Targeted antimicrobial moieties

Abstract
This invention provides novel targeted antimicrobial compositions. In various embodiments chimeric moieties are provided comprising an antimicrobial peptide attached to a peptide targeting moiety that binds a bacterial strain or species.
Description
STATEMENT OF GOVERNMENTAL SUPPORT

[Not Applicable]


FIELD OF THE INVENTION

The present invention relates to novel targeting peptides, novel antimicrobial peptides, chimeric moieties comprising novel targeting and/or novel antimicrobial peptides and uses thereof.


BACKGROUND OF THE INVENTION

Antibiotic research at the industrial level was originally focused on the identification of refined variants of already existing drugs. This resulted example, in the development of antibiotics such as newer penicillins, cephalosporins, macrolides, and fluoroquinolones.


However, resistance to old and newer antibiotics among bacterial pathogens is evolving rapidly, as exemplified by extended beta-lactamase (ESBL) and quinolone resistant gram-negatives, multi-resistant gonococci, methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant enterococci (VRE), penicillin non-susceptible pneumococci (PNSP) and macrolide resistant pneumococci and streptococci (see, e.g., Panlilo et al. (1992) Infect. Control Hosp. EpidemioL., 13: 582-586; Morris et al. (1995) Ann Intern Med., 123: 250-259, and the like). An overuse, or improper use, of antibiotics is believed to be of great importance for triggering and spread of drug resistant bacteria. Microbes have, in many cases, adapted and are resistant to antibiotics due to constant exposure and improper use of the drugs.


Drug resistant pathogens represent a major economic burden for health-care systems. For example, postoperative and other nosocomial infections will prolong the need for hospital care and increase antibiotic drug expenses. It is estimated that the annual cost of treating drug resistant infections in the United States is approximately $5 billion.


SUMMARY OF THE INVENTION

In certain embodiments, novel targeting moieties (e.g., peptides) that specifically/preferentially bind to microorganisms (e.g., certain bacteria, yeasts, fungi, molds, viruses, algae, protozoa, and the like) are provided. The targeting moieties can be attached to effectors (e.g., detectable labels, drugs, antimicrobial peptides, etc.) to form chimeric constructs for specifically/preferentially delivering the effector to and/or into the target organism. In certain embodiments novel antimicrobial peptides that can be used to inhibit (e.g., kill and/or inhibit growth and/or proliferation) of certain microorganisms (e.g., certain bacteria, yeasts, fungi, molds, viruses, algae, protozoa, and the like) are provided. Any targeting moiety disclosed herein can be attached to any one or more effector disclosed herein. Any targeting moiety disclosed herein can be attached to any one or more antimicrobial peptide disclosed herein.


In certain embodiments chimeric moieties are provided where the chimeric moieties comprise an effector attached to a peptide targeting moiety comprising or consisting of the amino acid sequence of a peptide found in Table 2 and/or Table 15. In certain embodiments the targeting peptide comprises or consists of amino acid or retro or inverso or retro-inverso sequence or beta sequence of a peptide found in Table 2 and/or Table 15. In certain embodiments the effector comprises a moiety selected from the group consisting of a detectable label, an antimicrobial peptide, an antibiotic, and a photosensitizer. In certain embodiments the effector comprises an antimicrobial peptide comprising the amino acid sequence of a peptide found in Table 2, and/or Table 8, and/or Table 9, and/or Table 10. In certain embodiments the effector comprises an antibiotic found in Table 7. In certain embodiments the effector comprises a photosensitizer. In certain embodiments the photosensitizer is selected from the group consisting of a porphyrinic macrocycle, a porphyrin, a chlorine, a crown ether, an acridine, an azine, a phthalocyanine, a cyanine, a psoralen, and a perylenequinonoid. In certain embodiments the photosensitizing agent is an agent shown in any of FIGS. 1-11.


Also provided is a chimeric construct comprising a targeting moiety attached to an antimicrobial peptide where the antimicrobial peptide comprises or consists of the amino acid or retro or inverso or retro-inverso sequence of a peptide found in Table 2. In certain embodiments the targeting moiety is a peptide that comprises or consists of the amino acid or retro or inverso or retro-inverso or beta sequence of a peptide found in Table 2, and/or Table 3, and/or Table 4, and/or Table 6, and/or Table 15. In certain embodiments, the targeting moiety comprises an antibody (e.g., an antibody identified in Table 5). In certain embodiments the targeting moiety is chemically conjugated to the effector directly or via a linker. In certain embodiments the targeting moiety is chemically conjugated to the effector via a linker comprising a polyethylene glycol (PEG). In certain embodiments the targeting moiety is chemically conjugated to the effector via a non-peptide linker found in Table 11. In certain embodiments the where the targeting moiety is linked to the effector via a peptide linkage. In certain embodiments the chimeric construct is a fusion protein. In certain embodiments the linker is a peptide linker found in Table 11. In certain embodiments the chimeric moiety is functionalized with a polymer (e.g., polyethylene glycol, a cellulose, a modified cellulose, etc.) to increase serum halflife.


Also provided are pharmaceutical compositions comprising the chimeric construct(s)/chimeric moieties described herein in a pharmaceutically acceptable carrier. In certain embodiments the composition is formulated as a unit dosage formulation. In certain embodiments the composition is formulated for administration by a modality selected from the group consisting of intraperitoneal administration, topical administration, oral administration, inhalation administration, transdermal administration, subdermal depot administration, and rectal administration.


Also provided is an antimicrobial composition comprising an isolated antimicrobial moiety comprising or consisting of the amino acid sequence of a peptide found in Table 2. In certain embodiments the peptide comprises or consists of the amino acid or retro or inverso or retro-inverso sequence or beta sequence of a peptide found in Table 2. In certain embodiments the peptide is a peptide selected from the group consisting of a peptide consisting of the amino acid sequence of a peptide found in Table 2 comprising all L residues, a peptide consisting of the amino acid sequence of a peptide found in Table 2 comprising a peptide found in Table comprising all D residues, a peptide comprising the inverse of an amino acid sequence found in Table 2, a peptide comprising the retro-inverso form of a peptide found in Table 2, a peptide found in Table 2 comprising a conservative substitution, and a peptide found in Table 2 comprising a substitution of a naturally occurring amino acid with a non-naturally occurring amino acid. In certain embodiments the peptide comprises no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative substitutions.


Also provided is a composition comprising an isolated targeting moiety comprising or consisting of the amino acid sequence of a peptide found in Table 2 or Table 15. In certain embodiments the peptide comprises or consists of the amino acid or retro or inverso or retro-inverso sequence or beta sequence of a peptide found in Table 2 or Table 15. In certain embodiments the peptide is a peptide selected from the group consisting of a peptide consisting of the amino acid sequence of a peptide found in Table 2 or Table 15 comprising all L residues, a peptide consisting of the amino acid sequence of a peptide found in Table 2 comprising a peptide found in Table comprising all D residues, a peptide comprising the inverse of an amino acid sequence found in Table 2 or Table 15, a peptide comprising the retro-inverso form of a peptide found in Table 2 or Table 15, a peptide found in Table 2 or Table 15 comprising a conservative substitution, and a peptide found in Table 2 or Table 15 comprising a substitution of a naturally occurring amino acid with a non-naturally occurring amino acid. In certain embodiments the peptide comprises no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative substitutions.


In certain embodiments methods are provided for inhibiting the growth and/or proliferation of a microorganism and/or a biofilm comprising a microorganism. The methods typically involve contacting the microorganism or biofilm with a composition comprising an antimicrobial peptide comprising or consisting of the amino acid sequence of a peptide found in Table 2 (e.g., the amino acid or retro or inverso or retro-inverso sequence or beta sequence of a peptide found in Table 2); and/or contacting the microorganism or biofilm with a composition comprising an antimicrobial moiety attached to a targeting peptide comprising or consisting of the amino acid sequence of a peptide found in Table 2 (e.g., the amino acid or retro or inverso or retro-inverso sequence or beta sequence of a peptide found in Table 2). In certain embodiments the microorganism or biofilm is a bacterium or a bacterial film. In certain embodiments the targeting peptide is chemically conjugated to the antimicrobial peptide. In certain embodiments the targeting peptide is linked directly to the antimicrobial peptide. In certain embodiments the targeting peptide is linked to the antimicrobial peptide via a linker comprising a polyethylene glycol. In certain embodiments the targeting peptide is linked to the antimicrobial peptide via a non-peptide linkage in Table 11. In certain embodiments the targeting peptide is linked to the antimicrobial peptide via a peptide linkage. In certain embodiments the targeting peptide linked to the antimicrobial peptide is a fusion protein. In certain embodiments the linker is a peptide linker in Table 11.


In various embodiments methods are provided for detecting a microorganism (e.g., bacteria, yeast, protozoan, virus, algae, fungi, etc.) or biofilm comprising the microorganism. The methods typically involve contacting the microorganism or biofilm with a composition comprising a detectable label attached to a targeting peptide comprising the amino acid sequence of a peptide comprising or consisting of the amino acid or retro or inverso or retro-inverso sequence of a peptide found in Table 2; and detecting the detectable label where the quantity and/or location of the detectable label is an indicator of the presence of the microorganism and/or biofilm film. In certain embodiments the microorganism or biofilm is a bacterium or a bacterial film. In certain embodiments the detectable label is a label selected from the group consisting of a radioactive label, a radio-opaque label, a fluorescent dye, a fluorescent protein, an enzymatic label, a colorimetric label, and a quantum dot.


In certain embodiments compositions are also provided comprising a photosensitizing agent attached to a targeting peptide where the targeting peptide comprising or consisting of the amino acid or retro or inverso or retro-inverso sequence of a peptide found in Table 2 or Table 15. In certain embodiments the photosensitizing agent is an agent selected from the group consisting of a porphyrinic macrocycle, a porphyrin, a chlorine, a crown ether, an acridine, an azine, a phthalocyanine, a cyanine, a psoralen, and a perylenequinonoid. In certain embodiments the photosensitizing agent is an agent shown in any of FIGS. 1-11. In certain embodiments the photosensitizing agent is attached to the targeting peptide by a non-peptide linker. In certain embodiments photosensitizing agent is attached to the targeting peptide by a linker comprising a polyethylene glycol (PEG). In certain embodiments the photosensitizing agent is attached to the targeting peptide by a non-peptide linker found in Table 11.


In certain embodiments methods are provided for inhibiting the growth or proliferation of a microorganism and/or a biofilm (e.g., a bacterium and/or a bacterial film), where the methods involve contacting the a microorganism and/or a biofilm with a composition comprising a photosensitizing agent attached to a targeting peptide as described herein. In certain embodiments the method further comprises exposing the microorganism or biofilm to a light source. In certain embodiments the microorganism is a microorganism selected from the group consisting of a bacterium, a yeast, a fungus, a protozoan, and a virus. In certain embodiments the biofilm comprises a bacterial film.


In certain embodiments chimeric moieties are provided wherein the chimeric moiety comprises multiple targeting moieties attached to each other. In certain embodiments the targeting moieties are directly attached to each other. In certain embodiments the targeting moieties are attached to each other via a peptide linker. In certain embodiments the targeting moieties are attached to each other via a non-peptide linker. In certain embodiments chimeric moieties are provided wherein the chimeric moiety comprises multiple effectors attached to each other. In certain embodiments the effectors are directly attached to each other. In certain embodiments the effectors are attached to each other via a peptide linker. In certain embodiments the effectors are attached to each other via a non-peptide linker.


In certain embodiments chimeric moieties are provided where the chimeric moiety comprises one or more targeting moieties attached to one or more effectors. In certain embodiments the chimeric moiety comprises one or more of the targeting moieties shown in Table 2, and/or Table 4 and/or Table 6, and/or Table 15 attached to a single effector. In certain embodiments the chimeric moiety comprises one or more effectors attached to a single targeting moiety. In certain embodiments the chimeric moiety comprises one or more effectors comprising one or more of the antimicrobial peptides shown in Table 2, and/or Table 8, and/or Table 9, and/or Table 10 attached to a single targeting moiety. In certain embodiments the chimeric moiety comprises multiple targeting moieties attached to multiple effectors.


DEFINITIONS

The term “peptide” as used herein refers to a polymer of amino acid residues typically ranging in length from 2 to about 50 residues. In certain embodiments the peptide ranges in length from about 2, 3, 4, 5, 7, 9, 10, or 11 residues to about 50, 45, 40, 45, 30, 25, 20, or 15 residues. In certain embodiments the peptide ranges in length from about 8, 9, 10, 11, or 12 residues to about 15, 20 or 25 residues. Where an amino acid sequence is provided herein, L-, D-, or beta amino acid versions of the sequence are also contemplated as well as retro, inversion, and retro-inversion isoforms. Peptides also include amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. In addition, the term applies to amino acids joined by a peptide linkage or by other, “modified linkages” (e.g., where the peptide bond is replaced by an α-ester, a β-ester, a thioamide, phosphonamide, carbomate, hydroxylate, and the like (see, e.g., Spatola, (1983) Chem. Biochem. Amino Acids and Proteins 7: 267-357), where the amide is replaced with a saturated amine (see, e.g., Skiles et al., U.S. Pat. No. 4,496,542, which is incorporated herein by reference, and Kaltenbronn et al., (1990) Pp. 969-970 in Proc. 11th American Peptide Symposium, ESCOM Science Publishers, The Netherlands, and the like)).


The term “residue” as used herein refers to natural, synthetic, or modified amino acids. Various amino acid analogues include, but are not limited to 2-aminoadipic acid, 3-aminoadipic acid, beta-alanine (beta-aminopropionic acid), 2-aminobutyric acid, 4-aminobutyric acid, piperidinic acid, 6-aminocaproic acid, 2-aminoheptanoic acid, 2-aminoisobutyric acid, 3-aminoisobutyric acid, 2-aminopimelic acid, 2,4 diaminobutyric acid, desmosine, 2,2′-diaminopimelic acid, 2,3-diaminopropionic acid, n-ethylglycine, n-ethylasparagine, hydroxylysine, allo-hydroxylysine, 3-hydroxyproline, 4-hydroxyproline, isodesmosine, allo-isoleucine, n-methylglycine, sarcosine, n-methylisoleucine, 6-n-methyllysine, n-methylvaline, norvaline, norleucine, ornithine, and the like. These modified amino acids are illustrative and not intended to be limiting.


“β-peptides” comprise of “β amino acids”, which have their amino group bonded to the β carbon rather than the α-carbon as in the 20 standard biological amino acids. The only commonly naturally occurring β amino acid is β-alanine.


Peptoids, or N-substituted glycines, are a specific subclass of peptidomimetics. They are closely related to their natural peptide counterparts, but differ chemically in that their side chains are appended to nitrogen atoms along the molecule's backbone, rather than to the α-carbons (as they are in natural amino acids).


The terms “conventional” and “natural” as applied to peptides herein refer to peptides, constructed only from the naturally-occurring amino acids: Ala, Cys, Asp, Glu, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp, and Tyr. A compound of the invention “corresponds” to a natural peptide if it elicits a biological activity (e.g., antimicrobial activity) related to the biological activity and/or specificity of the naturally occurring peptide. The elicited activity may be the same as, greater than or less than that of the natural peptide. In general, such a peptoid will have an essentially corresponding monomer sequence, where a natural amino acid is replaced by an N-substituted glycine derivative, if the N-substituted glycine derivative resembles the original amino acid in hydrophilicity, hydrophobicity, polarity, etc. Thus, for example, the following pairs of peptides would be considered “corresponding”:









(SEQ ID NO: 1)


Ia. Asp-Arg-Val-Tyr-Ile-His-Pro-Phe


(Angiotensin II)


and





(SEQ ID NO: 2)


Ib. Asp-Arg-Val*-Tyr-Ile*-His-Pro-Phe;





(SEQ ID NO: 3)


IIa. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg


(Bradykinin)


and





(SEQ ID NO: 4)


IIb: Arg-Pro-Pro-Gly-Phe*-Ser*-Pro-Phe*-Arg;





(SEQ ID NO: 5)


IIIa: Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-


Pro-Leu-Val-Thr (β-Endorphin);


and





(SEQ ID NO: 6)


IIIb: Gly-Gly-Phe*-Met-Ser*-Ser-Glu-Lys*-Ser-Gln-


Ser*-Pro-Leu-Val*-Thr.







In these examples, “Val*” refers to N-(prop-2-yl)glycine, “Phe*” refers to N-benzylglycine, “Ser*” refers to N-(2-hydroxyethyl)glycine, “Leu*” refers to N-(2-methylprop-1-yl)glycine, and “Ile*” refers to N-(1-methylprop-1-yl)glycine. The correspondence need not be exact: for example, N-(2-hydroxyethyl)glycine may substitute for Ser, Thr, Cys, and Met; N-(2-methylprop-1-yl)glycine may substitute for Val, Leu, and Ile. Note in IIIa and IIIb above that Ser* is used to substitute for Thr and Ser, despite the structural differences: the sidechain in Ser* is one methylene group longer than that of Ser, and differs from Thr in the site of hydroxy-substitution. In general, one may use an N-hydroxyalkyl-substituted glycine to substitute for any polar amino acid, an N-benzyl- or N-aralkyl-substituted glycine to replace any aromatic amino acid (e.g., Phe, Trp, etc.), an N-alkyl-substituted glycine such as N-butylglycine to replace any nonpolar amino acid (e.g., Leu, Val, Ile, etc.), and an N-(aminoalkyl)glycine derivative to replace any basic polar amino acid (e.g., Lys and Arg).


A “compound antimicrobial peptide” or “compound AMP” refers to a construct comprising two or more AMPs joined together. The AMPs can be joined directly or through a linker. They can be chemically conjugated or, where joined directly together or through a peptide linker can comprise a fusion protein.


In certain embodiments, conservative substitutions of the amino acids comprising any of the sequences described herein are contemplated. In various embodiments one, two, three, four, or five different residues are substituted. The term “conservative substitution” is used to reflect amino acid substitutions that do not substantially alter the activity (e.g., antimicrobial activity and/or specificity) of the molecule. Typically conservative amino acid substitutions involve substitution one amino acid for another amino acid with similar chemical properties (e.g. charge or hydrophobicity). Certain conservative substitutions include “analog substitutions” where a standard amino acid is replaced by a non-standard (e.g., rare, synthetic, etc) amino acid differing minimally from the parental residue. Amino acid analogs are considered to be derived synthetically from the standard amino acids without sufficient change to the structure of the parent, are isomers, or are metabolite precursors. Examples of such “analog substitutions” include, but are not limited to, 1) Lys-Orn, 2) Leu-Norleucine, 3) Lys-Lys[TFA], 4) Phe-Phe[Gly], and 5) δ-amino butylglycine-ξ-amino hexylglycine, where Phe[gly] refers to phenylglycine (a Phe derivative with a H rather than CH3 component in the R group), and Lys[TFA] refers to a Lys where a negatively charged ion (e.g., TFA) is attached to the amine R group. Other conservative substitutions include “functional substitutions” where the general chemistries of the two residues are similar, and can be sufficient to mimic or partially recover the function of the native peptide. Strong functional substitutions include, but are not limited to 1) Gly/Ala, 2) Arg/Lys, 3) Ser/Tyr/Thr, 4) Leu/Ile/Val, 5) Asp/Glu, 6) Gln/Asn, and 7) Phe/Trp/Tyr, while other functional substitutions include, but are not limited to 8) Gly/Ala/Pro, 9) Tyr/His, 10) Arg/Lys/His, 11) Ser/Thr/Cys, 12) Leu/Ile/Val/Met, and 13) Met/Lys (special case under hydrophobic conditions). Various “broad conservative substations” include substitutions where amino acids replace other amino acids from the same biochemical or biophysical grouping. This is similarity at a basic level and stems from efforts to classify the original 20 natural amino acids. Such substitutions include 1) nonpolar side chains: Gly/Ala/Val/Leu/Ile/Met/Pro/Phe/Trp, and/or 2) uncharged polar side chains Ser/Thr/Asn/Gln/Tyr/Cys. In certain embodiments broad-level substitutions can also occur as paired substitutions. For example, any hydrophilic neutral pair [Ser, Thr, Gln, Asn, Tyr, Cys]+[Ser, Thr, Gln, Asn, Tyr, Cys] can may be replaced by a charge-neutral charged pair [Arg, Lys, His]+[Asp, Glu]. The following six groups each contain amino acids that are typical conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K), Histidine (H); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).


In certain embodiments, targeting peptides, antimicrobial peptides, and/or STAMPs compromising at least 80%, preferably at least 85% or 90%, and more preferably at least 95% or 98% sequence identity with any of the sequences described herein are also contemplated. The terms “identical” or percent “identity,” refer to two or more sequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. With respect to the peptides of this invention sequence identity is determined over the full length of the peptide. For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman (1981) Adv. Appl. Math. 2: 482, by the homology alignment algorithm of Needleman & Wunsch (1970) J. Mol. Biol. 48: 443, by the search for similarity method of Pearson & Lipman (1988) Proc. Natl. Acad. Sci., USA, 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection.


The term “specificity” when used with respect to the antimicrobial activity of a peptide indicates that the peptide preferentially inhibits growth and/or proliferation and/or kills a particular microbial species as compared to other related and/or unrelated microbes. In certain embodiments the preferential inhibition or killing is at least 10% greater (e.g., LD50 is 10% lower), preferably at least 20%, 30%, 40%, or 50%, more preferably at least 2-fold, at least 5-fold, or at least 10-fold greater for the target species.


“Treating” or “treatment” of a condition as used herein may refer to preventing the condition, slowing the onset or rate of development of the condition, reducing the risk of developing the condition, preventing or delaying the development of symptoms associated with the condition, reducing or ending symptoms associated with the condition, generating a complete or partial regression of the condition, or some combination thereof.


The term “consisting essentially of” when used with respect to an antimicrobial peptide (AMP) or AMP motif as described herein, indicates that the peptide or peptides encompassed by the library or variants, analogues, or derivatives thereof possess substantially the same or greater antimicrobial activity and/or specificity as the referenced peptide. In certain embodiments substantially the same or greater antimicrobial activity indicates at least 80%, preferably at least 90%, and more preferably at least 95% of the anti microbial activity of the referenced peptide(s) against a particular bacterial species (e.g., S. mutans).


