises SEQ ID NO. 12-SEQ ID NO. 14; and/or, the target sequence of ebola virus comprises SEQ ID NO. 15-SEQ ID NO. 17; and/or, the target sequence of HIV comprises SEQ ID NO. 18-SEQ ID NO. 26; and/or, the target sequence of norwalk virus comprises SEQ ID NO. 27; and/or, the target sequence of alkhurma virus comprises SEQ ID NO. 28-SEQ ID NO. 30; and/or, the target sequence of enterovirus comprises SEQ ID NO. 31, SEQ ID NO. 32; and/or, the target sequence of kemerovo virus comprises SEQ ID NO. 33, SEQ ID NO. 34; and/or, the target sequence of coxsackievirus comprises SEQ ID NO. 35; and/or, the target sequence of hepatitis A virus comprises SEQ ID NO. 36-SEQ ID NO. 46; and/or, the target sequence of dengue virus 2 comprises SEQ ID NO. 47-SEQ ID NO. 50; and/or, the target sequence of rubella virus comprises SEQ ID NO. 51; and/or, the target sequence of marburg marburgvirus comprises SEQ ID NO. 52-SEQ ID NO. 56; and/or, the target sequence of poliovirus comprises SEQ ID NO. 57; and/or, the target sequence of respiratory syncytial virus comprises SEQ ID NO. 58 SEQ ID NO. 85; and/or, the target sequence of mumps virus comprises SEQ ID NO. 86; and/or, the target sequence of australian bat lyssavirus comprises SEQ ID NO. 87; and/or, the target sequence of andes virus comprises SEQ ID NO. 88-SEQ ID NO. 95; and/or, the target sequence of powassan virus comprises SEQ ID NO. 96, SEQ ID NO. 97; and/or, the target sequence of langat virus comprises SEQ ID NO. 98-SEQ ID NO. 102; and/or, the target sequence of eyach virus comprises SEQ ID NO. 103-SEQ ID NO. 113; and/or, the target sequence of colorado tick fever virus comprises SEQ ID NO. 114-SEQ ID NO. 134; and/or, the target sequence of lassa virus comprises SEQ ID NO. 135, SEQ ID NO. 136; and/or, the target sequence of omsk hemorrhagic fever virus comprises SEQ ID NO. 137, SEQ ID NO. 138; and/or, the target sequence of machupo virus comprises SEQ ID NO. 139-SEQ ID NO. 140; and/or, the target sequence of junin virus comprises SEQ ID NO. 141; and/or, the target sequence of guanarito virus comprises SEQ ID NO. 142-SEQ ID NO. 147; and/or, the target sequence of sin nombre virus comprises SEQ ID NO. 148-SEQ ID NO. 152; and/or, the target sequence of hantaan virus comprises SEQ ID NO. 153-SEQ ID NO. 161; and/or, the target sequence of puumala virus comprises SEQ ID NO. 162-SEQ ID NO. 173; and/or, the target sequence of dobrava virus comprises SEQ ID NO. 174-SEQ ID NO. 185; and/or, the target sequence of seoul virus comprises SEQ ID NO. 186-SEQ ID NO. 199; and/or, the target sequence of crimean-congo hemorrhagic fever virus comprises SEQ ID NO. 200-SEQ ID NO. 204; and/or, the target sequence of sabia virus comprises SEQ ID NO. 205-SEQ ID NO. 212; and/or, the target sequence of thogoto virus comprises SEQ ID NO. 213-SEQ ID NO. 227; and/or, the target sequence of european bat lyssavirus 1 comprises SEQ ID NO. 228-SEQ ID NO. 232; and/or, the target sequence of european bat lyssavirus 2 comprises SEQ ID NO. 233; and/or, the target sequence of chapare virus comprises SEQ ID NO. 234; and/or, the target sequence of rotavirus comprises SEQ ID NO. 235-SEQ ID NO. 277; and/or, the target sequence of tai forest ebolavirus comprises SEQ ID NO. 278, SEQ ID NO. 279; and/or, the target sequence of bundibugyo ebolavirus comprises SEQ ID NO. 280; and/or, the target sequence of rift valley fever virus comprises SEQ ID NO. 281; and/or, the target sequence of irkut virus comprises SEQ ID NO. 282-SEQ ID NO. 285; and/or, the target sequence of influenza A virus comprises SEQ ID NO. 286-SEQ ID NO. 313; and/or, the target sequence of bayou virus comprises SEQ ID NO. 314-SEQ ID NO. 327; and/or, the target sequence of kyasanur forest disease virus comprises SEQ ID NO. 328; and/or, the target sequence of black creek canal virus comprises SEQ ID NO. 329-SEQ ID NO. 334; and/or, the target sequence of japanese encephalitis virus comprises SEQ ID NO. 335-SEQ ID NO. 337; and/or, the target sequence of duvenhage lyssavirus comprises SEQ ID NO. 338-SEQ ID NO. 344; and/or, the target sequence of Lujo alkhurma virus comprises SEQ ID NO. 345; and/or, the target sequence of measles morbillivirus comprises SEQ ID NO. 346; and/or, the target sequence of tick-borne encephalitis virus comprises SEQ ID NO. 347; and/or, the target sequence of avian influenza virus comprises SEQ ID NO. 348-SEQ ID NO. 420; and/or, the target sequence of swine influenza virus comprises SEQ ID NO. 421-SEQ ID NO. 521; and/or, the target sequence of rabies virus comprises SEQ ID NO. 522 SEQ ID NO. 615.


The naming method of each fragment of the above target sequences is the virus name plus HIS or other assigned name plus the fragment number. The specific target sequences are shown in the following table:









TABLE 1







Target sequence listing of RNA virus










Virus type
Fragment number
Fragment coding sequence
ID number





Severe
SARS-CoV-2-HIS-1
5′-UGUCUAUGCUAAUGGAGG
SEQ ID NO.


acute

UAAAGGCU-3′
1


respiratory
SARS-CoV-2-HIS-2
5′-UAUAACACAUAUAAAAAU
SEQ ID NO.


syndrome-

ACGUGU-3′
2


related
SARS-CoV-2-HIS-3
5′-UUAUAUGCCUUAUUUCUU
SEQ ID NO.


coronavirus

UACUUU-3′
3


2 (SARS-
SARS-CoV-2-HIS-4
5′-AGGAGAAUGACAAAAAAA
SEQ ID NO.


CoV-2)

AAAAAAAAA-3′
4



SARS-CoV-2-HIS-5
5′-UUGUUGCUGCUAUUUUCU
SEQ ID NO.




AUUUAA-3′
5



SARS-CoV-2-HIS-6
5′-CAUGAAGAAACAAUUUAU
SEQ ID NO.




AAUUUACUUA-3′
6





severe
SARS-CoV-HIS-1
5′-GAGUUGAGGAAGAAGAAG
SEQ ID NO.


acute

AGGAAGACUGG-3′
7


respiratory
SARS-CoV-HIS-2
5′-UAACAUGCUUAGGAUAAU
SEQ ID NO.


syndrome-

GGCCUC-3′
8


related
SARS-CoV-HIS-3
5′-AGGAGAAUGACAAAAAAA
SEQ ID NO.


coronavirus

AAAAAAAAA-3′
9


(SARS-





CoV)








Middle
MERS-CoV-HIS-1
5′-UUCCAUUUGCACAGAGUA
SEQ ID NO.


East

UCUUUU-3′
10


respiratory





syndrome 
MERS-CoV-HIS-2
5′-UGCUGUAAUUGCUGUUGU
SEQ ID NO.


coronavirus

UGCUGCUGUU-3′
11


(MERS- 





CoV)








Zika virus
Zika-HIS-1
5′-GAAAAAGAGAAAAGAAAC
SEQ ID NO.




AAGGG-3′
12



Zika-HIS-2
5′-GGGAGGAGGGAGGAAGAG
SEQ ID NO.




ACUCC-3′
13



Zika-HIS-3
5′-GUUCUAGAGAUGCAAGAC
SEQ ID NO.




UUGUG-3′
14





Ebola virus
Ebola-HIS-1
5′-ACUCAUUCUACCAUUUUU
SEQ ID NO.




UAAAUUG-3′
15



Ebola-HIS-2
5′-AGAUCCUGUGACUUCUGG
SEQ ID NO.




ACUUUU-3′
16



Ebola-HIS-3
5′-AAAUAUUAUUUUUAAAAU
SEQ ID NO.




UUACUU-3′
17





HIV
HIV-1-HIS-1
5′-ACUUUUUAAAAGAAAAGG
SEQ ID NO.




GGGGA-3′
18



HIV-1-HIS-2
5′-GAAAAGGAAGGGAAAAUU
SEQ ID NO.




UCAAA-3′
19



HIV-1-HIS-3
5′-AAAUGAACAAGUAGAUAA
SEQ ID NO.




AUUAG-3′
20



HIV-1-HIS-4
5′-AAAUUAUGGUACCAGUUA
SEQ ID NO.




GAGAAA-3′
21



HIV-1-HIS-5
5′-GAAAGAAAAAAUAUAAAU
SEQ ID NO.




UAAAA-3′
22



HIV-1-HIS-6
5′-AUUUAUCAAGAGCCAUUU
SEQ ID NO.




AAAAA-3′
23



HIV-2-HIS-1
5′-UAAAACAGGGACCAAAAG
SEQ ID NO.




AACCGU-3′
24



HIV-2-HIS-2
5′-AGAAUCAGAUAAGUAGAA
SEQ ID NO.




UUAGA-3′
25



HIV-2-HIS-3
5′-AGGCAGAGGAAGAUGAGG
SEQ ID NO.




CCAAC-3′
26





Norwalk
Norwalk
5′-UAUCAAAAAAUUAAGAAA
SEQ ID NO.


virus
virus-HIS
AGGUUA -3′
27





Alkhurma
Alkhurma virus-HIS-1
5′-GGAUCAGUGGAGAAAGUG
SEQ ID NO.


virus

AGGAGGAUGA-3′
28



Alkhurma virus-HIS-2
5′-AUGAGAGAUCUUGGGGGU
SEQ ID NO.




GGGAC-3′
129



Alkhurma virus-HIS-3
5′-GAAAAACUCAAGAUGAAA
SEQ ID NO.




GGAAU -3′
30





Enterovirus
enterovirus-HIS-1
5′-AUUGAUUGGCUUAAGGAG
SEQ ID NO.




AAAAUA-3′
31



enterovirus-HIS-2
5′-AAUUGUUUACCUAUUUAU
SEQ ID NO.




UGGUUUUGUG-3′
32





Kemerovo
Kemerovo virus-HIS-1
5′-CUGUGCUGAACCAGGACC
SEQ ID NO.


virus

AGGA-3′
33



Kemerovo virus-HIS-2
5′-AGAUGAAGCAGUCACCAA
SEQ ID NO.




CCGC-3′
34





Coxsackievirus
Coxsackievirus-HIS
5′-AUUAGAUUUCAACACAGG
SEQ ID NO.




UGCUACAUC-3′
35





Hepatitis A
Hepatitis A virus-HIS-1
5′-UUGGAAUGUUUUGCUCCU
SEQ ID NO.


virus

CUUUA-3′
36



Hepatitis A virus-HIS-2
5′-GAAAUUUUAUUAUUUUGU
SEQ ID NO.




UCAGU-3′
37



Hepatitis A virus-HIS-3
5′-UUAGCUAGAUUUACAGAU
SEQ ID NO.




UUGGA-3′
38



Hepatitis A virus-HIS-4
5′-AACAAGAGCAGGCCAGUG
SEQ ID NO.




UGGUGG-3′
39



Hepatitis A virus-HIS-5
5′-UUGAGGAAAAGGGAACCC
SEQ ID NO.




UGUACA-3′
40



Hepatitis A virus-HIS-6
5′-CCAGGCACUGGGAAGUCA
SEQ ID NO.




GUGGCA-3′
41



Hepatitis A virus-HIS-7
5′-AAUUAGGAGUGAUACCUU
SEQ ID NO.




CACUAA-3′
42



Hepatitis A virus-HIS-8
5′-UGAGAAAAAGGCCACUGU
SEQ ID NO.




CCUUUA-3′
43



Hepatitis A virus-HIS-9
5′-ACAAAUUGGAGAAAUAGU
SEQ ID NO.




GAAAA-3′
44



Hepatitis A virus-HIS-10
5′-GAAGCAGAGAGAAAGUAG
SEQ ID NO.




AGAAG-3′
45



Hepatitis A virus-HIS-11
5′-UCAAAAGGAGAGAACAGA
SEQ ID NO.




UGCUGG-3′
46





Dengue
Dengue virus 2-HIS-1
5′-CAAAAGAAGGCAUUAAAA
SEQ ID NO.


virus 2

GAGGA-3′
47



Dengue virus 2-HIS-2
5′-GAGAUGGACUUUGAUUUC
SEQ ID NO.




UGUGA-3′
48



Dengue virus 2-HIS-3
5′-GGAAAUCCAGGGAGGUUU
SEQ ID NO.




UGGAA-3′
49



Dengue virus 2-HIS-4
5′-AAAGGAAGAAAUUGAAAC
SEQ ID NO.




CCAGA-3′
150


Rubella
Rubella virus-HIS
5′-GUGGCAGGCCCAUUACAC
SEQ ID NO.


virus

CACCA-3′
51





Marburg
Marburg Marburgvirus-HIS-1
5′-AGUUUAAAUUUAUAUCCA
SEQ ID NO.


Marburgvirus

AAAUAAAUUU-3′
52



Marburg Marburgvirus-HIS-2
5′-AAGAAAAAGAUAAAUAGA
SEQ ID NO.




ACACAAAGAAUUGACAAAAUU
53




U-3′




Marburg Marburgvirus-HIS-3
5′-UCUAAGCGAAGUAACAAC
SEQ ID NO.




AAGAGU-3′
54



Marburg Marburgvirus-HIS-4
5′-AACAGAAAGAAGCAUUAU
SEQ ID NO.




UACAUCAGGCUUCU-3′
55



Marburg Marburgvirus-HIS-5
5′-UGAUUUAUAUUUACUGGU
SEQ ID NO.




AUAAAAUAGU-3′
56





Poliovirus
Poliovirus-HIS
5′-AACAAACAAACCAGAGAC
SEQ ID NO.




ACUAAGGAAAUGCA-3′
57





Respiratory
Respiratory syncytial virus-HIS-1
5′-AUACAAUCAAAUUGAAUG
SEQ ID NO.


syncytial 

GCAU-3′
58


virus
Respiratory syncytial virus-HIS-2
5′-AGAUGACAAUUGUGAAAU
SEQ ID NO.




UAAA-3′
59



Respiratory syncytial virus-HIS-3
5′-GUUAUAUAUGGGAAAUGA
SEQ ID NO.




UGGAAUUAACA-3′
60



Respiratory syncytial virus-HIS-4
5′-AAAAAACUAAGUGAUUCA
SEQ ID NO.




ACA-3′
61



Respiratory syncytial virus-HIS-5
5′-AAAUACAAAAAAUAUACU
SEQ ID NO.




GAAUACAA-3′
62



Respiratory syncytial virus-HIS-6
5′-UUUACAUUCCUGGUCAAC
SEQ ID NO.




UAUGAAAUGAAACUAUUGC-3′
63



Respiratory syncytial virus-HIS-7
5′-CUACAAAAAAAUGCUAAA
SEQ ID NO.




AGAA-3′
64



Respiratory syncytial virus-HIS-8
5′-AUGCUGAACAACUCAAAG
SEQ ID NO.




AAAA-3′
65



Respiratory syncytial virus-HIS-9
5′-AGGAAAGUGAAAAGAUGG
SEQ ID NO.




CAAA-3′
66



Respiratory syncytial virus-HIS-10
5′-AAUGAGGAAAGUGAAAAG
SEQ ID NO.




AUGGCAAAAGA-3′
67



Respiratory syncytial virus-HIS-11
5′-CAAGAAAAAAGAUAGUAU
SEQ ID NO.




CAU-3′
68



Respiratory syncytial virus-HIS-12
5′-CCAUAGAAACAUUUGAUA
SEQ ID NO.




ACAAUGAAGAA-3′
69



Respiratory syncytial virus-HIS-13
5′-AAAGUAUAUAUUAUGUUA
SEQ ID NO.




CAACA-3′
70



Respiratory syncytial virus-HIS-14
5′-AUGAUAACAACAAUAAUC
SEQ ID NO.




UCUUU-3′
71



Respiratory syncytial virus-HIS-15
5′-ACUAAUACACAUGAUAACAA-
SEQ ID NO.




3′
72



Respiratory syncytial virus-HIS-16
5′-UGAUAACAACAAUAAUCU
SEQ ID NO.




CUUUGCUA-3′
73



Respiratory syncytial virus-HIS-17
5′-GAAAAGGAAAAGAAGAUU
SEQ ID NO.




UCUUG-3′
74



Respiratory syncytial virus-HIS-18
5′-AAUGUACAGCAUCCAAUA
SEQ ID NO.




AAAA-3′
75



Respiratory syncytial virus-HIS-19
5′-UAAUUAUUUUGAAUGGCC
SEQ ID NO.




ACCCCAUG-3′
76



Respiratory syncytial virus-HIS-20
5′-AAUUAUUUUGAAUGGCCA
SEQ ID NO.




CCC-3′
77



Respiratory syncytial virus-HIS-21
5′-UCUAUAAAUAAUAUAACU
SEQ ID NO.




AAA-3′
78



Respiratory syncytial virus-HIS-22
5′-UAAAUAUAGAUAAAAUAU
SEQ ID NO.




ACAUUA-3′
79



Respiratory syncytial virus-HIS-23
5′-AAAUGUUUGUUUAAUUAC
SEQ ID NO.




AUGGAUUAGUA-3′
80



Respiratory syncytial virus-HIS-24
5′-AUGGUUAAUACAUUGGUU
SEQ ID NO.




UAAUUUAUA-3′
81



Respiratory syncytial virus-HIS-25
5′-AACUAUAUUAAAAACUUA
SEQ ID NO.




UGUAU-3′
82



Respiratory syncytial virus-HIS-26
5′-UAUAGAACAUGAAAAAUU
SEQ ID NO.




AAAAUUUUC-3′
83



Respiratory syncytial virus-HIS-27
5′-UAGACAAUAUAACUAUAU
SEQ ID NO.




UAAAA-3′
84



Respiratory syncytial virus-HIS-28
5′-AAUGUUACCAUUGUUAUC
SEQ ID NO.




UAAUA-3′
85





Mumps
Mumps virus-HIS
5′-AGGUAAAUUAAUGAGAGA
SEQ ID NO.


virus

GAAUGGAGUU-3′
86





Australian
Australian bat lyssavirus-HIS
5′-UAUUUUAAAAGGCAGAUA
SEQ ID NO.


batlyssavirus

AUUAGA-3′
87





Andes virus
Andes virus-HIS-1
5′-GGAACUUGGUGCAUUUUU
SEQ ID NO.




UUCUA-3′
88



Andes virus-HIS-2
5′-AUUUUUCUUGAUUGCUUU
SEQ ID NO.




UCAA-3′
89



Andes virus-HIS-3
5′-UAUUCUGAAAAUGGUAUA
SEQ ID NO.




UUUAA-3′
90



Andes virus-HIS-4
5′-AGCCUAUUUUCAUUGAUG
SEQ ID NO.




CCUGA-3′
91



Andes virus-HIS-5
5′-UCAACAAAUAUUUACAGG
SEQ ID NO.




CAAAA-3′
92



Andes virus-HIS-6
5′-UUAGAAAAAUGGAAAAGU
SEQ ID NO.




AUAGA-3′
93



Andes virus-HIS-7
5′-AAGAGCUCAACAAAUAUU
SEQ ID NO.




UACAG-3′
94



Andes virus-HIS-8
5′-UCUAAAUAUUCAGAAUGC
SEQ ID NO.




ACUAGAGAAA-3′
95





Powassan
Powassan virus-HIS-1
5′-UGAUGGGGGUUGACGGAG
SEQ ID NO.


virus

UUGGGGAGU-3′
96



Powassan virus-HIS-2
5′-GGGGAUUGGAAAGGCUCU
SEQ ID NO.




CUGUG-3′
97





Langat
Langat virus-HIS-1
5′-AAAUGGAGCAGAAAGAAC
SEQ ID NO.


virus

ACUCAGG-3′
98



Langat virus-HIS-2
5′-UGGCUCGAAGAGCAUGGA
SEQ ID NO.




GAGGAA-3′
99



Langat virus-HIS-3
5′-AGGAAGGGGAUUGAGAGA
SEQ ID NO.




CUCAC-3′
100



Langat virus-HIS-4
5′-AAAAUAGACUGGAGAUGG
SEQ ID NO.




CCAUGUGGAGAAGC-3′
101



Langat virus-HIS-5
5′-CAGCGCAGGGGAAGAGUG
SEQ ID NO.




GGCAGGCAG-3′
102





Eyach virus
Eyach virus-HIS-1
5′-AAUAAGAAAAGCAACAUU
SEQ ID NO.




GUGAUUUUUAAUUA-3′
103



Eyach virus-HIS-2
5′-UAAAAAAAGUCAAAUUUA
SEQ ID NO.




UGAUUA-3′
104



Eyach virus-HIS-3
5′-CUUUGGCAUUUCAGUGAU
SEQ ID NO.




UCAGCAAAA-3′
105



Eyach virus-HIS-4
5′-AAAUGUGCUCCCCUUUCC
SEQ ID NO.




UGGA-3′
106



Eyach virus-HIS-5
5′-UUUUAAAGGAGUGGUGAA
SEQ ID NO.




GAAGAAAGA-3′
107



Eyach virus-HIS-6
5′-AAAUAAUAUAAAUGCAUU
SEQ ID NO.




CAACU-3′
108



Eyach virus-HIS-7
5′-GGCAGGUGUGGUUGCUCA
SEQ ID NO.




AGCUGUAA-3′
109



Eyach virus-HIS-8
5′-UAUAACAUUUUCCUGCUU
SEQ ID NO.




CCAA-3′
110



Eyach virus-HIS-9
5′-UCAUUGGAAGAUGGAGCU
SEQ ID NO.




CUUU-3′
111



Eyach virus-HIS-10
5′-CAGCUUACUCUUCCUCAG
SEQ ID NO.




AGUUCUUU-3′
112



Eyach virus-HIS-11
5′-UUUAUGAAUUCUACAGAA
SEQ ID NO.




AUAAUGAUAAUG-3′
113





Colorado
Colorado tick fever virus-HIS-1
5′-
SEQ ID NO.


tick fever

AAAGAUUAUGGAAACUUUUCUG
114


virus

-3′




Colorado tick fever virus-HIS-2
5′-UUGCUGUUUUUCCAAACA
SEQ ID NO.




CUAGA-3′
115



Colorado tick fever virus-HIS-3
5′-GUCAAUCCAAAUAUUGGA
SEQ ID NO.




AGAAGCAGAAGUUAAU-3′
116



Colorado tick fever virus-HIS-4
5′-AUGUGGAGACAUUCCAGC
SEQ ID NO.




ACAGAGGAAAC-3′
117



Colorado tick fever virus-HIS-5
5′-UCAGGCUCAAGUGAUCUC
SEQ ID NO.




UCAUUUCA-3′
118



Colorado tick fever virus-HIS-6
5′-UUAUAUUGAAGUUUAUGA
SEQ ID NO.




AGUUG-3′
119



Colorado tick fever virus-HIS-7
5′-AGAUAUAGGAAUGUGUCU
SEQ ID NO.




GAAA-3′
120



Colorado tick fever virus-HIS-8
5′-AAAAGUCAAGAAAAUUAA
SEQ ID NO.




AUUUAUA-3′
121



Colorado tick fever virus-HIS-9
5′-UAUGCCUGAUAAUUUUUC
SEQ ID NO.




AUUGG-3′
122



Colorado tick fever virus-HIS-10
5′-AUAAAGGAAAAGUCAAGA
SEQ ID NO.




AAAUU-3′
123



Colorado tick fever virus-HIS-11
5′-AGAGAGAGAGAAAAGAAA
SEQ ID NO.




AUUG-3′
124



Colorado tick fever virus-HIS-12
5′-UAUGCCUGAUAAUUUUUC
SEQ ID NO.




AUUG-3′
125



Colorado tick fever virus-HIS-13
5′-CUGUGUUUUCUCCUAGAA
SEQ ID NO.




UGUCA-3′
126



Colorado tick fever virus-HIS-14
5′-AAAGACAGGAUUUCAUUA
SEQ ID NO.




UUUGUA-3′
127



Colorado tick fever virus-HIS-15
5′-UGGAUGUGAGAAAUACUU
SEQ ID NO.




GGGA-3′
128



Colorado tick fever virus-HIS-16
5′-AAAAGACAGGAUUUCAUU
SEQ ID NO.




AUUU-3′
129



Colorado tick fever virus-HIS-17
5′-AAAAGACAGGAUUUCAUU
SEQ ID NO.




AUUUGUAU-3′
130



Colorado tick fever virus-HIS-18
5′-GACAGGAUUUCAUUAUUU
SEQ ID NO.




GUAU-3′
131



Colorado tick fever virus-HIS-19
5′-AGUUCUCUUUUGACAUUU
SEQ ID NO.




UGUUC-3′
132



Colorado tick fever virus-HIS-20
5′-UGACAUUUUGUUCUUUCU
SEQ ID NO.




UUG-3
133



Colorado tick fever virus-HIS-21
5′-GAAAAUGUUGUCCAACAA
SEQ ID NO.




UCCAAUCAA-3′
134


Lassa virus
Lassa virus-HIS-1
5′-GGAAGAAAAGACAUUAAA
SEQ ID NO.




CUAAUU-3′
135



Lassa virus-HIS-2
5′-UAAUCUUCUAUAAGUCUA
SEQ ID NO.




GUAAA-3′
136





Omsk
Omsk hemorrhagic fever virus-HIS-1
5′-CAGGAAUCCUUGUAGUGA
SEQ ID NO.


hemorrhagic 

UGGGAUUGU-3′
137


fever
Omsk hemorrhagic fever virus-HIS-2
5′-UAUAUUCAAUGGCAAAAG
SEQ ID NO.


virus

AAAACAAAU-3′
138





Machupo
Machupo
5′-AAUGCCUUAAUCUCAGAU
SEQ ID NO.


virus
virus-HIS-1
AAUUUGUUAA-3′
139



Machupo
5′-UAAUUUGUUAAUGAAGAA
SEQ ID NO.



virus-HIS-2
UAAAAUUAA-3′
140





Junin virus
Junin virus-HIS
5′-AACAAGUUUCUCCUUAUC
SEQ ID NO.