The term “porphyrinic macrocycle” refers to a porphyrin or porphyrin derivative. Such derivatives include porphyrins with extra rings ortho-fused, or orthoperifused, to the porphyrin nucleus, porphyrins having a replacement of one or more carbon atoms of the porphyrin ring by an atom of another element (skeletal replacement), derivatives having a replacement of a nitrogen atom of the porphyrin ring by an atom of another element (skeletal replacement of nitrogen), derivatives having substituents other than hydrogen located at the peripheral (meso-, .beta.-) or core atoms of the porphyrin, derivatives with saturation of one or more bonds of the porphyrin (hydroporphyrins, e.g., chlorins, bacteriochlorins, isobacteriochlorins, decahydroporphyrins, corphins, pyrrocorphins, etc.), derivatives obtained by coordination of one or more metals to one or more porphyrin atoms (metalloporphyrins), derivatives having one or more atoms, including pyrrolic and pyrromethenyl units, inserted in the porphyrin ring (expanded porphyrins), derivatives having one or more groups removed from the porphyrin ring (contracted porphyrins, e.g., corrin, corrole) and combinations of the foregoing derivatives (e.g. phthalocyanines, porphyrazines, naphthalocyanines, subphthalocyanines, and porphyrin isomers). Certain porphyrinic macrocycles comprise at least one 5-membered ring.


As used herein, an “antibody” refers to a protein consisting of one or more polypeptides substantially encoded by immunoglobulin genes or fragments of immunoglobulin genes. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.


A typical immunoglobulin (antibody) structural unit is known to comprise a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kD) and one “heavy” chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (VL) and variable heavy chain (VH) refer to these light and heavy chains respectively.


Antibodies exist as intact immunoglobulins or as a number of well characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′2, a dimer of Fab which itself is a light chain joined to VH-CH1 by a disulfide bond. The F(ab)′2 may be reduced under mild conditions to break the disulfide linkage in the hinge region thereby converting the (Fab′)2 dimer into an Fab′ monomer. The Fab′ monomer is essentially an Fab with part of the hinge region (see, Fundamental Immunology, W. E. Paul, ed., Raven Press, N.Y. (1993), for a more detailed description of other antibody fragments). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such Fab′ fragments may be synthesized de novo either chemically or by utilizing recombinant DNA methodology. Thus, the term antibody, as used herein also includes antibody fragments either produced by the modification of whole antibodies or synthesized de novo using recombinant DNA methodologies, including, but are not limited to, Fab′2, IgG, IgM, IgA, scFv, dAb, nanobodies, unibodies, and diabodies.


In certain embodiments antibodies and fragments of the present invention can be bispecific. Bispecific antibodies or fragments can be of several configurations. For example, bispecific antibodies may resemble single antibodies (or antibody fragments) but have two different antigen binding sites (variable regions). In various embodiments bispecific antibodies can be produced by chemical techniques (Kranz et al. (1981) Proc. Natl. Acad. Sci., USA, 78: 5807), by “polydoma” techniques (see, e.g., U.S. Pat. No. 4,474,893), or by recombinant DNA techniques. In certain embodiments bispecific antibodies of the present invention can have binding specificities for at least two different epitopes, at least one of which is an epitope of a microbial organism. The microbial binding antibodies and fragments can also be heteroantibodies. Heteroantibodies are two or more antibodies, or antibody binding fragments (e.g., Fab) linked together, each antibody or fragment having a different specificity.


The term “STAMP” refers to Specifically Targeted Anti-Microbial Peptides. An MH-STAMP is a STAMP bearing two or more targeting domains (i.e., a multi-headed STAMP).


In various embodiments the amino acid abbreviations shown in Table 1 are used herein.









TABLE 1







Amino acid abbreviations.









Abbreviation









Name
3 Letter
1 Letter





Alanine
Ala
A





βAlanine (NH2—CH2—CH2—COOH)
βAla






Arginine
Arg
R





Asparagine
Asn
N





Aspartic Acid
Asp
D





Cysteine
Cys
C





Glutamic Acid
Glu
E





Glutamine
Gln
Q





Glycine
Gly
G





Histidine
His
H





Homoserine
Hse






Isoleucine
Ile
I





Leucine
Leu
L





Lysine
Lys
K





Methionine
Met
M





Methionine sulfoxide
Met (O)






Methionine methylsulfonium
Met (S-Me)






Norleucine
Nle






Phenylalanine
Phe
F





Proline
Pro
P





Serine
Ser
S





Threonine
Thr
T





Tryptophan
Trp
W





Tyrosine
Tyr
Y





Valine
Val
V





episilon-aminocaproic acid
Ahx
J


(NH2—(CH2)5—COOH)







4-aminobutanoic acid
gAbu



(NH2(CH2)3—COOH)







tetrahydroisoquinoline-3-

O


carboxylic acid







Lys(N(epsilon)-trifluoroacetyl)

K[TFA]





α-aminoisobutyric acid
Aib
B












BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows some illustrative porphyrins (compounds 92-99) suitable for use as targeting moieties and/or antimicrobial effectors.



FIG. 2 shows some illustrative porphyrins (compounds 100-118) suitable for use as targeting moieties and/or antimicrobial effectors.



FIG. 3 shows some illustrative porphyrins (in particular phthalocyanines) (compounds 119-128) suitable for use as targeting moieties and/or antimicrobial effectors.



FIG. 4 illustrates the structures of two phthalocyanines, Monoastral Fast Blue B and Monoastral Fast Blue G suitable for use as targeting moieties and/or antimicrobial effectors.



FIG. 5 illustrates certain azine photosensitizers suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.



FIG. 6 shows illustrative cyanine suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.



FIG. 7 shows illustrative psoralen (angelicin) photosensitizers suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.



FIG. 8 shows illustrative hypericin and the perylenequinonoid pigments suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.



FIG. 9 shows illustrative acridines suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.



FIG. 10 illustrates the structure of the acridine Rose Bengal.



FIG. 11 illustrates various crown ethers suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.



FIG. 12 schematically shows some illustrative configurations for chimeric constructs described herein. A: Shows a single targeting moiety T1 attached to a single effector E1 by a linker/spacer L. B: Shows multiple targeting moieties T1, T2, T3 attached directly to each other and attached by a linker L to a single effector E1. In various embodiments T1, T2, and T3, can be domains in a fusion protein. C: Shows multiple targeting moieties T1, T2, T3 attached to each other by linkers L and attached by a linker L to a single effector E1. In various embodiments T1, T2, and T3, can be domains in a fusion protein. D: Shows a single targeting moiety T1 attached by a linker L to multiple effectors E1, E2, and E3 joined directly to each other. E: Shows a single targeting moiety T1 attached by a linker L to multiple effectors E1, E2, and E3 joined to each other by linkers L. F: Shows multiple targeting moieties joined directly to each other and by a linker L to multiple effectors joined to each other by linkers L. G: Shows multiple targeting moieties joined to each other by linkers L and by a linker L to multiple effectors joined to each other by linkers L. In various embodiments T1, T2, and T3, and/or E1, E2, and E3 can be domains in a fusion protein. H: Illustrates a branched configuration where multiple targeting moieties are linked to a single effector. I: Illustrates a dual branched configuration where multiple targeting moieties are linked to multiple effectors. J: Illustrates a branched configuration where multiple targeting moieties are linked to multiple effectors where the effectors are joined to each other in a linear configuration.



FIG. 13 illustrates various MH-STAMPs used in Example 1. The design, sequence, and observed mass (m/z) for M8(KH)-20, BL(KH)-20, and M8(BL)-20.



FIGS. 14A and 14B show HPLC and MS spectra of M8(KH)-20. The quality of the completed MH-STAMP was analyzed by HPLC (FIG. 14A) and MALDI mass spectroscopy (FIG. 14B). At UV absorbance 215 nm (260 and 280 nm are also plotted), a single major product was detected by HPLC (* retention volume 11.04 mL). After fraction collection, the correct mass (m/z) for single-charged M8(KH)-20, 4884.91 (marked by *), was observed for this peak. Y-axis: 14A, mAU miliabsorbance units; 14B, percent intensity.



FIG. 15A-15E show growth inhibitory activity of MH-STAMPs. Monocultures of S. mutans (FIG. 15A); P. aeruginosa (FIG. 15B); S. epidermidis (FIG. 15C); S. aureus (FIG. 15D); or E. coli (FIG. 15E); were treated with peptides (as indicated in the figure) for 10 min. Agent was then removed and fresh media returned. Culture recovery was measured over time (OD600). Plots represent the average of at least 3 independent experiments with standard deviations.



FIG. 16 illustrates the selective activity of dual-targeted and single-targeted MH-STAMPs in mixed culture. A mixture of P. aeruginosa (Pa), S. mutans (Sm), E. coli (Ec), and S. epidermidis (Se) planktonic cells were mixed with MH-STAMPs (as indicated in the figure) and treated 24 h. After incubation, cfu/mL of remaining constituent species were quantitated after plating to selective media. * indicates under 200 surviving cfu/mL recovered.



FIG. 17 depicts the results of minimal inhibitory concentration (MIC) assays, conducted against S. mutans and a panel of bacteria, including two oral streptococci, S. sanguinis and S. sobrinus, to gauge Library 1 STAMP (SEQ ID NOS:1969-1976) antimicrobial activity and S. mutans-selectivity.



FIG. 18 shows the results of MIC assays of STAMPs comprising targeting peptide 21 conjugated to one of five AMPs: RWRWRWF (2c-4; SEQ ID NO:1860), FKKFWKWFRRF (B-33; SEQ ID NO:1821), IKQLLHFFQRF (B-38; SEQ ID NO:1826), RWRRLLKKLHHLLH (α-11; SEQ ID NO:1877), and LQLLKQLLKLLKQF (α-7; SEQ ID NO:1873. Each targeting peptide is attached at the C- or N-terminus to an AMP utilizing a linker selected from: L1, SGG (L6; SEQ ID NO:1938), L3, and LC. The linkers in FIG. 18 are designated by their abbreviation and shown in parenthesis in the STAMP name (e.g. “2 1(L1)2C-4”). MIC assays were conducted against a panel of bacteria, including S. mutans (S. mu), S. gordonii (S. gor), S. sanguinis (S. san), and S. mitis (S. mit), to gauge differences in activity between attaching the targeting peptide to the C- or N-terminus of the AMP region or differences in activity between the linker used.



FIG. 19 shows the killing kinetics of selected peptides against oral streptococci. All tested bacteria, (A) S. mitis (Smit), (B) S. gordonii (Sgor), (C) S. sanguinis (Ssan), and (D) S. mutans (Smut), were treated with peptide solutions at 25 μg/mL for 30 s to 2 h and survivors plated. Data represent an average of three independent experiments.



FIG. 20 illustrates the inhibitory activity of STAMPs against S. mutans biofilms. S mutans monoculture biofilms were grown and exposed to a 25 μg/mL of STAMP, unmodified parental AMP or oral antiseptic (for 1 min), washed, and replenished with fresh medium. Biofilm recovery was monitored after 4 h by A600. Data represent an average of three experiments.





DETAILED DESCRIPTION

In various embodiments this invention is based on the development of a method for the rapid identification and synthesis of small peptides from sequenced genomes for the purposes of quickly screening these molecules for diverse biological activities. Previously, small secreted peptides had to be identified by direct collection (purification of spent microbial growth medium or biological tissue/fluid), or by identification through differential microarray analysis or as a by-product of genetic operon characterization. Both are multi-step processes that terminate at peptide identification; several separate enterprises are required to synthesize or sequence any peptides for characterization. Additionally, because of their small size and lack of protein domain homologies, small peptides are frequently overlooked when describing biological systems, though many organisms contain numerous peptide-sized open reading frames (ORFs).


Genomic sequence analysis tools already in the public domain and high-throughput solid phase peptide chemistry were used to rapidly identify and synthesize biologically active peptides. Using sequences and sometimes annotated genomes, genomes were scanned, by hand or with a search algorithm, for ORFs predicted to encode peptides of less than for example, 50-60 amino acids (ignoring small tRNA ORFs or other well characterized genes).


Once noted, these peptides were batch synthesized on a multiplex peptide synthesizer, yielding 5-10 mg of each peptide that could readily be screened for biological activity (e.g., binding activity and/or antimicrobial activity.


Accordingly, in certain embodiments, this invention pertains to the identification of novel peptides (see, e.g., Table 2) that specifically or preferentially bind particular microorganisms (e.g., bacteria) and/or that have antimicrobial activity. In certain embodiments these peptides can be attached to effectors (e.g., drugs, labels, etc.) and used as targeting moieties thereby providing a chimeric moiety that preferentially or specifically delivers the effector to a target microorganism, a population of target microorganisms, a microbial film comprising the target microorganism(s), a biofilm comprising the target microorganism(s), and the like.


In certain embodiments these peptides can be exploited for their antimicrobial activity to inhibit the growth or proliferation of a microorganism and/or to inhibit the formation and/or growth of a biofilm comprising the microorganism. These antimicrobial peptides can be used alone, in conjunction with other agents (e.g., antibacterial agents), and/or they can be coupled to a targeting moiety to provide a chimeric moiety that preferentially directs the antimicrobial peptide to a target tissue and/or to a target organism (e.g., a bacterium, a population of target microorganisms, a microbial film, a biofilm, and the like).


In certain embodiments the antimicrobial peptides and/or the chimeric moieties described herein can be formulated with a pharmaceutically acceptable carrier to form a pharmacological composition.


The amino acid sequences of illustrative peptides of this invention having antimicrobial and/or targeting activity against methicillin resistant Streptococcus mutans, Streptococcus pyogenes, and/or Treponema denticola is shown in Table 2. As with the other peptides described herein, it will be recognized that these peptides can comprise all “L” form residues, all “D” form residues, mixtures of “L” and “D” residues, and beta peptide sequences. It will also be appreciated in addition to the D-form and L-form and beta-peptide sequences this invention also contemplates retro and retro-inverso forms of each of these peptides. In retro forms, the direction of the sequence is reversed. In inverse forms, the chirality of the constituent amino acids is reversed (i.e., L form amino acids become D form amino acids and D form amino acids become L form amino acids). In the retro-inverso form, both the order and the chirality of the amino acids is reversed. Thus, for example, a retro form of the of the peptide Smu11 (MKNLIETVEKFLTYSDEKLEELAKKNQALREEISRQKSK, SEQ ID NO:11) has the sequence KSKQRSIEERLAQNKKALEELKEDSYTLFKEVTEILNKM (SEQ ID NO:10). Where the Smu11 peptide comprises all L amino acids, the inverse form will comprise all D amino acids and the retro-inverso (retro-inverse) form will have the sequence of SEQ ID NO:10 and comprise all D form amino acids. Also contemplated are peptides having the amino acid sequences or retro amino acid sequences of the peptides in Table 2 (or the other tables shown herein) and comprising one, two, three, four, five, six, seven, eight, nine, or ten conservative substitutions, but retaining substantially the same binding and/or antimicrobial activity. Also contemplated are peptides having the amino acid sequences or retro amino acid sequences of the peptides in Table 2 (or other tables herein) and comprising one, two, three, four, five, six, seven, eight, nine, or ten deletions, but retaining substantially the same binding and/or antimicrobial activity.


In various embodiments, chimeric moieties comprising one or more of the targeting peptides found in Table 2 attached to one or more effectors (e.g., antimicrobial peptides as described herein) are contemplated. In various embodiments, one or more of the antimicrobial peptides found in Table 2 used as effectors or attached to one or more targeting moieties (e.g., targeting peptides, targeting antibodies, and the like) to form chimeric moieties are contemplated.









TABLE 2







Peptides having antimicrobial and/or targeting activity


against one or more of the following: Streptococcus mutans,



Streptococcus pyogenes, and Treponema denticola.












SEQ


ID
Amino Acid Sequence
ID NO





Smu11
MKNLIETVEKFLTYSDEKLEELAKKNQALREEISRQKSK
11





Smu.18
GGRAGRIKKLSQKEAEPFEN
12





Smu41
MFIRSKLRRVDFSGVRRGNKHFLLDKLLITLVK
13





Smu68
MSALFYDTLAAIWISIAGVDARWGH
14





Smu150
GGKVSGGEAVAAIGICATASAAIGGLAGATLVTPYCVGTWGLI
15



RSH






Smu151
DKQAADTFLSAVGGAASGFTYCASNGVWHPYILAGCAGVGA
16



VGSVVFPH






Smu223c
GGKYLFLASKTKEYFKSHFREIMIDV
17





Smu225c
MFISFVDCIQNIEKIEKELLKIGITDIQINQDAGWLY
18





Smu277
YLTEIEGEGLGLGICLGLVGFAGGFAHGVVQGAGVGTAIEPGY
19



GTIIGALVDGVGQDLIYGGAGFAAGYSL






Smu283
GGFDVKGVAASYLAMGTAALGGLACTTPVGAVLYLGAEVCA
20



GAAVIYYGAN






Smu299c
GGGLYDGANGYAYRDSQGHWAYKVTKTPAQALTDVVVNSW
21



ASGAASFAAYA






Smu390
GGRSSYNGFSKICFLKIEHFGSYSYQGR
22





Smu423
GGGMIRCALGTAGSAGLGFVGGMGAGTVTLPVVGTVSGAAL
23



GGWSGAAVGAATFC






Smu427
MEKTYHIDGLKCQGCADNVTKRFSELKKVNDVKVDLDKKEV
24



RITGNPSKWSLKRALKGTNYELGAEI






Smu444
MSVGMGVIERGSFDFSASAILQKRETKCLKNKPFT
25





Smu451
MKMRAGQVVFIYKLILVLLFYVLQKLFDLKKGCF
26





Smu529
MLPDSALDERIKGRVSAKNSSLLSALIKKLALIIFIG
27





Smu616
GGVATYGAATMGLCAVSGPIGWGLGGAYLLTCAAAGGMIGY
28



GAATLD






Smu750c
MLSNVLSRSVVSPNVDIPNSMVILSPLLISISNYH
29





Smu812
MAILTFFMALLFTYLKEKAQILYWPLFLHLMFYFVTA
30





Smu1018
MNTNDLLQAFELMGLGMAGVFIVLGILYIVAELLIKIFPVNN
31





Smu1047c
MVHLFSFVKLIYYDIMKYSIEEKVFFESPVGEIIQ
32





Smu1131c
GGYATAKLTQTKPTMPKNVKKGTPPKGAPEDTPPNGNSNDSS
33



QSDSDSDSNSSNTNSNSSITNG






Smu1231c
MDKKRVIERIKSFSLRDEVIHFGELCIYWGK
34





Smu1232c
GGKNKLVMSDLRQQVTDMGFVNVKTYINSGNLFFQSDCPRAN
35



ISSRFEQFFADHYPFV






Smu1358
MNNAYRWFFRLTLADNMHRFTTYGKEWQLSFPK
36





Smu1359
MKLAGIEKKINLSKRRKLYLENSSLLINYVKVNMSY
37





Smu1368
MTEILNFLIAVHDDRKNWKIKHCLSNSSFDFLCSPDSSR
38





Smu1369
MPVQKALHVVSAYATDLGICYDQVVTVMIREVKTQLYQIY
39





Smu1372c
GGSYQQVYSWVRKFKKDGINGLLDRRGKGLESKLISVVMVAI
40



VLRPV






Smu1504c
GGMSSGWLSDDFWLKSAIPLLKKRLAKWNETL
41





Smu1505c
MAYSLTFQNPNDNLTDEEVAKYMEKITKALTEKIGAEVR
42





Smu1719c
MNTFLWILLVIIALLAGLVGGTFIARKQMEKYLEENPPLNEDVI
43



RNMMSQMGQKPSEAKVQQVVRQMNKQQKAAKAKAKKKK






Smu1750c
MIFNRRKFFQYFGLSKEAMVEHIQPFILDIWQIHLF
44





Smu1752c
GGWLNAISLYGRIG
45





Smu1768c
GGHKQLVIEPLVSQNDQLSLIESLSGILSDSETVDVKDYRSERK
46



EERLKKYESLT






Smu1808c
MTTTQKTYLHIIRELENQDIDLIMRSLTSLT
47





Smu1813
MPMTYCGSPRRTDLAVITDEELGQTLEVINHWPRNV
48





Smu1882c
GGATDGEIIANRMLQGKATKGEITMYTWNIIQNGWVNSLVSW
49



GIGGYNSSIGYSAQGNRGFSNYPYDVSMDSDNSSSSSNTTGGY




VNYNQSFNSGW






Smu1889c
GGLAGAGTGAAVSAPAAEGGGLGPIAGAAIGWDLGAISGAGL
50



GWANFCQ






Smu1895c
GGMTWAEIGAIVGATIGSFYIPNPVIVPFRVR
51





Smu1896c
GGFGWDSIWRGFKCVAGTAGTIGTGALGGSATGGLTLPIIGHV
52



SGGIIGGISGAGVGIASFC






Smu1899
MLSISQRTDRVIVMDKGKIIEEGTHSELIAANGFYHHLFNK
53





Smu1902c
GGAFYQRKENVISLDPREWLGFNVTEK
54





Smu1903c
GGNIFEYFLE
55





Smu1905c
GGGRAPRCAALVGASIYDGLAVVGDPVGVAMAAGTIAAGSFC
56





Smu1906c
GGCSWKGADKAGFSGGVGGLIGAGGNPVGGVLGIAGGLDAY
57



GELVGGN






Smu1907
MEQNILNGSYFVLNGKNAKFLLEIDKLTLPDKLATLPVPHQVR
58





Smu1914c
GGGRGWNCAAGIALGAGQGYMATAGGTAFLGPYAIGTGAFG
59



AIAGGIGGALNSCG






Smu1915
GGSGSLSTFFRLFNRSFTQALGK
60





Smu1948
GGVFSVLKHTTWPTRKQSWHDFISILEYSAFFALVIFIFDKLLTL
61



GLAELLKRF






Smu1968c
GGSVLGKHALFILLKAGFKAYELAGAFEGWKGMHLPTEKC
62





Smu1972c
GGLVMNDETIYLFTYENGQISYEEDKRDCSKNV
63





Smu2105
MRFLKDELSVSVRLQEKSIEALPFRTKIEIEIESDNQIKTL
64





Smu2106c
GGASGEKILEKLIHERKCQLTQNRQIVLKTDLNNLMKDFYK
65





Smu2121c
GGIILAKAADLAEIERIISEDPFKINEIANYDIIEFCPTKSSKAFEK
66



VLK










Uses of Targeting Moieties.


When exploited for their targeting activity, the novel targeting peptides described herein (see, e.g., Table 2) can be used to preferentially or specifically deliver an effector to a microorganism (e.g., a bacterium, a fungus, a protozoan, a yeast, an algae, etc.), to a bacterial film comprising the microorganism, to a biofilm comprising the microorganism, and the like. Where the effector comprises an epitope tag and/or a detectable label, binding of the targeting moiety provides an indication of the presence and/or location, and/or quantity of the target (e.g., target microorganism). Thus targeting moieties are thus readily adapted for use in in vivo diagnostics, and/or ex vivo assays. Moreover, because of small size and good stability, the microorganism binding peptides are well suited for microassay systems (e.g., microfluidic assays (Lab on a Chip), microarray assays, and the like).


In certain embodiments the microorganism binding peptides (targeting peptides) can be attached to an effector that has antimicrobial activity (e.g., an antimicrobial peptide, an antibacterial and/or antifungal, a vehicle that contains an antibacterial or antifungal, etc. In various embodiments these chimeric moieties can be used in vivo, or ex vivo to preferentially inhibit or kill the target organism(s).


In certain embodiments the targeting peptides can be used in various pre-targeting protocols. In pre-targeting protocols, a chimeric molecule is utilized comprising a primary targeting species (e.g. a microorganism-binding peptide) that specifically binds the desired target (e.g. a bacterium) and an effector that provides a binding site that is available for binding by a subsequently administered second targeting species. Once sufficient accretion of the primary targeting species (the chimeric molecule) is achieved, a second targeting species comprising (i) a diagnostic or therapeutic agent and (ii) a second targeting moiety, that recognizes the available binding site of the primary targeting species, is administered.


An illustrative example of a pre-targeting protocol is the biotin-avidin system for administering a cytotoxic radionuclide to a tumor. In a typical procedure, a monoclonal antibody targeted against a tumor-associated antigen is conjugated to avidin and administered to a patient who has a tumor recognized by the antibody. Then the therapeutic agent, e.g., a chelated radionuclide covalently bound to biotin, is administered. The radionuclide, via its attached biotin is taken up by the antibody-avidin conjugate pretargeted at the tumor. Examples of pre-targeting biotin/avidin protocols are described, for example, in Goodwin et al., U.S. Pat. No. 4,863,713; Goodwin et al. (1988) J. Nucl. Med. 29: 226; Hnatowich et al. (1987) J. Nucl. Med. 28: 1294; Oehr et al. (1988) J. Nucl. Med. 29: 728; Klibanov et al. (1988) J. Nucl. Med. 29: 1951; Sinitsyn et al. (1989) J. Nucl. Med. 30: 66; Kalofonos et al. (1990) J. Nucl. Med. 31: 1791; Schechter et al. (1991) Int. J. Cancer 48:167; Paganelli et al. (1991) Cancer Res. 51: 5960; Paganelli et al. (1991) Nucl. Med. Commun. 12: 211; Stickney et al. (1991) Cancer Res. 51: 6650; and Yuan et al. (1991) Cancer Res. 51:3119.


It will be recognized that the tumor-specific antibody used for cancer treatments can be replaced with a microorganism binding peptide of the present invention and similar pre-targeting strategies can be used to direct labels, antibiotics, and the like to the target organism(s).


Three-step pre-targeting protocols in which a clearing agent is administered after the first targeting composition has localized at the target site also have been described. The clearing agent binds and removes circulating primary conjugate which is not bound at the target site, and prevents circulating primary targeting species (antibody-avidin or conjugate, for example) from interfering with the targeting of active agent species (biotin-active agent conjugate) at the target site by competing for the binding sites on the active agent-conjugate. When antibody-avidin is used as the primary targeting moiety, excess circulating conjugate can be cleared by injecting a biotinylated polymer such as biotinylated human serum albumin. This type of agent forms a high molecular weight species with the circulating avidin-antibody conjugate which is quickly recognized by the hepatobiliary system and deposited primarily in the liver.


Examples of these protocols are disclosed, e.g., in PCT Application No. WO 93/25240; Paganelli et al. (1991) Nucl. Med. Comm., 12: 211-234; Oehr et al. (1988) J. Nucl. Med., 29: 728-729; Kalofonos et al. (1990) J. Nucl. Med., 31: 1791-1796; Goodwin et al. (1988) J. Nucl. Med., 29: 226-234; and the like).


These applications of microorganism binding peptides of this invention are intended to be illustrative and not limiting. Using the teaching provided herein, other uses will be recognized by one of skill in the art.


Uses of Antimicrobial Peptides.


When exploited for their antimicrobial activity, the novel antimicrobial peptides described herein (see, e.g., Table 2) can be used to inhibit the growth and/or proliferation of a microbial species and/or the growth or proliferation of a biofilm comprising the microbial species. In various embodiments the peptides can be formulated individually, in combination with each other, in combination with other antimicrobial peptides, and/or in combination with various antibacterial agents to provide antimicrobial reagents and/or pharmaceuticals.


In various embodiments, the antimicrobial peptides described herein can be formulated individually, in combination with each other, in combination with other antimicrobial peptides, and/or in combination with various antibiotic (e.g., antibacterial) agents in “home healthcare” formulations. Such formulations include, but are not limited to toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, wound dressings (e.g., bandages), and the like.


In various embodiments the antimicrobial peptides described herein can be formulated individually, in combination with each other, in combination with other antimicrobial peptides, and/or in combination with various antibiotic (e.g., antibacterial) agents in various cleaning and/or sterilization formulations for use in the home, workplace, clinic, or hospital.


In certain embodiments the antimicrobial peptides described herein are attached to one or more targeting moieties to specifically and/or to preferentially deliver the peptide(s) to a target (e.g. a target microorganism, biofilm, bacterial film, particular tissue, etc.).


Other possible uses of the targeting and/or antimicrobial peptides disclosed herein include, but are not limited to biofilm dispersal, biofilm retention, biofilm formation, anti-biofilm formation, cell agglutination, induction of motility or change in motility type, chemoattractant or chemorepellent, extracellular signal for sporogenesis or other morphological change, induction or inhibition of virulence gene expression, utilized as extracellular scaffold, adhesin or binding site, induction or suppression of host immune response, induction or suppression of bacterial/fungal antimicrobial molecule production, quorum-sensing, induction of swarming behavior, apoptosis or necrosis inducing in eukaryotic cells, affecting control of or inducing the initiation of cell cycle in eukaryotes, in archaea or prokaryotes, induces autolysis or programmed cell death, inhibition of phage/virus attachment or replication, evasion of innate immunity, induction or inhibition of genetic transformation or transduction competence, induction or inhibition of pilus-mediated conjugation, induction or inhibition of mating behavior in bacteria and fungi, induction or inhibition of nodule formation or metabolic compartmentalization, metal, ion, or nutrient binding, acquisition or inhibition of metal, ion, or nutrient binding and acquisition, and the like.


These applications of the peptides described herein are intended to be illustrative and not limiting. Using the teaching provided herein, other uses will be recognized by one of skill in the art.


Design and Construction of Chimeric Moieties.


In various embodiments this invention provides chimeric moieties comprising one or more targeting moieties attached to one or more effectors. The targeting moieties are typically selected to preferentially bind to a target microorganism (e.g., bacteria, virus, fungi, yeast, alga, protozoan, etc.), or group of microorganisms (e.g., gram-negative or gram-positive bacteria, particular genus, particular species, etc.) In certain embodiments the targeting moiety comprises one or more of the targeting peptides shown in Table 2, and/or Table 4 and/or Table 6. In certain embodiments the targeting moiety comprises non-peptide moieties (e.g., antibodies, receptor, receptor ligand, lectin, and the like).


The effector typically comprises one or more moieties whose activity is to be delivered to the target microorganism(s), and/or to a biofilm comprising the target microorganism(s), and/or to a cell or tissue comprising the target microorganism(s), and the like. In certain embodiments the targeting moiety comprises one or more antimicrobial peptide(s) as described herein (see, e.g., antimicrobial peptides in Table 2, and/or Table 8, and/or Table 9, and/or Table 10), an antibiotic (including, but not limited to a steroid antibiotic) (see, e.g., Table 7), a detectable label, a porphyrin, a photosensitizing agent, an epitope tag, a lipid or liposome, a nanoparticle, a dendrimer, and the like.


In certain embodiments one or more targeting moieties are attached to a single effector (see, e.g. FIG. 12). In certain embodiments one or more effectors are attached to a single targeting moiety. In certain embodiments multiple targeting moieties are attached to multiple effectors. The targeting moiety(s) can be attached directly to the effector(s) or through a linker. Where the targeting moiety and the effector comprise peptides the chimeric moiety can be a fusion protein.


Targeting Moieties.


In various embodiments this invention provides targeting moieties that preferentially and/or specifically bind to a microorganism (e.g., a bacterium, a fungus, a yeast, etc.). One or more such targeting moieties can be attached to one or more effectors to provide chimeric moieties that are capable of delivering the effector(s) to a target (e.g., a bacterium, a fungus, a yeast, a biofilm comprising the bacterium or fungus or yeast, etc.).


In various embodiments, targeting moieties include, but are not limited to peptides that preferentially bind particular microorganisms (e.g., bacteria, fungi, yeasts, protozoa, algae, viruses, etc.) or groups of such microorganisms, antibodies that bind particular microorganisms or groups of microorganisms, receptor ligands that bind particular microorganisms or groups of microorganisms, porphyrins (e.g., metalloporphyrins), lectins that bind particular microorganisms or groups of microorganisms, and the like. As indicated, it will be appreciated that references to microorganisms or groups of microorganism include bacteria or groups of bacteria, viruses or groups of viruses, yeasts or groups of yeasts, protozoa or groups of protozoa, viruses or groups of viruses, and the like.


Targeting Peptides.


In certain embodiments the chimeric constructs described herein comprise a targeting moiety that is or comprises a targeting peptide. Typically the targeting peptides bind particular bacteria, and/or fungi, and/or yeasts, and/or algae, and/or viruses and/or bind particular groups of bacteria, and/or groups of fungi, and/or groups of yeasts, and/or groups of algae. The targeting peptides provided can be used to effectively deliver one or more effectors to or into a target microorganism. Illustrative targeting peptides include, but are not limited to the targeting peptides found in Table 2.


Other suitable targeting peptides include the peptides that have been identified as binding to particular target organisms as shown in Table 3 and/or Table 4.









TABLE 3







Illustrative list of novel targeting peptides.













SEQ ID


ID
Target(s)
Targeting Peptide Sequence
NO:













1T-1

S. mutans

YVNYNQSFNSGW
67





1T-2

S. mutans

NIFEYFLE
68




S. sanguinis







S. gordonii







S. mitis







S. oralis







V. atypica







Lactobacillus casei






Saliva-derived biofilms







1T-3

S. mutans

VLGIAGGLDAYGELVGGN
69




S. gordonii








1T-4

S. mutans

LDAYGELVGGN
70




S. gordonii







S. sanguinis







S. oralis







V. atypica







L. casei








1T-5

S. mutans

LGPIAGAAIGWDLGAISGAGL
71




S. sanguinis

GWANFCQ






1T-6

S. mutans

KFINGVLSQFVLERK
72





1T-7

Myxococcus xanthus

SQRIIEPVKSPQPYPGFSVS
73





1T-8

M. xanthus

FSVAACGEQRAVTFVLLIEDLI
74





1T-9

M. xanthus

WAWAESPRCVSTRSNIHALAF
75




RVEVAALT






1T-10

M. xanthus

SPAGLPGDGDEA
76





1T-11

S. mutans

RISE
77




S. epidermidis







P. aeruginosa








1T-12

Corynebacterium

FGNIFKGLKDVIETIVKWTAAK
78




xerosis







Corynebacterium







striatum







S. epidermidis







S. mutans








1T-13

S. aureus

FRSPCINNNSLQPPGVYPAR
79




S. epidermidis







P. aeruginosa








1T-14

S. mutans

ALAGLAGLISGK
80




S. aureus







S. epidermidis







C. xerosis








1T-15

S. mutans

DVILRVEAQ
81





1T-16

P. aeruginosa

IDMR
82





1T-17

S. mutans

NNAIVYIS
83





1T-18

S. aureus

YSKTLHFAD
84




S. epidermidis







C. striatum







P. aeruginosa








1T-19

S. aureus

PGAFRNPQMPRG
85




S. epidermidis







P. aeruginosa








1T-20

S. mutans

PALVDLSNKEAVWAVLDDHS
86




P. aeruginosa








1T-21

S. mutans

YVEEAVRAALKKEARISTEDTP
87




P. aeruginosa

VNLPSFDC






1T-22

S. epidermidis

VPLDDGTRRPEVARNRDKDRED
88




P. aeruginosa








1T-23

S. mutans

PALVDLSNKEAVWAVLDDHS
89




P. aeruginosa








1T-24

P. aeruginosa

EEAEEKLAEVSQAVKRLVR
90





1T-25

S. aureus

VGLDVSVLVLFFGLQLLSVLLG
91




S. epidermidis

AMIR





C. xerosis







C. striatum







P. aeruginosa








1T-26

S. mutans

LTILPTTFFAIIVPILAVAFIAYSG
92




S. aureus

FKIKGIVEHKDQW





S. epidermidis







Corynebacterium







jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-27

S. mutans

ALFVSLEQFLVVVAKSVFALCH
93




S. aureus

SGTLS





S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-28

P. aeruginosa

VSRDEAMEFIDREWTTLQPAG
94




KSHA






1T-29

S. mutans

GSVIKKRRKRMSKKKHRKMLR
95




S. aureus

RTRVQRRKLGK





S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-30

S. aureus

GKAKPYQVRQVLRAVDKLETR
96




S. epidermidis

RKKGGR





C. xerosis







C. striatum







P. aeruginosa








1T-31

S. mutans

NATGTDIGEVTLTLGRFS
97




P. aeruginosa








1T-32

S. mutans

VSFLAGWLCLGLAAWRLGNA
98





1T-33

S. aureus

VRTLTILVIFIFNYLKSISYKLKQ
99




S. epidermidis

PFENNLAQSMISI





C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-34

S. aureus

AFWLNILLTLLGYIPGIVHAVYI
100




S. epidermidis

IAKR





C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-35

P. aeruginosa

EICLTLVFPIRGSYSEAAKFPVPI
101




HIVEDGTVELPK






1T-36

S. aureus

VYRHLRFIDGKLVEIRLERK
102




S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-37

S. mutans

YIVGALVILAVAGLIYSMLRKA
103




S. aereus







S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-38

S. mutans

VMFVLTRGRSPRPMIPAY
104




S. aereus







S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-39

S. mutans

FGFCVWMYQLLAGPPGPPA
105




P. aeruginosa








1T-40

S. mutans

QRVSLWSEVEHEFR
106




P. aeruginosa








1T-41

S. mutans

KRGSKIVIAIAVVLIVLAGVWVW
107




S. aureus







S. epidermidis







C. jeikeium







C. striatum







P. aeruginosa








1T-42

S. aureus

TVLDWLSLALATGLFVYLLVA
108




S. epidermidis

LLRADRA





C. xerosis







C. striatum







P. aeruginosa








1T-43

C. jeikium

DRCLSVLSWSPPKVSPLI
109




P. aeruginosa








1T-44

S. mutans

DPALADFAAGMRAQVRT
110




S. aureus







S. epidermidis







C. jeikeium







C. striatum







P. aeruginosa








1T-45

S. aureus

WTKPSFTDLRLGFEVTLYFANR
111




S. epidermidis







C. striatum







P. aeruginosa








1T-46

S. aureus

FSFKQRVMFRKEVERLR
112




S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-47

S. mutans

VIKISVPGQVQMLIP
113




S. epidermidis







P. aeruginosa








1T-48

S. aureus

KLQVHHGRATHTLLLQPPLCA
114




S. epidermidis

PGTIR





C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-49

S. aureus

SLVRIHDQQPWVTRGAFIDAAR
115




S. epidermidis

TCS





C. jeikeium







P. aeruginosa








1T-50

P. aeruginosa

HSDEPIPNILFKSDSVH
116





1T-51

S. aureus

GKPKRMPAEFIDGYGQALLAGA
117




P. aeruginosa








1T-52

S. aureus

DEYPAKLPLSDKGATEPRRH
118




C. xerosis







P. aeruginosa








1T-53

P. aeruginosa

SDILAEMFEKGELQTLVKDAA
119




AKANA






1T-54

S. epidermidis

RWVSCNPSWRIQ
120




C. xerosis







C. striatum







P. aeruginosa








1T-55

C. xerosis

NHKTLKEWKAKWGPEAVESW
121




P. aeruginosa

ATLLG






1T-56

C. xerosis

LALIGAGIWMIRKG
122




P. aeruginosa








1T-57

P. aeruginosa

RLEYRRLETQVEENPESGRRPM
123




RG






1T-58

P. aeruginosa

CDDLHALERAGKLDALLSA
124





1T-59

S. aureus

AVGNNLGKDNDSGHRGKKHR
125




S. epidermidis

KHKHR





P. aeruginosa








1T-60

S. aureus

YLTSLGLDAAEQAQGLLTILKG
126




S. epidermidis







C. jeikeium







C. striatum







P. aeruginosa








1T-61

P. aeruginosa

HATLLPAVREAISRQLLPALVP
127




RG






1T-62

S. epidermidis

GCKGCAQRDPCAEPEPYFRLR
128




P. aeruginosa








1T-63

S. aureus

EPLILKELVRNLFLFCYARALR
129




S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-64

S. aureus

QTVHHIHMHVLGQRQMHWPPG
130




S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-65

S. mutans

HARAAVGVAELPRGAAVEVEL
131




S. aureus

IAAVRP





S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-66

S. mutans

DTDCLSRAYAQRIDELDKQYA
132




S. aureus

GIDKPL





S. epidermidis







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-67

S. aureus

GQRQRLTCGRVSGCSEGPSREA
133




S. epidermidis

AR





C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-68

S. mutans

GGTKEIVYQRG
134




S. aureus







C. jeikeium







C. xerosis







C. striatum







P. aeruginosa








1T-69

S. mutans

ILSQEADRKKLF
135




P. aeruginosa








1T-70

S. aureus

NRQAQGERAHGEQQG
136




C. jeikeium







P. aeruginosa








1T-71

P. aeruginosa

KIDTNQWPPNKEG
137





1T-72

P. aeruginosa

EPTDGVACKER
138





1T-73

Streptococcus

GWWEELLHETILSKFKITKALE
139




pneumoniae

LPIQL






1T-74

S. pneumoniae

DIDWGRKISCAAGVAYGAIDG
140




CATTV






1T-75

S. pneumoniae

GVARGLQLGIKTRTQWGAATG
141




AA






1T-76

S. pneumoniae

EMRLSKFFRDFILWRKK
142





1T-77

S. pneumoniae

EMRISRIILDFLFLRKK
143





1T-78

S. pneumoniae

FFKTIFVLILGALGVAAGLYIEK
144




NYIDK






1T-79

S. pneumoniae

FGTPWSITNFWKKNFNDRPDF
145




DSDRRRY






1T-80

S. pneumoniae

GGNLGPGFGVIIP
146





1T-81

S. pneumoniae

AIATGLDIVDGKFDGYLWA
147





1T-82

S. pneumoniae

FGVGVGIALFMAGYAIGKDLR
148




KKFGKSC






1T-83

S. pneumoniae

QKPRKNETFIGYIQRYDIDGNG
149




YQSLPCPQN






1T-84

S. pneumoniae

FRKKRYGLSILLWLNAFTNLVN
150




SIHAFYMTLF






1T-85

A. naeslundii, F. nucleatum,

VMASLTWRMRAASASLPTHSR
151




P. gingivalis

TDA





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-86

S. mitis, S. oralis, S. salivarious

HRKNPVLGVGRRHRAHNVA
152





1T-87

S. mitis, S. mutans, S. oralis

EAVGQDLVDAHHP
153





1T-88
Unanalyzed
GRLVLEITADEVKALGEALAN
154




AKI






1T-89

S. mitis, S. mutans

HEDDKRRGMSVEVLGFEVVQH
155




EE






1T-90

S. gordonii, S. mitis, S. mutans,

RNVIGQVL
156




S. oralis, S. sanguinis








1T-91

S. mitis, S. mutans, S. oralis,

TSVRPGAAGAAVPAGAAGAA
157




S. sanguinis

GAGWRWP






1T-92

S. mitis, S. mutans

GQDEGQRRAGVGEGQGVDG
158





1T-93

S. epidermidis, S. gordonii,

AMRSVNQA
159




S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-94

S. mitis, S. mutans, S. oralis

DQVAHSGDMLVQARRRDS
160





1T-95

S. gordonii, S. mitis, S. mutans,

GHLLRVGGRVGGVGGVAGAC
161




S. oralis, S. sanguinis

AQPFGGQ






1T-96

S. gordonii, S. mitis, S. mutans,

VAGACAQPFGGQ
162




S. oralis, S. sanguinis








1T-97

A. naeslundii, F. nucleatum,

GVAERNLDRITVAVAIIWTITIV
163




P. gingivalis

GLGLVAKLG





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-98

A. naeslundii, F. nucleatum,

VRSAKAVKALTAAGYTGELVN
164




P. gingivalis

VSGGMKAWLGQ





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-99

S. gordonii, S. mitis, S. mutans,

MKAWLGQ
165




S. oralis, S. sanguinis








1T-100

S. gordonii, S. mitis, S. mutans

LDPLEPRIAPPGDRSHQGAPAC
166




HRDPLRGRSARDAER






1T-101

A. naeslundii, P. gingivalis

RLRVGRATDLPLTSFAVGVVR
167




S. epidermidis,

NLPDAPAH





S. gordonii, S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-102

A. naeslundii, F. nucleatum,

WKRLWPARILAGHSRRRMRW
168




P. gingivalis

MVVWRYFAAT





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-103

A. naeslundii, F. nucleatum,

AQFYEAIITGYALGAGQRIGQL
169




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-104

S. mitis

RAVAAHLQGRHHGHQVRRQR
170




HGQR






1T-105

S. epidermidis, S. gordonii,

GEGLPPPVLHLPPPRMSGR
171




S. mitis, S. mutans,







S. oralis








1T-106

S. gordonii, S. mitis, S. mutans,

DALRRSRSQGRRHR
172




S. oralis, S. salivarious








1T-107

A. naeslundiiS. epidermidis,

SPVPRFTAVGGVSRGSP
173




S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-108

S. gordonii, S. mitis, S. mutans,

WGPLGPERPLW
174




S. oralis, S. salivarious,







S. sanguinis








1T-109

A. naeslundiiS. epidermidis,

VTTNVRQGAGS
175




S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-110

A. naeslundii, P. gingivalis

LAAKTAVCVGRAFM
176




S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-111

A. naeslundii, F. nucleatum,

GRLSRREEDPATSIILLRGAYR
177




P. gingivalis

MAVF





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-112

S. gordonii

SDNDGKLILGTSQ
178





1T-113

S. mitis

HGAHQRTGQRLHHHRGRTVSG
179




CRQNPVAGVDPDEHR






1T-114

A. naeslundii, P. gingivalis

RQAPGPGLVTITAACSAPGSRSR
180




S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-115

A. naeslundii, F. nucleatum,

LLIERFSNHH
181




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-116

A. naeslundii, P. gingivalis

MILHRRRDR
182




S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-117

S. mutans

GPGVVGPAPFSRLPAHALNL
183





1T-118

A. naeslundii, F. nucleatum,

TASPPAPSDQGLRTAFPATLLIA
184




P. gingivalis

LAALARISR





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-119

S. gordonii, S. mitis, S. mutans,

SPATQKAPTRAQPSRAPVQDC
185




S. oralis

GDGRPTAAPDDVERLSPR






1T-120

A. naeslundii, F. nucleatum,

DVRDRVDLAGADLCAAHATR
186




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-121

S. gordonii, S. mitis, S. mutans,

FAKETGFGIGGAQEGWWIIADI
187




S. oralis, S. salivarious,

YGPNPF





S. sanguinis








1T-122

S. mitis

GAIPDPVTHRVDWEEDHQTRP
188




SR






1T-123

S. gordonii

LVRRNAVAGRSDGLAGAEQLD
189




LVRLQGVL






1T-124

S. mitis, S. mutans, S. oralis

LFDERNKIA
190





1T-125

S. epidermidis, S. gordonii,

DAITGGNPPLSDTDGLRP
191




S. mutans, S. oralis








1T-126

S. gordonii, S. mitis, S. mutans

QGLARPVLRRIPL
192





1T-127

A. naeslundii, F. nucleatum,

YDPVPKRKNKNSEGKREE
193




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-128

A. naeslundii, P. gingivalis

SGSAIRMLEIATKMLKR
194




S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-129

A. naeslundii, P. gingivalis

YDKYIKYLSIQPPFIVYFI
195




S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-130

A. naeslundii, F. nucleatum,

QKIIDMSKFLFSLILFIMIVVIYI
196




P. gingivalis

GKSIGGYSAIVSSIMLELDTVLY





S. epidermidis,

NKKIFFIYK





S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-131

A. naeslundii, F. nucleatum,

DEVWKMLGI
197




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-132

A. naeslundii, F. nucleatum,

YSKKLFEYFYFIIFILIRYLIFYKI
198




P. gingivalis

IQNKNYYINNIAYN





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-133

A. naeslundii, P. gingivalis

YFIKDDNEALSKDWEVIGNDL
199




S. epidermidis,

KGTIDKYGKEFKVR





S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-134

A. naeslundii, F. nucleatum,

SRLVREIKKKCRKS
200




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-135

A. naeslundii, P. gingivalis

FESLLPQATKKIVNNKGSKINKIF
201




S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-136

A. naeslundii, F. nucleatum,

ELLTQIRLALLYSVNEW
202




P. gingivalis,







S. epidermidis, S. gordonii,







S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-137

A. naeslundii, F. nucleatum,

PLNFYRAVKENRLPLSEKNIND
203




P. gingivalis

FTNIKLKVSPKLINLLQESSIFY





S. epidermidis,

NFSPKKRNTN





S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-138

A. naeslundii, F. nucleatum,

YPNEYCIFLENLSLEELKEIKAI
204




P. gingivalis

NGETLNLEEIINERKNLKD





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-139

A. naeslundiiS. gordonii,

AVAGAAVGALLGNDARSTAV
205




S. mitis, S. mutans, S. oralis

GAAIGGALGAGAGELTKNK






1T-140

A. naeslundii, F. nucleatum,

IKGTIAFVGEDYVEIRVDKGVK
206




P. gingivalis

LTFRKSAIANVINNNQQ





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-141

F. nucleatum, P. gingivalis

KKFIILLFILVQGLIFSATKTLSD
207




S. epidermidis,

IIAL





S. gordonii, S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-142

A. naeslundii, F. nucleatum,

FTQGIKRIVLKRLKED
208




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-143

A. naeslundii, F. nucleatum,

MPKRHYYKLEAKALQFGLPFA
209




P. gingivalis

YSPIQLLK





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-144

A. naeslundii, F. nucleatum,

IIELHPKSWTQDWRCSFL
210




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-145

S. mitis, S. mutans, S. oralis

VEAGKRNISLENIEKISKGLGISI
211




SELFKYIEEGEDKIG






1T-146

A. naeslundii, F. nucleatum,

RNSADNQTKIDKIRIDISLWDE
212




P. gingivalis,

HLNIVKQGK





T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-147

A. naeslundii, F. nucleatum,

GVENRRFYERDVSKVSMMTSE
213




P. gingivalis,

AVAPRGGSK





T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-148

A. naeslundii, F. nucleatum,

IVELDDTTILERALSMLGEANA
214




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-149

A. naeslundii, F. nucleatum,

SVRAVKPIDETVARHFPGDFIVN
215




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-150

A. naeslundii, F. nucleatum,

YINRRLKKAFSDADIKEAPAEF
216




P. gingivalis,

YEELRRVQYV





T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-151

A. naeslundii, F. nucleatum,

SVRAVKPIDEIVAWHFPGDFIVN
217




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-152

A. naeslundii, F. nucleatum,

YVSADESAYNHIVTDDIPLADR
218




P. gingivalis

RIEAVQQ





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-153

A. naeslundii, F. nucleatum,

YIACPGYFY
219




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-154

P. gingivalis

YFSFLEIVGMARR
220





1T-155

A. naeslundii, F. nucleatum,

LKLAFGVYPFQAMSQSDTAVS
221




P. gingivalis

ERNVLWR





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-156

A. naeslundii, F. nucleatum,

GRFQISIRGEEKSKVKVQGKGT
222




P. gingivalis,

FTDRNTT





T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-157

A. naeslundii, F. nucleatum,

RRFRKTTENREKSKNKKAVLG
223




P. gingivalis,

LSTTSTASY





T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-158

A. naeslundii, F. nucleatum,

WENKPSPLGSIKKLQGLVYRLI
224




P. gingivalis

GYRHFWV





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-159

P. gingivalis

IFSLHHFALICSEMGTFAVSKRA
225




KYKWEVL






1T-160

A. naeslundii, F. nucleatum,

AQYKYINKLLN
226




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-161

A. naeslundii, F. nucleatum,

NKVLQVEVMWDGSVVGRPAG
227




P. gingivalis

VISIKSSKKG





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-162

A. naeslundii, F. nucleatum,

QKAKEESDRKAAVSYNGFHRV
228




P. gingivalis,

NVVSIPK





T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-163

A. naeslundii, F. nucleatum,

MENILIYIPMVLSPFGSGILLFLG
229




P. gingivalis

KDRRYML





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-164

A. naeslundii, F. nucleatum,

KKSHSQGKRKLKDLNSAYKID
230




P. gingivalis

NQLHYALR





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-165

A. naeslundii, F. nucleatum,

CYDSFDFSIFVTFANRMKLSVGS
231




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-166

A. naeslundii, F. nucleatum,

AQSAGQIKRKSKVRIHV
232




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-167

A. naeslundii, F. nucleatum,

SRMSEHSPAGLVFEVGPMDKG
233




P. gingivalis

SFIILDSYHPTVKK





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-168

A. naeslundii, F. nucleatum,

ELHRIMSTEKIGAVTKMNFDTA
234




P. gingivalis

PIMSILPIDIYPKEVGIGS





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-169

A. naeslundii, F. nucleatum,

FARVRRLHQNRILTQPLTNLKY
235




P. gingivalis

CLRQPIYSD





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-170

P. gingivalis

AYGKVFSMDIMLSENDKLIVLR
236




ISHHSAWH






1T-171

A. naeslundii, F. nucleatum,

SVRAVKPIDKTVARHFPGDFIVN
237




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-172

A. naeslundii, F. nucleatum,

FEGLKNLLGDDII
238




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-173

A. naeslundii, F. nucleatum,

LFRKEDQEHVLL
239




P. gingivalis







S. gordonii, S. mitis,







S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-174

A. naeslundii, F. nucleatum,

SGGSDTDGSSSGEPGSHSGDL
240




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-175

A. naeslundii, F. nucleatum,

GEPGSHSGDL
241




P. gingivalis,







S. epidermidis, S. gordonii,







S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-176

A. naeslundii, P. gingivalis

PVGDIMSGFLRGANQPRFLLDH
242




S. epidermidis,

ISFGS





S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-177

P. gingivalisS. gordonii,

GTNVPTQILGYSREERFDYEPA
243




S. mitis, S. mutans, S. oralis,

PEQR





S. salivarious, S. sanguinis








1T-178

A. naeslundii, F. nucleatum,

LLASHPERLSLGVFFVYRVLHL
244




P. gingivalis

LLENT





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-179

A. naeslundii, F. nucleatum,

TCYPLIQRKTDRAYEA
245




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-180

A. naeslundii, F. nucleatum,

VVFGGGDRLV
246




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-181

A. naeslundii, F. nucleatum,

YGKESDP
247




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-182

A. naeslundii, F. nucleatum,

LTASICRQWNDNSTPYQR
248




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-183

A. naeslundii, F. nucleatum,

PLRSFVAEKAEHAFRVVRIADF
249




P. gingivalisS. 

DFGHS





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-184

A. naeslundii, F. nucleatum,

ALLVLNLLLMQFFFGKNM
250




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-185

A. naeslundii, F. nucleatum,

HYHFLLEFGFHKGDYLE
251




P. gingivalis,







T. denticolaS. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-186

S. sanguinis

LAKKNQALREEISRQKSK
252





1T-187

S. sanguinis

RAGRIKKLSQKEAEPFEN
253





1T-188

S. sanguinis

HRKDVYKK
254





1T-189

F. nucleatum, S. sanguinis

FIRSKLRRVDFSGVRRGNKHFL
255




LDKLLITLVK






1T-190

A. naeslundii, F. nucleatum,

IQIIVNAFVEKDKTGAVIEVLYA
256




P. gingivalisS. 

SNNHEKVKAKYEELVAIS





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-191

F. nucleatum, S. sanguinis

SALFYDTLAAIWISIAGVDARW
257




GH






1T-192

S. sanguinis

ILVLLALQVELDSKFQY
258





1T-193

S. sanguinis

LMIFDKHANLKYKYGNRSFGV
259




EAIM






1T-194

F. nucleatum, S. sanguinis

LAGATLVTPYCVGWGLIRSH
260


1T-195
Unanalyzed
AASGFTYCASNGVWHPY
261





1T-196

F. nucleatum, S. sanguinis

KPEKEKLDTNTLMKVVNKALS
262




LFDRLLIKFGA






1T-197

A. naeslundii, F. nucleatum,

TEILNFLITVCADRENWKIKHG
263




P. gingivalisS. 

LSDSVLLIFFARFTGAEYW





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-198

P. gingivalisS. 

MPVSKKRYMLSSAYATALGIC
264




epidermidis, S. gordonii,

YGQVATDEKESEITAIPDLLDY





S. mitis, S. mutans, S. oralis,

LSVEEYLL





S. sanguinis








1T-199

S. sanguinis

RAGRIKKLSQKEAEPFEN
265


1T-200

A. naeslundii, F. nucleatumS. 

MRFKRFDRDYALSGDNVFEVL
266




epidermidis, S. gordonii,

TASCDVIERNLSYREMCGLMQ





S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-201

S. sanguinis

KRKHENVIVAEEMRVIKN
267





1T-202

A. naeslundii, F. nucleatum,

LCRLEKLCKQFLRQDKVVTYY
268




P. gingivalisS. 

LMLPYKRAIEAFYQELKERS





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-203

A. naeslundii, F. nucleatum,

YPFCLATVDHLPEGLSVTDYER
269




P. gingivalisS. 

VQRLVSQFLLNKEER





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-204

F. nucleatum, S. sanguinis

KYLFLASKTKEYFKSHFREIMI
270




DV






1T-205

A. naeslundii, F. nucleatum,

FISFVDCIQNIEKIEKELLKIGIT
271




P. gingivalisS. 

DIQINQDAGWLY





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-206

S. sanguinis

AGFAAGYSL
272


1T-207

F. nucleatum, S. sanguinis

SPLEKYGTGSMTALTFLLGCCL
273




LVLSKKSR






1T-208
Unanalyzed
KRKRWAILTLFLAGLGAVGIVL
274




ATF






1T-209

F. nucleatum, S. sanguinis

WSGAAVGAATFC
275


1T-210

S. sanguinis

SVGMGVIERGSFDFSASAILQK
276




RETKCLKNKPFT






1T-211

S. sanguinis

AEPIIKVTEG
277





1T-212

S. sanguinis

LLSALIKKLALIIFIG
278





1T-213

S. sanguinis

AYLLTCAAAGGMIGYGAATLD
279





1T-214

S. sanguinis

MIGYGAATLD
280





1T-215

S. sanguinis

VCFKDISVFLSPFRGQEVLFCG
281




KAKHSLIYVIGT






1T-216

S. sanguinis

FFLNVIAIRIPHF
282





1T-217

F. nucleatum, S. sanguinis

MLSNVLSRSVVSPNVDIPNSMV
283




ILSPLLISISNYH






1T-218

F. nucleatum, S. sanguinis

KLIFAALGLVFLLIGLRDSRSK
284





1T-219

S. sanguinis

RNINVSATFITEKSLV
285





1T-220

A. naeslundii, F. nucleatum,

AILTFFMALLFTYLKEKAQILY
286




P. gingivalisS. 

WPLFLHLMFYFVTA





epidermidis,







S. gordonii, S. oralis, S. salivarious,







S. sanguinis








1T-221

A. naeslundii, F. nucleatum,

DIGRIIGKKGRTITAIRSIVYSVP
287




P. gingivalisS. 

TQGKKVRLVIDEK





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-222

F. nucleatum, S. sanguinis

RIEASLISAIMFSMFNAIVKFLQK
288





1T-223

A. naeslundii, F. nucleatum,

NQKMEINSMTSEKEKMLAGHF
289




P. gingivalisS. 

HNEANFAVIFKYSLFYNFF





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-224

A. naeslundii, F. nucleatum,

VHLFSFVKLIYYDIMKYSIEEK
290




P. gingivalisS. 

VFFESPVGEIIQ





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-225

A. naeslundii, F. nucleatum,

RRSLGNSASFAEWIEYIRYLHYI
291




P. gingivalisS. 

IRVQFIHFFSKNKKI





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-226

A. naeslundii, F. nucleatumS. 

KLQEKQIDRNFERVSGYSTYRA
292




epidermidis,

VQAAKAKEKGFISLEN





S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-227

S. sanguinis

RFEQFFADHYPFV
293





1T-228

A. naeslundii, F. nucleatum,

IFKLFEEHLLYLLDAFYYSKIFR
294




P. gingivalisS. 

RLKQGLYRRKEQPYTQDLFRM





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-229

S. gordonii, S. oralis, S. sanguinis

LLINYVKVNMSY
295





1T-230

A. naeslundii, F. nucleatum,

EFLEKFKVLKQPRKANNISKNR
296




P. gingivalisS. 

VAMIFLTIHKSRGFLSSPY





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-231

S. gordonii, S. mitis, S. mutans,

FDFLCSPDSSR
297




S. oralis, S. salivarious








1T-232

S. sanguinis

AYSLTFQNPNDNLTDEEVAKY
298




MEKITKALTEKIGAEVR






1T-233

A. naeslundii, P. gingivalisS. 

TDQELEHLIVTELESKRLDFTYS
299




epidermidis,

KDITEFFDEAFPEYDQNY





S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-234

A. naeslundii, F. nucleatum,

DNFYLILKMEERGKSKKTSQTR
300




P. gingivalisS. 

GFRAFFDIIRKKIKKEDGK





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-235

S. sanguinis

GWLSDDFWLKSAIPLLKKRLA
301




KWNETL






1T-236

A. naeslundii, F. nucleatum,

PVQKALHVVSAYATDLGICYD
302




P. gingivalisS. 

QVVTVMIREVKTQLYQIY





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-237

S. sanguinis

EDPVPNHFTLRRNKKEKPSKS
303





1T-238

A. naeslundii, F. nucleatum,

IFNRRKFFQYFGLSKEAMVEHI
304




P. gingivalisS. 

QPFILDIWQIHLF





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-239

A. naeslundiiS. gordonii,

ADDLLNKRLTDLIMENAETVK
305




S. mitis, S. mutans, S. oralis,

TIDLDNSD





S. sanguinis








1T-240

A. naeslundii, F. nucleatum,

VILGNGISNIAQTLGQLPNIAW
306




P. gingivalisS. 

VWIYMVLIAALLEESNVC





epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-241

S. sanguinis

TQKTYLHIIRELENQDIDLIMRS
307




LTSLT






1T-242

F. nucleatum, S. sanguinis

KQVQNTTLIICGTVLLGILFKSY
308




LKSQKSV






1T-243

A. naeslundii, P. gingivalisS. 

SENIARFAAAFENEQVVSYAR
309




epidermidis,

WFRRSWRGSGSSSRF





S. gordonii, S. mitis, S. mutants,