AUAAA-3′
141





Guanarito
Guanarito
5′-CAUAGUAUCUCUUAUAAU
SEQ ID NO.


virus
virus-HIS-1
CCUUUUCAUUU-3′
142



Guanarito
5′-AUAGUAUCUCUUAUAAUC
SEQ ID NO.



virus-HIS-2
CUUUUCAUUU-3′
143



Guanarito
5′-UACAAACAUGGGCAAUUC
SEQ ID NO.



virus-HIS-3
AAAAUC-3′
144



Guanarito
5′-GCUCUUCUUUCCUUAACA
SEQ ID NO.



virus-HIS-4
AAUGU-3′
145



Guanarito
5′-UGUUAAACACUUUCUUUC
SEQ ID NO.



virus-HIS-5
CUUUU-3′
146



Guanarito
5′-AUAGUAUCUCUUAUAAUC
SEQ ID NO.



virus-HIS-6
CUUUU-3′
147





Sin
Sin
5′-ACAACUGAAACAAUGCAA
SEQ ID NO.


Nombre
Nombre
GGAAU-3′
148


virus
virus-HIS-1





Sin
5′-GUUCAAGGGCCAAUUAUA
SEQ ID NO.



Nombre
UCACA-3′
149



virus-HIS-2





Sin
5′-UAUAAAAUUUUCUCAGGU
SEQ ID NO.



Nombre virus-HIS-3
CUAU-3′
150



Sin
5′-AGAAAUUCAGGAAAAUGG
SEQ ID NO.



Nombre
AAAAA-3′
151



virus-HIS-4





Sin
5′-CACAAAGCUCAAGCACGU
SEQ ID NO.



Nombre
AUUGU-3′
152



virus-HIS-5







Hantaan
Hantaan
5′-CUUGUUUUCUUUCCCUUU
SEQ ID NO.


virus
virus-HIS-1
CUUUCUG-3′
153



Hantaan
5′-UUUCUUUCCCUUUCUUUC
SEQ ID NO.



virus-HIS-2
UGCUUUCU-3′
154



Hantaan
5′-UUUUCUUUCCCUUUCUUU
SEQ ID NO.



virus-HIS-3
CUGCUUUCUCU-3′
155



Hantaan
5′-UUUCUUUCCCUUUCUUUC
SEQ ID NO.



virus-HIS-4
UGCUU-3′
156



Hantaan
5′-UUUCUUUCCCUUUCUUUC
SEQ ID NO.



virus-HIS-5
UGCUUUCU-3′
157



Hantaan
5′-AUAUGGAUGUAGAUUUCA
SEQ ID NO.



virus-HIS-6
UUUG-3′
158



Hantaan
5′-UUUUCUUUCCCUUUCUUU
SEQ ID NO.



virus-HIS-7
CUGCUUUCU-3′
159



Hantaan
5′-ACAUCUUUACAAUGUGGA
SEQ ID NO.



virus-HIS-8
UAUUUCUUC-3′
160



Hantaan
5′-UUCAUACAUUCUAAACUU
SEQ ID NO.



virus-HIS-9
AAUUCCAGAU-3′
161





Puumala
Puumala
5′-GACUACAAGAGAAGGAUG
SEQ ID NO.


virus
virus-HIS-1
GCAGA-3′
162



Puumala
5′-AAUGGCAGUUAUGAAUAU
SEQ ID NO.



virus-HIS-2
AUUA-3′
163



Puumala virus-HIS-3
5′-AAGGUUGUAUUUUAUUAU
SEQ ID NO.




UUAA-3′
164



Puumala virus-HIS-4
5′-CCUUUUUCCUUUUCAUCA
SEQ ID NO.




CUUUUUUU-3′
165



Puumala virus-HIS-5
5′-CAGGAAAAAAAUGGAUAC
SEQ ID NO.




UAAA-3′
166



Puumala virus-HIS-6
5′-AUUAUUUUAUAAUCAUUA
SEQ ID NO.




UCUAAUUA-3′
167



Puumala virus-HIS-7
5′-UAUAUAUAUGCAAGUAGC
SEQ ID NO.




AUAUAUAUA-3′
168



Puumala virus-HIS-8
5′-UGUUAGAUUUCUUGUCAU
SEQ ID NO.




UUUUUCC-3′
169



Puumala virus-HIS-9
5′-CCACAGCAACAUGGUUUC
SEQ ID NO.




AGUAU-3′
170



Puumala virus-HIS-10
5′-CUUGUUAAGUACUUGAUA
SEQ ID NO.




UCUGU-3′
171



Puumala virus-HIS-11
5′-AUUCUCUUAUUAUGAAUA
SEQ ID NO.




AAGCA-3′
172



Puumala virus-HIS-12
5′-AGAGAGAAAGAAAGAGAA
SEQ ID NO.




UUGGGGAGU-3′
173


Dobrava
Dobrava virus-HIS-1
5′-AUAUGGAUGUAGAUUUCA
SEQ ID NO.


virus

UUUG-3′
174



Dobrava virus-HIS-2
5′-AACAUCUUAUUUCCUUCU
SEQ ID NO.




UUUC-3′
175



Dobrava virus-HIS-3
5′-UUUUUAGCCCUUGCAAAG
SEQ ID NO.




AACU-3′
176



Dobrava virus-HIS-4
5′-CUUCAUUAAGUGUUUUUA
SEQ ID NO.




UCGGAAGUCA-3′
177



Dobrava virus-HIS-5
5′-UGCCCUGACUUCACAGGC
SEQ ID NO.




CAUUU-3
178



Dobrava virus-HIS-6
5′-AUUAUCUUAAGAAAGAUU
SEQ ID NO.




AAAGAAGAAUUUG-3′
179



Dobrava virus-HIS-7
5′-UCAAAGCAAAAUAGGUUC
SEQ ID NO.




AGAGC-3′
180



Dobrava virus-HIS-8
5′-AACUUUUUAUUGAUCCAG
SEQ ID NO.




UGCUCA-3′
181



Dobrava virus-HIS-9
5′-AGAUAUCUUUCAAAAAAU
SEQ ID NO.




UUCAA-3′
182



Dobrava virus-HIS-10
5′-AUGCAUACAACAAUGGGA
SEQ ID NO.




AUGUCAUUU-3′
183



Dobrava virus-HIS-11
5′-AUUGUUUAUAUUUAUUUU
SEQ ID NO.




CAUUU-3′
184



Dobrava virus-HIS-12
5′-CAACAUAAAAAAUCAACC
SEQ ID NO.




AUAUU-3′
185





Seoul virus
Seoul virus-HIS-1
5′-UCCUCUUUUCUUUUCCUU
SEQ ID NO.




UCUCCUUCUUU-3′
186



Seoul virus-HIS-2
5′-CAGAAAAGCAGUAUGAGA
SEQ ID NO.




AGGA-3′
187



Seoul virus-HIS-3
5′-UUGCCUGGGGAAAGGAGG
SEQ ID NO.




CAGU-3′
188



Seoul virus-HIS-4
5′-CAGAAAAGCAGUAUGAGA
SEQ ID NO.




AGGA-3′
189



Seoul virus-HIS-5
5′-UCUUUUCUUUUCCUUUCU
SEQ ID NO.




CCUUCUUU-3′
190



Seoul virus-HIS-6
5′-GUCCUCUUUUCUUUUCCU
SEQ ID NO.




UUCUCCUUCUUU-3′
191



Seoul virus-HIS-7
5′-CUUUUCUUUUCCUUUCUC
SEQ ID NO.




CUUC-3′
192



Seoul virus-HIS-8
5′-CUCUUUUCUUUUCCUUUC
SEQ ID NO.




UCCUUCUU-3′
193



Seoul virus-HIS-9
5′-UUAAUAAGAAUACAGAUU
SEQ ID NO.




UAUU-3′
194



Seoul virus-HIS-10
5′-UCUCUGAGUUAGAAAAUG
SEQ ID NO.




AGAAAGU-3′
195



Seoul virus-HIS-11
5′-CUUUGCAUUAAAAAAUGU
SEQ ID NO.




GUUUGA-3′
196



Seoul virus-HIS-12
5′-UUUUAUAUGUCUAGAAAA
SEQ ID NO.




CUUAGACACUAUA-3′
197



Seoul virus-HIS-13
5′-CUACAGGAUGUAGAUUUU
SEQ ID NO.




GAAAAUA-3′
198



Seoul virus-HIS-14
5′-UCUUUGUAUUCUGGCUUU
SEQ ID NO.




CCUUCUUUGGUUG-3′
199


Crimean-
Crimean-Congo hemorrhagic fever
5′-AGAAGACACAAAAAAAUG
SEQ ID NO.


Congo
virus-HIS-1
UGUUAACACAAAAC-3′
200


hemorrhagic 
Crimean-Congo hemorrhagic fever
5′-UCAGUGUUUUCUGACUCC
SEQ ID NO.


fever
virus-HIS-2
AAAGUU-3′
201


virus
Crimean-Congo hemorrhagic fever
5′-UACCAAGAAAAUGAAGAA
SEQ ID NO.



virus-HIS-3
GGCUCUUCUGA-3′
202



Crimean-Congo hemorrhagic fever
5′-UUUACUUGCUUAUGUAAC
SEQ ID NO.



virus-HIS-4
CUUAUUUU-3′
203



Crimean-Congo hemorrhagic fever
5′-UUUCUCUAUUUUCUCUUG
SEQ ID NO.



virus-HIS-5
UUUUAAAC-3′
204





Sabia virus
Sabia virus-HIS-1
5′-AAGAUGACUAUCUAAAAU
SEQ ID NO.




GUCAGG-3′
205



Sabia virus-HIS-2
5′-AUUCACUGCCUUCUUCCC
SEQ ID NO.




UCUCA-3′
206



Sabia virus-HIS-3
5′-CUGUCUGCUAACCAGUAU
SEQ ID NO.




GAACA-3′
207



Sabia virus-HIS-4
5′-AGAAAGUUCUAUCAAGUU
SEQ ID NO.




UUUUU-3′
208



Sabia virus-HIS-5
5′-UUUCAAAUUCCUUCUCAG
SEQ ID NO.




AAUUC-3′
209



Sabia virus-HIS-6
5′-AUUUUGUACAGAAGGUUU
SEQ ID NO.




UCAUAA-3′
210



Sabia virus-HIS-7
5′-AUUGAUUAGAAAUUCAAC
SEQ ID NO.




UUGGAAAAAUCAAUG-3′
211



Sabia virus-HIS-8
5′-GGAUGUCUUUGUCUUUCU
SEQ ID NO.




UUUUCUUUG-3′
212





Thogoto
Thogoto virus-HIS-1
5′-ACACCAAAGGGAAACUCA
SEQ ID NO.


virus

CUGACAGAAAAC-3′
213



Thogoto virus-HIS-2
5′-GACACAGAUGAAGAAACU
SEQ ID NO.




UCCUUU-3′
214



Thogoto virus-HIS-3
5′-UACAACCCAAGAGAGCUU
SEQ ID NO.




AAAC-3′
215



Thogoto virus-HIS-4
5′-AAAGAAUGAAGUAAAGGU
SEQ ID NO.




CAGCA-3′
216



Thogoto virus-HIS-5
5′-GUGCUAUUGAUCAGACUA
SEQ ID NO.




AUUA-3′
217



Thogoto virus-HIS-6
5′-GCUGGACUGUGGUGACAG
SEQ ID NO.




CCUC-3′
218



Thogoto virus-HIS-7
5′-CAACCUCUGCACAAAAUG
SEQ ID NO.




AGCU-3′
219



Thogoto virus-HIS-8
5′-ACAAUGGAGCAUGCAAGG
SEQ ID NO.




AAGCA-3′
220



Thogoto virus-HIS-9
5′-UAGCAGGUAGUAUCCAAG
SEQ ID NO.




ACAGAGAC-3′
221



Thogoto virus-HIS-10
5′-AAAAUGCUGAGGAUAUGG
SEQ ID NO.




GCAA-3′
222



Thogoto virus-HIS-11
5′-CAAUAACCAAAGAGAAAA
SEQ ID NO.




AAGAA-3′
223



Thogoto virus-HIS-12
5′-AAUCAUGGAAGUUGUUUU
SEQ ID NO.




CCCCA-3′
224



Thogoto virus-HIS-13
5′-AAGCAACCAGGAGAUUGG
SEQ ID NO.




UUCA-3′
225



Thogoto virus-HIS-14
5′-AUGCAACUGAGAUCAGAG
SEQ ID NO.




CAUC-3′
226



Thogoto virus-HIS-15
5′-CCAGAGGACAAGAGCUCU
SEQ ID NO.




UGUU-3′
227





European
European trinidad rabies virus 1-HIS-1
5′-GAGGACGAGAUGGGUGGA
SEQ ID NO.


trinidad

UCAAGA-3′
228


rabies virus
European trinidad rabies virus 1-HIS-2
5′-GAGGACGAGAUGGGUGGA
SEQ ID NO.


1

UCAAGAGGUC-3′
229



European bat lyssavirus 1-HIS-3
5′-UUGGCUCAUUCUCUGUUU
SEQ ID NO.




UUUUUGUUUUUUUU-3′
230



European trinidad rabies virus 1-HIS-4
5′-GAGGACGAGAUGGGUGGA
SEQ ID NO.




UCAAGAGGUC-3′
231



European trinidad rabies virus 1-HIS-5
5′-CUCAUUCUCUGUUUUUUU
SEQ ID NO.




UGUUUUUUUU-3′
232





European
European trinidad rabies virus 2-HIS
5′-CUUUAUUCUAAAAUAUUU
SEQ ID NO.


trinidad

UUAAAU-3′
233


rabies virus





2








Chapare
Chapare virus-HIS
5′-AUGAGCCCAAGACUUCUU
SEQ ID NO.


virus

UUGAU-3′
234





Rotavirus
Rotavirus A-HIS-1
5′-AAGAAACUGUGAUUUUUA
SEQ ID NO.




AUACUUA-3′
235



Rotavirus A-HIS-2
5′-AAGAAUGAUAAAGCAAAG
SEQ ID NO.




AAAA-3′
236



Rotavirus A-HIS-3
5′-UACUUUUAAAGAUGCAUG
SEQ ID NO.




CUUUCAUU-3′
237



Rotavirus A-HIS-4
5′-UUUAAAAAAUGAUAAGAA
SEQ ID NO.




UAAA-3′
238



Rotavirus A-HIS-5
5′-AGAAUGAUAAAGCAAAGA
SEQ ID NO.




AAAUGUAG-3′
239



Rotavirus A-HIS-6
5′-UACUGAUCUCCAACUCAG
SEQ ID NO.




AAGA-3′
240



Rotavirus A-HIS-7
5′-AAAAUUUGAAAGAAUGAU
SEQ ID NO.




AAAGCAAA-3′
241



Rotavirus A-HIS-8
5′-AAAAAUGAAUGAAAAUAU
SEQ ID NO.




GCAUUCUCUUCAAAA-3′
242



Rotavirus A-HIS-9
5′-AAAGCAAGAAAAAUGAAU
SEQ ID NO.




GAAAA-3′
243



Rotavirus A-HIS-10
5′-CAAGAAAAAUGAAUGAAA
SEQ ID NO.




AUAU-3′
244



Rotavirus A-HIS-11
5′-AGGAGAAAUCAAAACAAA
SEQ ID NO.




ACCAUA-3′
245



Rotavirus A-HIS-12
5′-GCAUUCAAUAAAUACAUG
SEQ ID NO.




CUG-3′
246



Rotavirus A-HIS-13
5′-AUGUAAGAACUGUAAAUA
SEQ ID NO.




UAA-3′
247



Rotavirus A-HIS-14
5′-AAAACAAAACCAUAAAAG
SEQ ID NO.




UAG-3′
248



Rotavirus A-HIS-15
5′-AAAGGAGAAAUCAAAACA
SEQ ID NO.




AAACCAUAAAA-3′
249



Rotavirus A-HIS-16
5′-UAGGGAGCUCCCCACUCC
SEQ ID NO.




CGUUUUGUGAC-3′
250



Rotavirus A-HIS-17
5′-UAUAUCAAAAGAAAAUGA
SEQ ID NO.




AAUCAA-3′
251



Rotavirus A-HIS-18
5′-GAUUAAAUUUAUAUCAAA
SEQ ID NO.




AGAAAAUGAA-3′
252



Rotavirus A-HIS-19
5′-UAUAUCAAAAGAAAAUGA
SEQ ID NO.




AAUCAAUA-3′
253



Rotavirus A-HIS-20
5′-AAAGAAAAUGAAAUCAAU
SEQ ID NO.




AGUUGAGGA-3′
254



Rotavirus A-HIS-21
5′-UAUAUCAAAAGAAAAUGA
SEQ ID NO.




AAUCAAUAG-3′
255



Rotavirus A-HIS-22
5′-AUGACCAAAUGUAUAGAU
SEQ ID NO.




UGAGA-3′
256



Rotavirus A-HIS-23
5′-UAUAUCAAAAGAAAAUGA
SEQ ID NO.




AAUCAAUAGUUGAGGA-3′
257



Rotavirus A-HIS-24
5′-UAUAUCAAAAGAAAAUGA
SEQ ID NO.




AAUCAAUA-3′
258



Rotavirus A-HIS-25
5′-UUGAAAUAAGAAGAUUAG
SEQ ID NO.




AUAUUUUUAAUU-3′
259



Rotavirus A-HIS-26
5′-UGAUAUCAUUUUCAAUUA
SEQ ID NO.




CAUA-3′
260



Rotavirus A-HIS-27
5′-AAGAAAAAGAAGAUAGCA
SEQ ID NO.




AGAA-3′
261



Rotavirus A-HIS-28
5′-AGCUAAAGUUUGGUAGGA
SEQ ID NO.




AAACAA-3′
262



Rotavirus A-HIS-29
5′-AAAUCAAGUAAAAUAACA
SEQ ID NO.




AUAAAUGACAUAC-3′
263



Rotavirus A-HIS-30
5′-CAUUAAAUUUAUACAAAC
SEQ ID NO.




AAACACAAA-3′
264



Rotavirus A-HIS-31
5′-AGCUAAAGUUUGGUAGGA
SEQ ID NO.




AAACAA-3′
265



Rotavirus A-HIS-32
5′-GAAAUAUACCAUAUAAAU
SEQ ID NO.




AUGAUGU-3′
266



Rotavirus A-HIS-33
5′-AAAUAAGAUCAGAAUUUU
SEQ ID NO.




AUUUA-3′
267



Rotavirus A-HIS-34
5′-AGAAUUAUAUUAAUACAG
SEQ ID NO.




UAUA-3′
268



Rotavirus A-HIS-35
5′-AGCAUUAAAACAUUAGAA
SEQ ID NO.




AUAUUAAAUAAG-3′
269



Rotavirus A-HIS-36
5′-AGAAUUAUAUUAAUACAG
SEQ ID NO.




UAUAUAGU-3′
270



Rotavirus A-HIS-37
5′-GAAGAAUUAUUCACAUUA
SEQ ID NO.




AUAA-3′
271



Rotavirus A-HIS-38
5′-GAAGAACAAACUAUUAAU
SEQ ID NO.




AAUU-3′
272



Rotavirus A-HIS-39
5′-UAAGAUCAGAAUUUUAUU
SEQ ID NO.




UAUUACUA-3′
273



Rotavirus A-HIS-40
5′-UAAACCAAACAUUUUUCC
SEQ ID NO.




UUAU-3′
274



Rotavirus A-HIS-41
5′-AUUUUAAAACACUUAAAA
SEQ ID NO.




AUUU-3′
275



Rotavirus A-HIS-42
5′-CAAUAUUUCUGCUGUUCA
SEQ ID NO.




AUUCAAUGG-3′
276



Rotavirus A-HIS-43
5′-UUUUUUGGGUUUUGUUUG
SEQ ID NO.




UGUUGAUACUUUGAG-3′
277





Tai Forest
Tai Forest ebolavirus-HIS-1
5′-GCAAAUUUAUCUUAAAUU
SEQ ID NO.


ebolavirus

CAAGUACAUA-3′
278



Tai Forest ebolavirus-HIS-2
5′-UAACAGACUUGGAAAAAU
SEQ ID NO.




ACAAUU-3′
279





Bundibugyo
Bundibugyo ebolavirus-HIS
5′-AUUACCUUCAAAAAUCUA
SEQ ID NO.


ebolavirus

GAACUUUAUUAAUUCUCAG-3′
280





Rift Valley
Rift Valley fever virus-HIS
5′-AAAAUUAAAAACAAAAAU
SEQ ID NO.


fever virus

GAAAGG-3′
281





Irkut virus
Irkut virus-HIS-1
5′-CUUAUUUUAUGUCUUCUU
SEQ ID NO.




UGUUGUUUUU-3′
282



Irkut virus-HIS-2
5′-AUUAUUAACAACUUAUUU
SEQ ID NO.




UUAUUUAAUCUUUUA-3′
283



Irkut virus-HIS-3
5′-AUAAAGAAGAAUAUUAAC
SEQ ID NO.




AUUGACAUUA-3′
284



Irkut virus-HIS-4
5′-UUAUGAAUGUUUUAUCAU
SEQ ID NO.




GAUUAAAGAU-3′
285





Influenza A
Influenza A virus-HIS-1
5′-CCCAGCACAGAGAUGUCA
SEQ ID NO.


virus

UUGA-3′
286



Influenza A virus-HIS-2
5′-AGUGAGAAAUGAUGAUGU
SEQ ID NO.




UGAUCAGA-3′
287



Influenza A virus-HIS-3
5′-UUCUAAGGAAAGCAACCA
SEQ ID NO.




GAAG-3′
288



Influenza A virus-HIS-4
5′-UGAGCAAGAAGAAAUCCU
SEQ ID NO.




ACAU-3′
289



Influenza A virus-HIS-5
5′-GGAAUGAGAAGAAAGCUA
SEQ ID NO.




AAUU-3′
290



Influenza A virus-HIS-6
5′-UUAGAAAUGUCUUAAGCA
SEQ ID NO.




UUGC-3′
291



Influenza A virus-HIS-7
5′-CAGGACAUUGAAAAUGAA
SEQ ID NO.




GAGAAG-3′
292



Influenza A virus-HIS-8
5′-AAGAGAAAGACCUGACCA
SEQ ID NO.




AAGA-3′
293



Influenza A virus-HIS-9
5′-ACUAAGUCAUAUAAAAAU
SEQ ID NO.




ACAAGAAAAA-3′
294



Influenza A virus-HIS-10
5′-AACAAUUUGAGUUGAUAG
SEQ ID NO.




ACAAUGAAU-3′
295



Influenza A virus-HIS-11
5′-AUCAUGUUUCAUACUUCU
SEQ ID NO.




AGCCAUUG-3′
296



Influenza A virus-HIS-12
5′-GAAACAUACUAAGAACAC
SEQ ID NO.




AGGAA-3′
297



Influenza A virus-HIS-13
5′-UUUCACCAUUACCUUCUC
SEQ ID NO.




UUCC-3′
298



Influenza A virus-HIS-14
5′-AGGAAGCAAAAUUAAACA
SEQ ID NO.




GAGAAGAAA-3′
299



Influenza A virus-HIS-15
5′-UGGAAAAUGAAAGAACUU
SEQ ID NO.




UGGA-3′
300



Influenza A virus-HIS-16
5′-AAAACAACACUUGGGUAA
SEQ ID NO.




AUCAGACA-3′
301



Influenza A virus-HIS-17
5′-GCUGCUGGACAGUCAGUG
SEQ ID NO.




GUUU-3′
302



Influenza A virus-HIS-18
5′-GGAUCAAGAAAGAAGAGU
SEQ ID NO.




UCUCUGAGA-3′
303



Influenza A virus-HIS-19
5′-GGGGAGACACACAAAUUC
SEQ ID NO.




AGAC-3′
304



Influenza A virus-HIS-20
5′-ACCAAAUGAAAACCCAGC
SEQ ID NO.




UCACAAGAGUCA-3′
305



Influenza A virus-HIS-21
5′-AAAUGAGAAUGUGGAAAC
SEQ ID NO.




CAUG-3′
306



Influenza A virus-HIS-22
5′-AGAAAUAAGGAGAGUUUG
SEQ ID NO.




GCGC-3′
307



Influenza A virus-HIS-23
5′-AGAAGAGUAGACGGAAAG
SEQ ID NO.




UGGA-3′
308



Influenza A virus-HIS-24
5′-GACAUUCUUUGGCUGGAA
SEQ ID NO.




AGAGCCUAA-3′
309



Influenza A virus-HIS-25
5′-GAAGAGAGCAGGGCAAGA
SEQ ID NO.




AUCAAAACUAGGCU-3′
310



Influenza A virus-HIS-26
5′-AGGGCAAGCUUUCCCAAA
SEQ ID NO.




UGUC-3′
311



Influenza A virus-HIS-27
5′-GGACAUGAUUCCAGAGAG
SEQ ID NO.




GAAUGAACAAGGACAA-3′
312



Influenza A virus-HIS-28
5′-GGAAAUUGUGAAAAUUCA
SEQ ID NO.




AUGG-3′
313





Bayou
Bayou virus-HIS-1
5′-GAGUCUACAUUCUCAGUU
SEQ ID NO.


virus

UUGUC-3′
314



Bayou virus-HIS-2
5′-GAGACAGACAGUAAAGGA
SEQ ID NO.




AAAU-3′
315



Bayou virus-HIS-3
5′-UGAAGAAAAACUAAAGAA
SEQ ID NO.




AAAA-3′
316



Bayou virus-HIS-4
5′-CCAGACAGCAGACUGGAA
SEQ ID NO.




GGCA-3′
317



Bayou virus-HIS-5
5′-AACAGGAAAUCAUAUUGA
SEQ ID NO.




AUUUGU-3′
318



Bayou virus-HIS-6
5′-AGUAUGCAUGGAAAGAUU
SEQ ID NO.




UUCUUAAUG-3′
319



Bayou virus-HIS-7
5′-CAGAGUUUGAAUUUUAUG
SEQ ID NO.




AUCAG-3′
320



Bayou virus-HIS-8
5′-UGAGGGUAACAUUUAAUU
SEQ ID NO.