S. oralis, S. salivarious,







S. sanguinis








1T-244

A. naeslundii, P. gingivalis

MTWAEIGAIVGATIGSFYIPNPV
310




S. epidermidis,

IVPFRVR





S. gordonii, S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-245

F. nucleatum, S. sanguinis

IIGGISGAGVGIASFC
311





1T-246

S. sanguinis

ISGAGVGIASFC
312





1T-247

A. naeslundii, F. nucleatum,

LSISQRTDRVIVMDKGKIIEEGT
313




P. gingivalis

HSELIAANGFYHHLFNK





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-248

S. sanguinis

IGGALNSCG
314





1T-249

F. nucleatum, S. sanguinis

VFSVLKHTTWPTRKQSWHDFIS
315




ILEYSAFFALVIFIFDKLLTLGLA





ELLKRF






1T-250

S. mitis, S. mutans, S. oralis

LVQGDTILIENHVGTPVKDDGK
316




DCLIIREADVLAVVND






1T-251

S. mitis, S. oralis, S. sanguinis

LVMNDETIYLFTYENGQISYEE
317




DKRDCSKNV






1T-252

F. nucleatum, S. sanguinis

MKKNLKRFYALVLGFIIGCLFV
318




SILIFIGY






1T-253

A. naeslundii, F. nucleatum,

KTKESLTQQEKKFLKDYDRKS
319




P. gingivalis

LHHFRDILTYCFILDKLTNK





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-254

S. sanguinis

RFLKDELSVSVRLQEKSIEALPF
320




RTKIEIEIESDNQIKTL






1T-255

A. naeslundii, F. nucleatum,

LFIVEYKDKASVPGEIDNTYVE
321




P. gingivalis

SYTYSDILTEKTLIRYFD





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-256

S. sanguinis

KGKSLMPLLKQINQWGKLYL
322





1T-257

A. naeslundii, F. nucleatum,

IILAKAADLAEIERIISEDPFKIN
323




P. gingivalis

EIANYDIIEFCPTKSSKAFEKVLK





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-258

A. naeslundii, F. nucleatum,

TINIDDKVLDYLKKINSKAITID
324




P. gingivalis,

LIGCAS





T. denticola, S. mitis, S. mutans,







S. oralis








1T-259

F. nucleatum, P. gingivalis,

EKLKKILLKLAVCGKAWYTL
325




T. denticola,







S. mitis, S. mutans, S. oralis,







S. sanguinis








1T-260

A. naeslundii, P. gingivalis

NILYFIHDENQWEPQKAEIFRG
326




S. epidermidis,

SIKHCAWLSS





S. gordonii, S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-261

F. nucleatum S. mutans,

SFEKNKIENNLKIAQAYIYIKPK
327




S. oralis S. sanguinis

PRICQA






1T-262

A. naeslundii, F. nucleatum,

LSLPLIVLTKSI
328




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-263

A. naeslundii, F. nucleatum,

FIAVSFTGNPATFKLVIGCKADN
329




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. oralis,







S. salivarious, S. sanguinis








1T-264

S. sanguinis

LEGKFYMAEDFDKTPECFKDYV
330





1T-265

A. naeslundii, F. nucleatum,

GMFENLLMINFQIMNDLKIEIV
331




P. gingivalis

VKDRICAV





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-266

S. sanguinis

RAGTWLVVDEIR
332





1T-267

A. naeslundii, F. nucleatum,

RIKEERKNRSYKFFIWRLFDEK
333




P. gingivalis,

TGFI





T. denticola, S. mitis, S. mutans,







S. oralis S. sanguinis








1T-268

F. nucleatum S. mutans,

PITPKKEKCGLGTYAPKNPVFS
334




S. oralis S. sanguinis

KSRV






1T-269

F. nucleatum S. mutans,

PLYVAAVEKINTAKKH
335




S. oralis S. sanguinis








1T-270

F. nucleatum S. mutans,

VHEFDIQKILQNR
336




S. oralis S. sanguinis








1T-271

A. naeslundii, F. nucleatum,

FLIQKFLLIKTFPPYRKKYVVIV
337




P. gingivalis

SQTGTA





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-272

F. nucleatum S. mutans,

QLAPIDKQLKAVKKIAFYESES
338




S. oralis S. sanguinis

TAAKAVTVA






1T-273

F. nucleatum, P. gingivalis,

YNEPNYKWLESYKIYKQRCED
339




T. denticola,

RTGMYYTEET





S. mitis, S. mutans, S. oralis








1T-274

F. nucleatum S. mutans,

ETTTEINAIKLHRIKQRSPQGTR
340




S. oralis S. sanguinis

RVN






1T-275

A. naeslundii, F. nucleatum,

QVLKNFSISRRYKINNPFFKILL
341




P. gingivalis,

FIQLRTL





T. denticola, S. epidermidis,







S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-276

A. naeslundii, F. nucleatum,

ILTLLILGSIGFFILKIKLKLGRF
342




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. sanguinis








1T-277

A. naeslundii, F. nucleatum,

IYYMRFVNKPLEKTFFKI
343




P. gingivalis,







T. denticola S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-278

A. naeslundii, F. nucleatum,

SINSSAGIQPHCLSSSFVLRTKH
344




P. gingivalis,

CFY





S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-279

A. naeslundii, F. nucleatum,

FVLRTKHCFY
345




P. gingivalis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-280

A. naeslundii, F. nucleatum,

TNNKNKVIIKAIKFKNKDFINL
346




P. gingivalis,

DLFIYRR





T. denticola S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-281

A. naeslundii, F. nucleatum,

KYEKLTKENLFIRNSGNMCVFI
347




P. gingivalis

YFLFFG





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-282

F. nucleatum, P. gingivalis,

ISLVFPAYT
348




S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-283

A. naeslundii, F. nucleatum,

LCTKLEDKQRGRIPAELFIISPIK
349




P. gingivalis,

ILERNDAL





T. denticola, S. epidermidis,







S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-284

A. naeslundii, F. nucleatum,

FQYYFSLKRV
350




P. gingivalis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-285

A. naeslundii, F. nucleatum,

FFPYYLADFYKQLKFLNEYQT
351




P. gingivalis,

KNKDKVVEFK





S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-286

S. sanguinis

LGFFNNKADLVKADTERDNRM
352




SSLKIKDL






1T-287

P. gingivalis, T. denticola

KGYPLPFQYRLNNH
353




S. gordonii, S. mitis,







S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-288

F. nucleatum, S. gordonii,

RWVGGEPSADIYLSAKDTKT
354




S. salivarious,







S. sanguinis








1T-289

F. nucleatum, P. gingivalis,

EPSADIYLSAKDTKT
355




S. gordonii,







S. mitis, S. mutans, S. oralis,







S. sanguinis








1T-290

A. naeslundii, F. nucleatum,

IINQLNLILLRLMEILIL
356




P. gingivalis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-291

A. naeslundii, F. nucleatum,

DMKIIKLYIKILSFLFIKYCNKK
357




P. gingivalis,

LNSVKLKA





T. denticola, S. mitis, S. mutans,







S. oralis








1T-292

A. naeslundii, F. nucleatum,

IINQLNLILLRLMEILIL
358




P. gingivalis







S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-293

A. naeslundii, F. nucleatum,

HVEDCFLLSNARTTAIHGRANP
359




P. gingivalis

ARGEPRTRSE





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-294

T. denticola

YDKIADGVFKIGKRGVL
360





1T-295

S. mitis, S. salivarious,

KYKLKKIIL
361




S. sanguinis








1T-296

A. naeslundii, F. nucleatum,

EYSQQSFKAKPCSERGVLSP
362




P. gingivalis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-297

A. naeslundii, F. nucleatum,

RSLRLNNALTKLPKLWYNRIKE
363




T. denticola,

AFYAYNDYDK





S. mitis, S. mutans, S. oralis








1T-298

A. naeslundii, F. nucleatum,

ILNKKPKLPLWKLGKNYFRRF
364




P. gingivalis,

YVLPTFLA





T. denticola S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-299

A. naeslundii, F. nucleatum

SMLTSFLRSKNTRSLKMYKDV
365




S. epidermidis,

HF





S. gordonii,







S. mitis, S. mutans, S. oralis,







S. salivarious, S. sanguinis








1T-300

A. naeslundii, F. nucleatum,

PLIISKAQIKMSGDILGSCFKLF
366




P. gingivalis

YLRPFF





S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-301

F. nucleatum, S. gordonii,

SKLPRVLDASLKL
367




S. sanguinis








1T-302

A. naeslundii, P. gingivalis

IIIILPKIYLVCKTV
368




S. epidermidis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-303

A. naeslundii, F. nucleatum,

LDYENMDCKKRIRI
369




P. gingivalis,







S. gordonii, S. mitis, S. mutans,







S. oralis, S. salivarious,







S. sanguinis








1T-304

P. gingivalis

STAGEASRRTASEASRRTAAKL
370




RG






TT-305

F. nucleatum

ARNALNMRDVPVDAAIIGIIDG
371




MDEE






TT-306

F. nucleatum

KILNEAEGKLLKVIEKNGEIDIE
372




EI






TT-307

F. nucleatum

NGDKKAKEELDKWDEVIKELN
373




IQF






TT-308

F. nucleatum

GLVIIPNLIALIILFSQVRQQTKD
374




YFSNPKLSSR






TT-309

F. nucleatum

EPLPLTKYDKKDTEMKKVFKEI
375




LAGKVGYEKEEE






TT-310

F. nucleatum

TKLKKNNKLLSAKKENTLHTK
376




DK






TT-311

S. mutans, S. sobrinus

AIFDAMHNL
377









As described above, in certain embodiments of the present invention, the targeting moiety can comprise targeting peptide capable of binding, specifically binding, or preferentially binding to a microorganism, e.g., a target microbial organism. In one embodiment, the targeting peptide be identified via screening peptide libraries. For example, a phage display peptide library can be screened against a target microbial organism or a desired antigen or epitope thereof. Any peptide identified through such screening can be used as a targeting peptide for the target microbial organism. Illustrative additional targeting peptides are shown in Table 4.









TABLE 4







Additional illustrative targeting moieties.









Targeting Moiety/

SEQ ID


Organism
Structure/sequence
NO





LPSB-1
RGLRRLGRRGLRRLGR
378





Phob-1
KPVLPVLPVLPVL
379





LPSB-2
VLRIIRIAVLRIIRIA
380





LPTG-1
LPETGGSGGSLPETG
381





α-1
RAHIRRAHIRR
382





ANION-1
DEDEDDEEDDDEEE
383





PHILIC-1
STMCGSTMCGSTMCG
384





SA5.1/S. aureus
VRLPLWLPSLNE
385





SA5.3/S. aureus
ANYFLPPVLSSS
386





SA5.4/S. aureus
SHPWNAQRELSV
387





SA5.5/S. aureus
SVSVGMRPMPRP
388





SA5.6/S. aureus
WTPLHPSTNRPP
389





SA5.7/S. aureus
SVSVGMKPSPRP
390





SA5.8/S. aureus
SVSVGMKPSPRP
391





SA5.9/S. aureus
SVPVGPYNESQP
392





SA5.10/S. aureus
WAPPLFRSSLFY
393





SA2.2/S. aureus
WAPPXPXSSLFY
394





SA2.4/S. aureus
HHGWTHHWPPPP
395





SA2.5/S. aureus
SYYSLPPIFHIP
396





SA2.6/S. aureus
HFQENPLSRGGEL
397





SA2.7/S. aureus
FSYSPTRAPLNM
398





SA2.8/S. aureus
SXPXXMKXSXXX
399





SA2.9/S. aureus
VSRHQSWHPHDL
400





SA2.10/S. aureus
DYXYRGLPRXET
401





SA2.11/S. aureus
SVSVGMKPSPRP
402






S. aureus/Consensus

V/Q/H-P/H-H-E-F/Y-K/H-H/A-L/H-X-X-K/R-P/L
403





DH5.1/E. coli
KHLQNRSTGYET
404





DH5.2/E. coli
HIHSLSPSKTWP
405





DH5.3/E. coli
TITPTDAEMPFL
406





DH5.4/E. coli
HLLESGVLERGM
407





DH5.5/E. coli
HDRYHIPPLQLH
408





DH5.6/E. coli
VNTLQNVRHMAA
409





DH5.7/E. coli
SNYMKLRAVSPF
410





DH5.8/E. coli
NLQMPYAWRTEF
411





DH5.9/E. coli
QKPLTGPHFSLI
412





CSP/S. mutans
SGSLSTFFRLFNRSFTQALGK
413





CSPC18/S. mutans
LSTFFRLFNRSFTQALGK
414





CSPC16/S. mutans
TFFRLFNRSFTQALGK
415





CSPM8/S. mutans
TFFRLFNR
416





KH/Pseudomonas spp
KKHRKHRKHRKH
417


(US 2004/0137482)







cCF10
LVTLVFV
418





AgrD1
YSTCDFIM
419





AgrD2
GVNACSSLF
420





AgrD3
YINCDFLL
421





NisinA
ITSISLCTPGCKTGALMGCNMRTATCIICSIIIVSK
422





PlnA
KSSAYSLQMGATAIKQVKKLFKKWGW
423





S3L1-5
WWYNWWQDW
424





Penetratin
RQIKIWFWNRRMKWKK*
425





Tat
EHWSYCDLRPG
426





Pep-1N
KETWWETWWTEW
427





Pep27
MRKEFHNVLSSGQLLADKRPARDYNRK
428





HABP35
LKQKIKHVVKLKVVVKLRSQLVKRKQN
429





HABP42 (all D)
STMMSRSHKTRSHHV
430





HABP52
GAHWQFNALTVRGGGS
431





Hi3/17
KQRTSIRATEGCLPS
432





α-E. coli peptide
QEKIRVRLSA
433





Salivary Receptor
QLKTADLPAGRDETTSFVLV*
434


Adhesion Fragment







S1 (Sushi frag.)
GFKLKGMARISCLPNGQWSNFPPKCIRECAMVSS
435


(LPS binding)







S3 (Sushi frag.)
HAEHKVKIGVEQKYGQFPQGTEVTYTCSGNYFLM
436


(LPS binding)







MArg.1
AMDMYSIEDRYFGGYAPEVG
437


(Mycoplasma infected




cell line binding peptide







BPI fragment 1
ASQQGTAALQKELKRIKPDYSDSFKIKH
438


(LPS binding)




6,376,462







BPI fragment 2
SSQISMVPNVGLKFSISNANIKISGKWKAQKRFLK
439


(LPS binding)




6,376,462







BPI fragment 3
VHVHISKSKVGWLIQLFHKKIESALRNK
440


(LPS binding)




6,376,462







LBP fragment 1
AAQEGLLALQSELLRITLPDFTGDLRIPH
441


(LPS binding)




6,376,462







LBP fragment 2
HSALRPVPGQGLSLSISDSSIRVQGRWKVRKSFFK
442


(LPS binding)




6,376,462







LBP fragment 3
VEVDMSGDLGWLLNLFHNQIESKFQKV
443


(LPS binding)




6,376,462








B. anthracis spore

ATYPLPIR
444


binding




(WO/1999/036081)








Bacillus spore binding

peptides of 5-12 amino acids containing the sequence
445


(WO/1999/036081)
Asn-His-Phe-Leu




peptides of 5-12 amino acids containing the sequence
446



Asn-His-Phe-Leu-Pro




Thr-Ser-Glu-Asn-Val-Arg-Thr (TSQNVRT)
447



A peptide of formula Thr-Tyr-Pro-X-Pro-X-Arg
448



(TYPXPXR) where X is a Ile, Val or Leu.




A peptide having the sequence TSQNVRT.
449



A peptide having the sequence TYPLPIR
450





LPS binding peptide 1
TFRRLKWK
451


(6,384,188)







LPS BP 2 (6,384,188)
RWKVRKSFFKLQ
452





LPS BP 3 (6,384,188)
KWKAQKRFLKMS
453






Pseudomonas pilin

KCTSDQDEQFIPKGCSK
454


binding peptide




(5,494,672)





Patents and patent publications disclosing the referenced antibodies are identified in the table.






In certain embodiments the targeting moieties can comprise other entities, particularly when utilized with an antimicrobial peptide as described, for example, in Table 2. Illustrative targeting moieties can include a polypeptide, a peptide, a small molecule, a ligand, a receptor, an antibody, a protein, or portions thereof that specifically interact with a target microbial organism, e.g., the cell surface appendages such as flagella and pili, and surface exposed proteins, lipids and polysaccharides of a target microbial organism.


Targeting Antibodies.


In certain embodiments the targeting moieties can comprise one or more antibodies that bind specifically or preferentially a microorganism or group of microorganisms (e.g., bacteria, fungi, yeasts, protozoa, viruses, algae, etc.). The antibodies are selected to bind an epitope characteristic or the particular target microorganism(s). In various embodiments such epitopes or antigens are typically is gram-positive or gram-negative specific, or genus-specific, or species-specific, or strain specific and located on the surface of a target microbial organism. The antibody that binds the epitope or antigen can direct an anti-microbial peptide moiety or other effector to the site. Furthermore, in certain embodiments the antibody itself can provide anti-microbial activity in addition to the activity provided by effector moiety since the antibody may engage an immune system effector (e.g., a T-cell) and thereby elicit an antibody-associated immune response, e.g., a humoral immune response.


Antibodies that bind particular target microorganisms can be made using any methods readily available to one skilled in the art. For example, as described in U.S. Pat. No. 6,231,857 (incorporated herein by reference) three monoclonal antibodies, i.e., SWLA1, SWLA2, and SWLA3 have been made against S. mutans. Monoclonal antibodies obtained from non-human animals to be used in a targeting moiety can also be humanized by any means available in the art to decrease their immunogenicity and increase their ability to elicit anti-microbial immune response of a human. Illustrative microorganisms and/or targets to which antibodies may be directed are shown, for example, in Tables 5.


Various forms of antibody include, without limitation, whole antibodies, antibody fragments (e.g., (Fab′)2, Fab′, etc.), single chain antibodies (e.g., scFv), minibodies, Di-miniantibody, Tetra-miniantibody, (scFv)2, Diabody, scDiabody, Triabody, Tetrabody, Tandem diabody, VHH, nanobodies, affibodies, unibodies, and the like.


Methods of making such antibodies are well known to those of skill in the art. In various embodiments, such methods typically involve providing the microorganism, or a component thereof for use as an antigen to raise an immune response in an organism or for use in a screening protocol (e.g., phage or yeast display).


For example, polyclonal antibodies are typically raised by one or more injections (e.g. subcutaneous or intramuscular injections) of the target microorganism(s) or components thereof into a suitable non-human mammal (e.g., mouse, rabbit, rat, etc.).


If desired, the immunizing microorganism or antigen derived therefrom can be administered with or coupled to a carrier protein by conjugation using techniques that are well-known in the art. Such commonly used carriers which are chemically coupled to the peptide include keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA), and tetanus toxoid. The coupled peptide is then used to immunize the animal (e.g. a mouse or a rabbit).


The antibodies are then obtained from blood samples taken from the mammal. The techniques used to develop polyclonal antibodies are known in the art (see, e.g., Methods of Enzymology, “Production of Antisera With Small Doses of Immunogen: Multiple Intradermal Injections”, Langone, et al. eds. (Acad. Press, 1981)). Polyclonal antibodies produced by the animals can be further purified, for example, by binding to and elution from a matrix to which the peptide to which the antibodies were raised is bound. Those of skill in the art will know of various techniques common in the immunology arts for purification and/or concentration of polyclonal antibodies, as well as monoclonal antibodies see, for example, Coligan, et al. (1991) Unit 9, Current Protocols in Immunology, Wiley Interscience).


In certain embodiments the antibodies produced will be monoclonal antibodies (“mAb's”). The general method used for production of hybridomas secreting mAbs is well known (Kohler and Milstein (1975) Nature, 256:495


Antibody fragments, e.g. single chain antibodies (scFv or others), can also be produced/selected using phage display and/or yeast display technology. The ability to express antibody fragments on the surface of viruses that infect bacteria (bacteriophage or phage) or yeasts makes it possible to isolate a single binding antibody fragment, e.g., from a library of greater than 1010 nonbinding clones. To express antibody fragments on the surface of phage (phage display) or yeast, an antibody fragment gene is inserted into the gene encoding a phage surface protein (e.g., pIII) and the antibody fragment-pIII fusion protein is displayed on the phage surface (McCafferty et al. (1990) Nature, 348: 552-554; Hoogenboom et al. (1991) Nucleic Acids Res. 19: 4133-4137).


Since the antibody fragments on the surface of the phage or yeast are functional, phage bearing antigen binding antibody fragments can be separated from non-binding phage by antigen affinity chromatography (McCafferty et al. (1990) Nature, 348: 552-554). Depending on the affinity of the antibody fragment, enrichment factors of 20 fold-1,000,000 fold are obtained for a single round of affinity selection.


Human antibodies can be produced without prior immunization by displaying very large and diverse V-gene repertoires on phage (Marks et al. (1991) J. Mol. Biol. 222: 581-597.


In certain embodiments, nanobodies can be used as targeting moieties. Methods of making VhH (nanobodies) are also well known to those of skill in the art. The Camelidae heavy chain antibodies are found as homodimers of a single heavy chain, dimerized via their constant regions. The variable domains of these camelidae heavy chain antibodies are referred to as VHH domains or VHH, and can be either used per se as nanobodies and/or as a starting point for obtaining nanobodies. Isolated VHH retain the ability to bind antigen with high specificity (see, e.g., Hamers-Casterman et al. (1993) Nature 363: 446-448). In certain embodiments such VHH domains, or nucleotide sequences encoding them, can be derived from antibodies raised in Camelidae species, for example in camel, dromedary, llama, alpaca and guanaco. Other species besides Camelidae (e.g. shark, pufferfish) can produce functional antigen-binding heavy chain antibodies, from which (nucleotide sequences encoding) such naturally occurring VHH can be obtained, e.g. using the methods described in U.S. Patent Publication US 2006/0211088.


In various embodiments, for use in therapy, human proteins are preferred, primarily because they are not as likely to provoke an immune response when administered to a patient. Comparisons of camelid VHH with the VH domains of human antibodies reveals several key differences in the framework regions of the camelid VHH domain corresponding to the VH/VL interface of the human VH domains. Mutation of these human residues to VHH resembling residues has been performed to produce “camelized” human VH domains that retain antigen binding activity, yet have improved expression and solubility.


Libraries of single VH domains have also been derived for example from VH genes amplified from genomic DNA or from mRNA from the spleens of immunized mice and expressed in E. coli (Ward et al. (1989) Nature 341: 544-546) and similar approaches can be performed using the VH domains and/or the VL domains described herein. The isolated single VH domains are called “dAbs” or domain antibodies. A “dAb” is an antibody single variable domain (VH or VL) polypeptide that specifically binds antigen. A “dAb” binds antigen independently of other V domains; however, as the term is used herein, a “dAb” can be present in a homo- or heteromultimer with other VH or VL domains where the other domains are not required for antigen binding by the dAb, i.e., where the dAb binds antigen independently of the additional VH or VL domains.


As described in U.S. Patent Publication US 2006/0211088 methods are known for the cloning and direct screening of immunoglobulin sequences (including but not limited to multivalent polypeptides comprising: two or more variable domains—or antigen binding domains—and in particular VH domains or VHH domains; fragments of VL, VH or VHH domains, such as CDR regions, for example CDR3 regions; antigen-binding fragments of conventional 4-chain antibodies such as Fab fragments and scFv's, heavy chain antibodies and domain antibodies; and in particular of VH sequences, and more in particular of VHH sequences) that can be used as part of and/or to construct such nanobodies.


Methods and procedures for the production of VHH/nanobodies can also be found for example in WO 94/04678, WO 96/34103, WO 97/49805, WO 97/49805 WO 94/25591, WO 00/43507 WO 01/90190, WO 03/025020, WO 04/062551, WO 04/041863, WO 04/041865, WO 04/041862, WO 04/041867, PCT/BE2004/000159, Hamers-Casterman et al. (1993) Nature 363: 446; Riechmann and Muyldermans (1999) J. Immunological Meth., 231: 25-38; Vu et al. (1997) Molecular Immunology, 34(16-17): 1121-1131; Nguyen et al. (2000) EMBO J., 19(5): 921-930; Arbabi Ghahroudi et al. (19997) FEBS Letters 414: 521-526; van der Linden et al. (2000) J. Immunological Meth., 240: 185-195; Muyldermans (2001) Rev. Molecular Biotechnology 74: 277-302; Nguyen et al. (2001) Adv. Immunol. 79: 261, and the like, which are all incorporated herein by reference.


In certain embodiments the antibody targeting moiety is a unibody. Unibodies provide an antibody technology that produces a stable, smaller antibody format with an anticipated longer therapeutic window than certain small antibody formats. In certain embodiments unibodies are produced from IgG4 antibodies by eliminating the hinge region of the antibody. Unlike the full size IgG4 antibody, the half molecule fragment is very stable and is termed a uniBody. Halving the IgG4 molecule left only one area on the UniBody that can bind to a target. Methods of producing unibodies are described in detail in PCT Publication WO2007/059782, which is incorporated herein by reference in its entirety (see, also, Kolfschoten et al. (2007) Science 317: 1554-1557).


Affibody molecules are class of affinity proteins based on a 58-amino acid residue protein domain, derived from one of the IgG-binding domains of staphylococcal protein A. This three helix bundle domain has been used as a scaffold for the construction of combinatorial phagemid libraries, from which Affibody variants that target the desired molecules can be selected using phage display technology (see, e.g., Nord et al. (1997) Nat. Biotechnol. 15: 772-777; Ronmark et al. (2002) Eur. J. Biochem., 269: 2647-2655). Details of Affibodies and methods of production are known to those of skill (see, e.g., U.S. Pat. No. 5,831,012 which is incorporated herein by reference in its entirety).


It will also be recognized that antibodies can be prepared by any of a number of commercial services (e.g., Berkeley antibody laboratories, Bethyl Laboratories, Anawa, Eurogenetec, etc.).


Illustrative antibodies that bind various microorganisms are shown in Table 5.









TABLE 5







Illustrative antibodies that bind target microorganisms.








Source
Antibody





7,195,763
Polyclonal/monoclonal binds specific Gram(+)



cell wall repeats


6,939,543
Antibodies against G(+) LTA


7,169,903
Antibodies against G(+) peptidoglycan


6,231,857
Antibody against S. mutans (Shi)


5,484,591
Gram(−) binding antibodies


US 2007/0231321
Diabody binding to Streptococcus surface



antigen I/II


US 2003/0124635
Antibody against S. mutans


US 2006/0127372
Antibodies to Actinomyces naeslundii,




Lactobacillus casei



US 2003/0092086
Antibody to S. sobrinus









In addition, antibodies (targeting moieties) that bind other microorganisms can readily be produced using, for example, the methods described above.