UUGGG-3′
321



Bayou virus-HIS-9
5′-UUUUUUCUUUUUGAGAAA
SEQ ID NO.




GGGCUUCAU-3′
322



Bayou virus-HIS-10
5′-AGAAAACAACAGGUGUUG
SEQ ID NO.




AUGAG-3′
323



Bayou virus-HIS-11
5′-UUUUUUCUUUUUGAGAAA
SEQ ID NO.




GGGCU-3′
324



Bayou virus-HIS-12
5′-AAAUGAAAGAUUUCCAGA
SEQ ID NO.




AAUUG-3′
325



Bayou virus-HIS-13
5′-ACAACAGAUACAACAAAU
SEQ ID NO.




GCUGGUGAGAAU-3′
326



Bayou virus-HIS-14
5′-AGUGAUUCAUGCUGAAAU
SEQ ID NO.




ACAGU-3′
327


Kyasanur
Kyasanur forest disease virus-HIS
5′-AUGAGAGAUCUUGGGGGU
SEQ ID NO.


forest

GGGAC-3′
328


disease





virus








Black
Black Creek Canal virus-HIS-1
5′-CCAAUGUAUUUAUACAUU
SEQ ID NO.


Creek

UACAAGUA-3′
329


Canal 
Black Creek Canal virus-HIS-2
5′-AAGUUCAAUGAGAAAGAG
SEQ ID NO.


virus

AAUAGAUAUGG-3′
330



Black Creek Canal virus-HIS-3
5′-UACUUACAUGCCAAAUCU
SEQ ID NO.




CAA-3′
331



Black Creek Canal virus-HIS-4
5′-AGUUCAAUGAGAAAGAGA
SEQ ID NO.




AUA-3′
332



Black Creek Canal virus-HIS-5
5′-UACAUACUAUUAAUGUGA
SEQ ID NO.




UUUA-3′
333



Black Creek Canal virus-HIS-6
5′-UUUUGUCCUUCCAAUUGU
SEQ ID NO.




GUUG-3′
334





Japanese 
Japanese encephalitis virus-HIS-1
5′-GAAGCAGAGAGAAAGUAG
SEQ ID NO.


encephalitis

AGAAG-3′
335


virus
Japanese encephalitis virus-HIS-2
5′-UCAAAAGGAGAGAACAGA
SEQ ID NO.




UGCUGG-3′
336



Japanese encephalitis virus-HIS-3
5′-UCCCUGGAUGGCAAGCAG
SEQ ID NO.




AAGCA-3′
337





Duvenhage
Duvenhage lyssavirus-HIS
5′-CCUCUAAGUUUCCUAAGG
SEQ ID NO.


lyssavirus

UUCU-3′
338



Human enterovirus D-HIS
5′-AACAAGAGCAGGCCAGUG
SEQ ID NO.




UGGUGG-3′
339



Human enterovirus D-HIS
5′-UUGAGGAAAAGGGAACCC
SEQ ID NO.




UGUACA-3′
340



Human enterovirus D-HIS
5′-CCAGGCACUGGGAAGUCA
SEQ ID NO.




GUGGCA-3′
341



Human enterovirus D-HIS
5′-AAUUAGGAGUGAUACCUU
SEQ ID NO.




CACUAA-3′
342



Human enterovirus D-HIS
5′-UGAGAAAAAGGCCACUGU
SEQ ID NO.




CCUUUA-3′
343



Human enterovirus D-HIS
5′-ACAAAUUGGAGAAAUAGU
SEQ ID NO.




GAAAA-3′
344





Lujo 
Lujo mammarenavirus-HIS
5′-AUUUUAAAACACUUAAAA
SEQ ID NO.


mammarenavirus

AUUU-3′
345





Measles 
Measles
5′-AAAGGAAGAAAUUGAAAC
SEQ ID NO.


morbillivirus
morbillivirus-HIS
|CCAGA-3′
346





Tick-borne 
Tick-borne encephalitis virus-HIS
5′-GAUGUCAUCAAGAAUGCA
SEQ ID NO.


encephalitis

GAUGC-3′
347


virus








Avian
Avian influenza virus-CIS-1
5′-ACAAAAGAUGCAGAAAGA
SEQ ID NO.


influenza

GGCAAG-3′
348


virus
Avian influenza virus-CIS-2
5′-AAUGUUAUUGAGUAUAUA
SEQ ID NO.




GAGAGA-3′
349



Avian influenza virus-CIS-3
5′-CAUUUGAUGAUCUGGCAU
SEQ ID NO.




UCCAACU-3′
350



Avian influenza virus-CIS-4
5′-GAAGGGAGGCUGAUCCAG
SEQ ID NO.




AACAGU-3′
351



Avian influenza virus-CIS-5
5′-GGCACAACUGGAGUGGAG
SEQ ID NO.




UCUGCU-3′
352



Avian influenza virus-CIS-6
5′-CAAAAGAAAAGAAAGAAG
SEQ ID NO.




AGCUC-3′
353



Avian influenza virus-CIS-7
5′-UCCAAAUUGCUUCAAAUG
SEQ ID NO.




AAAA-3′
354



Avian influenza virus-CIS-8
5′-AAUUGUACAAAAACCCUG
SEQ ID NO.




AUAC-3′
355



Avian influenza virus-CIS-9
5′-AUGAGGAAUGGAGGGAAU
SEQ ID NO.




AGCU-3′
356



Avian influenza virus-CIS-10
5′-AUUGCUCCUUUGCUGGAU
SEQ ID NO.




GGAU-3′
357



Avian influenza virus-CIS-11
5′-UUCCAAUCUGAAUGAUGC
SEQ ID NO.




AACA-3′
358



Avian influenza virus-CIS-12
5′-UAAAAGCUGCAUCAAUAG
SEQ ID NO.




GUGU-3′
359



Avian influenza virus-CIS-13
5′-GGGAGAUUGAUCCAAAAC
SEQ ID NO.




AGCA-3′
360



Avian influenza virus-CIS-14
5′-AGGGGGAAGCCCAGAUCC
SEQ ID NO.




UGGA-3′
361



Avian influenza virus-CIS-15
5′-UGCCACAGAGGAGACACA
SEQ ID NO.




CAAA-3′
362



Avian influenza virus-CIS-16
5′-GAGAAAGGAAAGUGGACA
SEQ ID NO.




ACA-3′
363



Avian influenza virus-CIS-17
5′-CAUAACAACAACAAUAAU
SEQ ID NO.




AACUGAA-3′
364



Avian influenza virus-CIS-18
5′-AGGAAGGGAAAAUACAAA
SEQ ID NO.




AAAU-3′
365



Avian influenza virus-CIS-19
5′-GAGGAAAUGAGAAGAAGG
SEQ ID NO.




CUA-3′
366



Avian influenza virus-CIS-20
5′-CUGGAGCUGCUGGAGCAG
SEQ ID NO.




CAG-3′
367



Avian influenza virus-CIS-21
5′-UCUCAAACUUGCAGUUGG UC-
SEQ ID NO.




3′
368



Avian influenza virus-CIS-22
5′-UUGACUAUGGGAGUGAUG
SEQ ID NO.




UUU-3′
369



Avian influenza virus-CIS-23
5′-AGUUUGAAUUCAUUGCUG
SEQ ID NO.




AAG-3′
370



Avian influenza virus-CIS-24
5′-GAAAAACAAGAUUUCUCC
SEQ ID NO.




CAGUG-3′
371



Avian influenza virus-CIS-25
5′-ACAGGGUGAUGGUGUCCC CC-
SEQ ID NO.




3′
372



Avian influenza virus-MIS-1
5′-AAAUGGACCACAAACACA
SEQ ID NO.




GAAAC-3′
373



Avian influenza virus-MIS-2
5′-AUGUCUUCUUCAAUCACU
SEQ ID NO.




UCAAC-3′
374



Avian influenza virus-MIS-3
5′-UACUGCUAAGGAAGCACA
SEQ ID NO.




AGAUG-3′
375



Avian influenza virus-MIS-4
5′-AAAAAUUGAAACGAACAA
SEQ ID NO.




AUUC-3′
376



Avian influenza virus-MIS-5
5′-AAUAAAUACAACAUUACC
SEQ ID NO.




CUUU-3′
377



Avian influenza virus-MIS-6
5′-AAGCAAGAUUAAAAAGAG
SEQ ID NO.




AGGA-3′
378



Avian influenza virus-MIS-7
5′-UUAGAGCAUCUGUUGGAA
SEQ ID NO.




GAAU-3′
379



Avian influenza virus-MIS-8
5′-AACAGAGGCUGAACAAGA
SEQ ID NO.




GGA-3′
380



Avian influenza virus-MIS-9
5′-UGCAGAAGGAACAGGAAC
SEQ ID NO.




GGC-3′
381



Avian influenza virus-MIS-10
5′-AUUGUAUGGACACAAUUA
SEQ ID NO.




GAAAC-3′
382



Avian influenza virus-MIS-11
5′-AUGAGAAACGUGCCUGAG
SEQ ID NO.




AAACA-3′
383



Avian influenza virus-MIS-12
5′-UGUUUUCUUCUGUCUGAA GA-SEQ
ID NO.




3′
384



Avian influenza virus-MIS-13
5′-CAUAUAAUUAGCAUCACAAU-
SEQ ID NO.




3′
385



Avian influenza virus-MIS-14
5′-ACAAAUCAGCAGUUUGAA
SEQ ID NO.




CUGAUA-3′
386



Avian influenza virus-MIS-15
5′-GAAAGAGGUAAAUUAAAA AG-
SEQ ID NO.




3′
387



Avian influenza virus-MIS-16
5′-AAGUAGCAGGCUCACUCU GC-
SEQ ID NO.




3′
388



Avian influenza virus-MIS-17
5′-AGAAGGAGAGAAGGAAAA
SEQ ID NO.




UGG-3′
389



Avian influenza virus-MIS-18
5′-ACAAAUACCUGCAGAAAU GC-
SEQ ID NO.




3′
390



Avian influenza virus-MIS-19
5′-AAUGAAUCAACAAGAAAG
SEQ ID NO.




AAAA-3′
391



Avian influenza virus-MIS-20
5′-AAUGAAUCAACAAGAAAG AA-
SEQ ID NO.




3′
392



Avian influenza virus-MIS-21
5′-GAGAAUGAAGAGAAAACU CC-
SEQ ID NO.




3′
393



Avian influenza virus-MIS-22
5′-AUUCAGUGAAAUUGGAAAAU-
SEQ ID NO.




3′
394



Avian influenza virus-MIS-23
5′-AGAAAUACACCAAGACCA
SEQ ID NO.




CAUA-3′
395



Avian influenza virus-MIS-24
5′-CUUGAACUUAGAAGCAGA
SEQ ID NO.




UAU-3′
396



Avian influenza virus-MIS-25
5′-ACAAUGCUAUCAAUUGUA
SEQ ID NO.




AUC-3′
397



Avian influenza virus-MIS-26
5′-ACAAUGCUAUCAAUUGUAAU-
SEQ ID NO.




3′
398



Avian influenza virus-MIS-27
5′-GAACUUCAGGACAUAGAA
SEQ ID NO.




AAU-3′
399



Avian influenza virus-MIS-28
5′-GCCUUCCUUUCCAGAAUG UG-
SEQ ID NO.




3′
400



Avian influenza virus-MIS-29
5′-GAUAUGACUUUGAAAGGG AG-
SEQ ID NO.




3′
401



Avian influenza virus-MIS-30
5′-AGGGGUUGGAAUGGCUGC AG-
SEQ ID NO.




3′
402



Avian influenza virus-HIS-1
5′-CAGAGUAGAAUGCAAUUC
SEQ ID NO.




UCCUCA-3′
403



Avian influenza virus-HIS-2
5′-UUCCUGCUUUACCAUAAU
SEQ ID NO.




GACUGA-3′
404



Avian influenza virus-HIS-3
5′-UUUCAUAAUGUCAGCAAA
SEQ ID NO.




UAUGCA-3′
405



Avian influenza virus-HIS-4
5′-GGUCUACAAAACAUACUU
SEQ ID NO.




UGAGAA-3′
406



Avian influenza virus-HIS-5
5′-CAAAAUUAGAGAGACAGA
SEQ ID NO.




AAAUAGA-3′
1407



Avian influenza virus-HIS-6
5′-GAAGCAAAACUGUUUGUG CU-
SEQ ID NO.




3′
408



Avian influenza virus-HIS-7
5′-UUGUUUUUAUGUGGAGCU
SEQ ID NO.




AAUCA-3′
409



Avian influenza virus-HIS-8
5′-CACAAAGGACAAUAGGAA
SEQ ID NO.




AGAAA-3′
410



Avian influenza virus-HIS-9
5′-UAAAGAAAUUGAAUCAGU
SEQ ID NO.




AAAUAA-3′
411



Avian influenza virus-HIS-10
5′-AGUGAGACACAGGGAACA
SEQ ID NO.




GAGAAA-3′
412



Avian influenza virus-HIS-11
5′-CAUAUGAAAGAAUGUGCA
SEQ ID NO.




ACAUC-3′
413



Avian influenza virus-HIS-12
5′-UUCAAUGAAUCAACAAAA
SEQ ID NO.




AAGAAA-3′
414



Avian influenza virus-HIS-13
5′-CAGCAGAUAAAAGAAUAA
SEQ ID NO.




UGGAAAUG-3′
415



Avian influenza virus-HIS-14
5′-AGUUGAUAAUAACAACUG
SEQ ID NO.




GUCUGGU-3′
416



Avian influenza virus-HIS-15
5′-AGAAGAAGAAAAAGAGGA
SEQ ID NO.




CUAUUU-3′
417



Avian influenza virus-HIS-16
5′-CUUCCCAGUUUUGGAGUG
SEQ ID NO.




UCUGGGAU-3′
418



Avian influenza virus-HIS-17
5′-AAAUUUAAAUAAGAAAAU
SEQ ID NO.




GGAAGAU-3′
419



Avian influenza virus-HIS-18
5′-AAUCUAAUGGGAAUUUAA
SEQ ID NO.




UAGCUC-3′
420





Swine
Swine influenza virus-PIS-1
5′-AUGCAGAACUUUCUUUUU
SEQ ID NO.


influenza

GACUC-3′
421


virus
Swine influenza virus-PIS-2
5′-ACAUUCUUUUCAUGUGGG
SEQ ID NO.




GCAUAA-3′
422



Swine influenza virus-PIS-3
5′-CUAGUCAGGCUAGGCAGA
SEQ ID NO.




UGGU-3′
423



Swine influenza virus-PIS-4
5′-CAAAGCAGAAUGCAGUUC
SEQ ID NO.




UCUU-3′
424



Swine influenza virus-PIS-5
5′-UGCACCAAUUAAAAUACA
SEQ ID NO.




GAUAU-3′
425



Swine influenza virus-PIS-6
5′-AGAGUAAGAGACAACAUG
SEQ ID NO.




ACCA-3′
426



Swine influenza virus-PIS-7
5′-GGGAAUUGGGACAAUGGU
SEQ ID NO.




GAUG-3′
427



Swine influenza virus-PIS-8
5′-AAUGCCUUGUUUCUACUA
SEQ ID NO.




AUAC-3′
428



Swine influenza virus-PIS-9
5′-UAAGAGGAUCAGGAAUGA
SEQ ID NO.




GAAU-3′
429



Swine influenza virus-PIS-10
5′-AUCUCAUUUAAGGAAUGA
SEQ ID NO.




CACA-3′
430



Swine influenza virus-PIS-11
5′-AGACAAUGCUAAGGAAAU
SEQ ID NO.




AGGG-3′
431



Swine influenza virus-PIS-12
5′-AAAGCAAUGAAAGAGUAU
SEQ ID NO.




GGGGAG-3′
432



Swine influenza virus-PIS-13
5′-UUGGUCUGAGGAAUGUGC
SEQ ID NO.




CUGCU-3′
433



Swine influenza virus-PIS-14
5′-AUCAAUGAACAAAGAGGA
SEQ ID NO.




AAUA-3′
434



Swine influenza virus-PIS-15
5′-CAGAGAGAGGCAAAUUAA
SEQ ID NO.




AAAG-3′
435



Swine influenza virus-PIS-16
5′-CACAAAUUGAAGAUGACA
SEQ ID NO.




GAGA-3′
436



Swine influenza virus-PIS-17
5′-AAACAAGAAGUGCUUAUG
SEQ ID NO.




AGAG-3′
437



Swine influenza virus-PIS-18
5′-UUUUUUUCAAAUGCAUCU
SEQ ID NO.




AUCAA-3′
438



Swine influenza virus-PIS-19
5′-CAGAAAUUCGAAGAAAUA
SEQ ID NO.




AAAUG-3′
439



Swine influenza virus-PIS-20
5′-CAGCCUAAUCAGACCAAA
SEQ ID NO.




UGAA-3′
440



Swine influenza virus-PIS-21
5′-GGACGGAUUAAGAAAGAA
SEQ ID NO.




GAGU-3′
441



Swine influenza virus-PIS-22
5′-UGGAGUUGAUAAGGGGAA
SEQ ID NO.




GGGA-3′
442



Swine influenza virus-PIS-23
5′-ACAGAUUUGAAAUAAUUG
SEQ ID NO.




AAGG-3′
443



Swine influenza virus-PIS-24
5′-UGCAUGUGUAAAUGGCUC
SEQ ID NO.




UUG-3′
444



Swine influenza virus-PIS-25
5′-CUUUUCCUGAAAGUGCCA
SEQ ID NO.




GCA-3′
445



Swine influenza virus-PIS-26
5′-AAGACAAGAAAUGGCCAG
SEQ ID NO.




UAGG-3′
446



Swine influenza virus-PIS-27
5′-CUGCAUUUGAAGAUUUAA
SEQ ID NO.




GAUUG-3′
447



Swine influenza virus-PIS-28
5′-CCAUUAUCCAAAGGUCUA
SEQ ID NO.




CAAA-3′
448



Swine influenza virus-PIS-29
5′-UGAGACUUCCAAGAUCAA
SEQ ID NO.




GAUG-3′
449



Swine influenza virus-PIS-30
5′-GCAGGAGUGGAUAGAUUC
SEQ ID NO.




UACA-3′
450



Swine influenza virus-PIS-31
5′-AAAGCAAAUUGUAGAAAA
SEQ ID NO.




GAUU-3′
451



Swine influenza virus-PIS-32
5′-UGCAGGGAAGAACACAGA
SEQ ID NO.




UCUC-3′
452



Swine influenza virus-PIS-33
5′-UCAAAUGCAUGAAGACAU
SEQ ID NO.




UCUU-3′
1453



Swine influenza virus-PIS-34
5′-AGAAGUUAUAAGGAUGAU
SEQ ID NO.




GGA-3′
454



Swine influenza virus-PIS-35
5′-CUGCCCCAUCGGUGAAGC
SEQ ID NO.




UCC-3
455



Swine influenza virus-PIS-36
5′-AAUACCAGCCUUCCAUUU
SEQ ID NO.




CAGAAU-3′
456



Swine influenza virus-PIS-37
5′-AAUGAAUCCAAAUCAAAG GA-
SEQ ID NO.




3′
457



Swine influenza virus-PIS-38
5′-AUGCCUUGUUUCUACUAA
SEQ ID NO.




UAC-3′
458



Swine influenza virus-PIS-39
5′-UGAGUUGCCAUUCACCAU
SEQ ID NO.




UGA-3′
459



Swine influenza virus-PIS-40
5′-AUACAUUGAAGUUUUACA
SEQ ID NO.




UUU-3′
460



Swine influenza virus-PIS-41
5′-GUGUGAUGGGAAUGGUUG
SEQ ID NO.




GAGUAU-3′
461



Swine influenza virus-PIS-42
5′-AUAUGCACAAACAGAAUG
SEQ ID NO.




UGU-3′
462



Swine influenza virus-PIS-43
5′-UGGAUUUGUUGCCAAUUU CA-
SEQ ID NO.




3′
463



Swine influenza virus-PIS-44
5′-AUUAUAAAAGGAAGGUCU CA-SEQ
ID NO.




3′
464



Swine influenza virus-PIS-45
5′-CCAAAGAGGGAAGACGAAAG-
SEQ ID NO.




3′
465



Swine influenza virus-HIS-1
5′-UAUAUAAAUAGAACAGGA
SEQ ID NO.




ACAU-3′
466



Swine influenza virus-HIS-2
5′-ACAAUAAAAAGUUGGAGA
SEQ ID NO.




AACA-3′
467



Swine influenza virus-HIS-3
5′-AAAGCCAUGGAACAAAUG
SEQ ID NO.




GCUG-3′
468



Swine influenza virus-HIS-4
5′-GGUCUACAAAACAUACUU
SEQ ID NO.




UGAGAAA-3′
469



Swine influenza virus-HIS-5
5′-AAUAGUUUACUUGAAUAA
SEQ ID NO.




UACA-3′
470



Swine influenza virus-HIS-6
5′-UUCAAGAUGGAGAAAGGG
SEQ ID NO.




AAGA-3′
471



Swine influenza virus-HIS-7
5′-AAAAGAAAUACACCAAAA
SEQ ID NO.




CAGU-3′
472



Swine influenza virus-HIS-8
5′-AACCUAAAUUUCUCCCAG
SEQ ID NO.




AUUU-3′
473



Swine influenza virus-HIS-9
5′-ACAACCUACUUUCUCAGU
SEQ ID NO.




ACAGA-3′
474



Swine influenza virus-HIS-10
5′-AAAUUCAAACAAGGAGAU
SEQ ID NO.




CAUU-3′
475



Swine influenza virus-HIS-11
5′-UGGUCAGGUUAUUCUGGC
SEQ ID NO.




AUUU-3′
476



Swine influenza virus-HIS-12
5′-CAACCUGGAACCUGGAAC CU-
SEQ ID NO.




3′
477



Swine influenza virus-HIS-13
5′-CCAGCACUGAGAGGGUGA
SEQ ID NO.




CUGU-3′
478



Swine influenza virus-HIS-14
5′-GAAAUCAACCUGAAUGGU UU-
SEQ ID NO.




3′
479



Swine influenza virus-HIS-15
5′-UUAUCAAAUACUUGCUAU
SEQ ID NO.




AUAC-3′
480



Swine influenza virus-HIS-16
5′-CUUUUCUUAAAAAUUCCA
SEQ ID NO.




GCGC-3′
481



Swine influenza virus-HIS-17
5′-AGAGAAGGAUAUUCUCUG
SEQ ID NO.




GUC-3′
482



Swine influenza virus-HIS-18
5′-GGGGAGACACACAAAUUC
SEQ ID NO.




AGAC-3′
483



Swine influenza virus-HIS-19
5′-UGAUUAUUGCUGCUAGAA
SEQ ID NO.




ACAUA-3′
484



Swine influenza virus-HIS-20
5′-UGAUUAUUGCUGCUAGAA
SEQ ID NO.




ACAU-3′
485



Swine influenza virus-HIS-21
5′-UGGAGAAAGCCAACAAGA
SEQ ID NO.




UAAAA-3′
486



Swine influenza virus-HIS-22
5′-ACAAAGAACAUGAAAAAA
SEQ ID NO.




ACAAG-3′
487



Swine influenza virus-HIS-23
5′-AGGGCAAGCUUUCCCAAA
SEQ ID NO.




UGUCU-3′
488



Swine influenza virus-HIS-24
5′-AGGGCAAGCUUUCCCAAA
SEQ ID NO.




UGUC-3′
489



Swine influenza virus-HIS-25
5′-CCAAAACUACAUACUGGU
SEQ ID NO.




GGGA-3′
490



Swine influenza virus-HIS-26
5′-AGGCAAAGUGGUGUGUGU
SEQ ID NO.




GUGC-3′
491



Swine influenza virus-HIS-27
5′-UCAAAGAGAAAGACAUGA
SEQ ID NO.




CCA-3′
492



Swine influenza virus-HIS-28
5′-ACUUUGUAAUCCCAUGAA
SEQ ID NO.




UCC-3′
493



Swine influenza virus-HIS-29
5′-UUUCAGGCAGAAUGAAUG
SEQ ID NO.




CAG-3′
494



Swine influenza virus-HIS-30
5′-GAAACACAGGGAACAGAG
SEQ ID NO.




AAA-3′
495



Swine influenza virus-HIS-31
5′-AAGGAAGAUCUCAUUUGA
SEQ ID NO.




GGA-3′
496



Swine influenza virus-HIS-32
5′-GAUAGUAAGUGGAAGAGA
SEQ ID NO.




UGAA-3′
497



Swine influenza virus-HIS-33
5′-CAUAUGAAAGAAUGUGCA
SEQ ID NO.




ACAU-3′
498



Swine influenza virus-HIS-34
5′-AUAAUACUAGUAGUAACA
SEQ ID NO.




GUAA-3′
499



Swine influenza virus-HIS-35
5′-UUGACUGAAGAUCCAGAU
SEQ ID NO.




GAA-3′
500



Swine influenza virus-HIS-36
5′-AAAAAUGAUGACCAAUUC
SEQ ID NO.




UCA-3′
501



Swine influenza virus-HIS-37
5′-UAUGGAAUUCUCUCUUAC
SEQ ID NO.




UGA-3′
502



Swine influenza virus-HIS-38
5′-AAAAAACAAAGAUUGAGU
SEQ ID NO.




AAGA-3′
503



Swine influenza virus-HIS-39
5′-AAGCAACCAGGAGAUUGG
SEQ ID NO.




UUCA-3′
504



Swine influenza virus-HIS-40
5′-CCAGAGGACAAGAGCUCU
SEQ ID NO.




UGUU-3′
505



Swine influenza virus-HIS-41
5′-GAAAGAACAUUCUUUUCA
SEQ ID NO.




UGUG-3′
506



Swine influenza virus-HIS-42
5′-CUGUAAUGAGAAUGGGAG
SEQ ID NO.




ACCU-3′
507



Swine influenza virus-HIS-43
5′-GGAAAUUGUGAAAAUUCA
SEQ ID NO.




AUGG-3′
508



Swine influenza virus-HIS-44
5′-UUUUGCUUUGUGUUGUUU
SEQ ID NO.




UGCUG-3′
509



Swine influenza virus-HIS-45
5′-AGGACUUCGAGAAAUAUG
SEQ ID NO.