Porphyrins.


In certain embodiments porphyrins, or other photosensitizing agents, can be used as targeting moieties in the constructs described herein. In particular, metalloporphyrins, particularly a number of non-iron metalloporphyrins mimic heme in their molecular structure and are actively accumulated by bacteria via high affinity heme-uptake systems. The same uptake systems can be used to deliver antibiotic-porphyrin and antibacterial-porphyrin conjugates. Illustrative targeting porphyrins suitable for this purpose are described in U.S. Pat. No. 6,066,628 and shown herein, for example, in FIGS. 1 and 2.


For example, certain artificial (non-iron) metalloporphyrins (MPs) (Ga-IX, Mn-IX,) are active against Gram-negative and Gram-positive bacteria and acid-fast bacilli (e.g., Y. enterocolitica, N. meningitides, S. marcescens, E. coli, P. mirabills, K. pneumoniae, K. oxytoca, Ps. aeruginosa, C. freundii, E. aerogenes, F. menigosepticum, S. aureus, B. subtilis, S. pyogenes A, E. faecalis, M. smegmatis, M. bovis, M. tuber., S. cerevisiae) as described in Tables 1-5 of U.S. Pat. No. 6,066,628. These MPs can be used as targeting moieties against these microorganisms.


Similarly, some MPs are also growth-inhibitory against yeasts, indicating their usefulness targeting moieties to target Candida species (e.g., Candida albicans, C. krusei, C. pillosus, C. glabrata, etc.) and other mycoses including but not limited to those caused by as Trichophyton, Epidermophyton, Histoplasma, Aspergillus, Cryptococcus, and the like.


Porphyrins, and other photosensitizers, also have antimicrobial activity. Accordingly, in certain embodiments, the porphyrins, or other photosensitizers, can be used as effectors (e.g., attached to targeting peptides as described herein). In various embodiments the porphyrins or other photosensitizers can provide a dual functionality, e.g., as a targeting moiety and an antimicrobial and can be attached to a targeting peptide and/or to an antimicrobial peptide as described herein.


Illustrative porphyrins and other photosensitizers are shown in FIGS. 1-11 and described in more detail in the discussion of effectors below.


Pheromones.


In certain embodiments, pheromones from microorganisms can be used as targeting moieties. Illustrative pheromones from bacteria and fungi are shown in Table 6. In certain embodiments, chimeric moieties are contemplated comprising a targeting moiety comprising or consisting of the amino acid sequence (or retro or retro-inverso or beta) sequence of a peptide shown in Table 6 attached to one or more of the peptides shown in Table 2.









TABLE 6







Illustrative bacterial and fungal pheromones utilizable as targeting moieties.










Bacterial Pheromones





Locus tag
Product
Sequence
SEQ ID





gi|1041118|dbj|BAA11198.1|
iPD1 [Enterococcus
MKQQKKHIAALLF
455




faecalis]

ALILTLVS






gi|1113947|gb|AAB35253.1|
iAM373sex pheromone
SIFTLVA
456



inhibito [Enterococcus






faecalis, Peptide, 7 aa]








gi|115412|sp|P13268.1|CAD1_ENTFA
Sex pheromone CAD1
LFSLVLAG
457





gi|116406|sp|P11932.1|CIA_ENTFA
Sex pheromone cAM373
AIFILAS
458



(Clumping-inducing





agent) (CIA)







gi|117240|sp|P13269.1|CPD1_ENTFA
Sex pheromone cPD1
FLVMFLSG
459





gi|12056953|gb|AAG48144.1|AF322594_1
putative peptide
DSIRDVSPTFNKIRR
460



pheromone PrcA
WFDGLFK




[Lactobacillus paracasei]







gi|123988|sp|P24803.1|IAD1_ENTFA
Sex pheromone inhibitor
MSKRAMKKIIPLIT
461



determinant precursor
LFVVTLVG




(iAD1)







gi|126362994|emb|CAM35812.1|
precursor of pheromone
KDEIYWKPS
462



peptide ComX [Bacillus






amyloliquefaciens FZB42]








gi|1587088|prf||2205353A
pheromone
YSTCDFIM
463





gi|15900442|ref|NP_345046.1|
peptide pheromone BlpC
GLWEDLLYNINRY
464



[Streptococcus
AHYIT





pneumoniae TIGR4]








gi|1617436|emb|CAA66791.1|
competence pheromone
DIRHRINNSIWRDIF
465



[Streptococcus gordonii]
LKRK






gi|1617440|emb|CAA66786.1|
competence pheromone
DVRSNKIRLWWEN
466



[Streptococcus gordonii]
IFFNKK






gi|18307870|gb|AAL67728.1|AF456134_2
ComX pheromone
PTTREWDG
467



precursor [Bacillus






mojavensis]








gi|18307874|gb|AAL67731.1|AF456135_2
ComX pheromone
LQIYTNGNWVPS
468



precursor [Bacillus






mojavensis]








gi|29377808|ref|NP_816936.1|
sex pheromone inhibitor
MSKRAMKKIIPLIT
469



determinant [Enterococcus
LFVVTLVG





faecalis V583]








gi|3342125|gb|AAC27522.1|
putative pheromone
GAGKNLIYGMGYG
470



[Enterococcus faecium]
YLRSCNRL






gi|41018893|sp|P60242.1|CSP1_STRPN
Competence-stimulating
EMRLSKFFRDFILQ
471



peptide type 1 precursor
RKK




(CSP-1)







gi|57489126|gb|AAW51333.1|
PcfP [Enterococcus
WSEIEINTKQSN
472




faecalis]








gi|57489152|gb|AAW51349.1|
PrgT [Enterococcus
HISKERFEAY
473




faecalis]








gi|58616083|ref|YP_195761.1|
UvaF [Enterococcus
KYKCSWCKRVYTL
474




faecalis]

RKDHRTAR






gi|58616111|ref|YP_195802.1|
PcfP [Enterococcus
WSEIEINTKQSN
475




faecalis]








gi|58616132|ref|YP_195769.1|
PrgQ [Enterococcus
MKTTLKKLSRYIA
476




faecalis]

VVIAITLIFI






gi|58616137|ref|YP_195772.1|
PrgT [Enterococcus
HISKERFEAY
477




faecalis]








gi|6919848|sp|O33689.1|CSP_STROR
Competence-stimulating
DKRLPYFFKHLFSN
478



peptide precursor (CSP)
RTK






gi|6919849|sp|O33666.1|CSP2_STRMT
Competence-stimulating
EMRKPDGALFNLF
479



peptide precursor (CSP)
RRR






gi|6919850|sp|O33668.1|CSP3_STRMT
Competence-stimulating
EMRKSNNNFFHFL
480



peptide precursor (CSP)
RRI






gi|6919851|sp|O33672.1|CSP1_STRMT
Competence-stimulating
ESRLPKIRFDFIFPR
481



peptide precursor (CSP)
KK






gi|6919852|sp|O33675.1|CSP4_STRMT
Competence-stimulating
EIRQTHNIFFNFFKRR
482



peptide precursor (CSP)







gi|6919853|sp|O33690.1|CSP2_STROR
Competence-stimulating
DWRISETIRNLIFPR
483



peptide precursor (CSP)
RK






gi|999344|gb|AAB34501.1|
cOB1bacterial sex
VAVLVLGA
484



pheromone [Enterococcus






faecalis, Peptide, 8 aa]








gi|18307878|gb|AAL67734.1|AF456136_2
ComX pheromone
FFEDDKRKSFI
485



precursor [Bacillus






subtilis]








gi|18307882|gb|AAL67737.1|AF456137_2
ComX pheromone
FFEDDKRKSFI
486



precursor [Bacillus






subtilis]








gi|28272731|emb|CAD65660.1|
accessory gene regulator
MKQKMYEAIAHLF
487



protein D, peptide
KYVGAKQLVMCC




pheromone precursor
VGIWFETKIPDELRK




[Lactobacillus plantarum





WCFS1]







gi|28379890|ref|NP_786782.1|
accesory gene regulator
MKQKMYEAIAHLF
488



protein D, peptide
KYVGAKQLVMCC




pheromone precursor
VGIWFETKIPDELRK




[Lactobacillus plantarum





WCFS1]







gi|57489105|gb|AAW51312.1|
PrgF [Enterococcus
VVAYVITQVGAIRF
489




faecalis]








gi|58616090|ref|YP_195779.1|
PrgF [Enterococcus
VVAYVITQVGAIRF
490




faecalis]








gi|58616138|ref|YP_195762.1|
PrgN [Enterococcus
LLKLQDDYLLHLE
491




faecalis]

RHRRTKKIIDEN






gi|57489117|gb|AAW51324.1|
PcfF [Enterococcus
EDIKDLTDKVQSLN
492




faecalis]

ALVQSELNKLIKRK





DQS






gi|57489119|gb|AAW51326.1|
PcfH [Enterococcus
WFLDFSDWLSKVP
493




faecalis]

SKLWAE






gi|58616102|ref|YP_195792.1|
PcfF [Enterococcus
EDIKDLTDKVQSLN
494




faecalis]

ALVQSELNKLIKRK





DQS






gi|58616104|ref|YP_195794.1|
PcfH [Enterococcus
WFLDFSDWLSKVP
495




faecalis]

SKLWAE






Fungi


496


gi|1127585|gb|AAA99765.1|
mfa1 gene product
MLSIFAQTTQTSAS
497




EPQQSPTAPQGRDN





GSPIGYSSCVVA






gi|1127592|gb|AAA99771.1|
mfa2 gene product
MLSIFETVAAAAPV
498




TVAETQQASNNEN





RGQPGYYCLIA






gi|11907715|gb|AAG41298.1|
pheromone precursor
PSLPSSPPSLLPPLPL
499



MFalpha1D
LKLLATRRPTLVG




[Cryptococcus neoformans
MTLCV




var. neoformans]







gi|13810235|emb|CAC37424.1|
M-factor precursor Mfm1
MDSMANSVSSSSV
500



[Schizosaccharomyces
VNAGNKPAETLNK





pombe]

TVKNYTPKVPYMC





VIA






gi|14269436|gb|AAK58071.1|AF378295_1
peptide mating pheromone
MDTFTYVDLAAVA
501



precursor Bbp2-3
AAAVADEVPRDFE




[Schizophyllum
DQITDYQSYCIIC





commune]








gi|14269440|gb|AAK58073.1|AF378297_1
peptide mating pheromone
SNVHGWCVVA
502



precursor Bbp2-1





[Schizophyllum






commune]








gi|1813600|gb|AAB41859.1|
pheromone precursor
NTTAHGWCVVA
503



Bbp1(1) [Schizophyllum






commune]








gi|24940428|emb|CAD56313.1|
a-pheromone
MQPSTVTAAPKDK
504



[Saccharomyces
TSAEKKDNYIIKGV





paradoxus]

FWDPACVIA






gi|27549492|gb|AAO17258.1|
pheromone phb3.1
GPTWWCVNA
505



[Coprinopsis cinerea]







gi|27549494|gb|AAO17259.1|
pheromone phb3.2
SGPTWFCIIQ
506



[Coprinopsis cinerea]







gi|27752314|gb|AAO19469.1|
pheromone protein a
FTAIFSTLSSSVASK
507



precursor [Cryptococcus
TDAPRNEEAYSSG





neoformans var. grubii]

NSP






gi|2865510|gb|AAC02682.1|
MAT-1 pheromone
MFSIFAQPAQTSVS
508



[Ustilago hordei]
ETQESPANHGANP





GKSGSGLGYSTCV





VA






gi|3023372|sp|P78742.1|BB11_SCHCO
RecName: Full = Mating-
NTTAHGWCVVA
509



type pheromone BBP1(1);





Flags: Precursor







gi|3025079|sp|P56508.1|SNA2_YEAST
RecName: Full = Protein
SDDNYGSLA
510



SNA2







gi|37626077|gb|AAQ96360.1|
pheromone precursor Phb3
NGLTFWCVIA
511



B5 [Coprinopsis cinerea]







gi|37626081|gb|AAQ96362.1|
pheromone precursor
PSWFCVIA
512



Phb3.2 B45 [Coprinopsis






cinerea]








gi|37626083|gb|AAQ96363.1|
pheromone precursor
ASWFCTIA
513



Phb3.1 B47 [Coprinopsis






cinerea]








gi|37961432|gb|AAP57503.1|
Ste3-like pheromone
PHHKIANASDKRR
514



receptor [Thanatephorus
RMYFEIFMCAVL





cucumeris]








gi|400250|sp|P31962.1|MFA1_USTMA
RecName: Full = A1-
MLSIFAQTTQTSAS
515



specific pheromone;
EPQQSPTAPQGRDN




AltName: Full = Mating
GSPIGYSSCVVA




factor A1







gi|400251|sp|P31963.1|MFA2_USTMA
RecName: Full = A2-
MLSIFETVAAAAPV
516



specific pheromone;
TVAETQQASNNEN




AltName: Full = Mating
RGQPGYYCLIA




factor A2







gi|41209131|gb|AAR99617.1|
lipopeptide mating
SLTYAWCVVA
517



pheromone precursor





Bap2(3) [Schizophyllum






commune]








gi|41209146|gb|AAR99650.1|
lipopeptide mating
TSMAHAWCVVA
518



pheromone precursor





Bap3(2) [Schizophyllum






commune]








gi|41209149|gb|AAR99653.1|
lipopeptide mating
GYCVVA
519



pheromone precursor





Bbp2(8) [Schizophyllum






commune]








gi|46098187|gb|EAK83420.1|
MFA1_USTMA A1-
MLSIFAQTTQTSAS
520



SPECIFIC PHEROMONE
EPQQSPTAPQGRDN




(MATING FACTOR A1)
GSPIGYSSCVVA




[Ustilago maydis 521]







gi|546861|gb|AAB30833.1|
M-factor mating
MDSMANTVSSSVV
521



pheromone
NTGNKPSETLNKT




[Schizosaccharomyces
VKNYTPKVPYMCV





pombe]

IA






gi|5917793|gb|AAD56043.1|AF184069_1
pheromone Mfa2
MFSLFETVAAAVK
522



[Ustilago hordei]
VVSAAEPEHAPTNE





GKGEPAPYCIIA






gi|6014618|gb|AAF01424.1|AF186389_1
Phb3.2.42 [Coprinus
LTWFCVIA
523




cinereus]








gi|68266363|gb|AAY88882.1|
putative pheromone
LREKRRRRWFEAF
524



receptor STE3.4
MGFGL




[Coprinellus disseminatus]







gi|71012805|ref|XP_758529.1|
A1-specific pheromone
MLSIFAQTTQTSAS
525



[Ustilago maydis 521]
EPQQSPTAPQGRDN





GSPIGYSSCVVA






gi|72414834|emb|CAI59748.1|
mating factor a1.3
MDALTLFAPVSLG
526



[Sporisorium reilianum]
AVATEQAPVDEER





PNRQTFPWIGCVVA






gi|72414854|emb|CAI59758.1|
mating factor a2.1
MFIFESVVASVQAV
527



[Sporisorium reilianum]
SVAEQDQTPVSEG





RGKPAVYCTIA






gi|1127587|gb|AAA99767.1|
rba1 gene product
PWMSLLFSFLALLA
528




LILPKLSKDDPLGL





TRQPR






gi|151941959|gb|EDN60315.1|
pheromone-regulated
ASISLIMEGSANIEA
529



membrane protein
VGKLVWLAAALPL




[Saccharomyces cerevisiae
AFI




YJM789]







gi|3025095|sp|Q07549.1|SNA4_YEAST
Protein SNA4
ARNVYPSVETPLLQ
530




GAAPHDNKQSLVE





SPPPYVP






gi|73921293|sp|Q08245.3|ZEO1_YEAST
RecName: Full = Protein
FLKKLNRKIASIFN
531



ZEO1; AltName:





Full = Zeocin resistance





protein 1







gi|74644573|sp|Q9P305.3|IGO2_YEAST
RecName: Full = Protein
DSISRQGSISSGPPP
532



IGO2
RSPNK









Effectors.


Any of a wide number of effectors can be coupled to targeting moieties as described herein to preferentially deliver the effector to a target organism and/or tissue. Illustrative effectors include, but are not limited to detectable labels, small molecule antibiotics, antimicrobial peptides, porphyrins or other photosensitizers, epitope tags/antibodies for use in a pretargeting protocol, microparticles and/or microcapsules, nanoparticles and/or nanocapsules, “carrier” vehicles including, but not limited to lipids, liposomes, dendrimers, cholic acid-based peptide mimics or other peptide mimics, steroid antibiotics, and the like.


Detectable Labels.


In certain embodiments chimeric moieties are provided comprising a targeting moiety (e.g. as described in Table 2) attached directly or through a linker to a detectable label. Such chimeric moieties are effective for detecting the presence and/or quantity, and/or location of the microorganism(s) to which the targeting moiety is directed. Similarly these chimeric moieties are useful to identify cells and/or tissues and/or food stuffs and/or other compositions that are infected with the targeted microorganism(s).


Detectable labels suitable for use in such chimeric moieties include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical, or chemical means. Illustrative useful labels include, but are not limited to, biotin for staining with labeled streptavidin conjugates, avidin or streptavidin for labeling with biotin conjugates fluorescent dyes (e.g., fluorescein, texas red, rhodamine, green fluorescent protein, and the like, see, e.g., Molecular Probes, Eugene, Oreg., USA), radiolabels (e.g., 3H, 125I, 35S, 14C, 32P, 99Tc, 203Pb, 67Ga, 68Ga, 72As, 111In, 113mIn, 97Ru, 62Cu, 641Cu, 52Fe, 52mMn, 51Cr, 186Re, 188Re, 77As, 90Y, 67Cu, 169Er, 121Sn, 127Te, 142Pr, 143Pr, 198Au, 199Au, 161Tb, 109Pd, 165Dy, 149Pm, 151Pm, 153Sm, 157Gd, 159Gd, 166Ho, 172Tm, 169Yb, 177Lu, 105Rh, 111Ag, and the like), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), various colorimetric labels, magnetic or paramagnetic labels (e.g., magnetic and/or paramagnetic nanoparticles), spin labels, radio-opaque labels, and the like. Patents teaching the use of such labels include, for example, U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241.


It will be recognized that fluorescent labels are not to be limited to single species organic molecules, but include inorganic molecules, multi-molecular mixtures of organic and/or inorganic molecules, crystals, heteropolymers, and the like. Thus, for example, CdSe—CdS core-shell nanocrystals enclosed in a silica shell can be easily derivatized for coupling to a biological molecule (Bruchez et al. (1998) Science, 281: 2013-2016). Similarly, highly fluorescent quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection (Warren and Nie (1998) Science, 281: 2016-2018).


In various embodiments spin labels are provided by reporter molecules with an unpaired electron spin which can be detected by electron spin resonance (ESR) spectroscopy. Illustrative spin labels include organic free radicals, transitional metal complexes, particularly vanadium, copper, iron, and manganese, and the like. Exemplary spin labels include, for example, nitroxide free radicals.


Means of detecting such labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the label is a fluorescent label, it may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence, e.g., by microscopy, visual inspection, via photographic film, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like. Similarly, enzymatic labels may be detected by providing appropriate substrates for the enzyme and detecting the resulting reaction product. Finally, simple colorimetric labels may be detected simply by observing the color associated with the label.


Antibiotics.


In certain embodiments chimeric moieties are provided comprising a targeting moiety (e.g. as described in Table 2) attached directly or through a linker to a small molecule antibiotic and/or to a carrier (e.g., a lipid or liposome, a polymer, etc.) comprising a small molecule antibiotic (e.g., an antibiotics shown in Table 7).









TABLE 7







Illustrative antibiotics for use in the


chimeric moieties described herein.









Class
Generic Name
Brand Name





Aminoglycosides
Amikacin
Amikin



Gentamicin
Garamycin



Kanamycin
Kantrex



Neomycin



Netilmicin
Netromycin



Streptomycin



Tobramycin
Nebcin



Paromomycin
Humatin


Carbacephem
Loracarbef
Lorabid


Carbapenems
Ertapenem
Invanz



Doripenem
Finibax



Imipenem/Cilastatin
Primaxin



Meropenem
Merrem


Cephalosporins
Cefadroxil
Duricef


(First
Cefazolin
Ancef


generation)
Cefalotin or Cefalothin
Keflin



Cefalexin
Keflex


Cephalosporins
Cefaclor
Ceclor


(Second
Cefamandole
Mandole


generation)
Cefoxitin
Mefoxin



Cefprozil
Cefzil



Cefuroxime
Ceftin, Zinnat


Cephalosporins
Cefixime
Suprax


(Third
Cefdinir
Omnicef


generation)
Cefditoren
Spectracef



Cefoperazone
Cefobid



Cefotaxime
Claforan



Cefpodoxime



Ceftazidime
Fortaz



Ceftibuten
Cedax



Ceftizoxime



Ceftriaxone
Rocephin


Cephalosporins
Cefepime
Maxipime


(Fourth


generation)


Cephalosporins
Ceftobiprole


(Fifth


generation)


Glycopeptides
Teicoplanin



Vancomycin
Vancocin


Macrolides
Azithromycin
Zithromax



Clarithromycin
Biaxin



Dirithromycin



Erythromycin
Erythocin,




Erythroped



Roxithromycin



Troleandomycin



Telithromycin
Ketek


Monobactams
Aztreonam


Penicillins
Amoxicillin
Novamox, Amoxil



Ampicillin



Azlocillin



Carbenicillin



Cloxacillin



Dicloxacillin



Flucloxacillin
Floxapen



Mezlocillin



Meticillin



Nafcillin



Oxacillin



Penicillin



Piperacillin



Ticarcillin


Polypeptides
Bacitracin



Colistin



Polymyxin B


Quinolones
Mafenide



Prontosil (archaic)



Sulfacetamide



Sulfamethizole



Sulfanilimide (archaic)



Sulfasalazine



Sulfisoxazole



Trimethoprim Trimethoprim-
Bactrim



Sulfamethoxazole



(Cotrimoxazole) (TMP-SMX)


Tetracyclines
Demeclocycline



Doxycycline
Vibramycin



Minocycline
Minocin



Oxytetracycline
Terracin



Tetracycline
Sumycin


Cationic steroid
squalamine


antibiotics
CSA-8



CSA-11



CSA-13



CSA-15



CSA-25



CSA-46



CSA-54



CSA-90



CSA-97


Others
Arsphenamine
Salvarsan



Chloramphenicol
Chloromycetin



Clindamycin
Cleocin



Lincomycin



Ethambutol



Fosfomycin



Fusidic acid
Fucidin



Furazolidone



Isoniazid



Linezolid
Zyvox



Metronidazole
Flagyl



Mupirocin
Bactroban



Nitrofurantoin
Macrodantin,




Macrobid



Platensimycin



Pyrazinamide



Quinupristin/Dalfopristin
Syncercid



Rifampin or Rifampicin



Tinidazole









Porphyrins and Non-Porphyrin Photosensitizers.