UUGA-3′
510



Swine influenza virus-HIS-46
5′-AAACAACAUAACAACAAC
SEQ ID NO.




AAUAA-3′
511



Swine influenza virus-HIS-47
5′-AAAAUGCUGAGGAUAUGG
SEQ ID NO.




GCAA-3′
512



Swine influenza virus-HIS-48
5′-UUUCACCAUUACCUUCUC
SEQ ID NO.




UUCC-3′
513



Swine influenza virus-HIS-49
5′-UCUUAUUUCUUCAGAGAC
SEQ ID NO.




AAUG-3′
514



Swine influenza virus-HIS-50
5′-AGAGAAAAUACUUGAAAA
SEQ ID NO.




UUGUG-3′
515



Swine influenza virus-HIS-51
5′-ACAGAAAUGUCACUGAGA
SEQ ID NO.




GGAG-3′
516



Swine influenza virus-HIS-52
5′-AAAGGGGGUAGGGACAAU
SEQ ID NO.




GGUG-3′
517



Swine influenza virus-HIS-53
5′-GACUACAGAUAUACAUAU
SEQ ID NO.




AGAU-3′
518



Swine influenza virus-HIS-54
5′-GAAAAAGGAGAGUGAGAG
SEQ ID NO.




ACAA-3′
|519



Swine influenza virus-HIS-55
5′-UAGAUAUAAAUGUGAAAG
SEQ ID NO.




AUUA-3′
520



Swine influenza virus-HIS-56
5′-UCAGACAGCUGCCCAGAG
SEQ ID NO.




GGCA-3′
521


Rabies
Rabies virus-DIS-1
5′-ACUUACCAGUCUCAUCUU
SEQ ID NO.


virus

CUA-3′
|522



Rabies virus-DIS-2
5′-UUUUCUAUCCCUCAGAAA
SEQ ID NO.




AUCC-3′
523



Rabies virus-DIS-3
5′-CUUUGAUCUCGGGCUUGA GA-
SEQ ID NO.




3′
524



Rabies virus-DIS-4
5′-UCUCUCUGCCUUGUAGUU GG-
SEQ ID NO.




3′
525



Rabies virus-DIS-5
5′-UAUAACUUAUUACUUCAGAA-
SEQ ID NO.




3′
526



Rabies virus-DIS-6
5′-AGAAAUCAUAUCAAAUCC UU-
SEQ ID NO.




3
527



Rabies virus-DIS-7
5′-UUCAGACAGAUCAGACCU CA-
SEQ ID NO.




3′
528



Rabies virus-DIS-8
5′-AAUAUCCAGAAUGGUUUC UG-
SEQ ID NO.




3′
529



Rabies virus-DIS-9
5′-AAGUCAACAUGAAAAAAA
SEQ ID NO.




CAG-3′
530



Rabies virus-DIS-10
5′-UGAAAAAAACAAGAUCUU AA-
SEQ ID NO.




3′
531



Rabies virus-DIS-11
5′-GGGGGGUUCUUUUUGAAAAA-
SEQ ID NO.




3′
532



Rabies virus-DIS-12
5′-GAGAUGGCCAAGGUGGGA GA-
SEQ ID NO.




3′
533



Rabies virus-DIS-13
5′-UUUUUACCAAUAGUAGAG GG-
SEQ ID NO.




3′
534



Rabies virus-DIS-14
5′-GUGCUCCUCAUGAAAUGU
SEQ ID NO.




CUGU-3′
535



Rabies virus-DIS-15
5′-UACCACCUUAAAUAUCAGAG-
SEQ ID NO.




3′
536



Rabies virus-DIS-16
5′-CUCAGCCAUAAAAAUGAA CG-
SEQ ID NO.




3′
537



Rabies virus-DIS-17
5′-AUUGCAGAAAGUUUCUCC
SEQ ID NO.




AAAA-3′
538



Rabies virus-DIS-18
5′-AGACUGGACCAGCUAUGG
SEQ ID NO.




AAUC-3′
539



Rabies virus-DIS-19
5′-AUGUAAUCACCUUAUACA
SEQ ID NO.




UGAAC-3′
540



Rabies virus-DIS-20
5′-GGAAGGACUUGGUAAAGU UC-
SEQ ID NO.




3′
541



Rabies virus-DIS-21
5′-AAAUCCUGAGGCACUUCA
SEQ ID NO.




ACAU-3′
542



Rabies virus-DIS-22
5′-GUCUGUCAUCUCACUGGA UC-
SEQ ID NO.




3
543



Rabies virus-DIS-23
5′-UGGGCACAGUUGUCACUG CU-
SEQ ID NO.




3′
544



Rabies virus-DIS-24
5′-AAACAUUGCAGACAGGAU AG-
SEQ ID NO.




3′
545



Rabies virus-DIS-25
5′-UGUAAUUCUAGCCUGAGU CU-
SEQ ID NO.




3′
546



Rabies virus-DIS-26
5′-CCAGGAAAGUCUUCAGAG
SEQ ID NO.




GAU-3′
547



Rabies virus-DIS-27
5′-UAAAAGAUCUUUUCUUGU CU-
SEQ ID NO.




3′
548



Rabies virus-DIS-28
5′-AGACAAAUAAGGUCAGGA GA-
SEQ ID NO.




3′
549



Rabies virus-DIS-29
5′-AGACAACACCCACUCCUU CU-
SEQ ID NO.




3′
550



Rabies virus-DIS-30
5′-UAGGUUCAAGUCUGCCAG
SEQ ID NO.




AUACA-3′
551



Rabies virus-DIS-31
5′-CUUACCAGUCUCAUCUUC
SEQ ID NO.




UAC-3′
552



Rabies virus-DIS-32
5′-GGCCUUGCUCUUCAGAGA GG-
SEQ ID NO.




3′
553



Rabies virus-DIS-33
5′-CAUGCAGCUAGAACCAUG AC-
SEQ ID NO.




3′
554



Rabies virus-DIS-34
5′-GGGGAAGAAAAGUGGUAG
SEQ ID NO.




GCA-3′
555



Rabies virus-DIS-35
5′-ACAGGAUAGAGCAGAUUU UU-
SEQ ID NO.




3′
556



Rabies virus-DIS-36
5′-UUGAAAAUGAACCUUGAU GA-SEQ
ID NO.




3′
557



Rabies virus-DIS-37
5′-CAUGAGCAAGAUCUUUGU
SEQ ID NO.




CAA-3′
558



Rabies virus-DIS-38
5′-UCUUGUGACAUUUUUACC
SEQ ID NO.




AAU-3′
559



Rabies virus-DIS-39
5′-CAGGAACACAAGAACCAAAG-
SEQ ID NO.




3′
560



Rabies virus-DIS-40
5′-UUCACAUUAAAAAAGUGA UA-
SEQ ID NO.




3′
561



Rabies virus-DIS-41
5′-CUGUUGGAAUGGCCAGGA UG-
SEQ ID NO.




3
562



Rabies virus-DIS-42
5′-AAGGUGGAGAACUCAGAG
SEQ ID NO.




UUU-3′
563



Rabies virus-DIS-43
5′-GCAUUUGGAAGGUAUCUU GC-
SEQ ID NO.




3′
564



Rabies virus-DIS-44
5′-CUCUAUUUCUUGCACUUG UG-
SEQ ID NO.




3′
565



Rabies virus-DIS-45
5′-AAGAAGAGACCAUGUGUA
SEQ ID NO.




GUUAU-3′
566



Rabies virus-DIS-46
5′-AUAAUGCAUUUGGAAGGU AU-
SEQ ID NO.




3′
567



Rabies virus-DIS-47
5′-CUAUGAAGUCAUCAAAAU AU-
SEQ ID NO.




3′
568



Rabies virus-DIS-48
5′-UUCUCAUUUUUGUUGUUU
SEQ ID NO.




AUUU-3′
569



Rabies virus-DIS-49
5′-AUAACAGACCUAUAACUU AU-
SEQ ID NO.




3′
570



Rabies virus-DIS-50
5′-AGAGAGACACAAGGCUAA GA-
SEQ ID NO.




3′
571



Rabies virus-DIS-51
5′-UUAGUCCAGAGAGCAGAAAA-
SEQ ID NO.




3′
572



Rabies virus-DIS-52
5′-CACUGCCUCCUUCAGCAA
SEQ ID NO.




UCA-3′
573



Rabies virus-DIS-53
5′-UAUGAAGUCAUCAAAAUA UU-
SEQ ID NO.




3′
574



Rabies virus-DIS-54
5′-CAUUAAAAAAGUGAUAGA UA-
SEQ ID NO.




3′
575



Rabies virus-DIS-55
5′-AGAGAGCAUCCAAAGGGA
SEQ ID NO.




GUG-3′
576



Rabies virus-DIS-56
5′-AAAAAAUGUACCAGGUGU GA-
SEQ ID NO.




3′
577



Rabies virus-DIS-57
5′-AACAUGAGCAAGAUCUUU GU-
SEQ ID NO.




3′
578



Rabies virus-DIS-58
5′-AAUCACAUUCUUUCACCA
SEQ ID NO.




GAA-3′
579



Rabies virus-DIS-59
5′-CCUCACUCUUAUUUCAUC CA-
SEQ ID NO.




3′
580



Rabies virus-DIS-60
5′-CAUUCACUUUGUAGGAUG CU-
SEQ ID NO.




3′
581



Rabies virus-HIS-1
5′-AUCAGAAAGGCUUUAUAU
SEQ ID NO.




GAC-3′
582



Rabies virus-HIS-2
5′-UGUAUUUAUAAAAGACAA
SEQ ID NO.




GGU-3′
583



Rabies virus-HIS-3
5′-CUCAUUUUUGUUGUUUAU UU-
SEQ ID NO.




3′
584



Rabies virus-HIS-4
5′-UGCCAAGCUUGUGUUCAA CA-
SEQ ID NO.




3′
585



Rabies virus-HIS-5
5′-UGGGCUCUGACAGGAGGC
SEQ ID NO.




AUG-3′
586



Rabies virus-HIS-6
5′-AAGUUAAUUACCUUUACA UU-
SEQ ID NO.




3′
587



Rabies virus-HIS-7
5′-UACUAUGAUGUAUCUAUC UA-
SEQ ID NO.




3′
588



Rabies virus-HIS-8
5′-AGGAGGGUAUUCUUCUGU AU-
SEQ ID NO.




3′
589



Rabies virus-HIS-9
5′-GAACCCAGAGGAACCCCC AC-3′
SEQ ID NO.





590



Rabies virus-HIS-10
5′-CACUGCCUCCUUCAGCAA
SEQ ID NO.




UCA-3′
591



Rabies virus-HIS-11
5′-AGAGCUCAAGAAGGAGAC AA-
SEQ ID NO.




3′
592



Rabies virus-HIS-12
5′-AAGAGGGGCUCCUCUAUG AA-
SEQ ID NO.




3′
593



Rabies virus-HIS-13
5′-UCUACUGCUUUAGGUGAC GU-
SEQ ID NO.




3
594



Rabies virus-HIS-14
5′-AGAUGGGUGGAUCAAGAG GU-
SEQ ID NO.




3
595



Rabies virus-HIS-15
5′-AACGGUGACGAGGCUGAG GA-SEQ
ID NO.




3′
596



Rabies virus-HIS-16
5′-CAGAGGAUGUAUUUUCUG UC-
SEQ ID NO.




3′
597



Rabies virus-HIS-17
5′-CACAUCCACUGCCUCCUU CA-3
SEQ ID NO.





598



Rabies virus-HIS-18
5′-AGGGAUGUCUUGUGACAU
SEQ ID NO.




UUUU-3′
599



Rabies virus-HIS-19
5′-CUUCAGAAAGCAAGUCAU
SEQ ID NO.




UCUA-3′
600



Rabies virus-HIS-20
5′-UACAUCUCAGCCAUAAAA
SEQ ID NO.




AUG-3′
601



Rabies virus-HIS-21
5′-UUACUGAGUGCAGGGGCC
SEQ ID NO.




CUGA-3′
602



Rabies virus-HIS-22
5′-UCAACUUUCCCAACCCUC CA-3
SEQ ID NO.





603



Rabies virus-HIS-23
5′-CAGAGGGACAGGGAGGGA
SEQ ID NO.




GGU-3′
604



Rabies virus-HIS-24
5′-AGUCAGAACUUGGAAUGA
SEQ ID NO.




GAU-3′
605



Rabies virus-HIS-25
5′-UCAAAGAUUAGAGUCAAC
SEQ ID NO.




AGA-3′
606



Rabies virus-HIS-26
5′-CAUGAACUGGGUAUACAA
SEQ ID NO.




GUU-3′
607



Rabies virus-HIS-27
5′-CUGAUGACAUGCUGGAGA
SEQ ID NO.




AGA-3′
608



Rabies virus-HIS-28
5′-UGGUCACGUGUUCAAUCU
SEQ ID NO.




CAU-3′
609



Rabies virus-HIS-29
5′-UUAUGAAGACUGUUCAGG
SEQ ID NO.




ACU-3′
610



Rabies virus-HIS-30
5′-CUGGUGGAGAUAAAACGU
SEQ ID NO.




ACUGA-3′
611



Rabies virus-HIS-31
5′-UUGAUUGUUUUUCUCAUU UU-
SEQ ID NO.




3′
612



Rabies virus-HIS-32
5′-UGGUUUCUGGGGCUGUGC
SEQ ID NO.




CUC-3′
613



Rabies virus-HIS-33
5′-GAGCCAGGGCAGGAGACA GC-
SEQ ID NO.




3′
614



Rabies virus-HIS-34
5′-GGGUUCUUUUUGAAAAAAAA-
SEQ ID NO.




3′
615
















TABLE 2







Antisense sequence listing of the target of the RNA virus








Antisense fragment coding sequence
ID number





3′-ACAGAUACGAUUACCUCCAUUUCCGA-5′
SEQ ID NO.712





3′-AUAUUGUGUAUAUUUUUAUGCACA-5′
SEQ ID NO.713





3′-AAUAUACGGAAUAAAGAAAUGAAA-5′
SEQ ID NO.714





3′-UCCUCUUACUGUUUUUUUUUUUUUUUU-5′
SEQ ID NO.715





3′-AACAACGACGAUAAAAGAUAAAUU-5′
SEQ ID NO.716





3′-GUACUUCUUUGUUAAAUAUUAAAUGAAU-5′
SEQ ID NO.717





3′-CUCAACUCCUUCUUCUUCUCCUUCUGACC-5′
SEQ ID NO.718





3′-AUUGUACGAAUCCUAUUACCGGAG-5′
SEQ ID NO.719





3′-UCCUCUUACUGUUUUUUUUUUUUUUUU-5′
SEQ ID NO.720





3′-AAGGUAAACGUGUCUCAUAGAAAA-5′
SEQ ID NO.721





3′-ACGACAUUAACGACAACAACGACGACAA-5′
SEQ ID NO.722





3′-CUUUUUCUCUUUUCUUUGUUCCC-5′
SEQ ID NO.723





3′-CCCUCCUCCCUCCUUCUCUGAGG-5′
SEQ ID NO.724





3′-CAAGAUCUCUACGUUCUGAACAC-5′
SEQ ID NO.725





3′-UGAGUAAGAUGGUAAAAAAUUUAAC-5′
SEQ ID NO.726





3′-UCUAGGACACUGAAGACCUGAAAA-5′
SEQ ID NO.727





3′-UUUAUAAUAAAAAUUUUAAAUGAA-5′
SEQ ID NO.728





3′-UGAAAAAUUUUCUUUUCCCCCCU-5′
SEQ ID NO.729





3′-CUUUUCCUUCCCUUUUAAAGUUU-5′
SEQ ID NO.730





3′-UUUACUUGUUCAUCUAUUUAAUC-5′
SEQ ID NO.731





3′-UUUAAUACCAUGGUCAAUCUCUUU-5′
SEQ ID NO.732





3′-CUUUCUUUUUUAUAUUUAAUUUU-5′
SEQ ID NO.733





3′-UAAAUAGUUCUCGGUAAAUUUUU-5′
SEQ ID NO.734





3′-AUUUUGUCCCUGGUUUUCUUGGCA-5′
SEQ ID NO.735





3′-UCUUAGUCUAUUCAUCUUAAUCU-5′
SEQ ID NO.736





3′-UCCGUCUCCUUCUACUCCGGUUG-5′
SEQ ID NO.737





3′-AUAGUUUUUUAAUUCUUUUCCAAU-5′
SEQ ID NO.738





3′-CCUAGUCACCUCUUUCACUCCUCCUACU-5′
SEQ ID NO.739





3′-UACUCUCUAGAACCCCCACCCUG-5′
SEQ ID NO.740





3′-CUUUUUGAGUUCUACUUUCCUUA -5′
SEQ ID NO.741





3′-UAACUAACCGAAUUCCUCUUUUAU-5′
SEQ ID NO.742





3′-UUAACAAAUGGAUAAAUAACCAAAACAC-5′
SEQ ID NO.743





3′-GACACGACUUGGUCCUGGUCCU-5′
SEQ ID NO.744





3′-UCUACUUCGUCAGUGGUUGGCG-5′
SEQ ID NO.745





3′-UAAUCUAAAGUUGUGUCCACGAUGUAG-5′
SEQ ID NO.746





3′-AACCUUACAAAACGAGGAGAAAU-5′
SEQ ID NO.747





3′-CUUUAAAAUAAUAAAACAAGUCA-5′
SEQ ID NO.748





3′-AAUCGAUCUAAAUGUCUAAACCU-5′
SEQ ID NO.749





3′-UUGUUCUCGUCCGGUCACACCACC-5′
SEQ ID NO.750





3′-AACUCCUUUUCCCUUGGGACAUGU-5′
SEQ ID NO.751





3′-GGUCCGUGACCCUUCAGUCACCGU-5′
SEQ ID NO.752





3′-UUAAUCCUCACUAUGGAAGUGAUU-5′
SEQ ID NO.753





3′-ACUCUUUUUCCGGUGACAGGAAAU-5′
SEQ ID NO.754





3′-UGUUUAACCUCUUUAUCACUUUU-5′
SEQ ID NO.755





3′-CUUCGUCUCUCUUUCAUCUCUUC-5′
SEQ ID NO.756





3′-AGUUUUCCUCUCUUGUCUACGACC-5′
SEQ ID NO.757





3′-GUUUUCUUCCGUAAUUUUCUCCU-5′
SEQ ID NO.758





3′-CUCUACCUGAAACUAAAGACACU-5′
SEQ ID NO.759





3′-CCUUUAGGUCCCUCCAAAACCUU-5′
SEQ ID NO.760





3′-UUUCCUUCUUUAACUUUGGGUCU-5′
SEQ ID NO.761





3′-CACCGUCCGGGUAAUGUGGUGGU-5′
SEQ ID NO.762





3′-UCAAAUUUAAAUAUAGGUUUUAUUUAAA-5′
SEQ ID NO.763





3′-UUCUUUUUCUAUUUAUCUUGUGUUUCUUAACUGUUU UAAA-
SEQ ID NO.764





5′






3′-AGAUUCGCUUCAUUGUUGUUCUCA-5′
SEQ ID NO.765





3′-UUGUCUUUCUUCGUAAUAAUGUAGUCCGAAGA-5′
SEQ ID NO.766





3′-ACUAAAUAUAAAUGACCAUAUUUUAUCA-5′
SEQ ID NO.767





3′-UUGUUUGUUUGGUCUCUGUGAUUCCUUUACGU-5′
SEQ ID NO.768





3′-UAUGUUAGUUUAACUUACCGUA-5′
SEQ ID NO.769





3′-UCUACUGUUAACACUUUAAUUU-5′
SEQ ID NO.770





3′-CAAUAUAUACCCUUUACUACCUUAAUUGU-5′
SEQ ID NO.771





3′-UUUUUUGAUUCACUAAGUUGU-5′
SEQ ID NO.772





3′-UUUAUGUUUUUUAUAUGACUUAUGUU-5′
SEQ ID NO.773





3′-AAAUGUAAGGACCAGUUGAUACUUUACUUUGAUAAC G-5′
SEQ ID NO.774





3′-GAUGUUUUUUUACGAUUUUCUU-5′
SEQ ID NO.775





3′-UACGACUUGUUGAGUUUCUUUU-5′
SEQ ID NO.776





3′-UCCUUUCACUUUUCUACCGUUU-5′
SEQ ID NO.777





3′-UUACUCCUUUCACUUUUCUACCGUUUUCU-5′
SEQ ID NO.778





3′-GUUCUUUUUUCUAUCAUAGUA-5′
SEQ ID NO.779





3′-GGUAUCUUUGUAAACUAUUGUUACUUCUU-5′
SEQ ID NO.780





3′-UUUCAUAUAUAAUACAAUGUUGU-5′
SEQ ID NO.781





3′-UACUAUUGUUGUUAUUAGAGAAA-5′
SEQ ID NO.782





3′-UGAUUAUGUGUACUAUUGUU-5′
SEQ ID NO.783





3′-ACUAUUGUUGUUAUUAGAGAAACGAU-5′
SEQ ID NO.784





3′-CUUUUCCUUUUCUUCUAAAGAAC-5′
SEQ ID NO.785





3′-UUACAUGUCGUAGGUUAUUUUU-5′
SEQ ID NO.786





3′-AUUAAUAAAACUUACCGGUGGGGUAC-5′
SEQ ID NO.787





3′-UUAAUAAAACUUACCGGUGGG-5′
SEQ ID NO.788





3′-AGAUAUUUAUUAUAUUGAUUU-5′
SEQ ID NO.789





3′-AUUUAUAUCUAUUUUAUAUGUAAU-5′
SEQ ID NO.790





3′-UUUACAAACAAAUUAAUGUACCUAAUCAU-5′
SEQ ID NO.791





3′-UACCAAUUAUGUAACCAAAUUAAAUAU-5′
SEQ ID NO.792





3′-UUGAUAUAAUUUUUGAAUACAUA-5′
SEQ ID NO.793





3′-AUAUCUUGUACUUUUUAAUUUUAAAAG-5′
SEQ ID NO.794





3′-AUCUGUUAUAUUGAUAUAAUUUU-5′
SEQ ID NO.795





3′-UUACAAUGGUAACAAUAGAUUAU-5′
SEQ ID NO.796





3′-UCCAUUUAAUUACUCUCUCUUACCUCAA-5′
SEQ ID NO.797





3′-AUAAAAUUUUCCGUCUAUUAAUCU-5′
SEQ ID NO.798





3′-CCUUGAACCACGUAAAAAAAGAU-5′
SEQ ID NO.799





3′-UAAAAAGAACUAACGAAAAGUU-5′
SEQ ID NO.800





3′-AUAAGACUUUUACCAUAUAAAUU-5′
SEQ ID NO.801





3′-UCGGAUAAAAGUAACUACGGACU-5′
SEQ ID NO.802





3′-AGUUGUUUAUAAAUGUCCGUUUU-5′
SEQ ID NO.803





3′-AAUCUUUUUACCUUUUCAUAUCU-5′
SEQ ID NO.804





3′-UUCUCGAGUUGUUUAUAAAUGUC-5′
SEQ ID NO.805





3′-AGAUUUAUAAGUCUUACGUGAUCUCUUU-5′
SEQ ID NO.806





3′-ACUACCCCCAACUGCCUCAACCCCUCA-5′
SEQ ID NO.807





3′-CCCCUAACCUUUCCGAGAGACAC-5′
SEQ ID NO.808





3′-UUUACCUCGUCUUUCUUGUGAGUCC-5′
SEQ ID NO.809





3′-ACCGAGCUUCUCGUACCUCUCCUU-5′
SEQ ID NO.810





3′-UCCUUCCCCUAACUCUCUGAGUG-5′
SEQ ID NO.811





3′-UUUUAUCUGACCUCUACCGGUACACCUCUUCG-5′
SEQ ID NO.812





3′-GUCGCGUCCCCUUCUCACCCGUCCGUC-5′
SEQ ID NO.813





3′-UUAUUCUUUUCGUUGUAACACUAAAAAUUAAU-5′
SEQ ID NO.814





3′-AUUUUUUUCAGUUUAAAUACUAAU-5′
SEQ ID NO.815





3′-GAAACCGUAAAGUCACUAAGUCGUUUU-5′
SEQ ID NO.816





3′-UUUACACGAGGGGAAAGGACCU-5′
SEQ ID NO.817





3′-AAAAUUUCCUCACCACUUCUUCUUUCU-5′
SEQ ID NO.818





3′-UUUAUUAUAUUUACGUAAGUUGA-5′
SEQ ID NO.819





3′-CCGUCCACACCAACGAGUUCGACAUU-5′
SEQ ID NO.820





3′-AUAUUGUAAAAGGACGAAGGUU-5′
SEQ ID NO.821





3′-AGUAACCUUCUACCUCGAGAAA-5′
SEQ ID NO.822





3′-GUCGAAUGAGAAGGAGUCUCAAGAAA-5′
SEQ ID NO.823





3′-AAAUACUUAAGAUGUCUUUAUUACUAUUAC-5′
SEQ ID NO.824





3′-UUUCUAAUACCUUUGAAAAGAC-5′
SEQ ID NO.825





3′-AACGACAAAAAGGUUUGUGAUCU-5′
SEQ ID NO.826





3′-CAGUUAGGUUUAUAACCUUCUUCGUCUUCAAUUA-5′
SEQ ID NO.827





3′-UACACCUCUGUAAGGUCGUGUCUCCUUUG-5′
SEQ ID NO.828





3′-AGUCCGAGUUCACUAGAGAGUAAAGU-5′
SEQ ID NO.829





3′-AAUAUAACUUCAAAUACUUCAAC-5′
SEQ ID NO.830





3′-UCUAUAUCCUUACACAGACUUU-5′
SEQ ID NO.831





3′-UUUUCAGUUCUUUUAAUUUAAAUAU-5′
SEQ ID NO.832





3′-AUACGGACUAUUAAAAAGUAACC-5′
SEQ ID NO.833





3′-UAUUUCCUUUUCAGUUCUUUUAA-5′
SEQ ID NO.834





3′-UCUCUCUCUCUUUUCUUUUAAC-5′
SEQ ID NO.835





3′-AUACGGACUAUUAAAAAGUAAC-5′
SEQ ID NO.836





3′-GACACAAAAGAGGAUCUUACAGU-5′
SEQ ID NO.837





3′-UUUCUGUCCUAAAGUAAUAAACAU-5′
SEQ ID NO.838





3′-ACCUACACUCUUUAUGAACCCU-5′
SEQ ID NO.839





3′-UUUUCUGUCCUAAAGUAAUAAA-5′
SEQ ID NO.840





3′-UUUUCUGUCCUAAAGUAAUAAACAUA-5′
SEQ ID NO.841





3′-CUGUCCUAAAGUAAUAAACAUA-5′
SEQ ID NO.842





3′-UCAAGAGAAAACUGUAAAACAAG-5′
SEQ ID NO.843





3′-ACUGUAAAACAAGAAAGAAAC-5′
SEQ ID NO.844





3′-CUUUUACAACAGGUUGUUAGGUUAGUU-5′
SEQ ID NO.845





3′-CCUUCUUUUCUGUAAUUUGAUUAA-5′
SEQ ID NO.846





3′-AUUAGAAGAUAUUCAGAUCAUUU-5′
SEQ ID NO.847





3′-GUCCUUAGGAACAUCACUACCCUAACA-5′
SEQ ID NO.848





3′-AUAUAAGUUACCGUUUUCUUUUGUUUA-5′
SEQ ID NO.849





3′-UUACGGAAUUAGAGUCUAUUAAACAAUU-5′
SEQ ID NO.850





3′-AUUAAACAAUUACUUCUUAUUUUAAUU-5′
SEQ ID NO.851





3′-UUGUUCAAAGAGGAAUAGUAUUU-5′
SEQ ID NO.852





3′-GUAUCAUAGAGAAUAUUAGGAAAAGUAAA-5′
SEQ ID NO.853





3′-UAUCAUAGAGAAUAUUAGGAAAAGUAAA-5′
SEQ ID NO.854





3′-AUGUUUGUACCCGUUAAGUUUUAG-5′
SEQ ID NO.855





3′-CGAGAAGAAAGGAAUUGUUUACA-5′
SEQ ID NO.856





3′-ACAAUUUGUGAAAGAAAGGAAAA-5′
SEQ ID NO.857





3′-UAUCAUAGAGAAUAUUAGGAAAA-5′
SEQ ID NO.858





3′-UGUUGACUUUGUUACGUUCCUUA-5′
SEQ ID NO.859





3′-CAAGUUCCCGGUUAAUAUAGUGU-5′
SEQ ID NO.860





3′-AUAUUUUAAAAGAGUCCAGAUA-5′
SEQ ID NO.861





3′-UCUUUAAGUCCUUUUACCUUUUU-5′
SEQ ID NO.862





3′-GUGUUUCGAGUUCGUGCAUAACA-5′
SEQ ID NO.863





3′-GAACAAAAGAAAGGGAAAGAAAGAC-5′
SEQ ID NO.864





3′-AAAGAAAGGGAAAGAAAGACGAAAGA-5′
SEQ ID NO.865





3′-AAAAGAAAGGGAAAGAAAGACGAAAGAGA-5′
SEQ ID NO.866





3′-AAAGAAAGGGAAAGAAAGACGAA-5′
SEQ ID NO.867





3′-AAAGAAAGGGAAAGAAAGACGAAAGA-5′
SEQ ID NO.868





3′-UAUACCUACAUCUAAAGUAAAC-5′
SEQ ID NO.869





3′-AAAAGAAAGGGAAAGAAAGACGAAAGA-5′
SEQ ID NO.870





3′-UGUAGAAAUGUUACACCUAUAAAGAAG-5′
SEQ ID NO.871





3′-AAGUAUGUAAGAUUUGAAUUAAGGUCUA-5′
SEQ ID NO.872





3′-CUGAUGUUCUCUUCCUACCGUCU-5′
SEQ ID NO.873





3′-UUACCGUCAAUACUUAUAUAAU-5′
SEQ ID NO.874





3′-UUCCAACAUAAAAUAAUAAAUU-5′
SEQ ID NO.875





3′-GGAAAAAGGAAAAGUAGUGAAAAAAA-5′
SEQ ID NO.876





3′-GUCCUUUUUUUACCUAUGAUUU-5′
SEQ ID NO.877





3′-UAAUAAAAUAUUAGUAAUAGAUUAAU-5′
SEQ ID NO.878





3′-AUAUAUAUACGUUCAUCGUAUAUAUAU-5′
SEQ ID NO.879





3′-ACAAUCUAAAGAACAGUAAAAAAGG-5′
SEQ ID NO.880





3′-GGUGUCGUUGUACCAAAGUCAUA-5′
SEQ ID NO.881





3′-GAACAAUUCAUGAACUAUAGACA-5′
SEQ ID NO.882





3′-UAAGAGAAUAAUACUUAUUUCGU-5′
SEQ ID NO.883





3′-UCUCUCUUUCUUUCUCUUAACCCCUCA-5′
SEQ ID NO.884





3′-UAUACCUACAUCUAAAGUAAAC-5′
SEQ ID NO.885





3′-UUGUAGAAUAAAGGAAGAAAAG-5′
SEQ ID NO.886





3′-AAAAAUCGGGAACGUUUCUUGA-5′
SEQ ID NO.887





3′-GAAGUAAUUCACAAAAAUAGCCUUCAGU-5′
SEQ ID NO.888





3′-ACGGGACUGAAGUGUCCGGUAAA-5′
SEQ ID NO.889





3′-UAAUAGAAUUCUUUCUAAUUUCUUCUUAAAC-5′
SEQ ID NO.890





3′-AGUUUCGUUUUAUCCAAGUCUCG-5′
SEQ ID NO.891





3′-UUGAAAAAUAACUAGGUCACGAGU-5′
SEQ ID NO.892





3′-UCUAUAGAAAGUUUUUUAAAGUU-5′
SEQ ID NO.893





3′-UACGUAUGUUGUUACCCUUACAGUAAA-5′
SEQ ID NO.894





3′-UAACAAAUAUAAAUAAAAGUAAA-5′
SEQ ID NO.895





3′-GUUGUAUUUUUUAGUUGGUAUAA-5′
SEQ ID NO.896





3′-AGGAGAAAAGAAAAGGAAAGAGGAAGAAA-5′
SEQ ID NO.897





3′-GUCUUUUCGUCAUACUCUUCCU-5′
SEQ ID NO.898





3′-AACGGACCCCUUUCCUCCGUCA-5′
SEQ ID NO.899





3′-GUCUUUUCGUCAUACUCUUCCU-5′
SEQ ID NO.900





3′-AGAAAAGAAAAGGAAAGAGGAAGAAA-5′
SEQ ID NO.901





3′-CAGGAGAAAAGAAAAGGAAAGAGGAAGAAA-5′
SEQ ID NO.902





3′-GAAAAGAAAAGGAAAGAGGAAG-5′
SEQ ID NO.903





3′-GAGAAAAGAAAAGGAAAGAGGAAGAA-5′
SEQ ID NO.904





3′-AAUUAUUCUUAUGUCUAAAUAA-5′
SEQ ID NO.905





3′-AGAGACUCAAUCUUUUACUCUUUCA-5′
SEQ ID NO.906





3′-GAAACGUAAUUUUUUACACAAACU-5′
SEQ ID NO.907





3′-AAAAUAUACAGAUCUUUUGAAUCUGUGAUAU-5′
SEQ ID NO.908





3′-GAUGUCCUACAUCUAAAACUUUUAU-5′
SEQ ID NO.909





3′-AGAAACAUAAGACCGAAAGGAAGAAACCAAC-5′
SEQ ID NO.910





3′-UCUUCUGUGUUUUUUUACACAAUUGUGUUUUG-5′
SEQ ID NO.911





3′-AGUCACAAAAGACUGAGGUUUCAA-5′
SEQ ID NO.912





3′-AUGGUUCUUUUACUUCUUCCGAGAAGACU-5′
SEQ ID NO.913





3′-AAAUGAACGAAUACAUUGGAAUAAAA-5′
SEQ ID NO.914





3′-AAAGAGAUAAAAGAGAACAAAAUUUG-5′
SEQ ID NO.915





3′-UUCUACUGAUAGAUUUUACAGUCC-5′
SEQ ID NO.916





3′-UAAGUGACGGAAGAAGGGAGAGU-5′
SEQ ID NO.917





3′-GACAGACGAUUGGUCAUACUUGU-5′
SEQ ID NO.918





3′-UCUUUCAAGAUAGUUCttttttt-5′
SEQ ID NO.919





3′-AAAGUUUAAGGAAGAGUCUUAAG-5′
SEQ ID NO.920





3′-UAAAACAUGUCUUCCAAAAGUAUU-5′
SEQ ID NO.921





3′-UAACUAAUCUUUAAGUUGAACCUUUUUAGUUAC-5′
SEQ ID NO.922





3′-CCUACAGAAACAGAAAGAAAAAGAAAC-5′
SEQ ID NO.923





3′-UGUGGUUUCCCUUUGAGUGACUGUCUUUUG-5′
SEQ ID NO.924





3′-CUGUGUCUACUUCUUUGAAGGAAA-5′
SEQ ID NO.925





3′-AUGUUGGGUUCUCUCGAAUUUG-5′
SEQ ID NO.926





3′-UUUCUUACUUCAUUUCCAGUCGU-5′
SEQ ID NO.927





3′-CACGAUAACUAGUCUGAUUAAU-5′
SEQ ID NO.928





3′-CGACCUGACACCACUGUCGGAG-5′
SEQ ID NO.929





3′-GUUGGAGACGUGUUUUACUCGA-5′
SEQ ID NO.930





3′-UGUUACCUCGUACGUUCCUUCGU-5′
SEQ ID NO.931





3′-AUCGUCCAUCAUAGGUUCUGUCUCUG-5′
SEQ ID NO.932





3′-UUUUACGACUCCUAUACCCGUU-5′
SEQ ID NO.933





3′-GUUAUUGGUUUCUCUUUUUUCUU-5′
SEQ ID NO.934





3′-UUAGUACCUUCAACAAAAGGGGU-5′
SEQ ID NO.935





3′-UUCGUUGGUCCUCUAACCAAGU-5′
SEQ ID NO.936





3′-UACGUUGACUCUAGUCUCGUAG-5′
SEQ ID NO.937





3′-GGUCUCCUGUUCUCGAGAACAA-5′
SEQ ID NO.938





3′-CUCCUGCUCUACCCACCUAGUUCU-5′
SEQ ID NO.939





3′-CUCCUGCUCUACCCACCUAGUUCUCCAG-5′
SEQ ID NO.940





3′-AACCGAGUAAGAGACAAAAAAAACAAAAAAAA-5′
SEQ ID NO.941





3′-CUCCUGCUCUACCCACCUAGUUCUCCAG-5′
SEQ ID NO.942





3′-GAGUAAGAGACAAAAAAAACAAAAAAAA-5′
SEQ ID NO.943





3′-GAAAUAAGAUUUUAUAAAAAUUUA-5′
SEQ ID NO.944





3′-UACUCGGGUUCUGAAGAAAACUA-5′
SEQ ID NO.945





3′-UUCUUUGACACUAAAAAUUAUGAAU-5′
SEQ ID NO.946





3′-UUCUUACUAUUUCGUUUCUUUU-5′
SEQ ID NO.947





3′-AUGAAAAUUUCUACGUACGAAAGUAA-5′
SEQ ID NO.948





3′-AAAUUUUUUACUAUUCUUAUUU-5′
SEQ ID NO.949





3′-UCUUACUAUUUCGUUUCUUUUACAUC-5′
SEQ ID NO.950





3′-AUGACUAGAGGUUGAGUCUUCU-5′
SEQ ID NO.951





3′-UUUUAAACUUUCUUACUAUUUCGUUU-5′
SEQ ID NO.952





3′-UUUUUACUUACUUUUAUACGUAAGAGAAGUUUU-5′
SEQ ID NO.953





3′-UUUCGUUCUUUUUACUUACUUUU-5′
SEQ ID NO.954





3′-GUUCUUUUUACUUACUUUUAUA-5′
SEQ ID NO.955





3′-UCCUCUUUAGUUUUGUUUUGGUAU-5′
SEQ ID NO.956





3′-CGUAAGUUAUUUAUGUACGAC-5′
SEQ ID NO.957





3′-UACAUUCUUGACAUUUAUAUU-5′
SEQ ID NO.958





3′-UUUUGUUUUGGUAUUUUCAUC-5′
SEQ ID NO.959





3′-UUUCCUCUUUAGUUUUGUUUUGGUAUUUU-5′
SEQ ID NO.960





3′-AUCCCUCGAGGGGUGAGGGCAAAACACUG-5′
SEQ ID NO.961





3′-AUAUAGUUUUCUUUUACUUUAGUU-5′
SEQ ID NO.962





3′-CUAAUUUAAAUAUAGUUUUCUUUUACUU-5′
SEQ ID NO.963





3′-AUAUAGUUUUCUUUUACUUUAGUUAU-5′
SEQ ID NO.964





3′-UUUCUUUUACUUUAGUUAUCAACUCCU-5′
SEQ ID NO.965





3′-AUAUAGUUUUCUUUUACUUUAGUUAUC-5′
SEQ ID NO.966





3′-UACUGGUUUACAUAUCUAACUCU-5′
SEQ ID NO.967





3′-AUAUAGUUUUCUUUUACUUUAGUUAUCAACUCCU-5′
SEQ ID NO.968





3′-AUAUAGUUUUCUUUUACUUUAGUUAU-5′
SEQ ID NO.969





3′-AACUUUAUUCUUCUAAUCUAUAAAAAUUAA-5′
SEQ ID NO.970





3′-ACUAUAGUAAAAGUUAAUGUAU-5′
SEQ ID NO.971





3′-UUCUUUUUCUUCUAUCGUUCUU-5′
SEQ ID NO.972





3′-UCGAUUUCAAACCAUCCUUUUGUU-5′
SEQ ID NO.973





3′-UUUAGUUCAUUUUAUUGUUAUUUACUGUAUG-5′
SEQ ID NO.974





3′-GUAAUUUAAAUAUGUUUGUUUGUGUUU-5′
SEQ ID NO.975





3′-UCGAUUUCAAACCAUCCUUUUGUU-5′
SEQ ID NO.976





3′-CUUUAUAUGGUAUAUUUAUACUACA-5′
SEQ ID NO.977





3′-UUUAUUCUAGUCUUAAAAUAAAU-5′
SEQ ID NO.978





3′-UCUUAAUAUAAUUAUGUCAUAU-5′
SEQ ID NO.979





3′-UCGUAAUUUUGUAAUCUUUAUAAUUUAUUC-5′
SEQ ID NO.980





3′-UCUUAAUAUAAUUAUGUCAUAUAUCA-5′
SEQ ID NO.981





3′-CUUCUUAAUAAGUGUAAUUAUU-5′
SEQ ID NO.982





3′-CUUCUUGUUUGAUAAUUAUUAA-5′
SEQ ID NO.983





3′-AUUCUAGUCUUAAAAUAAAUAAUGAU-5′
SEQ ID NO.984





3′-AUUUGGUUUGUAAAAAGGAAUA-5′
SEQ ID NO.985





3′-UAAAAUUUUGUGAAUUUUUAAA-5′
SEQ ID NO.986





3′-GUUAUAAAGACGACAAGUUAAGUUACC-5′
SEQ ID NO.987





3′-AAAAAACCCAAAACAAACACAACUAUGAAACUC-5′
SEQ ID NO.988





3′-CGUUUAAAUAGAAUUUAAGUUCAUGUAU-5′
SEQ ID NO.989





3′-AUUGUCUGAACCUUUUUAUGUUAA-5′
SEQ ID NO.990





3′-UAAUGGAAGUUUUUAGAUCUUGAAAUAAUUAAGAG UC-5′
SEQ ID NO.991





3′-UUUUAAUUUUUGUUUUUACUUUCC-5′
SEQ ID NO.992





3′-GAAUAAAAUACAGAAGAAACAACAAAAA-5′
SEQ ID NO.993





3′-UAAUAAUUGUUGAAUAAAAAUAAAUUAGAAAAU-5′
SEQ ID NO.994





3′-UAUUUCUUCUUAUAAUUGUAACUGUAAU-5′
SEQ ID NO.995





3′-AAUACUUACAAAAUAGUACUAAUUUCUA-5′
SEQ ID NO.996





3′-GGGUCGUGUCUCUACAGUAACU-5′
SEQ ID NO.997





3′-UCACUCUUUACUACUACAACUAGUCU-5′
SEQ ID NO.998





3′-AAGAUUCCUUUCGUUGGUCUUC-5′
SEQ ID NO.999





3′-ACUCGUUCUUCUUUAGGAUGUA-5′
SEQ ID NO.1000





3′-CCUUACUCUUCUUUCGAUUUAA-5′
SEQ ID NO.1001





3′-AAUCUUUACAGAAUUCGUAACG-5′
SEQ ID NO.1002





3′-GUCCUGUAACUUUUACUUCUCUUC-5′
SEQ ID NO.1003





3′-UUCUCUUUCUGGACUGGUUUCU-5′
SEQ ID NO.1004





3′-UGAUUCAGUAUAUUUUUAUGUUCUUUUU-5′
SEQ ID NO.1005





3′-UUGUUAAACUCAACUAUCUGUUACUUA-5′
SEQ ID NO.1006





3′-UAGUACAAAGUAUGAAGAUCGGUAAC-5′
SEQ ID NO.1007





3′-CUUUGUAUGAUUCUUGUGUCCUU-5′
SEQ ID NO.1008





3′-AAAGUGGUAAUGGAAGAGAAGG-5′
SEQ ID NO.1009





3′-UCCUUCGUUUUAAUUUGUCUCUUCUUU-5′
SEQ ID NO.1010





3′-ACCUUUUACUUUCUUGAAACCU-5′
SEQ ID NO.1011





3′-UUUUGUUGUGAACCCAUUUAGUCUGU-5′
SEQ ID NO.1012





3′-CGACGACCUGUCAGUCACCAAA-5′
SEQ ID NO.1013





3′-CCUAGUUCUUUCUUCUCAAGAGACUCU-5′
SEQ ID NO.1014





3′-CCCCUCUGUGUGUUUAAGUCUG-5′
SEQ ID NO.1015





3′-UGGUUUACUUUUGGGUCGAGUGUUCUCAGU-5′
SEQ ID NO.1016





3′-UUUACUCUUACACCUUUGGUAC-5′
SEQ ID NO.1017





3′-UCUUUAUUCCUCUCAAACCGCG-5′
SEQ ID NO.1018





3′-UCUUCUCAUCUGCCUUUCACCU-5′
SEQ ID NO.1019





3′-CUGUAAGAAACCGACCUUUCUCGGAUU-5′
SEQ ID NO.1020





3′-CUUCUCUCGUCCCGUUCUUAGUUUUGAUCCGA-5′
SEQ ID NO.1021





3′-UCCCGUUCGAAAGGGUUUACAG-5′
SEQ ID NO.1022





3′-CCUGUACUAAGGUCUCUCCUUACUUGUUCCUGUU-5′
SEQ ID NO.1023





3′-CCUUUAACACUUUUAAGUUACC-5′
SEQ ID NO.1024





3′-CUCAGAUGUAAGAGUCAAAACAG-5′
SEQ ID NO.1025





3′-CUCUGUCUGUCAUUUCCUUUUA-5′
SEQ ID NO.1026





3′-ACUUCUUUUUGAUUUCUUUUUU-5′
SEQ ID NO.1027





3′-GGUCUGUCGUCUGACCUUCCGU-5′
SEQ ID NO.1028





3′-UUGUCCUUUAGUAUAACUUAAACA-5′
SEQ ID NO.1029





3′-UCAUACGUACCUUUCUAAAAGAAUUAC-5′
SEQ ID NO.1030





3′-GUCUCAAACUUAAAAUACUAGUC-5′
SEQ ID NO.1031





3′-ACUCCCAUUGUAAAUUAAAACCC-5′
SEQ ID NO.1032





3′-AAAAAAGAAAAACUCUUUCCCGAAGUA-5′
SEQ ID NO.1033





3′-UCUUUUGUUGUCCACAACUACUC-5′
SEQ ID NO.1034





3′-AAAAAAGAAAAACUCUUUCCCGA-5′
SEQ ID NO.1035





3′-UUUACUUUCUAAAGGUCUUUAAC-5′
SEQ ID NO.1036





3′-UGUUGUCUAUGUUGUUUACGACCACUCUUA-5′
SEQ ID NO.1037