In certain embodiments, porphyrins and other photosensitizers can be used as targeting moieties and/or as effectors in the methods and compositions of this invention. A photosensitizer is a drug or other chemical that increases photosensitivity of the organism (e.g., bacterium, yeast, fungus, etc.). As targeting moieties the photosensitizers (e.g., porphyrins) are preferentially uptaken by the target microorganisms and thereby facilitate delivery of the chimeric moiety to the target microorganism.


As effectors, photosensitizers can be useful in photodynamic antimicrobial chemotherapy (PACT). In various embodiments PACT utilizes photosensitizers and light (e.g., visible, ultraviolet, infrared, etc.) in order to give a phototoxic response in the target organism(s), often via oxidative damage.


Currently, the major use of PACT is in the disinfection of blood products, particularly for viral inactivation, although more clinically-based protocols are used, e.g. in the treatment of oral infection or topical infection. The technique has been shown to be effective in vitro against bacteria (including drug-resistant strains), yeasts, viruses, parasites, and the like.


Attaching a targeting moiety (e.g., a targeting peptide as shown in Table 2) to the photosensitizer, e.g., as described herein, provides a means of specifically or preferentially targeting the photosensitizer(s) to particular species or strains(s) of microorganism.


A wide range of photosensitizers, both natural and synthetic are known to those of skill in the art (see, e.g., Wainwright (1998) J. Antimicrob. Chemotherap. 42: 13-28). Photosensitizers are available with differing physicochemical make-up and light-absorption properties. In various embodiments photosensitizers are usually aromatic molecules that are efficient in the formation of long-lived triplet excited states. In terms of the energy absorbed by the aromatic-system, this again depends on the molecular structure involved. For example: furocoumarin photosensitizers (psoralens) absorb relatively high energy ultraviolet (UV) light (c. 300-350 nm), whereas macrocyclic, heteroaromatic molecules such as the phthalocyanines absorb lower energy, near-infrared light.


Illustrative photosensitizers include, but are not limited to porphyrinic macrocyles (especially porphyrins, chlorines, etc., see, e.g., FIGS. 1 and 2). In particular, metalloporphyrins, particularly a number of non-iron metalloporphyrins mimic heme in their molecular structure and are actively accumulated by bacteria via high affinity heme-uptake systems. The same uptake systems can be used to deliver antibiotic-porphyrin and antibacterial-porphyrin conjugates. Illustrative targeting porphyrins suitable for this purpose are described in U.S. Pat. No. 6,066,628 and shown herein in FIGS. 1 and 2.


For example, certain artificial (non-iron) metalloporphyrins (MPs) (Ga-IX, Mn-IX,) are active against Gram-negative and Gram-positive bacteria and acid-fast bacilli (e.g., Y. enterocolitica, N. meningitides, S. marcescens, E. coli, P. mirabilis, K. pneumoniae, K. oxytoca, Ps. aeruginosa, C. freundii, E. aerogenes, F. menigosepticum, S. aureus, B. subtilis, S. pyogenes A, E. faecalis, M. smegmatis, M. bovis, M. tuber., S. cerevisiae) as described in Tables 1-5 of U.S. Pat. No. 6,066,628. These MPs can be used as targeting moieties against these microorganisms.


Similarly, some MPs are also growth-inhibitory against yeasts, indicating their usefulness targeting moieties to target Candida species (e.g., Candida albicans, C. krusei, C. pillosus, C. glabrata, etc.) and other mycoses including but not limited to those caused by as Trichophyton, Epidermophyton, Histoplasma, Aspergillus, Cryptococcus, and the like.


Other photosensitizers include, but are not limited to cyanines (see, e.g., FIG. 6) and phthalocyanines (see, e.g., FIG. 4), azines (see, e.g., FIG. 5) including especially methylene blue and toluidine blue, hypericin (see, e.g., FIG. 8), acridines (see, e.g., FIG. 9) including especially Rose Bengal (see, e.g., FIG. 10), crown ethers (see, e.g., FIG. 11), and the like.


In certain embodiments the photosensitizers are toxic or growth inhibitors without light activation. For example, some non-iron metalloporphyrins (MPs) (see, e.g., FIGS. 1 and 2 herein) possess a powerful light-independent antimicrobial activity. In addition, haemin, the most well known natural porphyrin, possesses a significant antibacterial activity that can augmented by the presence of physiological concentrations of hydrogen peroxide or a reducing agent.


Typically, when activated by light, the toxicity or growth inhibition effect is substantially increased. Typically, they generate radical species that affect anything within proximity. In certain embodiments to get the best selectivity from targeted photosensitizers, anti-oxidants can be used to quench un-bound photosensitizers, limiting the damage only to cells where the conjugates have accumulated due to the targeting peptide. The membrane structures of the target cell act as the proton donors in this case.


In typical photodynamic antimicrobial chemotherapy (PACT) the targeted photosensitizer is “activated by the application of a light source (e.g., a visible light source, an ultraviolet light source, an infrared light source, etc.). PACT applications however need not be limited to topical use. Regions of the mouth, throat, nose, sinuses are readily illuminated. Similarly regions of the gut can readily be illuminated using endoscopic techniques. Other internal regions can be illumined using laparoscopic methods or during other surgical procedures. For example, in certain embodiments involving the insertion or repair or replacement of an implantable device (e.g., a prosthetic device) it contemplated that the device can be coated or otherwise contacted with a chimeric moiety comprising a targeting moiety attached to a photosensitizer as described herein. During the surgical procedure and/or just before closing, the device can be illuminated with an appropriate light source to activate the photosensitizer.


The targeted photosensitizers and uses thereof described herein are illustrative and not to be limiting. Using the teachings provided herein, other targeted photosensitizers and uses thereof will be available to one of skill in the art.


Antimicrobial Peptides.


In certain embodiments the chimeric moieties described herein include one or more antimicrobial peptides (e.g., certain peptides shown in Table 2 and/or Table 10) as effectors. Thus, for example, in certain embodiments, where the peptides described in Table 2 are exploited for their targeting ability, chimeric moieties are contemplated comprising one or more of the targeting peptides of Table 2 attached to one or more of the antimicrobial peptides of Table 10. In certain embodiments chimeric moieties are contemplated comprising one or more of the targeting peptides of Table 2 attached to one or more of the antimicrobial peptides of Table 2. In certain embodiments chimeric moieties are contemplated comprising other targeting moieties (e.g., porphyrins, antibodies, etc.) attached to one or more of the antimicrobial peptides of Table 2.


Antimicrobial peptides (also called host defense peptides) are an evolutionarily conserved component of the innate immune response and are found among all classes of life. Unmodified, these peptides are potent, broad spectrum antibiotics which demonstrate potential as novel therapeutic agents. Antimicrobial peptides have been demonstrated to kill Gram-negative and Gram-positive bacteria (including strains that are resistant to conventional antibiotics), mycobacteria (including Mycobacterium tuberculosis), enveloped viruses, and fungi.


Naturally-occurring antimicrobial peptides are typically short peptides, generally between 12 and 50 amino acids. These peptides often include two or more positively charged residues provided by arginine, lysine or, in acidic environments, histidine, and frequently a large proportion (generally >50%) of hydrophobic residues (see, e.g., Papagianni et al. (2003) Biotechnol Adv 21: 465; Sitaram and Nagaraj (2002) Curr Pharm Des 8: 727; Dürr et al. (2006) Biochim. Biophys. Acta 1758: 1408-1425).


Frequently the secondary structures of these molecules follow 4 themes, including i) α-helical, ii) β-stranded due to the presence of 2 or more disulfide bonds, iii) β-hairpin or loop due to the presence of a single disulfide bond and/or cyclization of the peptide chain, and iv) extended. Many of these peptides are unstructured in free solution, and fold into their final configuration upon partitioning into biological membranes. The ability to associate with membranes is a definitive feature of antimicrobial peptides although membrane permeabilisation is not necessary. These peptides have a variety of antimicrobial activities ranging from membrane permeabilization to action on a range of cytoplasmic targets.


The modes of action by which antimicrobial peptides kill bacteria is varied and includes, but is not limited to disrupting membranes, interfering with metabolism, and targeting cytoplasmic components. In many cases the exact mechanism of killing is not known.


In various embodiments one or more antimicrobial peptides are used alone (e.g., as broad spectrum antimicrobials) and/or are provided as effectors attached to one or more targeting moieties thereby providing a narrower spectrum (directed) antimicrobial. In certain embodiments one or more antimicrobial peptides are provided as effectors attached to one or more targeting moieties and/or one or more effectors thereby providing a component of a multiple effector composition/strategy.


Suitable antimicrobial peptides for this use include, but are not limited to the antimicrobial peptides found in Table 2, and/or Table 9, and/or Table 10.









TABLE 8







Novel antimicrobial peptides.









ID
Structure/sequence
SEQ ID NO





K-1
GLGRVIGRLIKQIIWRR
533





K-2
VYRKRKSILKIYAKLKGWH
534





K-3
AFYQRKENVISLDPREWLGFNVTEK
535





K-4
DKKRVIERIKSFSLRDEVIHFGELCIYWGK
536





K-5
RSSYNGFSKICFLKIEHFGSYSYQGR
537





K-6
WLNAISLYGRIG
538





K-7
NYRLVNAIFSKIFKKKFIKF
539





K-8
KIL K FLF K KVF
540





K-9
FI RK FLK KW LL
541





K-10
KLFKFLRKHLL
542





K-11
KIL K FLF K QVF
543





K-12
KIL K KLF K FVF
544





K-13
GIL K KLF T KVF
545





K-14
L R K FL H K LF
546





K-15
L R KNL R WLF
547





K-16
FI RK FLQ KLHL
548





K-17
FTRKFLKFLHL
549





K-18
KKFKKFKVLKIL
550





K-19
LLKLLKLKKLKF
551









In certain embodiments peptides that induce alterations in phenotype or other biological activities can also be used as antimicrobial effector moieties. Illustrative alternative peptides are shown in Table 9.









TABLE 9







Novel growth phenotype-inducing or peptides with 


other activities.













SEQ





ID


ID
Organism, effect
Structure/sequence
NO





G-1
S. mutans: Ca2+
DSSQSDSDSDSNSSNTNSNSSITNG
552



bindng







G-2
S. mutans: biofilm
LPGTLHIQAEFPVQLEAGSLIQIFD
553



structure







G-3
S. mutans: biofilm
LACTTPVGAVLYLGAEVCAGAAVI
554



structure
YYGAN






G-4
S. mutans:
EIPIQLANDLANYYDISLDSIFFW
555



Biofilm structure







G-5

M. xanthus:

RDMTVAGKRPNFLIITTDEE
556



Altered cell 





morphology







G-6

M. xanthus:

NTSIVCAVTFAPIKEVPLLWRAGLT
557



Altered cell 
LRSRQS




morphology







G-7

M. xanthus:

QAKVEREVERDLVYTLRRLCDPSG
558



Altered cell 
SERTK




morphology







G-8
S. mutans:
PRMIDIISFHGCHGDHQVWTDPQAT
559



Altered biofilm 
ALPR




structure









Other illustrative antimicrobial peptides include, but are not limited to the AMPs of Table 10.









TABLE 10







Other illustrative antimicrobial peptides. AP numbers refer to ID in


antimicrobial peptide database (aps.unmc.edu/AP/main.php).













SEQ ID



Effector
Structure/Sequence
No













AP00274
1BH4, Circulin A
GIPCGESCVWIPCISAALGCSCKNKVC
560



(CirA, plant
YRN




cyclotides, XXC, ZZHp)







AP00036
1BNB, Beta-defensin 1
DFASCHTNGGICLPNRCPGHMIQIGICF
561



(cow)
RPRVKCCRSW






AP00047
1BNB, Bovine
GPLSCGRNGGVCIPIRCPVPMRQIGTC
562



neutrophil beta-defensin
FGRPVKCCRSW




12 (BNBD-12, cow)







AP00428
1C01, MiAMP1
SAFTVWSGPGCNNRAERYSKCGCSAI
563



(Macadamia integrifolia
HQKGGYDFSYTGQTAALYNQAGCSG




antimicrobial peptide 1,
VAHTRFGSSARACNPFGWKSIFIQC




plant)







AP00154
1CIX, Tachystatin A2
YSRCQLQGFNCVVRSYGLPTIPCCRGL
564



(Horseshoe crabs,
TCRSYFPGSTYGRCQRY





Crustacea, BBS)








AP00145
1CW5,
VNYGNGVSCSKTKCSVNWGQAFQER
565



Carnobacteriocin B2
YTAGINSFVSGVASGAGSIGRRP




(CnbB2, class IIA





bacteriocin, bacteria)







AP00153
1CZ6, Androctonin
RSVCRQIKICRRRGGCYYKCTNRPY
566



(scorpions)







AP00152
1D6X, Tritrpticin
VRRFPWWWPFLRR
567



(synthetic)







AP00201
1D7N, Mastoparan
INLKALAALAKKIL
568



(insect)







AP00140
1D9J, CecropinA-
KWKLFKKIGIGKFLHSAKKF
569



Magainin2 hybrid





(synthetic)







AP00178
1DFN, human alpha
DCYCRIPACIAGERRYGTCIYQGRLW
570



Defensin HNP-3
AFCC




(human neutrophil





peptide-3, HNP3,





human defensin, ZZHh)







AP01153
1DQC, Tachycitin
YLAFRCGRYSPCLDDGPNVNLYSCCS
571



(horseshoe crabs,
FYNCHKCLARLENCPKGLHYNAYLK





Crustacea, BBS)

VCDWPSKAGCT






AP00437
1DUM, Magainin 2
GIGKYLHSAKKFGKAWVGEIMNS
572



analog (synthetic)







AP00451
1E4S, Human beta
DHYNCVSSGGQCLYSACPIFTKIQGTC
573



defensin 1 (HBD-1,
YRGKAKCCK




human defensin)







AP00149
1EWS, Rabbit kidney
MPCSCKKYCDPWEVIDGSCGLFNSKY
574



defensin 1 (RK-1)
ICCREK






AP00141
1F0E, CecropinA-
KWKLFKKIPKFLHSAKKF
575



Magainin2 Hybrid (P18,





synthetic)







AP00142
1F0G, CecropinA-
KLKLFKKIGIGKFLHSAKKF
576



Magainin2 Hybrid





(synthetic)







AP00143
1F0H, CecropinA-
KAKLFKKIGIGKFLHSAKKF
577



Magainin2 Hybrid





(synthetic)







AP00524
1FD4, Human beta
GIGDPVTCLKSGAICHPVFCPRRYKQI
578



defensin 2 (HBD-2,
GTCGLPGTKCCKKP




human defensin, ZZHh)







AP00438
1FJN, Mussel Defensin
GFGCPNNYQCHRHCKSIPGRCGGYCG
579



MGD-1
GWHRLPCTCYRCG






AP00155
1FRY, SMAP-29
RGLRRLGRKIAHGVKKYGPTVLRIIRI
580



(SMAP29, sheep
AG




cathelicidin)







AP00150
1G89, Indolicidin (cow
ILPWKWPWWPWRR
581



cathelicidin, BBN,





ZZHa)







AP00156
1GR4, Microcin J25,
VGIGTPISFYGGGAGHVPEYF
582



linear (MccJ25,





bacteriocin, bacteria)







AP00151
1HR1, Indolicidin P to
ILAWKWAWWAWRR
583



A mutant (synthetic)







AP00196
1HU5, Ovispirin-1
KNLRRIIRKIIHIIKKYG
584



(synthetic)







AP00197
1HU6, Novispirin G10
KNLRRIIRKGIHIIKKYG
585



(synthetic)







AP00198
1HU7, Novispirin T7
KNLRRITRKIIHIIKKYG
586



(synthetic)







AP00445
1HVZ, Monkey RTD-1
GFCRCLCRRGVCRCICTR
587



(rhesus theta-defensin-1,





minidefensin-1, animal





defensin, XXC, BBS,





lectin, ZZHa)







AP00103
1i2v, Heliomicin variant
DKLIGSCVWGAVNYTSDCNGECLLRG
588



(Hel-LL, synthetic)
YKGGHCGSFANVNCWCET






AP00216
1ICA, Phormia defensin
ATCDLLSGTGINHSACAAHCLLRGNR
589



A (insect defensin A)
GGYCNGKGVCVCRN






AP01224
1Jo3, Gramicidin B
VGALAVVVWLFLWLW
590



(bacteria)







AP01225
1jo4, Gramicidin C
VGALAVVVWLYLWLW
591



(bacteria)







AP00191
1KFP, Gomesin (Gm,
ECRRLCYKQRCVTYCRGR
592



Spider, XXA)







AP00283
1KJ6, Huamn beta
GIINTLQKYYCRVRGGRCAVLSCLPKE
593



defensin 3 (HBD-3,
EQIGKCSTRGRKCCRRKK




human defensin, ZZHh)







AP00147
1KV4, Moricin (insect,
AKIPIKAIKTVGKAVGKGLRAINIASTA
594



silk moth)
NDVFNFLKPKKRKA






AP00227
1L4V, Sapecin (insect,
ATCDLLSGTGINHSACAAHCLLRGNR
595



flesh fly)
GGYCNGKAVCVCRN






AP01161
1L9L, Human
GRDYRTCLTIVQKLKKMVDKPTQRSV
596



granulysin (huGran)
SNAATRVCTRGRSRWRDVCRNFMRR





YQSRVIQGLVAGETAQQICEDLRLCIP





STGPL






AP00026
1LFC, Lactoferricin B
FKCRRWQWRMKKLGAPSITCVRRAF
597



(LfcinB, cow, ZZHa)







AP00193
1M4F, human LEAP-1
DTHFPICIFCCGCCHRSKCGMCCKT
598



(Hepcidin 25)







AP00499
1MAG, Gramicidin A
VGALAVVVWLWLWLW
599



(gA, bacteria)







AP00403
1MM0, Termicin
ACNFQSCWATCQAQHSIYFRRAFCDR
600



(termite defensin, insect
SQCKCVFVRG




defensin)







AP00194
1MMC, Ac-AMP2
VGECVRGRCPSGMCCSQFGYCGKGP
601



(plant defensin, BBS)
KYCGR






AP01206
1MQZ, Mersacidin
CTFTLPGGGGVCTLTSECIC
602



(bacteria)







AP00429
1NKL, Porcine NK-
GYFCESCRKIIQKLEDMVGPQPNEDTV
603



Lysin (pig)
TQAASQVCDKLKILRGLCKKIMRSFL





RRISWDILTGKKPQAICVDIKICKE






AP00633
log7, Sakacin P/
KYYGNGVHCGKHSCTVDWGTAIGNI
604



Sakacin 674 (SakP,
GNNAAANWATGGNAGWNK




class IIA bacteriocin,





bacteria)







AP00195
1PG1, Protegrin 1
RGGRLCYCRRRFCVCVGR
605



(Protegrin-1, PG-1, pig





cathelicidin, XXA,





ZZHa, BBBm)







AP00928
1PXQ, Subtilosin A
NKGCATCSIGAACLVDGPIPDFEIAGA
606



(XXC, class I
TGLFGLWG




bacteriocin, Gram-





positive bacteria)







AP00480
1Q71, Microcin J25
VGIGTPIFSYGGGAGHVPEYF
607



(cyclic MccJ25, class I





microcins, bacteriocins,





Gram-negative bacteria,





XXC; BBP)







AP00211
1RKK, Polyphemusin I
RRWCFRVCYRGFCYRKCR
608



(crabs, Crustacea)







AP00430
1T51, IsCT (Scorpion)
ILGKIWEGIKSLF
609





AP00731
1ut3, Spheniscin-2
SFGLCRLRRGFCARGRCRFPSIPIGRCS
610



(Sphe-2, penguin
RFVQCCRRVW




defensin, avian





defensin)







AP00013
1VM5, Aurein 1.2
GLFDIIKKIAESF
611



(frog)







AP00214
1WO1, Tachyplesin I
KWCFRVCYRGICYRRCR
612



(crabs, Crustacea, XXA,





ZZHa)







AP00644
1xc0, Pardaxin 4
GFFALIPKIISSPLFKTLLSAVGSALSSS
613



(Pardaxin P-4, Pardaxin
GGQE




P4, Pa4, flat fish)







AP00493
1XKM, Distinctin (two
NLVSGLIEARKYLEQLHRKLKNCKV
614



chains for stability and





transport? frog)







AP00420
1XV3, Penaeidin-4d
HSSGYTRPLRKPSRPIFIRPIGCDVCYGI
615



(penaeidin 4, shrimp,
PSSTARLCCFRYGDCCHL





Crustacea)








AP00035
1YTR, Plantaricin A
KSSAYSLQMGATAIKQVKKLFKKWGW
616



(PlnA, bacteriocin,





bacteria)







AP00166
1Z64, Pleurocidin (fish)
GWGSFFKKAAHVGKHVGKAALTHYL
617





AP00780
1Z6V, Human
GRRRRSVQWCAVSQPEATKCFQWQR
618



lactoferricin
NMRKVRGPPVSCIKRDSPIQCIQA






AP00549
1ZFU, Plectasin (fungi,
GFGCNGPWDEDDMQCHNHCKSIKGY
619



fungal defensin)
KGGYCAKGGFVCKCY






AP00177
1ZMH, human alpha
CYCRIPACIAGERRYGTCIYQGRLWAF
620



Defensin HNP-2
CC




(human neutrophil





peptide-2, HNP2,





human defensin, ZZHh)







AP00179
1ZMM, human alpha
VCSCRLVFCRRTELRVGNCLIGGVSFT
621



Defensin HNP-4
YCCTRVD




(human neutrophil





peptide-4, HNP4,





human defensin)







AP00180
1ZMP, human alpha
QARATCYCRTGRCATRESLSGVCEISG
622



Defensin HD-5 (HD5,
RLYRLCCR




human defensin)