3′-UCACUAAGUACGACUUUAUGUCA-5′
SEQ ID NO.1038





3′-UACUCUCUAGAACCCCCACCCUG-5′
SEQ ID NO.1039





3′-GGUUACAUAAAUAUGUAAAUGUUCAU-5′
SEQ ID NO.1040





3′-UUCAAGUUACUCUUUCUCUUAUCUAUACC-5′
SEQ ID NO.1041





3′-AUGAAUGUACGGUUUAGAGUU-5′
SEQ ID NO.1042





3′-UCAAGUUACUCUUUCUCUUAU-5′
SEQ ID NO.1043





3′-AUGUAUGAUAAUUACACUAAAU-5′
SEQ ID NO.1044





3′-AAAACAGGAAGGUUAACACAAC-5′
SEQ ID NO.1045





3′-CUUCGUCUCUCUUUCAUCUCUUC-5′
SEQ ID NO.1046





3′-AGUUUUCCUCUCUUGUCUACGACC-5′
SEQ ID NO.1047





3′-AGGGACCUACCGUUCGUCUUCGU-5′
SEQ ID NO.1048





3′-GUCCUGUAACUUUUACUUCUCUUC-5′
SEQ ID NO.1049





3′-UUGUUCUCGUCCGGUCACACCACC-5′
SEQ ID NO.1050





3′-AACUCCUUUUCCCUUGGGACAUGU-5′
SEQ ID NO.1051





3′-GGUCCGUGACCCUUCAGUCACCGU-5′
SEQ ID NO.1052





3′-UUAAUCCUCACUAUGGAAGUGAUU-5′
SEQ ID NO.1053





3′-ACUCUUUUUCCGGUGACAGGAAAU-5′
SEQ ID NO.1054





3′-UGUUUAACCUCUUUAUCACUUUU-5′
SEQ ID NO.1055





3′-AUAAUCUUUAUUGUGGAUACU-5′
SEQ ID NO.1056





3′-UUUCCUUCUUUAACUUUGGGUCU-5′
SEQ ID NO.1057





3′-CUACAGUAGUUCUUACGUCUACG-5′
SEQ ID NO.1058





3′-UGUUUUCUACGUCUUUCUCCGUUC-5′
SEQ ID NO.1059





3′-UUACAAUAACUCAUAUAUCUCUCU-5′
SEQ ID NO.1060





3′-GUAAACUACUAGACCGUAAGGUUGA-5′
SEQ ID NO.1061





3′-CUUCCCUCCGACUAGGUCUUGUCA-5′
SEQ ID NO.1062





3′-CCGUGUUGACCUCACCUCAGACGA-5′
SEQ ID NO.1063





3′-GUUUUCUUUUCUUUCUUCUCGAG-5′
SEQ ID NO.1064





3′-AGGUUUAACGAAGUUUACUUUU-5′
SEQ ID NO.1065





3′-UUAACAUGUUUUUGGGACUAUG-5′
SEQ ID NO.1066





3′-UACUCCUUACCUCCCUUAUCGA-5′
SEQ ID NO.1067





3′-UAACGAGGAAACGACCUACCUA-5′
SEQ ID NO.1068





3′-AAGGUUAGACUUACUACGUUGU-5′
SEQ ID NO.1069





3′-AUUUUCGACGUAGUUAUCCACA-5′
SEQ ID NO.1070





3′-CCCUCUAACUAGGUUUUGUCGU-5′
SEQ ID NO.1071





3′-UCCCCCUUCGGGUCUAGGACCU-5′
SEQ ID NO.1072





3′-ACGGUGUCUCCUCUGUGUGUUU-5′
SEQ ID NO.1073





3′-CUCUUUCCUUUCACCUGUUGU-5′
SEQ ID NO.1074





3′-GUAUUGUUGUUGUUAUUAUUGACUU-5′
SEQ ID NO.1075





3′-UCCUUCCCUUUUAUGUUUUUUA-5′
SEQ ID NO.1076





3′-CUCCUUUACUCUUCUUCCGAU-5′
SEQ ID NO.1077





3′-GACCUCGACGACCUCGUCGUC-5′
SEQ ID NO.1078





3′-AGAGUUUGAACGUCAACCAG-5′
SEQ ID NO.1079





3′-AACUGAUACCCUCACUACAAA-5′
SEQ ID NO.1080





3′-UCAAACUUAAGUAACGACUUC-5′
SEQ ID NO.1081





3′-CUUUUUGUUCUAAAGAGGGUCAC-5′
SEQ ID NO.1082





3′-UGUCCCACUACCACAGGGGG-5′
SEQ ID NO.1083





3′-UUUACCUGGUGUUUGUGUCUUUG-5′
SEQ ID NO.1084





3′-UACAGAAGAAGUUAGUGAAGUUG-5′
SEQ ID NO.1085





3′-AUGACGAUUCCUUCGUGUUCUAC-5′
SEQ ID NO.1086





3′-UUUUUAACUUUGCUUGUUUAAG-5′
SEQ ID NO.1087





3′-UUAUUUAUGUUGUAAUGGGAAA-5′
SEQ ID NO.1088





3′-UUCGUUCUAAUUUUUCUCUCCU-5′
SEQ ID NO.1089





3′-AAUCUCGUAGACAACCUUCUUA-5′
SEQ ID NO.1090





3′-UUGUCUCCGACUUGUUCUCCU-5′
SEQ ID NO.1091





3′-ACGUCUUCCUUGUCCUUGCCG-5′
SEQ ID NO.1092





3′-UAACAUACCUGUGUUAAUCUUUG-5′
SEQ ID NO.1093





3′-UACUCUUUGCACGGACUCUUUGU-5′
SEQ ID NO.1094





3′-ACAAAAGAAGACAGACUUCU-5′
SEQ ID NO.1095





3′-GUAUAUUAAUCGUAGUGUUA-5′
SEQ ID NO.1096





3′-UGUUUAGUCGUCAAACUUGACUAU-5′
SEQ ID NO.1097





3′-CUUUCUCCAUUUAAUUUUUC-5′
SEQ ID NO.1098





3′-UUCAUCGUCCGAGUGAGACG-5′
SEQ ID NO.1099





3′-UCUUCCUCUCUUCCUUUUACC-5′
SEQ ID NO.1100





3′-UGUUUAUGGACGUCUUUACG-5′
SEQ ID NO.1101





3′-UUACUUAGUUGUUCUUUCUUUU-5′
SEQ ID NO.1102





3′-UUACUUAGUUGUUCUUUCUU-5′
SEQ ID NO.1103





3′-CUCUUACUUCUCUUUUGAGG-5′
SEQ ID NO.1104





3′-UAAGUCACUUUAACCUUUUA-5′
SEQ ID NO.1105





3′-UCUUUAUGUGGUUCUGGUGUAU-5′
SEQ ID NO.1106





3′-GAACUUGAAUCUUCGUCUAUA-5′
SEQ ID NO.1107





3′-UGUUACGAUAGUUAACAUUAG-5′
SEQ ID NO.1108





3′-UGUUACGAUAGUUAACAUUA-5′
SEQ ID NO.1109





3′-CUUGAAGUCCUGUAUCUUUUA-5′
SEQ ID NO.1110





3′-CGGAAGGAAAGGUCUUACAC-5′
SEQ ID NO.1111





3′-CUAUACUGAAACUUUCCCUC-5′
SEQ ID NO.1112





3′-UCCCCAACCUUACCGACGUC-5′
SEQ ID NO.1113





3′-GUCUCAUCUUACGUUAAGAGGAGU-5′
SEQ ID NO.1114





3′-AAGGACGAAAUGGUAUUACUGACU-5′
SEQ ID NO.1115





3′-AAAGUAUUACAGUCGUUUAUACGU-5′
SEQ ID NO.1116





3′-CCAGAUGUUUUGUAUGAAACUCUU-5′
SEQ ID NO.1117





3′-GUUUUAAUCUCUCUGUCUUUUAUCU-5′
SEQ ID NO.1118





3′-CUUCGUUUUGACAAACACGA-5′
SEQ ID NO.1119





3′-AACAAAAAUACACCUCGAUUAGU-5′
SEQ ID NO.1120





3′-GUGUUUCCUGUUAUCCUUUCUUU-5′
SEQ ID NO.1121





3′-AUUUCUUUAACUUAGUCAUUUAUU-5′
SEQ ID NO.1122





3′-UCACUCUGUGUCCCUUGUCUCUUU-5′
SEQ ID NO.1123





3′-GUAUACUUUCUUACACGUUGUAG-5′
SEQ ID NO.1124





3′-AAGUUACUUAGUUGUUUUUUCUUU-5′
SEQ ID NO.1125





3′-GUCGUCUAUUUUCUUAUUACCUUUAC-5′
SEQ ID NO.1126





3′-UCAACUAUUAUUGUUGACCAGACCA-5′
SEQ ID NO.1127





3′-UCUUCUUCUUUUUCUCCUGAUAAA-5′
SEQ ID NO.1128





3′-GAAGGGUCAAAACCUCACAGACCCUA-5′
SEQ ID NO.1129





3′-UUUAAAUUUAUUCUUUUACCUUCUA-5′
SEQ ID NO.1130





3′-UUAGAUUACCCUUAAAUUAUCGAG-5′
SEQ ID NO.1131





3′-UACGUCUUGAAAGAAAAACUGAG-5′
SEQ ID NO.1132





3′-UGUAAGAAAAGUACACCCCGUAUU-5′
SEQ ID NO.1133





3′-GAUCAGUCCGAUCCGUCUACCA-5′
SEQ ID NO.1134





3′-GUUUCGUCUUACGUCAAGAGAA-5′
SEQ ID NO.1135





3′-ACGUGGUUAAUUUUAUGUCUAUA-5′
SEQ ID NO.1136





3′-UCUCAUUCUCUGUUGUACUGGU-5′
SEQ ID NO.1137





3′-CCCUUAACCCUGUUACCACUAC-5′
SEQ ID NO.1138





3′-UUACGGAACAAAGAUGAUUAUG-5′
SEQ ID NO.1139





3′-AUUCUCCUAGUCCUUACUCUUA-5′
SEQ ID NO.1140





3′-UAGAGUAAAUUCCUUACUGUGU-5′
SEQ ID NO.1141





3′-UCUGUUACGAUUCCUUUAUCCC-5′
SEQ ID NO.1142





3′-UUUCGUUACUUUCUCAUACCCCUC-5′
SEQ ID NO.1143





3′-AACCAGACUCCUUACACGGACGA-5′
SEQ ID NO.1144





3′-UAGUUACUUGUUUCUCCUUUAU-5′
SEQ ID NO.1145





3′-GUCUCUCUCCGUUUAAUUUUUC-5′
SEQ ID NO.1146





3′-GUGUUUAACUUCUACUGUCUCU-5′
SEQ ID NO.1147





3′-UUUGUUCUUCACGAAUACUCUC-5′
SEQ ID NO.1148





3′-AAAAAAAGUUUACGUAGAUAGUU-5′
SEQ ID NO.1149





3′-GUCUUUAAGCUUCUUUAUUUUAC-5′
SEQ ID NO.1150





3′-GUCGGAUUAGUCUGGUUUACUU-5′
SEQ ID NO.1151





3′-CCUGCCUAAUUCUUUCUUCUCA-5′
SEQ ID NO.1152





3′-ACCUCAACUAUUCCCCUUCCCU-5′
SEQ ID NO.1153





3′-UGUCUAAACUUUAUUAACUUCC-5′
SEQ ID NO.1154





3′-ACGUACACAUUUACCGAGAAC-5′
SEQ ID NO.1155





3′-GAAAAGGACUUUCACGGUCGU-5′
SEQ ID NO.1156





3′-UUCUGUUCUUUACCGGUCAUCC-5′
SEQ ID NO.1157





3′-GACGUAAACUUCUAAAUUCUAAC-5′
SEQ ID NO.1158





3′-GGUAAUAGGUUUCCAGAUGUUU-5′
SEQ ID NO.1159





3′-ACUCUGAAGGUUCUAGUUCUAC-5′
SEQ ID NO.1160





3′-CGUCCUCACCUAUCUAAGAUGU-5′
SEQ ID NO.1161





3′-UUUCGUUUAACAUCUUUUCUAA-5′
SEQ ID NO.1162





3′-ACGUCCCUUCUUGUGUCUAGAG-5′
SEQ ID NO.1163





3′-AGUUUACGUACUUCUGUAAGAA-5′
SEQ ID NO.1164





3′-UCUUCAAUAUUCCUACUACCU-5′
SEQ ID NO.1165





3′-GACGGGGUAGCCACUUCGAGG-5′
SEQ ID NO.1166





3′-UUAUGGUCGGAAGGUAAAGUCUUA-5′
SEQ ID NO.1167





3′-UUACUUAGGUUUAGUUUCCU-5′
SEQ ID NO.1168





3′-UACGGAACAAAGAUGAUUAUG-5′
SEQ ID NO.1169





3′-ACUCAACGGUAAGUGGUAACU-5′
SEQ ID NO.1170





3′-UAUGUAACUUCAAAAUGUAAA-5′
SEQ ID NO.1171





3′-CACACUACCCUUACCAACCUCAUA-5′
SEQ ID NO.1172





3′-UAUACGUGUUUGUCUUACACA-5′
SEQ ID NO.1173





3′-ACCUAAACAACGGUUAAAGU-5′
SEQ ID NO.1174





3′-UAAUAUUUUCCUUCCAGAGU-5′
SEQ ID NO.1175





3′-GGUUUCUCCCUUCUGCUUUC-5′
SEQ ID NO.1176





3′-AUAUAUUUAUCUUGUCCUUGUA-5′
SEQ ID NO.1177





3′-UGUUAUUUUUCAACCUCUUUGU-5′
SEQ ID NO.1178





3′-UUUCGGUACCUUGUUUACCGAC-5′
SEQ ID NO.1179





3′-CCAGAUGUUUUGUAUGAAACUCUUU-5′
SEQ ID NO.1180





3′-UUAUCAAAUGAACUUAUUAUGU-5′
SEQ ID NO.1181





3′-AAGUUCUACCUCUUUCCCUUCU-5′
SEQ ID NO.1182





3′-UUUUCUUUAUGUGGUUUUGUCA-5′
SEQ ID NO.1183





3′-UUGGAUUUAAAGAGGGUCUAAA-5′
SEQ ID NO.1184





3′-UGUUGGAUGAAAGAGUCAUGUCU-5′
SEQ ID NO.1185





3′-UUUAAGUUUGUUCCUCUAGUAA-5′
SEQ ID NO.1186





3′-ACCAGUCCAAUAAGACCGUAAA-5′
SEQ ID NO.1187





3′-GUUGGACCUUGGACCUUGGA-5′
SEQ ID NO.1188





3′-GGUCGUGACUCUCCCACUGACA-5′
SEQ ID NO.1189





3′-CUUUAGUUGGACUUACCAAA-5′
SEQ ID NO.1190





3′-AAUAGUUUAUGAACGAUAUAUG-5′
SEQ ID NO.1191





3′-GAAAAGAAUUUUUAAGGUCGCG-5′
SEQ ID NO.1192





3′-UCUCUUCCUAUAAGAGACCAG-5′
SEQ ID NO.1193





3′-CCCCUCUGUGUGUUUAAGUCUG-5′
SEQ ID NO.1194





3′-ACUAAUAACGACGAUCUUUGUAU-5′
SEQ ID NO.1195





3′-ACUAAUAACGACGAUCUUUGUA-5′
SEQ ID NO.1196





3′-ACCUCUUUCGGUUGUUCUAUUUU-5′
SEQ ID NO.1197





3′-UGUUUCUUGUACUUUUUUUGUUC-5′
SEQ ID NO.1198





3′-UCCCGUUCGAAAGGGUUUACAGA-5′
SEQ ID NO.1199





3′-UCCCGUUCGAAAGGGUUUACAG-5′
SEQ ID NO.1200





3′-GGUUUUGAUGUAUGACCACCCU-5′
SEQ ID NO.1201





3′-UCCGUUUCACCACACACACACG-5′
SEQ ID NO.1202





3′-AGUUUCUCUUUCUGUACUGGU-5′
SEQ ID NO.1203





3′-UGAAACAUUAGGGUACUUAGG-5′
SEQ ID NO.1204





3′-AAAGUCCGUCUUACUUACGUC-5′
SEQ ID NO.1205





3′-CUUUGUGUCCCUUGUCUCUUU-5′
SEQ ID NO.1206





3′-UUCCUUCUAGAGUAAACUCCU-5′
SEQ ID NO.1207





3′-CUAUCAUUCACCUUCUCUACUU-5′
SEQ ID NO.1208





3′-GUAUACUUUCUUACACGUUGUA-5′
SEQ ID NO.1209





3′-UAUUAUGAUCAUCAUUGUCAUU-5′
SEQ ID NO.1210





3′-AACUGACUUCUAGGUCUACUU-5′
SEQ ID NO.1211





3′-UUUUUACUACUGGUUAAGAGU-5′
SEQ ID NO.1212





3′-AUACCUUAAGAGAGAAUGACU-5′
SEQ ID NO.1213





3′-UUUUUUGUUUCUAACUCAUUCU-5′
SEQ ID NO.1214





3′-UUCGUUGGUCCUCUAACCAAGU-5′
SEQ ID NO.1215





3′-GGUCUCCUGUUCUCGAGAACAA-5′
SEQ ID NO.1216





3′-CUUUCUUGUAAGAAAAGUACAC-5′
SEQ ID NO.1217





3′-GACAUUACUCUUACCCUCUGGA-5′
SEQ ID NO.1218





3′-CCUUUAACACUUUUAAGUUACC-5′
SEQ ID NO.1219





3′-AAAACGAAACACAACAAAACGAC-5′
SEQ ID NO.1220





3′-UCCUGAAGCUCUUUAUACAACU-5′
SEQ ID NO.1221





3′-UUUGUUGUAUUGUUGUUGUUAUU-5′
SEQ ID NO.1222





3′-UUUUACGACUCCUAUACCCGUU-5′
SEQ ID NO.1223





3′-AAAGUGGUAAUGGAAGAGAAGG-5′
SEQ ID NO.1224





3′-AGAAUAAAGAAGUCUCUGUUAC-5′
SEQ ID NO.1225





3′-UCUCUUUUAUGAACUUUUAACAC-5′
SEQ ID NO.1226





3′-UGUCUUUACAGUGACUCUCCUC-5′
SEQ ID NO.1227





3′-UUUCCCCCAUCCCUGUUACCAC-5′
SEQ ID NO.1228





3′-CUGAUGUCUAUAUGUAUAUCUA-5′
SEQ ID NO.1229





3′-CUUUUUCCUCUCACUCUCUGUU-5′
SEQ ID NO.1230





3′-AUCUAUAUUUACACUUUCUAAU-5′
SEQ ID NO.1231





3′-AGUCUGUCGACGGGUCUCCCGU-5′
SEQ ID NO.1232





3′-UGAAUGGUCAGAGUAGAAGAU-5′
SEQ ID NO.1233





3′-AAAAGAUAGGGAGUCUUUUAGG-5′
SEQ ID NO.1234





3′-GAAACUAGAGCCCGAACUCU-5′
SEQ ID NO.1235





3′-AGAGAGACGGAACAUCAACC-5′
SEQ ID NO.1236





3′-AUAUUGAAUAAUGAAGUCUU-5′
SEQ ID NO.1237





3′-UCUUUAGUAUAGUUUAGGAA-5′
SEQ ID NO.1238





3′-AAGUCUGUCUAGUCUGGAGU-5′
SEQ ID NO.1239





3′-UUAUAGGUCUUACCAAAGAC-5′
SEQ ID NO.1240





3′-UUCAGUUGUACUUUUUUUGUC-5′
SEQ ID NO.1241





3′-ACUUUUUUUGUUCUAGAAUU-5′
SEQ ID NO.1242





3′-CCCCCCAAGAAAAACUUUUU-5′
SEQ ID NO.1243





3′-CUCUACCGGUUCCACCCUCU-5′
SEQ ID NO.1244





3′-AAAAAUGGUUAUCAUCUCCC-5′
SEQ ID NO.1245





3′-CACGAGGAGUACUUUACAGACA-5′
SEQ ID NO.1246





3′-AUGGUGGAAUUUAUAGUCUC-5′
SEQ ID NO.1247





3′-GAGUCGGUAUUUUUACUUGC-5′
SEQ ID NO.1248





3′-UAACGUCUUUCAAAGAGGUUUU-5′
SEQ ID NO.1249





3′-UCUGACCUGGUCGAUACCUUAG-5′
SEQ ID NO.1250





3′-UACAUUAGUGGAAUAUGUACUUG-5′
SEQ ID NO.1251





3′-CCUUCCUGAACCAUUUCAAG-5′
SEQ ID NO.1252





3′-UUUAGGACUCCGUGAAGUUGUA-5′
SEQ ID NO.1253





3′-CAGACAGUAGAGUGACCUAG-5′
SEQ ID NO.1254





3′-ACCCGUGUCAACAGUGACGA-5′
SEQ ID NO.1255





3′-UUUGUAACGUCUGUCCUAUC-5′
SEQ ID NO.1256





3′-ACAUUAAGAUCGGACUCAGA-5′
SEQ ID NO.1257





3′-GGUCCUUUCAGAAGUCUCCUA-5′
SEQ ID NO.1258





3′-AUUUUCUAGAAAAGAACAGA-5′
SEQ ID NO.1259





3′-UCUGUUUAUUCCAGUCCUCU-5′
SEQ ID NO.1260





3′-UCUGUUGUGGGUGAGGAAGA-5′
SEQ ID NO.1261





3′-AUCCAAGUUCAGACGGUCUAUGU-5′
SEQ ID NO.1262





3′-GAAUGGUCAGAGUAGAAGAUG-5′
SEQ ID NO.1263





3′-CCGGAACGAGAAGUCUCUCC-5′
SEQ ID NO.1264





3′-GUACGUCGAUCUUGGUACUG-5′
SEQ ID NO.1265





3′-CCCCUUCUUUUCACCAUCCGU-5′
SEQ ID NO.1266





3′-UGUCCUAUCUCGUCUAAAAA-5′
SEQ ID NO.1267





3′-AACUUUUACUUGGAACUACU-5′
SEQ ID NO.1268





3′-GUACUCGUUCUAGAAACAGUU-5′
SEQ ID NO.1269





3′-AGAACACUGUAAAAAUGGUUA-5′
SEQ ID NO.1270





3′-GUCCUUGUGUUCUUGGUUUC-5′
SEQ ID NO.1271





3′-AAGUGUAAUUUUUUCACUAU-5′
SEQ ID NO.1272





3′-GACAACCUUACCGGUCCUAC-5′
SEQ ID NO.1273





3′-UUCCACCUCUUGAGUCUCAAA-5′
SEQ ID NO.1274





3′-CGUAAACCUUCCAUAGAACG-5′
SEQ ID NO.1275





3′-GAGAUAAAGAACGUGAACAC-5′
SEQ ID NO.1276





3′-UUCUUCUCUGGUACACAUCAAUA-5′
SEQ ID NO.1277





3′-UAUUACGUAAACCUUCCAUA-5′
SEQ ID NO.1278





3′-GAUACUUCAGUAGUUUUAUA-5′
SEQ ID NO.1279





3′-AAGAGUAAAAACAACAAAUAAA-5′
SEQ ID NO.1280





3′-UAUUGUCUGGAUAUUGAAUA-5′
SEQ ID NO.1281





3′-UCUCUCUGUGUUCCGAUUCU-5′
SEQ ID NO.1282





3′-AAUCAGGUCUCUCGUCUUUU-5′
SEQ ID NO.1283





3′-GUGACGGAGGAAGUCGUUAGU-5′
SEQ ID NO.1284





3′-AUACUUCAGUAGUUUUAUAA-5′
SEQ ID NO.1285





3′-GUAAUUUUUUCACUAUCUAU-5′
SEQ ID NO.1286





3′-UCUCUCGUAGGUUUCCCUCAC-5′
SEQ ID NO.1287





3′-UUUUUUACAUGGUCCACACU-5′
SEQ ID NO.1288





3′-UUGUACUCGUUCUAGAAACA-5′
SEQ ID NO.1289





3′-UUAGUGUAAGAAAGUGGUCUU-5′
SEQ ID NO.1290





3′-GGAGUGAGAAUAAAGUAGGU-5′
SEQ ID NO.1291





3′-GUAAGUGAAACAUCCUACGA-5′
SEQ ID NO.1292





3′-UAGUCUUUCCGAAAUAUACUG-5′
SEQ ID NO.1293





3′-ACAUAAAUAUUUUCUGUUCCA-5′
SEQ ID NO.1294





3′-GAGUAAAAACAACAAAUAAA-5′
SEQ ID NO.1295





3′-ACGGUUCGAACACAAGUUGU-5′
SEQ ID NO.1296





3′-ACCCGAGACUGUCCUCCGUAC-5′
SEQ ID NO.1297





3′-UUCAAUUAAUGGAAAUGUAA-5′
SEQ ID NO.1298





3′-AUGAUACUACAUAGAUAGAU-5′
SEQ ID NO.1299





3′-UCCUCCCAUAAGAAGACAUA-5′
SEQ ID NO.1300





3′-CUUGGGUCUCCUUGGGGGUG-5′
SEQ ID NO.1301





3′-GUGACGGAGGAAGUCGUUAGU-5′
SEQ ID NO.1302





3′-UCUCGAGUUCUUCCUCUGUU-5′
SEQ ID NO.1303





3′-UUCUCCCCGAGGAGAUACUU-5′
SEQ ID NO.1304





3′-AGAUGACGAAAUCCACUGCA-5′
SEQ ID NO.1305





3′-UCUACCCACCUAGUUCUCCA-5′
SEQ ID NO.1306





3′-UUGCCACUGCUCCGACUCCU-5′
SEQ ID NO.1307





3′-GUCUCCUACAUAAAAGACAG-5′
SEQ ID NO.1308





3′-GUGUAGGUGACGGAGGAAGU-5′
SEQ ID NO.1309





3′-UCCCUACAGAACACUGUAAAAA-5′
SEQ ID NO.1310





3′-GAAGUCUUUCGUUCAGUAAGAU-5′
SEQ ID NO.1311





3′-AUGUAGAGUCGGUAUUUUUAC-5′
SEQ ID NO.1312





3′-AAUGACUCACGUCCCCGGGACU-5′
SEQ ID NO.1313





3′-AGUUGAAAGGGUUGGGAGGU-5′
SEQ ID NO.1314





3′-GUCUCCCUGUCCCUCCCUCCA-5′
SEQ ID NO.1315





3′-UCAGUCUUGAACCUUACUCUA-5′
SEQ ID NO.1316





3′-AGUUUCUAAUCUCAGUUGUCU-5′
SEQ ID NO.1317





3′-GUACUUGACCCAUAUGUUCAA-5′
SEQ ID NO.1318





3′-GACUACUGUACGACCUCUUCU-5′
SEQ ID NO.1319





3′-ACCAGUGCACAAGUUAGAGUA-5′
SEQ ID NO.1320





3′-AAUACUUCUGACAAGUCCUGA-5′
SEQ ID NO.1321





3′-GACCACCUCUAUUUUGCAUGACU-5′
SEQ ID NO.1322





3′-AACUAACAAAAAGAGUAAAA-5′
SEQ ID NO.1323





3′-ACCAAAGACCCCGACACGGAG-5′
SEQ ID NO.1324





3′-CUCGGUCCCGUCCUCUGUCG-5′
SEQ ID NO.1325





3′-CCCAAGAAAAACUUUUUUUU-5′
SEQ ID NO.1326









The second object of the present invention is to provide a primer composition for constructing any of the above-mentioned target sequences of the RNA virus.


Further, The primer composition of a part of the target sequence of the RNA virus comprises any one or more of the following groups: the primers of the target sequence SEQ ID NO. 1 are SEQ ID NO. 616-SEQ ID NO. 619; and/or, the primers of the target sequence SEQ ID NO. 2 are SEQ ID NO. 620-SEQ ID NO. 623; and/or, the primers of the target sequence SEQ ID NO. 3 are SEQ ID NO. 624-SEQ ID NO. 627; and/or, the primers of the target sequence SEQ ID NO. 4 are SEQ ID NO. 628-SEQ ID NO. 631; and/or, the primers of the target sequence SEQ ID NO. 5 are SEQ ID NO. 632-SEQ ID NO. 635; and/or, the primers of the target sequence SEQ ID NO. 7 are SEQ ID NO. 636-SEQ ID NO. 639; and/or, the primers of the target sequence SEQ ID NO. 8 are SEQ ID NO. 640-SEQ ID NO. 643; and/or, the primers of the target sequence SEQ ID NO. 10 are SEQ ID NO. 644-SEQ ID NO. 647; and/or, the primers of the target sequence SEQ ID NO. 11 are SEQ ID NO. 648-SEQ ID NO. 651; and/or, the primers of the target sequence SEQ ID NO. 12 are SEQ ID NO. 652-SEQ ID NO. 655; and/or, the primers of the target sequence SEQ ID NO. 13 are SEQ ID NO. 656-SEQ ID NO. 659; and/or, the primers of the target sequence SEQ ID NO. 14 are SEQ ID NO. 660-SEQ ID NO. 663; and/or, the primers of the target sequence SEQ ID NO. 15 are SEQ ID NO. 664-SEQ ID NO. 667; and/or, the primers of the target sequence SEQ ID NO. 16 are SEQ ID NO. 668-SEQ ID NO. 671; and/or, the primers of the target sequence SEQ ID NO. 17 are SEQ ID NO. 672-SEQ ID NO. 675; and/or, the primers of the target sequence SEQ ID NO. 18 are SEQ ID NO. 676-SEQ ID NO. 679; and/or, the primers of the target sequence SEQ ID NO. 19 are SEQ ID NO. 680-SEQ ID NO. 683; and/or, the primers of the target sequence SEQ ID NO. 20 are SEQ ID NO. 684-SEQ ID NO. 687; and/or, the primers of the target sequence SEQ ID NO. 21 are SEQ ID NO. 688-SEQ ID NO. 691; and/or, the primers of the target sequence SEQ ID NO. 22 are SEQ ID NO. 692-SEQ ID NO. 695; and/or, the primers of the target sequence SEQ ID NO. 23 are SEQ ID NO. 696-SEQ ID NO. 699; and/or, the primers of the target sequence SEQ ID NO. 24 are SEQ ID NO. 700-SEQ ID NO. 703; and/or, the primers of the target sequence SEQ ID NO. 25 are SEQ ID NO. 704-SEQ ID NO. 707; and/or, the primers of the target sequence SEQ ID NO. 26 are SEQ ID-NO. 708-SEQ ID NO. 711.


Further, The protective base and EcoRI restriction site sequence CGGAATTC are added to 5′ end of the upstream primer, and the protective base and BamHI restriction site sequence CGGGATCC are added to 5′ end of the downstream primer.


Further, the specific sequences of the above-mentioned primers are shown in the following table:









TABLE 3







Amplification primer sequence listing of the target sequence of the RNA virus












Fragment
Primer




Virus type
number
number
Amplification primer sequence
ID number





Severe acute
SARS-CoV-
F123
5′-attctagagctagcgaattctcatca
SEQ ID NO. 616


respiratory
2-HIS-1

acttgtatgatgtgttacaaacgtaataga gca-3′



syndrome-

R1
5′-gaccttctaacaccattaacaatagt
SEQ ID NO. 617


related


tgtacattcgactcttgttgctctattacg ttt-3′



coronavirus 2

R2
5′-gtagtttgcaaaagcctttacctcca
SEQ ID NO. 618


(SARS-CoV-


ttagcatagacataaaaggaccttctaaca cca-3′



2

R3
5′-tccttcgcggccgoggatcacaatta
SEQ ID NO. 619





acacaattccaattgtgtagtttgcaaaag c-3′




SARS-CoV-
F123
5′-attctagagctagcgaattcaacaac
SEQ ID NO. 620



2-HIS-2

attatcaacaatgcaagagatggttgtgtt c-3′





R1
5′-aaccattagtttggctgctgttgtaa
SEQ ID NO. 621





gaggtattatgttcaagggaacacaaccat ctc-3′





R2
5′-gtaccatcacacgtatttttatatgt
SEQ ID NO. 622





gttatagtctggtatgacaaccattagttt ggc-3′





R3
5′-tccttcgcggccgcggatcCaatgct
SEQ ID NO. 623





gatgcataagtaaatgttgtaccatcacac gta-3′




SARS-CoV-
F123
5′-attctagagctagcgaattccttaac
SEQ ID NO. 624



2-HIS-3

aaagttgttagtacaactactaacatagtt aca-3′





R1
5′-aagaaataaggcatataattagtaca
SEQ ID NO. 625





aacacggtttaaacaccgtgtaactatgtt agt-3′





R2
5′-aatttgtacttctagtaaaagtacac
SEQ ID NO. 626





aattgtagcaataaagtaaagaaataaggc ata-3′





R3
5′-tccttcgcggccgcggatcctcggca
SEQ ID NO. 627





tagatgctttaattctagaatttgtacttc tag-3′




SARS-CoV-
F123
5′-attctagagctagcgaattcggagta
SEQ ID NO. 628



2-HIS-4

cgatcgagtgtacagtgaacaatgctaggg aga-3′





R1
5′-actaaaattaattttacacattaggg
SEQ ID NO. 629





ctcttccatataggcagctctccctagcat tgt-3′





R2
5′-gtcattctcctaagaagctattaaaa
SEQ ID NO. 630





tcacatggggatagcactactaaaattaat ttt-3′





R3
5′-tccttcgcggccgcggatcCtttttt
SEQ ID NO. 631





ttttttttttttttttttgtcattctccta aga-3′




SARS-CoV-
F123
5′-attctagagctagcgaattcgttaat
SEQ ID NO. 632



2-HIS-5

aattggttgaagcagttaattaaagttaca ctt-3′





R1
5′-acaggtgttattaaatagaaaatagc
SEQ ID NO. 633





agcaacaaaaaggaacacaagtgtaacttt aat-3′





R2
5′-ctatgatttcacttgaaaagtcagta
SEQ ID NO. 634





tgtttagacatgacatgaacaggtgttatt aaa-3′





R3
5′-tccttegcggccgeggatcccaccac
SEQ ID NO. 635





catcaatagccttgtatcctatgatttcac ttg-3′






severe acute
SARS-CoV-
F1
5′-ctccctctggaatttggtgcctcagc
SEQ ID NO. 636


respiratory
HIS-1

tgaaacagttcgagttgaggaagaagaaga gga-3′



syndrome-

R1
5′-tggctcaatctctgattgctcagtag
SEQ ID NO. 637


related


tatcatccagccagtcttcctcttcttctt cct-3′



coronavirus

F2
5′-attctagagctagcgaattcctccct ctggaatttggtgc-
SEQ ID NO. 638


SARS-CoV


3′





R2
5′-tccttcgcggccgoggatcatggctc aatctctgattgct-
SEQ ID NO. 639





3′




SARS-CoV-
F1
5′-tatgggttgggattatccaaaatgtg
SEQ ID NO. 640



HIS-2

acagagccatgcctaacatgcttaggataa tgg-3′





R1
5′-aagttacagcaagtgttatgtttgcg
SEQ ID NO. 641





agcaagaacaagagaggccattatcctaag ca-3′





F2
5′-attctagagctagcgaattctatggg ttgggattatccaa-
SEQ ID NO. 642





3′





R2
5′-tccttcgcggccgoggatcaaagtta
SEQ ID NO. 643





cagcaagtgttatg-3′






Middle East
MERS-CoV-
F1
5′-gtgttggctggactgctggcttatcc
SEQ ID NO. 644


respiratory
HIS-1

tcctttgctgctattccatttgcacagagt atc-3′



syndrome

R1
5′-gaaagaacctgttgagtaatgccaac
SEQ ID NO. 645


coronavirus


accgtttaacctataaaagatactctgtgc aaa-3′



(MERS-CoV)

F2
5′-attctagagctagcgaattcgtgttg
SEQ ID NO. 646





gctggactgctggc-3′





R2
5′-tccttcgcggccgcggatcagaaaga
SEQ ID NO. 647





acctgttgagtaat-3′




MERS-CoV-
F1
5′-aataaagtaaaacgtgcttttgcaga
SEQ ID NO. 648



HIS-2

ttacacccagtgtgctgtaattgctgttgt tgc-3′





R1
5′-gtatagaggtaacaaagcagatgcac
SEQ ID NO. 649





aagctattaagaacagcagcaacaacagcaatt-3′





F2
5′-attctagagctagcgaattcaataaa gtaaaacgtgcttt-
SEQ ID NO. 650





3′





R2
5′-tccttcgcggccgcggatcagtatag
SEQ ID NO. 651





aggtaacaaagcag-3′






Zika virus
Zika-HIS-1
F1
5′-tgagaggagagtgccagagttgtgtg
SEQ ID NO. 652





tacaacatgatgggaaaaagagaaaagaaa caa-3′





R1
5′-tataccagatggcgcggctgcccttg
SEQ ID NO. 653





gcctttccaaattccccttgtttcttttct ctt-3′





F2
5′-gaagattctagagctagcgaattctg
SEQ ID NO. 654





agaggagagtgccagagtt-3′





R2
5′-cagatccttcgcggccgoggatccta
SEQ ID NO. 655





taccagatggcgcggctgc-3′




Zika-HIS-2
F1
5′-gtgatcaaaaatgggagttatgttag
SEQ ID NO. 656





tgccatcacccaagggaggagggaggaaga gac-3′





R1
5′-ctgcttcttcttcagcatcgaaggct
SEQ ID NO. 657





cgaagcactcaacaggagtctcttcctccc tcc-3′





F2
5′-gaagattctagagctagcgaattcgt
SEQ ID NO. 658





gatcaaaaatgggagttat-3′





R2
5′-cagatecttcgcggccgcggatccct
SEQ ID NO. 659





gcttcttcttcagcatcga-3′




Zika-HIS-3
F1
5′-ctagtggtgcaactcattcggaatat
SEQ ID NO. 660





ggaggctgaggaagttctagagatgcaaga ctt-3′





R1
5′-ctgcaaccagttggtcactttctctg
SEQ ID NO. 661





acctccgcagcagccacaagtcttgcatct cta-3′





F2
5′-gaagattctagagctagcgaattcct
SEQ ID NO. 662





agtggtgcaactcattcgg-3′





R2
5′-cagatocttegcggccgcggatccct
SEQ ID NO. 663





gcaaccagttggtcacttt-3′






Ebola virus
Ebola-HIS-1
F1
5′-aatactccaccaacagatgatgtatc
SEQ ID NO. 664





aagtcctcaccgactcattctaccattttt taa-3′





R1
5′-ttcttgggcatcttgatcatgtgcat
SEQ ID NO. 665





ggttgtgatttcccaatttaaaaaatggta gaa-3′





F2
5′-gaagattctagagctagcgaattcaa
SEQ ID NO. 666





tactccaccaacagatgat-3′





R2
5′-cagatccttcgcggccgcggatcctt
SEQ ID NO. 667





cttgggcatcttgatcatg-3′




Ebola-HIS-2
F1
5′-ttttctaaatccagaaaagtgttttt
SEQ ID NO. 668





atcgaaacttcggagatcctgtgacttctg gac-3′





R1
5′-tctttcatgttaaccatttctaggta
SEQ ID NO. 669





cacccgtagctggaaaagtccagaagtcac agg-3′





F2
5′-gaagattctagagctagcgaattctt
SEQ ID NO. 670





ttctaaatccagaaaagtg-3′





R2
5′-cagatocttcgcggccgcggatcctc
SEQ ID NO. 671





tttcatgttaaccatttct-3′




Ebola-HIS-3
F1
5′-gaagattctagagctagcgaattcag
SEQ ID NO. 672





atctgagagagaaaaatctc-3′





R1
5′-cagatocttegcggccgcggatccta
SEQ ID NO. 673





ttattaattgctcatttaa-3′





F2
5′-agatctgagagagaaaaatctcaggg
SEQ ID NO. 674





ttactctaaggagaaatattatttttaaaa ttt-3′





R2
5′-tattattaattgctcatttaagataa
SEQ ID NO. 675





gtggtcagcattcaagtaaattttaaaaat aat-3′






HIV
HIV-1-HIS-1
F1
5′-tttaagaccaatgacttacaaggcag
SEQ ID NO. 676





ctgtagatcttagccactttttaaaagaaa agg-3′





R1
5′-atatcttgtcttctttgggagtgaat
SEQ ID NO. 677





tagcccttccagtccccccttttttttaa aaa-3′





F2
5′-gaagattctagagctagcgaattctt
SEQ ID NO. 678





taagaccaatgacttaca-3′





R2
5′-cagatocttcgcggccgcggatccat
SEQ ID NO. 679





atcttgtcttctttggga-3′




HIV-1-HIS-2
F1
5′-aagaaaaaataaaag cattagtagaa
SEQ ID NO. 680





atttgtacagagatggaaaaggaagggaaa att-3′





R1
5′-caaatactggagtattgtatggattt
SEQ ID NO. 681





tcaggcccaatttttgaaattttcccttcc ttt-3′





F2
5′-gaagattctagagctagcgaattcaa
SEQ ID NO. 682





gaaaaaataaaagcatta-3′





R2
5′-cagatecttegcggccgoggatccca
SEQ ID NO. 683





aatactggagtattgtat-3′




HIV-1-HIS-3
F1
5′-ggtctatctggcatgggtaccagcac
SEQ ID NO. 684





acaaaggaattggaggaaatgaacaagtag ata-3′





R1
5′-ccatctaaaaatagtactttcctgat
SEQ ID NO. 685





tccagcactgactaatttatctacttgttc att-3′





F2
5′-gaagattctagagctagcgaattcgg
SEQ ID NO. 686





tctatctggcatgggtac-3′





R2
5′-cagatccttegcggccgoggatcccc
SEQ ID NO. 687





atctaaaaatagtacttt-3′




HIV-1-HIS-4
F1
5′-cctgagtgggagtttgttaatacccc
SEQ ID NO. 688





tcccttagtgaaattatggtaccagttaga gaa-3′





R1
5′-tgccccatctacatagaaggtttctg
SEQ ID NO. 689





ctcctactatgggttctttctctaactggt acc-3′





F2
5′-gaagattctagagctagcgaattccc
SEQ ID NO. 690





tgagtgggagtttgttaat-3′





R2
5′-cagatccttcgcggccgcggatcctg
SEQ ID NO. 691





ccccatctacatagaagg-3′




HIV-1-HIS-5
F1
5′-ggagaattagatcgatgggaaaaaat
SEQ ID NO. 692





tcggttaaggccagggggaaagaaaaaata taa-3′





R1
5′-gaatcgttctagctccctgcttgccc
SEQ ID NO. 693





atactatatgttttaatttatattttttct ttc-3′





F2
5′-gaagattctagagctagcgaattcgg
SEQ ID NO. 694





agaattagatcgatggga-3′





R2
5′-cagatccttcgcggccgcggatccga
SEQ ID NO. 695





atcgttctagctccctgc-3′




HIV-1-HIS-6
F1
5′-cagaagcaggggcaaggccaatggac
SEQ ID NO. 696





atatcaaatttatcaagagccatttaaaaa tct-3′





R1
5′-attagtgtgggcacccctcattcttg
SEQ ID NO. 697





catattttcctgttttcagatttttaaatg gct-3′





F2
5′-gaagattctagagctagcgaattcca
SEQ ID NO. 698





gaagcaggggcaaggcca-3′





R2
5′-cagatocttcgcggccgcggatccat
SEQ ID NO. 699





tagtgtgggcacccctca-3′




HIV-2-HIS-1
F1
5′-aagtgtgtcagaaagtacaacccaac
SEQ ID NO. 700





taacatcttagacataaaacagggaccaaa aga-3′





R1
5′-cctcaagcttttgtagaacctgtcta
SEQ ID NO. 701





catagctttggaacggttcttttggtccct gtt-3′





F2
5′-gaagattctagagctagcgaattcaa
SEQ ID NO. 702





gtgtgtcagaaagtacaa-3′





R2
5′-cagatccttegoggccgoggatcccc
SEQ ID NO. 703





tcaagcttttgtagaacc-3′




HIV-2-HIS-2
F1
5′-caaagccagggagtagtagaagcaat
SEQ ID NO. 704





gaatcaccacctaaagaatcagataagtag aat-3′





R1
5′-tgccatcagtactattgtttctattg
SEQ ID NO. 705





tatttgcctgttctctaattctacttatct gat-3′





F2
5′-gaagattctagagctagcgaattcca
SEQ ID NO. 706





aagccagggagtagtaga-3′





R2
5′-cagatccttcgcggccgcggatcctg
SEQ ID NO. 707





ccatcagtactattgttt-3′




HIV-2-HIS-3
F1
5′-gggtggctgtggaagctagtatcagt
SEQ ID NO. 708





agaactctcacaagaggcagaggaagatga ggc-3′





R1
5′-atcatcatgtctgcttgtttgtgctg
SEQ ID NO. 709





ggtgtactaagcagttggcctcatcttcct ctg-3′





F2
5′-gaagattctagagctagcgaattcgg
SEQ ID NO. 710





gtggctgtggaagctagt-3′





R2
5′-cagatccttegcggccgcggatccat
SEQ ID NO. 711





catcatgtctgcttgttt-3′









In the third aspect, the present invention provides an RNA drug against viruses, characterized in that, the RNA drug comprises the reverse complementary sequence of any of the above-mentioned target sequences of the RNA virus, and cholesterol modification and four phosphorothioate backbone modifications are made at the 3′ end of the reverse complementary sequence of any of the above-mentioned target sequences of the RNA virus, two phosphorothioate backbone modifications are made at the 5′ end, and methoxy modification is made on the whole chain, or, cholesterol modification and four phosphorothioate backbone modifications are made at the 3′ end of any of the above-mentioned target sequences of the RNA virus, two phosphorothioate backbone modifications are made at the 5′ end, and methoxy modification is made on the whole chain.


Further, the reverse complementary sequence of the target sequence of the RNA virus comprises reverse complementary RNA sequence or reverse complementary DNA.


Further, the RNA drug further comprises a pharmaceutically acceptable carrier or excipient.


Further, the dosage form of the RNA drug comprises powder, tablet, granule, capsule, solution, aerosol, injection, emulsion or suspension.


In the fourth aspect, the present invention provides a biomaterial related to any of the above-mentioned target sequences of the RNA virus. The biomaterial is selected from one of the following A)-B):

    • A) a DNA and/or RNA molecule that is complementary to any of the above-mentioned target sequences of the RNA virus;
    • B) an expression cassette, a recombinant vector, a recombinant microorganism, a recombinant cell line containing any of the above-mentioned target sequences of the RNA virus or the DNA molecule described in A).


It is understandable that the above-mentioned DNA molecule, expression cassette, recombinant vector, recombinant microorganism, and recombinant cell line can all be biomaterials conventionally used in the art, and can all be prepared by conventional methods in the art.


Further, the biomaterial is a recombinant vector, and the construction steps of the recombinant vector comprise: 1) designing a primer, and amplifying the target sequence of the RNA virus by PCR; 2) digesting the amplified sequence fragment and an expression vector, and ligating a sequence fragment of interest and the expression vector; 3) transferring the ligated product into Escherichia coli and cultivating the Escherichia coli; 4) after identification, extracting recombinant plasmid and packaging the recombinant plasmid. Specifically, the target sequences of the RNA viruses are shown in Table 1 above, and a part of primer sequences is shown in Table 2 above.


Further, the expression vector comprises but is not limited to pCDH vector, other vectors such as pCMVp-NEO-BAN vector, pEGFP vector, pEGFT-Actin, pSV2 vector, pCDNA vector, pLVX vector, pAAV vector, pET vector, pDsRed vector, and virus-related recombinant vector backbones for these vectors can be any suitable vectors used in the art.


Further, the recombinant vector has the function of expressing a virus-related target fragment; wherein, the related target fragment has the function of interacting (binding) with human genome.


Further, the recombinant vector has target sequences expressing severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome-related coronavirus (SARS-CoV), and middle east respiratory syndrome coronavirus (MERS-CoV). The above-mentioned target sequence fragments can interact (bind) with human genome; specifically, the target sequences comprise but are not limited to: SARS-CoV-2-HIS-1, SARS-CoV-2-HIS-2, SARS-CoV-2-HIS-3, SARS-CoV-2-HIS-4, SARS-CoV-2-HIS-5, SARS-CoV-HIS-1, SARS-CoV-HIS-2, MERS-CoV-HIS-1 and MERS-CoV-HIS-2.


In the fifth aspect, the present invention provides use of any of the above-mentioned target sequences of the RNA virus. The use is a use in the preparation of an RNA virus detection or diagnostic reagent, a use in the preparation of a drug for preventing or treating a condition caused by an RNA virus, or a use in the preparation of a vaccine against an RNA virus.


Further, the condition comprises a human disease, an animal disease and zoonosis.


Further, when the use is a use in the preparation of a drug for preventing or treating a condition caused by the RNA virus, an effective substance that regulates the target sequence is directly screened; alternatively, according to the effect of the gene regulated by the target sequence, an effective substance against the gene and gene product regulated by the target sequence is screened.


Further, when the use is a use in the preparation of a vaccine against the RNA virus, the target sequence is knocked out during the design process of the vaccine.


Further, the method for knocking out the target sequence comprises: CRASPER system and/or ribozyme technology.


CRISPR comes from the immune system of microorganisms. In such engineering editing system, an enzyme is used to cut a small RNA as a guiding tool into DNA, where cut or other changes can be made. Previous studies have shown that CRISPR can make changes or mutations in the genome more efficiently through these interventions, and the efficiency is higher than other gene editing technologies such as TALEN (transcription activator-like effector nuclease). Although CRISPR has many advantages, in the human cancer cell line, it may also produce a large number of “accidentally injured targets”, especially the modification of genes that are not desired to be changed.


Ribozyme technology is a technology by means of a ribozyme, and is mainly used for the design of ribozymes for use. Ribozymes are RNA molecules that can cleave RNA sequence-specifically and can be designed. The designed ribozyme can be used to select specific mRNA fragments, or can bind to specific mRNA to block the expression of mRNA. Therefore, this technology can be used to study the structure of RNA, and can also be used to treat diseases caused by abnormal gene expression.


Further, the vaccine is a live attenuated vaccine.


In the sixth aspect, the present invention provides a live attenuated vaccine. The whole genome of the live attenuated vaccine does not contain the above-mentioned target sequences of the RNA virus.


In the seventh aspect, the present invention provides use of any of the above-mentioned target sequences of the RNA virus in activating related genes at the cellular level and screening therapeutic drugs against the related genes.


Further, the RNA virus is a coronavirus, specifically severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome-related coronavirus (SARS-CoV), and middle east respiratory syndrome coronavirus (MERS-CoV).


Further, in the above-mentioned use, the related genes comprise the ACE2 gene, the coding genes of the hyaluronic acid synthase family HAS1, HAS2, and HAS3, and/or genes within 200 k around the fragment. Further, the genes within 200 k around the fragment comprise but are not limited to FBXO15, MYL9, KALRN, ATP8B1, ZHX2, IGF2R, C5AR1, EPAS1 and TIMM21. It is understandable that, depending on the type of RNA virus, the related genes activated thereby are also different.


Further, the drug comprises a miRNA inhibitor.


Further, the miRNA inhibitor comprises antagomir inhibitor.


It is understandable that the above-mentioned drug may also comprise other drugs that can inhibit activated target genes and other drugs that can regulate the level of hyaluronic acid (inhibit the synthesis of hyaluronic acid, reduce the concentration of hyaluronic acid, etc.).


In the eighth aspect, the present invention provides use of the target sequences of the RNA virus in the study of drug targets against diseases caused by the RNA virus.


Further, the target sequences of the RNA virus in the cells of the diseases caused by the RNA virus are found, and the drug targets are found within 200 k around the target sequence of the RNA virus or the drug targets are found beyond 200 k using the prediction software blast 2.2.30 or bedtools 2.29.2.


In the ninth aspect, the present invention provides a method for virus detection, which detects the above-mentioned target sequences of the RNA virus.


Further, the detection of the target sequences comprises RCR amplification and nucleotide sequencing.


Furthermore, the detection of the target sequences of the RNA virus can be used to determine the diagnosis of viral diseases, determine the pathogenicity and test the susceptibility of the population.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a running gel electropherogram of 6 target viral vectors related to the coronavirus SARS-CoV-2 amplified by PCR in an embodiment of the present invention.



FIG. 2 is a schematic diagram of the result of the mRNA level after overexpression of the target fragments of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, ***, p<0.001.



FIG. 3 is a schematic diagram of the result of the mRNA level of the gene ACE2 after overexpression of the target fragments of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, **, p<0.01, ***, p<0.001.



FIG. 4 is a schematic diagram of the result of the mRNA level of the gene HAS1 after overexpression of the target fragments of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, **, p<0.01, ***, p<0.001.



FIG. 5 is a schematic diagram of the result of the mRNA level of the gene HAS2 after overexpression of the target fragments of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, **, p<0.01.



FIG. 6 is a schematic diagram of the result of the mRNA level of the gene HAS3 after overexpression of the target fragments of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, **, p<0.01, ***, p<0.001.



FIG. 7 is a schematic diagram of the result of the mRNA level of the surrounding gene FBXO15 after overexpression of the target fragment SARS-CoV-2-HIS-4 of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, ***, p<0.001.



FIG. 8 is a schematic diagram of the result of the mRNA level of the surrounding gene MYL9 after overexpression of the target fragment SARS-CoV-2-HIS-3 of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, ***, p<0.001.



FIG. 9 is a schematic diagram of the result of the mRNA level of the surrounding gene ATP8B1 after overexpression of the target fragment SARS-CoV-2-HIS-1 of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, **, p<0.01.



FIG. 10 is a schematic diagram of the result of the mRNA level of the surrounding gene KALRN after overexpression of the target fragment SARS-CoV-2-HIS-5 of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, **, p<0.01.



FIG. 11 is a schematic diagram of the result of the mRNA level of the surrounding genes after overexpression of the target fragment SARS-CoV-2-HIS-6 of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention.



FIG. 12 is a schematic diagram of the result of the mRNA level of the surrounding genes after overexpression of the target fragment SARS-CoV-HIS-2 of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, **, p<0.01.***, p<0.001.



FIG. 13 is a schematic diagram of the result of the mRNA level of the surrounding gene after overexpression of the target fragment MERS-CoV-HIS-2 of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention; wherein, **, p<0.01.



FIG. 14 is a schematic diagram of the result of the mRNA level of the surrounding genes after overexpression of target fragments of zika virus in 293T cells by qPCR detection in an embodiment of the present invention.



FIG. 15 is a schematic diagram of the result of the mRNA level of the surrounding genes after overexpression of target fragments of ebola virus in 293T cells by qPCR detection in an embodiment of the present invention.



FIG. 16 is a schematic diagram of the result of the mRNA level of the surrounding genes after overexpression of HIV-2 target fragments in 293T cells by qPCR detection in an embodiment of the present invention.



FIG. 17 is a schematic diagram of the result of antagomir on the mRNA level of the surrounding genes after overexpression of the target fragment SARS-CoV-HIS-2 of coronavirus in 293T cells by qPCR detection in an embodiment of the present invention.



FIG. 18 is a schematic diagram of the result of the inhibitory effect of antagomir on the mRNA level of genes activated by the target fragment MERS-CoV-HIS-2 of coronavirus by qPCR detection in an embodiment of the present invention; wherein, *<0.05.



FIG. 19 is a schematic diagram of the result of the inhibitory effect of antagomir on the mRNA level of genes activated by the target fragment SARS-CoV-2-HIS-4 of coronavirus by qPCR detection in an embodiment of the present invention; wherein, *<0.05.



FIG. 20 is a schematic diagram of the result of the inhibitory effect of antagomir on the mRNA level of genes activated by the target fragment SARS-CoV-2-HIS-3 of coronavirus by qPCR detection in an embodiment of the present invention; wherein, *<0.05.





DETAILED DESCRIPTION OF THE INVENTION

The specific implementations of the present invention will be further described below in conjunction with the drawings and examples. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and cannot be used to limit the scope of protection of the present invention. In experimental methods in the following examples where no specific conditions are indicated, choices can be made according to conventional methods and conditions in the art or commodity instructions; the relevant reagents and biomaterials in the following examples are all commercially available products; The molecular cloning technology in the following examples provides a method for purifying and amplifying specific DNA fragments at the molecular level in the prior art. The coronavirus, zika virus, ebola virus and HIV are mainly used as examples for discussion in the following examples.


Example 1—Construction of an Overexpression Vector of the Target of the RNA Virus

This example is the construction of an overexpression vector of the target of the RNA virus, and the steps comprise:


1. Sequence Acquisition and Primer Design


SARS-CoV-2 gene sequences were found from Nucleotide database Genbank of NCBI, and then the whole genome nucleotide sequences of the virus were Blast-aligned with the whole genome sequence in human, and finally, the virus nucleotide sequence fragments with a similarity of not less than 95% were screened as viral RNA target sequences (hereinafter referred to as targets). 5 sequences that were completely complementary and paired to the human genome and 1 sequence that was not completely complementary to human genes were screened from SARS-CoV-2. For zika virus, ebola virus, HIV, SARS-CoV, MERS-CoV, and other RNA viruses, the same method was used to obtain target sequences. The screened target sequences are shown in Table 1 above.


The upstream and downstream primers were determined using primer 5 software, respectively, and the protective base and EcoRI restriction site sequence (CGGAATTC) were added to 5′ end of the upstream primer, and the protective base and BamHI restriction site sequence (CGGGATCC) were added to 5′ end of the downstream primer. The primers were synthesized by Shanghai Sunny Biotechnology Co., Ltd. The primer sequences of some targets are shown in Table 3 above.


2. Obtainment of the Target Fragment Sequence of Interest of the RNA Virus


Taking severe acute respiratory syndrome-related coronavirus 2 target sequence as an example, the viral target fragment was artificially synthesized by means of homologous recombination. After the primers of F123 and R1 designed according to the sequence were annealed, two rounds of nested PCR were performed using F123 and R2 and F123 and R3, and the gene fragments of interest were amplified with Q5 enzyme. The amplification system and program were as follows:
















PCR system
Total volume 50 μl









5 × Reaction buffer
  10 μl



dNTPs (10 mM)
   1 μl



Upstream primer (10 μM)
 2.5 μl



Downstream primer (10 μM)
 2.5 μl



cDNA template
  1 μl



Q5 polymerase
 0.5 μl



ddH2O
32.5 μl










PCR program: 98° C. for 30 s;


98° C. for 10 s, 55-72° C. for 30 s, 72° C. for 30 s/kb, 35 cycles;


and 72° C. for 2 min.


For severe acute respiratory syndrome-related coronavirus and middle east respiratory syndrome coronavirus, F1 and R1 primers were used to anneal, and then F2 and R2 and the annealed product were subjected to nested PCR to obtain the fragments of interest.


3. Recovery, Restriction Digestion and Purification of PCR Products


The PCR products were detected by electrophoresis in 1% agarose gel, the gel was cut and recovered, and the fragments of interest were recovered using a ordinary agarose gel DNA recovery kit (Tiangen Biotech Co., Ltd.); the enzyme digestion process referred to the enzyme digestion system on NEB website, and the enzyme digestion was carried out at 37° coVernight, and a PCR product recovery kit (Tiangen Biotech Co., Ltd.) was used for purification and recovery.


4. Ligation


The digested PCR product and the digested pCDH vector were ligated with T4 ligase according to the following ligation system at 16° coVernight.












Ligation system










Reagents
Volume







PCR product
 1 μl



Digested pCDH vector
 1 μl



T4DNA ligase buffer
 1 μl



T4DNA ligase
 1 μl



H2O
 6 μl



Total
10 μl











5. Transforming and Picking Monoclonal Ligation


(1) 10 μl of ligation product was added to 50 μl of DH5a competent cells, and incubated on ice for 30 min.


(2) The competent cells were heat shocked at 42° C. for 90 s, and then immediately placed on ice for 5 min.


(3) 300 μl of LB liquid medium without antibiotics was added on a clean bench, and the bacteria was shaken on a constant temperature shaker at 37° C. for 30 min.


(4) 1000 g of bacterial solution was centrifuged for 5 min and the supernatant was discarded. The remaining 50 μl of bacterial solution was spread evenly on the LB solid plate supplemented with ampicillin, and the plate was incubated in a constant temperature incubator at 37° coVernight.


(5) An appropriate amount of monoclonal colonies was picked from the overnight-cultured plate, and put into EP tubes containing 200 μl of LB liquid medium supplemented with ampicillin. The bacteria were shaken in a constant temperature shaker at 37° C. for 2 hours, and then subjected to sequencing and identification. Finally, the target band can be obtained by vector PCR (FIG. 1).


The results showed that: The length of each target-vector is 200-250 bp. FIG. 1 shows the electrophoresis results of the target-vectors containing 6 targets from severe acute respiratory syndrome-related coronavirus 2, respectively. Specifically, HIS1 is the target-vector containing SARS-CoV-2-HIS-1, and HIS2 is the target-vector containing SARS-CoV-2-HIS-2, HIS3 is the target-vector containing SARS-CoV-2-HIS-3, HIS4 is the target-vector containing SARS-CoV-2-HIS-4, HIS5 is the target-vector containing SARS-CoV-2-HIS-5, and HIS6 is the target-vector containing SARS-CoV-2-HIS-6.


The same operation as above applied to SARS-CoV, MERS-CoV, zika virus, ebola virus and HIV.


Example 2—The Effect of Overexpression of the Target Sequences of the RNA Virus in Cells on the Expression Level of Surrounding Genes

In this example, the effect of the overexpression of the target sequences of the RNA virus in 293T cells on the expression level of surrounding genes was detected. The steps are briefly described as follows:


1. Preparation of lentivirus by liposome method: According to molecular cloning, SARS-CoV-2, SARS-CoV, MERS-CoV overexpression plasmid, virus packaging plasmid psPAX2 and capsid plasmid pMD2.G-VSVG were transferred into 293T cells, and the supernatant was collected after 48 hr and 72 hr, respectively. The cell debris was filtered through a 0.45 μm filter to obtain the lentivirus stock solution.


2. Cell infection: 200,000 cells to be infected (lentiviral stock solution) was spread in a 6 cm culture dish in advance, after the cells adhered on the second day, the first infection was carried out, and the infection was repeated again on the third day; on the fourth day, the cells were allowed to recover for one day without adding any stimulation; on the fifth day, drug screening was started to perform based on corresponding markers carried by the plasmid that reduce the potency of the drug.


3. Real-time fluorescence quantitative PCR


(1) Total RNA Extraction


106-107 cells were prepared, resuspended in PBS, and then centrifuged to remove the supernatant, 1 ml of Trizol was added for lysis at room temperature for 5 min, then 0.2 ml of chloroform was added. The mixture was shaken in a vortex shaker for 15 s, and left to stand at room temperature for 2 min. The mixture was centrifuged in a centrifuge at 4° C. for 15 min at 13,300 rpm. The upper colorless water phase was transferred into another EP tube. An equal volume of isopropanol was added, mixed thoroughly in a vortex shaker, and the mixture was centrifuged in a centrifuge at 4° C. at 13,300 rpm for 10 min. The supernatant was discarded, and 1 ml of 75% ethanol prepared with DEPC water was added, turned upside down until the precipitate was suspended, and centrifuged in a centrifuge at 4° C. at 13,300 rpm for 5 min. The supernatant was aspirated with a pipette, during the period of drying at room temperature for 5-20 min, the morphology of the precipitation was observed. When just being transparent, 40-100 μl of DEPC water was used for dissolution according to the amount of precipitation. 1 μl was taken and the concentration and OD260/OD280 was measured on Nanodrop. The extracted RNA was stored in a refrigerator at −80° C.


(2) Reverse Transcription Synthesis of cDNA


Takara (D2680A) reverse transcription PCR kit was used, the PCR reaction system and program were as follows:
















Reverse transcription PCR system
Total volume 20 μl









5 × PrimeScript Buffer
  4 μl



dNTP Mixture (2.5 mM each)
  4 μl



Random 6 mers (100 μM)
  1 μl



OligodT Primer (50 μM)
  1 μl



PrimeScript Reverse Transcriptase (200 U/μl)
0.5 μl



RNase Inhibitor (40 U/μl)
0.5 μl



Total RNA
  1 μg



RNase Freed H2O up to 20 μl







Reverse transcription PCR program: 42° C. for 10 min, 95° C. for 2 min.







(3) RT-qPCR


The expression of the gene of interest at the transcription level was detected using Takara real-time fluorescent quantitative PCRkit.
















Real-time fluorescence quantitative
Total volume



PCR system
10 μl









Sybr Green Mix
 5 μl



Forward (10 μm)
 1 μl



Reverse (10 μm)
 1 μl



cDNA
 3 μl










Experimental results: After overexpression of the target sequence fragment, the expression level of the fragment was up-regulated tens of thousands of times (FIG. 2). Specifically, the ACE2 gene, which is very related to the coronavirus, was activated after overexpression of the SARS-CoV-HIS, SARS-COV-2-HIS-3 and SARS-COV-2-HIS-4 fragments (FIG. 3). The HAS1 (FIG. 4), HAS2 (FIG. 5) and HAS3 (FIG. 6) genes of the hyaluronic acid synthase family related to severe acute respiratory syndrome-related coronavirus 2 were also significantly activated by SARS-CoV-HIS, MERS-CoV-HIS, SARS-COV-2-HIS-3 and SARS-COV-2-HIS-4 fragments. Finally, it can be seen from the detection that the genes within 200 k around the SARS-COV-2-HIS-4 (FIG. 7), SARS-COV-2-HIS-3 (FIG. 8), SARS-COV-2-HIS-1 (FIG. 9) and SARS-COV-2-HIS-5 (FIG. 10) fragments were all significantly activated. The same results were obtained for the fragment SARS-CoV-2-HIS-6, which was not completely complementary (FIG. 11). The specific genes comprised: FBXO15, MYL9, KALRN, ATP8B1, C5AR1, EPAS1, etc. The same results were also obtained for SARS-COV-HIS-2 (FIG. 12) and MERS-COV-HIS-2 (FIG. 13). Specifically, the expression of the gene IGF2R around the target fragment of SARS virus was increased, and the expression of the gene IGF2R around the target fragment of MERS virus was increased. In addition, zika virus (FIG. 14), ebola virus (FIG. 15), and HIV-2 (FIG. 16) were also detected in this example, and the results were also the same, specifically: after overexpression of the target fragment of zika virus in 293T cells, the expression of surrounding 16 genes such as CNMD and VPS36 was increased; after overexpression of the target fragment of ebola virus in 293T cells, the expression of surrounding 15 genes such as VGLL4 and TAMM41 was all increased; after overexpression of HIV target fragment in 293T cells, the expression of surrounding genes BMP5, MMP1 and ADCYAP1 was increased; after overexpression of HIV2 target fragment in 293T cells, the expression of surrounding 8 genes such as LAPTM4A and LRRC14B was increased.


The above results prove that the constructed vector plays a certain function in the expression of miRNA related to SARS-CoV-2, and provides a research basis for subsequent research.


Example 3—Inhibitory Effect of miRNA Inhibitor (antagomiR) or Antisense Sequence for the Target of the RNA Virus on Activated Target Genes

This example verifies the inhibitory effect of the inhibitor antagomir for the target of the RNA virus on activated target genes, and comprises the following steps:

    • step one: preparation of the inhibitor antagomir for the viral target: cholesterol modification and four phosphorothioate backbone modifications were made at the 3′ end of the reverse complementary sequence of the target sequence of the RNA virus, two phosphorothioate backbone modifications were made at the 5′ end, and methoxy modification was made on the whole chain to obtain the corresponding inhibitor antagomir for the target of the virus.
    • step two: the virus stock solution was prepared by the method of example 2, and the cells were infected with the virus stock solution. The infected cells were divided into two groups: an experimental group and a control group, wherein the experimental group was: 10 μM of virus-infected cell solution added with corresponding inhibitor for the viral target; the control group was: M of virus-infected cell solution. After 48 hours, the cell solution of the experimental group and the control group were tested according to the method of real-time fluorescent quantitative PCR in example 4.


The results of the test were shown in FIGS. 18-21. The inhibitor for the viral target can specifically inhibit the replication of the target sequence, and the antagomir can target the target sequence well, so that the surrounding genes activated by SARS-CoV-HIS-2 (FIG. 17), MERS-CoV-HIS-2 (FIG. 18), SARS-CoV-2-HIS-4 (FIG. 19) and SARS-CoV-2-HIS-3 (FIG. 20) shown a significant tendency to decrease, further verifying the therapeutic value of targets in RNA virus.


This experiment further verified the inhibitory effect of the reverse complementary sequence of the target sequence of the RNA virus (comprising antisense DNA sequence and antisense RNA sequence), as well as cholesterol modification and four phosphorothioate backbone modifications made at the 3′ end of the target sequence of the RNA virus, two phosphorothioate backbone modifications made at the 5′ end, and methoxy modification made on the whole chain as an inhibitor on the activated target genes was verified. The test results were similar to that of the inhibitor antagomiR. It can be seen that the above-mentioned three inhibitors all had an inhibitory effect on activated target genes. Antisense RNA or antisense DNA of the target sequence of the RNA virus can be used to inhibit RNA virus nucleic acid and block important pathogenic pathways of RNA virus. The different modified or unmodified products of the antisense RNA or antisense DNA provided an important material basis for the treatment of RNA virus diseases. The detailed sequences of the antisense RNA or antisense DNA are shown in Table 2.


Example 4—The Increase in Hyaluronic Acid Affected by the Target can be Reduced by the Hyaluronic Acid Inhibitor 4-MU

This example verifies that the increase in hyaluronic acid affected by the target can be reduced by the hyaluronic acid inhibitor 4-MU and comprises the following steps: the lentivirus and infected cells were prepared by the method of example 2; Replacement with the fresh medium was performed, 100 μM of hyaluronic acid inhibitor 4-MU was added in the experimental group, and DMSO (the solvent for 4-MU) was added in the control group. After 24 hours, the cell supernatant was collected and detected with hyaluronic acid ELISA kit (R&D, DY3614-05). The steps are briefly described as follows:

    • 1) Coating ELISA plate: The plate was coated with 100 μl/well of Capture Reagent overnight.
    • 2) Sealing: The Capture Reagent was removed by patting the plate. The plate was washed 3 times with 400 μl/well of Wash buffer and patted to dryness. The plate was sealed with 100 μl/well of Dilute Reagent for 1 h.
    • 3) Washing the plate and incubating the sample: The plate was washed with 400 μl/well of Wash buffer 3 times, 100 μl/well of standard and serum to be tested were added (100 μl of the serum from patients with mild and severe COVID-19 was diluted with 200 μl of Dilute Reagent in the kit to a total volume of 300 μl, 3 replicate wells were made), and incubated at room temperature for 2 h. 4) Washing the plate and incubation with the Detect Reagent. The plate was washed with 400 μl/well of Wash buffer 3 times, 100 μl/well of Detect Reagent was added and incubated at room temperature for 2 h.
    • 5) Washing the plate and incubation with HRP. The plate was washed with 400 μl/well of Wash buffer 3 times, 100 μl/well of HRP was added and incubated at room temperature for 20 min.
    • 6) Washing the plate and incubation with the substrate. The plate was washed with 400 μl/well of Wash buffer 3 times, 100 μl/well of mixed solution of substrates A and B was added and incubated at room temperature for 20 min.
    • 7) Stopping color development. 50 μl/well of stop solution was added.


Absorbance was read at 450 nm within 15 min. The test results are shown in Table 4 and Table 5: After overexpression of the target sequence of the virus in cell lines 293T and MRC5, the hyaluronic acid content was significantly increased (Table 4). The hyaluronic acid produced due to overexpression of the target sequence can be reduced using hyaluronic acid inhibitor 4-MU (Table 5). This example proves that the target of the virus has scientific research value and 4-MU has the potential to become a therapeutic drug targeting the target and has a therapeutic value for complications related to the target of the RNA virus.









TABLE 4







Determination of hyaluronic acid content in 293T and MRC5


cells in which the target of the virus is overexpressed









Hyaluronic acid (ng/ml)












293T
p value
MRC5
p value





CTRL
7.39 ± 0.26
*
59.55 ± 4.73 
*


HIS-MERS-CoV-2
76.91 ± 2.29 
**
106.97 ± 4.69  
**


HIS-SARS-CoV-1-2
115.60 ± 18.10 
**
116.84 ± 1.52  
**


HIS-SARS-CoV-2-3
62.68 ± 7.14 
**
72.40 ± 8.75 
ns


HIS-SARS-CoV-2-4
113.95 ± 13.14 
**
117.44 ± 2.03  
**
















TABLE 5







Determination of the inhibitory ability of hyaluronic acid inhibitor on


hyaluronic acid in the case of overexpression of the target of the virus









Hyaluronic acid (ng/ml)











DMSO
4-MU (100 μM)
p value





CTRL
7.39 ± 0.26
 3.20 ± 0.39
**


HIS-MERS-CoV-2
76.91 ± 2.29 
39.72 ± 5.75
**


HIS-SARS-CoV-1-2
115.60 ± 18.10 
23.50 ± 3.44
**


HIS-SARS-CoV-2-3
62.68 ± 7.14 
30.02 ± 2.00
**


HIS-SARS-CoV-2-4
113.95 ± 13.14 
19.76 ± 11.3
*









Example 5—Detection of Blood Routine Index

The blood routine index was provided by the hospital, and the hyaluronic acid in the blood was detected using the hyaluronic acid ELISA kit (R&D, DY3614-05). Specifically, the HA content in the serum of a patient with severe COVID-19 was significantly increased compared with that in a patient with mild COVID-19 (Table 6). In addition, the number of lymphocytes in a patient with severe COVID-19 was significantly lower than that in a patient with mild COVID-19, suggesting that the number of the immune cells in a patient was decreased with the disease progressing to severe; furthermore, D-dimer is a fibrin degradation product, and the increase of D-dimer level indicates the existence of hypercoagulable state and secondary hyper fibrinolysis in the body. Therefore, the mass concentration of D-dimer has diagnostic significance for thrombotic diseases. The content of D-dimer in the serum of a patient with severe COVID-19 was significantly higher than that in a patient with mild COVID-19, indicating that the risk of coagulation in a patient was increased with the condition of COVID-19 progressing to severe, and also indicating that there was a certain feasibility of subsequent anticoagulation therapy.









TABLE 6







Hematological indicators of a patient with mild or severe COVID-19












HA (ng/ml)
LYMPH# (10{circumflex over ( )}9/L)
CRP (mg/L)
D-D (ug/ml)





Mild (n = 37)
3.77 ± 2.86   
1.79 ± 0.50  
0.77 ± 0.68   
0.28 ± 0.12 


Severe (n = 22)
35.41 ± 28.88***
1.40 ± 0.43**
8.49 ± 9.66***
0.49 ± 0.36*









The above results provide a basis for the changes in hematological indicators caused by the target sequences of the RNA virus to become clinical diagnosis, and reflects the clinical diagnostic value of the targets of the RNA virus. Moreover, the targets have the potential to become a vaccine. In addition, in the process of preparing vaccines, common attenuated live vaccines still have certain risks that need to be further optimized. The pathogenic risk of a vaccine will be greatly reduced by knockout of the targets.


The specific examples of the present invention are described in detail above and are only for illustration, and the present invention is not limited to the specific examples described above. For a person skilled in the art, any equivalent modifications and alternatives made to the present invention are also within the scope of the present invention. Therefore, all equivalent changes and modifications made without departing from the spirit and scope of the present invention should fall within the scope of the present invention.

Claims
  • 1. A biomaterial related to a target sequence of a RNA virus, wherein the target sequence is a nucleic acid sequence fragment in the gene sequence in the RNA virus containing 20-40 bases and having not less than 95% similarity to human genome sequence, and the biomaterial is: A) a DNA and/or RNA molecule that is complementary and paired to the target sequence of the RNA virus; orB) an expression cassette, a recombinant vector, a recombinant microorganism, a recombinant cell line containing the target sequence of the RNA virus or the DNA molecule in A).
  • 2. The biomaterial according to claim 1, wherein the biomaterial is a recombinant vector, and whose construction steps comprise: 1) designing a primer, and amplifying the target sequence of the RNA virus by PCR; 2) digesting the amplified sequence fragment and an expression vector, and ligating a sequence fragment of interest and the expression vector; 3) transferring the ligated product into Escherichia coli and cultivating the Escherichia coli; and 4) after identification, extracting recombinant plasmid and packaging the recombinant plasmid.
  • 3. The biomaterial according to claim 1, wherein the recombinant vector has target sequences expressing severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome-related coronavirus (SARS-CoV), or middle east respiratory syndrome coronavirus (MERS-CoV).
  • 4. The biomaterial according to claim 1, wherein the target sequence is a nucleic acid sequence fragment in the gene sequence in the RNA virus containing 20-28 bases and having 100% similarity to human genome sequence.
  • 5. The biomaterial according to claim 1, wherein the RNA virus comprises severe acute respiratory syndrome-related coronavirus 2, severe acute respiratory syndrome-related coronavirus, middle east respiratory syndrome coronavirus, zika virus, ebola virus, HIV, norwalk virus, alkhurma virus, enterovirus, kemerovo virus, coxsackievirus, hepatitis A virus, dengue virus 2, rubella virus, marburg marburgvirus, poliovirus, respiratory syncytial virus, mumps virus, australian bat lyssavirus, andes virus, powassan virus, langat virus, eyach virus, colorado tick fever virus, lassa virus, omsk hemorrhagic fever virus, machupo virus, junin virus, guanarito virus, sin nombre virus, hantaan virus, puumala virus, dobrava virus, seoul virus, crimean-congo hemorrhagic fever virus, sabia virus, thogoto virus, black creek canal virus, european bat lyssavirus 1, european bat lyssavirus 2, chapare virus, rotavirus, tai forest ebolavirus, bundibugyo ebolavirus, rift valley fever virus, irkut virus, influenza A virus, bayou virus, kyasanur forest disease virus, black creek canal virus, japanese encephalitis virus, duvenhage lyssavirus, Lujo mammarenavirus, measles morbillivirus, tick-borne encephalitis virus, avian influenza virus, swine influenza virus and rabies virus.
  • 6. The biomaterial according to claim 1, wherein the target sequence of the RNA virus is selected from any one or more of SEQ ID NO. 1-615.
  • 7. The biomaterial according to claim 6, wherein the target sequence of severe acute respiratory syndrome-related coronavirus 2 comprises SEQ ID NO. 1-SEQ ID NO. 6; and/or, the target sequence of severe acute respiratory syndrome-related coronavirus comprises SEQ ID NO. 7-SEQ ID NO. 9; and/or, the target sequence of middle east respiratory syndrome coronavirus comprises SEQ ID NO. 10, SEQ ID NO. 11; and/or, the target sequence of zika virus comprises SEQ ID NO. 12-SEQ ID NO. 14; and/or, the target sequence of ebola virus comprises SEQ ID NO. 15-SEQ ID NO. 17; and/or, the target sequence of HIV comprises SEQ ID NO. 18-SEQ ID NO. 26; and/or, the target sequence of norwalk virus comprises SEQ ID NO. 27; and/or, the target sequence of alkhurma virus comprises SEQ ID NO. 28-SEQ ID NO. 30; and/or, the target sequence of enterovirus comprises SEQ ID NO. 31, SEQ ID NO. 32; and/or, the target sequence of kemerovo virus comprises SEQ ID NO. 33, SEQ ID NO. 34; and/or, the target sequence of coxsackievirus comprises SEQ ID NO. 35; and/or, the target sequence of hepatitis A virus comprises SEQ ID NO. 36-SEQ ID NO. 46; and/or, the target sequence of dengue virus 2 comprises SEQ ID NO. 47-SEQ ID NO. 50; and/or, the target sequence of rubella virus comprises SEQ ID NO. 51; and/or, the target sequence of marburg marburgvirus comprises SEQ ID NO. 52-SEQ ID NO. 56; and/or, the target sequence of poliovirus comprises SEQ ID NO. 57; and/or, the target sequence of respiratory syncytial virus comprises SEQ ID NO. 58-SEQ ID NO. 85; and/or, the target sequence of mumps virus comprises SEQ ID NO. 86; and/or, the target sequence of australian bat lyssavirus comprises SEQ ID NO. 87; and/or, the target sequence of andes virus comprises SEQ ID NO. 88-SEQ ID NO. 95; and/or, the target sequence of powassan virus comprises SEQ ID NO. 96, SEQ ID NO. 97; and/or, the target sequence of langat virus comprises SEQ ID NO. 98-SEQ ID NO. 102; and/or, the target sequence of eyach virus comprises SEQ ID NO. 103-SEQ ID NO. 113; and/or, the target sequence of colorado tick fever virus comprises SEQ ID NO. 114-SEQ ID NO. 134; and/or, the target sequence of lassa virus comprises SEQ ID NO. 135, SEQ ID NO. 136; and/or, the target sequence of omsk hemorrhagic fever virus comprises SEQ ID NO. 137, SEQ ID NO. 138; and/or, the target sequence of machupo virus comprises SEQ ID NO. 139-SEQ ID NO. 140; and/or, the target sequence of junin virus comprises SEQ ID NO. 141; and/or, the target sequence of guanarito virus comprises SEQ ID NO. 142-SEQ ID NO. 147; and/or, the target sequence of sin nombre virus comprises SEQ ID NO. 148-SEQ ID NO. 152; and/or, the target sequence of hantaan virus comprises SEQ ID NO. 153-SEQ ID NO. 161; and/or, the target sequence of puumala virus comprises SEQ ID NO. 162-SEQ ID NO. 173; and/or, the target sequence of dobrava virus comprises SEQ ID NO. 174-SEQ ID NO. 185; and/or, the target sequence of seoul virus comprises SEQ ID NO. 186-SEQ ID NO. 199; and/or, the target sequence of crimean-congo hemorrhagic fever virus comprises SEQ ID NO. 200-SEQ ID NO. 204; and/or, the target sequence of sabia virus comprises SEQ ID NO. 205-SEQ ID NO. 212; and/or, the target sequence of thogoto virus comprises SEQ ID NO. 213-SEQ ID NO. 227; and/or, the target sequence of european bat lyssavirus 1 comprises SEQ ID NO. 228-SEQ ID NO. 232; and/or, the target sequence of european bat lyssavirus 2 comprises SEQ ID NO. 233; and/or, the target sequence of chapare virus comprises SEQ ID NO. 234; and/or, the target sequence of rotavirus comprises SEQ ID NO. 235-SEQ ID NO. 277; and/or, the target sequence of tai forest ebolavirus comprises SEQ ID NO. 278, SEQ ID NO. 279; and/or, the target sequence of bundibugyo ebolavirus comprises SEQ ID NO. 280; and/or, the target sequence of rift valley fever virus comprises SEQ ID NO. 281; and/or, the target sequence of irkut virus comprises SEQ ID NO. 282-SEQ ID NO. 285; and/or, the target sequence of influenza A virus comprises SEQ ID NO. 286-SEQ ID NO. 313; and/or, the target sequence of bayou virus comprises SEQ ID NO. 314-SEQ ID NO. 327; and/or, the target sequence of kyasanur forest disease virus comprises SEQ ID NO. 328; and/or, the target sequence of black creek canal virus comprises SEQ ID NO. 329-SEQ ID NO. 334; and/or, the target sequence of japanese encephalitis virus comprises SEQ ID NO. 335-SEQ ID NO. 337; and/or, the target sequence of duvenhage lyssavirus comprises SEQ ID NO. 338-SEQ ID NO. 344; and/or, the target sequence of Lujo mammarenavirus comprises SEQ ID NO. 345; and/or, the target sequence of measles morbillivirus comprises SEQ ID NO. 346; and/or, the target sequence of tick-borne encephalitis virus comprises SEQ ID NO. 347; and/or, the target sequence of avian influenza virus comprises SEQ ID NO. 348-SEQ ID NO. 420; and/or, the target sequence of swine influenza virus comprises SEQ ID NO. 421-SEQ ID NO. 521; and/or, the target sequence of rabies virus comprises SEQ ID NO. 522-SEQ ID NO. 615.
Foreign Referenced Citations (3)
Number Date Country
112063635 Dec 2020 CN
WO2005035712 Apr 2005 WO
WO2022092995 May 2022 WO
Non-Patent Literature Citations (1)
Entry
Li, W., et al., “Human Identical Sequences of SARS-CoV-2 Promote Clinical Progression of COVID-19 by Upregulating Hyaluronan via NamiRNA-Enhancer Network,” bioRxiv: 1-39, Cold Spring Harbor Laboratory, United States (Nov. 2020).
Related Publications (1)
Number Date Country
20230173054 A1 Jun 2023 US