AP00181
1ZMQ, human alpha
STRAFTCHCRRSCYSTEYSYGTCTVM
623



Defensin HD-6 (HD6,
GINHRFCCL




human defensin)







AP00399
1ZRW, Spinigerin
HVDKKVADKVLLLKQLRIMRLLTRL
624



(insect, termite)







AP01157
1ZRX, Stomoxyn
RGFRKHFNKLVKKVKHTISETAHVAK
625



(insect)
DTAVIAGSGAAVVAAT






AP00637
2A2B, Curvacin A/
ARSYGNGVYCNNKKCWVNRGEATQS
626



sakacin A (CurA, SakA,
IIGGMISGWASGLAGM




class IIA bacteriocin,





bacteria)







AP00558
2B68, Cg-Def
GFGCPGNQLKCNNHCKSISCRAGYCD
627



(Crassostrea gigas
AATLWLRCTCTDCNGKK




defensin, oyster





defensin, animal





defensin)







AP01154
2B9K, LCI (bacteria)
AIKLVQSPNGNFAASFVLDGTKWIFKS
628




KYYDSSKGYWVGIYEVWDRK






AP01005
2DCV, Tachystatin B1
YVSCLFRGARCRVYSGRSCCFGYYCR
629



(BBS, horseshoe crabs)
RDFPGSIFGTCSRRNF






AP01006
2DCW, Tachystatin B1
YITCLFRGARCRVYSGRSCCFGYYCR
630



(BBS, horseshoe crabs)
RDFPGSIFGTCSRRNF






AP00275
2ERI, Circulin B (CirB,
CGESCVFIPCISTLLGCSCKNKVCYRN
631



plant cyclotides, XXC,
GVIP




ZZHp)







AP00707
2f3a, LLAA (LL-37-
RLFDKIRQVIRKF
632



derived aurein 1.2





analog, retro-FK13,





synthetic)







AP00708
2fbs, FK-13 (FK13,
FKRIVQRIKDFLR
633



NMR-discovered LL-37





core peptide, XXA,





ZZHs, synthetic)







AP00088
2G9L, Gaegurin-4
GILDTLKQFAKGVGKDLVKGAAQGV
634



(Gaegurin 4, frog)
LSTVSCKLAKTC






AP01011
2G9P, Latarcin 2a
GLFGKLIKKFGRKAISYAVKKARGKH
635



(Ltc2a, BBM, spider)







AP00612
2GDL, Fowlicidin-2
LVQRGRFGRFLRKIRRFRPKVTITIQGS
636



(chCATH-2, bird
ARFG




cathelicidin, chicken





cathelicidin, BBL)







AP00402
2GL1, VrD2 (Vigna
KTCENLANTYRGPCFTTGSCDDHCKN
637



radiata defensin 2, plant
KEHLRSGRCRDDFRCWCTRNC




defensin, mung bean)







AP00285
2GW9, Cryptdin-4
GLLCYCRKGHCKRGERVRGTCGIRFL
638



(Crp4, animal defensin,
YCCPRR




alpha, mouse)







AP00613
2hfr, Fowlicidin-3
RVKRFWPLVPVAINTVAAGINLYKAI
639



(chCATH-3, bird
RRK




cathelicidin, chicken





cathelicidin)







AP01007
2JMY, CM15
KWKLFKKIGAVLKVL
640



(Synthetic)







AP00728
2jni, Arenicin-2 (marine
RWCVYAYVRIRGVLVRYRRCW
641



polychaeta, BBBm)







AP00473
2jos, Piscidin 1 (fish)
FFHHIFRGIVHVGKTIHRLVTG
642





AP01151
2JPJ, Lactococcin G-a
GTWDDIGQGIGRVAYWVGKALGNLS
643



(chain a, class IIb
DVNQASRINRKKKH




bacteriocin, bacteria.





For chain b, see info)







AP00757
2jpy, Phylloseptin-H2
FLSLIPHAINAVSTLVHHF
644



(PLS-H2, Phylloseptin-





2, PS-2) (XXA, frog)







AP00546
2jq0, Phylloseptin-1
FLSLIPHAINAVSAIAKHN
645



(Phylloseptin-H1, PLS-





H1, PS-1, XXA, frog)







AP00758
2jq1, Phylloseptin-3
FLSLIPHAINAVSALANHG
646



(Phylloseptin-H3, PLS-





H3, PS-3) (XXA, frog)







AP00727
2jsb, Arenicin-1 (marine
RWCVYAYVRVRGVLVRYRRCW
647



polychaeta, BBBm)







AP00592
2k10, Ranatuerin-2CSa
GILSSFKGVAKGVAKDLAGKLLETLK
648



(frog)
CKITGC






AP00485
2K38, Cupiennin 1a
GFGALFKFLAKKVAKTVAKQAAKQG
649



(spider)
AKYVVNKQME






AP00310
2K6O, Human LL-37
LLGDFFRKSKEKIGKEFKRIVQRIKDFL
650



(LL37, human
RNLVPRTES




cathelicidin; released by





proteinase 3 from its





precursor in neutrophils;





FALL-39; BBB, BBM,





BBP, BBW, BBD, BBL,





ZZHh)







AP00199
2LEU, Leucocin A
KYYGNGVHCTKSGCSVNWGEAFSAG
651



(LeuA, class IIa
VHRLANGGNGFW




bacteriocin, bacteria)







AP00144
2MAG, Magainin 2
GIGKFLHSAKKFGKAFVGEIMNS
652



(frog)







AP00146
2MLT, Melittin (insect,
GIGAVLKVLTTGLPALISWIKRKRQQ
653



ZZHa)







AP01010
2PCO, Latarcin 1 (Ltc1,
SMWSGMWRRKLKKLRNALKKKLKG
654



BBM, spider)
EK






AP00176
2PM1, human alpha
ACYCRIPACIAGERRYGTCIYQGRLW
655



Defensin HNP-1
AFCC




(human neutrophil





peptide-1, HNP1,





human defensin, ZZHh)







AP01158
2RLG, RP-1 (synthetic)
ALYKKFKKKLLKSLKRL
656





AP00102
8TFV, Thanatin (insect)
GSKKPVPIIYCNRRTGKCQRM
657





AP00995
A58718, Carnocin UI49
GSEIQPR
658



(bacteria)







AP01002
AAC18827, Mutacin III
KSWSLCTPGCARTGSFNSYCC
659



(mutacin 1140, bacteria)







AP00987
ABI74601, Arasin 1
SRWPSPGRPRPFPGRPKPIFRPRPCNCY
660



(Crustacea)
APPCPCDRW






AP01000
CAA63706, variacin
GSGVIPTISHECHMNSFQFVFTCCS
661



(lantibiotic, class I





bacteriocin, bacteria)







AP00361
O15946, Lebocin 4
DLRFWNPREKLPLPTLPPFNPKPIYID
662



(insect, silk moth)
MGNRY






AP00343
O16825, Andropin
VFIDILDKMENAIHKAAQAGIGIAKPIE
663



(insect, fruit fly)
KMILPK






AP00417
O17513, Ceratotoxin D
SIGTAVKKAVPIAKKVGKVAIPIAKAV
664



(insect, fly)
LSVVGQLVG






AP00435
O18494, Styelin C (sea
GWFGKAFRSVSNFYKKHKTYIHAGLS
665



squirt, tunicate, XXA)
AATLL






AP00330
O18495, Styelin D (Sea
GWLRKAAKSVGKFYYKHKYYIKAA
666



squirt, tunicate, XXA)
WQIGKHAL






AP00331
O18495, Styelin E (Sea
GWLRKAAKSVGKFYYKHKYYIKAA
667



squirt, tunicate, XXA)
WKIGRHAL






AP01001
O54329, Mutacin II
NRWWQGVVPTVSYECRMNSWQHVF
668



(lantibiotic, mutacin H-
TCC




29B, J-T8, class I





bacteriocin, bacteria)







AP00342
O81338, Antimicrobial
AKCIKNGKGCREDQGPPFCCSGFCYR
669



peptide 1 (plant)
QVGWARGYCKNR






AP00373
O96059, Moricin 2
AKIPIKAIKTVGKAVGKGLRAINIASTA
670



(insect)
NDVFNFLKPKKRKH






AP00449
P01190, Melanotropin
SYSMEHFRWGKPV
671



alpha (Alpha-MSH)







AP00187
P01376,
VVCACRRALCLPRERRAGFCRIRGRIH
672



CORTICOSTATIN III
PLCCRR




(MCP-1, rabbit





neutrophil peptide 1,





NP-1) (animal defensin,





alpha-defensin, rabbit)







AP00188
P01377,
VVCACRRALCLPLERRAGFCRIRGRIH
673



CORTICOSTATIN IV
PLCCRR




(MCP-2, rabbit





neutrophil defensin 2,





NP-2, animal defensin,





rabbit)







AP00049
P01505, Bombinin
GIGALSAKGALKGLAKGLAEHFAN
674



(toad)







AP00139
P01507, Cecropin A
KWKLFKKIEKVGQNIRDGIIKAGPAVA
675



(insect, ZZHa)
VVGQATQIAK






AP00128
P01509, Cecropin B
KWKIFKKIEKVGRNIRNGIIKAGPAVA
676



(insect, silk moth)
VLGEAKAL






AP00131
P01511, Cecropin D
WNPFKELERAGQRVRDAIISAGPAVA
677



(insect, moth)
TVAQATALAK






AP00136
P01518, Crabrolin
FLPLILRKIVTAL
678



(insect, XXA)







AP00183
P04142, Cecropin B
RWKIFKKIEKMGRNIRDGIVKAGPAIE
679



(insect)
VLGSAKAI






AP00448
P04205, Mastoparan M
INLKAIAALAKKLL
680



(MP-M, insect, XXA)







AP00234
P06833,
SDEKASPDKHHRFSLSRYAKLANRLA
681



Seminalplasmin (SPLN,
NPKLLETFLSKWIGDRGNRSV




calcium transporter





inhibitor, caltrin, cow)







AP00314
P07466, Rabbit
VFCTCRGFLCGSGERASGSCTINGVRH
682



neutrophil peptide 5
TLCCRR




(NP-5, animal defensin,





alpha-defensin)







AP00189
P07467, Rabbit
VSCTCRRFSCGFGERASGSCTVNGVR
683



neutrophil peptide 4
HTLCCRR




(NP-4)







AP00186
P07468,
GRCVCRKQLLCSYRERRIGDCKIRGV
684



CORTICOSTATIN II
RFPFCCPR




(Rabbit neutrophil





peptide 3b (NP-3b,





rabbit)







AP00185
P07469,
ICACRRRFCPNSERFSGYCRVNGARY
685



CORTICOSTATIN I
VRCCSRR




(rabbit)







AP00217
P07469, Rabbit
GICACRRRFCPNSERFSGYCRVNGAR
686



neutrophil defensin 3a
YVRCCSRR




(NP-3a, animal





defensin, alpha-





defensin)







AP00067
P07493, Bombolitin II
SKITDILAKLGKVLAHV
687



(insect, bee)







AP00068
P07494, Bombolitin III
IKIMDILAKLGKVLAHV
688



(insect, bee)







AP00069
P07495, Bombolitin IV
INIKDILAKLVKVLGHV
689



(insect, bee)







AP00070
P07496, Bombolitin V
INVLGILGLLGKALSHL
690



(insect, bee)







AP00236
P07504, Pyrularia
KSCCRNTWARNCYNVCRLPGTISREIC
691



thionin (Pp-TH, plant)
AKKCDCKIISGTTCPSDYPK






AP00230
P08375, Sarcotoxin IA
GWLKKIGKKIERVGQHTRDATIQGLGI
692



(insect, flesh
AQQAANVAATAR






AP00231
P08376, Sarcotoxin IB
GWLKKIGKKIERVGQHTRDATIQVIG
693



(insect, flesh
VAQQAANVAATAR






AP00232
P08377, Sarcotoxin IC
GWLRKIGKKIERVGQHTRDATIQVLGI
694



(insect, flesh
AQQAANVAATAR






AP00066
P10521, Bombolitin I
IKITTMLAKLGKVLAHV
695



(insect, bee)







AP00206
P10946, Lantibiotic
WKSESLCTPGCVTGALQTCFLQTLTC
696



subtilin (class I
NCKISK




bacteriocin, bacteria)







AP00312
P11477, Cryptdin-2
LRDLVCYCRARGCKGRERMNGTCRK
697



(Crp2, animal defensin,
GHLLYMLCCR




alpha, mouse)







AP00205
P13068, Nisin A
ITSISLCTPGCKTGALMGCNMKTATC
698



(lantibiotic, class I
HCSIHVSK




bacteriocin, bacteria)







AP00215
P14214, Tachyplesin II
RWCFRVCYRGICYRKCR
699



(crabs, Crustacea)







AP00212
P14216, Polyphemusin
RRWCFRVCYKGFCYRKCR
700



II (crabs, Crustacea,





XXA, ZZHa.





Derivatives: T22)







AP00134
P14661, Cecropin P1
SWLSKTAKKLENSAKKRISEGIAIAIQ
701



(pig)
GGPR






AP00011
P14662, Bactericidin B2
WNPFKELERAGQRVRDAVISAAPAVA
702



(insect)
TVGQAAAIARG






AP00032
P14663, Bactericidin B-
WNPFKELERAGQRVRDAIISAGPAVA
703



3 (insect)
TVGQAAAIARG






AP00033
P14664, Bactericidin B-
WNPFKELERAGQRVRDAIISAAPAVA
704



4 (insect)
TVGQAAAIARG






AP00034
P14665, Bactericidin B-
WNPFKELERAGQRVRDAVISAAAVAT
705



5P (insect)
VGQAAAIARG






AP00125
P14666, Cecropin
RWKIFKKIEKVGQNIRDGIVKAGPAV
706



(insect, silk moth)
AVVGQAATI






AP00002
P15450, ABAECIN
YVPLPNVPQPGRRPFPTFPGQGPFNPKI
707



(insect, honeybee)
KWPQGY






AP00505
P15516, human Histatin
DSHAKRHHGYKRKFHEKHHSHRGY
708



5 (ZZHs; derivatives





Dh-5)







AP00520
P15516, human Histatin 3
DSHAKRHHGYKRKFHEKHHSHRGYR
709




SNYLYDN






AP00523
P15516, human Histatin 8
KFHEKHHSHRGY
710





AP00226
P17722, Royalisin
VTCDLLSFKGQVNDSACAANCLSLGK
711



(insect, honeybee)
AGGHCEKVGCICRKTSFKDLWDKRF






AP00213
P18252, Tachyplesin III
KWCFRVCYRGICYRKCR
712



(horseshoe crabs,






Crustacea)








AP00233
P18312, Sarcotoxin ID
GWIRDFGKRIERVGQHTRDATIQTIAV
713



(insect, flesh
AQQAANVAATLKG






AP00207
P19578, Lantibiotic
TAGPAIRASVKQCQKTLKATRLFTVS
714



PEP5 (class I
CKGKNGCK




bacteriocin, bacteria)







AP00009
P19660, BACTENECIN
RFRPPIRRPPIRPPFYPPFRPPIRPPIFPPI
715



5 (bac5, cow
RPPFRPPLGPFP




cathelicidin)







AP00010
P19661, BACTENECIN
RRIRPRPPRLPRPRPRPLPFPRPGPRPIP
716



7 (bac7, cow
RPLPFPRPGPRPIPRPLPFPRPGPRPIPRPL




cathelicidin)







AP00200
P21564, Mastoparan B
LKLKSIVSWAKKVL
717



(MP-B, insect, XXA)







AP00005
P21663, Andropin
VFIDILDKVENAIHNAAQVGIGFAKPF
718



(insect, fly)
EKLINPK






AP00008
P22226, Cyclic
RLCRIVVIRVCR
719



dodecapeptide (cow





cathelicidin)







AP01205
P23826, Lactocin S
STPVLASVAVSMELLPTASVLYSDVA
720



(XXD3, bacteria)
GCFKYSAKHHC






AP00239
P24335, XPF (the
GWASKIGQTLGKIAKVGLKELIQPK
721



xenopsin precursor





fragment, African





clawed frog)







AP00235
P25068, Bovine tracheal
NPVSCVRNKGICVPIRCPGSMKQIGTC
722



antimicrobial peptide
VGRAVKCCRKK




(TAP, cow)







AP00418
P25230, CAP18 (rabbit
GLRKRLRKFRNKIKEKLKKIGQKIQGF
723



cathelicidin, BBL)
VPKLAPRTDY






AP00203
P25403, Mj-AMP1
QCIGNGGRCNENVGPPYCCSGFCLRQ
724



(MjAMP1, plant
PGQGYGYCKNR




defensin)







AP00202
P25404, Mj-AMP2
CIGNGGRCNENVGPPYCCSGFCLRQP
725



(MjAMP2, plant
NQGYGVCRNR




defensin)







AP00138
P28310, Cryptdin-3
LRDLVCYCRKRGCKRRERMNGTCRK
726



(Crp3, animal defensin,
GHLMYTLCCR




alpha, mouse)







AP00184
P28794, MBP-1 (plant)
RSGRGECRRQCLRRHEGQPWETQEC
727




MRRCRRRG






AP00050
P29002, Bombinin-like
GIGASILSAGKSALKGLAKGLAEHFAN
728



peptide 1 (BLP-1, toad)







AP00051
P29003, Bombinin-like
GIGSAILSAGKSALKGLAKGLAEHFAN
729



peptide 2 (BLP-2, toad)







AP00052
P29004, Bombinin-like
GIGAAILSAGKSALKGLAKGLAEHF
730



peptide 3 (BLP-3, XXA,





toad)







AP00053
P29005, Bombinin-like
GIGAAILSAGKSIIKGLANGLAEHF
731



peptide 4 (BLP-4, toad)







AP00634
P29430, Pediocin PA-1/
KYYGNGVTCGKHSCSVDWGKATTCII
732



AcH (PedPA1, class IIA
NNGAMAWATGGHQGNHKC




bacteriocin, bacteria)







AP00204
P29559, Nisin Z
ITSISLCTPGCKTGALMGCNMKTATC
733



(lantibiotic, class I
NCSIHVSK




bacteriocin, bacteria)







AP00130
P29561, Cecropin C
GWLKKLGKRIERIGQHTRDATIQGLGI
734



(insect, fly)
AQQAANVAATAR






AP00001
P31107,
GLWSKIKEVGKEAAKAAAKAAGKAA
735



ADENOREGULIN
LGAVSEAV




(Dermaseptin B2,





Dermaseptin-B2, DRS-





B2, DRS B2, frog)







AP00228
P31529, Sapecin B
LTCEIDRSLCLLHCRLKGYLRAYCSQQ
736



(insect, flesh fly)
KVCRCVQ






AP00229
P31530, Sapecin C
ATCDLLSGIGVQHSACALHCVFRGNR
737



(insect, flesh fly)
GGYCTGKGICVCRN






AP00218
P32195, Protegrin 2
RGGRLCYCRRRFCICV
738



(PG-2, pig cathelicidin)







AP00219
P32196, Protegrin 3
RGGGLCYCRRRFCVCVGR
739



(PG-3, pig cathelicidin)







AP00073
P32412, Brevinin-1E
FLPLLAGLAANFLPKIFCKITRKC
740



(frog)







AP00080
P32414, Esculentin-1
GIFSKLGRKKIKNLLISGLKNVGKEVG
741



(frog)
MDVVRTGIDIAGCKIKGEC






AP00074
P32423, Brevinin-1
FLPVLAGIAAKVVPALFCKITKKC
742



(frog)







AP00075
P32424, Brevinin-2
GLLDSLKGFAATAGKGVLQSLLSTAS
743



(frog)
CKLAKTC






AP00175
P34084, Macaque
DSHEERHHGRHGHHKYGRKFHEKHH
744



histatin (M-Histatin 1,
SHRGYRSNYLYDN




primate, monkey)







AP00006
P35581, Apidaecin IA
GNNRPVYIPQPRPPHPRI
745



(insect, honeybee)







AP00007
P35581, Apidaecin IB
GNNRPVYIPQPRPPHPRL
746



(insect, honeybee)







AP00414
P36190, Ceratotoxin A
SIGSALKKALPVAKKIGKIALPIAKAA
747



(insect, fly)
LP






AP00415
P36191, Ceratotoxin B
SIGSAFKKALPVAKKIGKAALPIAKAA
748



(insect, fly)
LP






AP00172
P36193, Drosocin
GKPRPYSPRPTSHPRPIRV
749



(insect)







AP00170
P37362, Pyrrhocoricin
VDKGSYLPRPTPPRPIYNRN
750



(insect)







AP00635
P38577, Mesentericin
KYYGNGVHCTKSGCSVNWGEAASAG
751



Y105 (MesY105, class
IHRLANGGNGFW




IIA bacteriocin,





bacteria)







AP00636
P38579,
AISYGNGVYCNKEKCWVNKAENKQA
752



Carnobacteriocin BM1
ITGIVIGGWASSLAGMGH




(CnbBM1, PiscV1b,





class IIA bacteriocin,





bacteria)







AP00209
P39080, Peptide PGQ
GVLSNVIGYLKKLGTGALNAVLKQ
753



(frog)







AP00513
P39084, Ranalexin
FLGGLIKIVPAMICAVTKKC
754



(frog)







AP00071
P40835, Brevinin-1EA
FLPAIFRMAAKVVPTIICSITKKC
755



(frog)







AP00072
P40836, Brevinin-1EB
VIPFVASVAAEMQHVYCAASRKC
756



(frog)







AP00076
P40837, Brevinin-2EA
GILDTLKNLAISAAKGAAQGLVNKAS
757



(frog)
CKLSGQC






AP00077
P40838, Brevinin-2EB
GILDTLKNLAKTAGKGALQGLVKMA
758



(frog)
SCKLSGQC






AP00078
P40839, Brevinin-2EC
GILLDKLKNFAKTAGKGVLQSLLNTA
759



(frog)
SCKLSGQC






AP00079
P40840, Brevinin-2ED
GILDSLKNLAKNAGQILLNKASCKLSG
760



(frog)
QC






AP00081
P40843, Esculentin-1A
GIFSKLAGKKIKNLLISGLKNVGKEVG
761



(frog)
MDVVRTGIDIAGCKIKGEC






AP00082
P40844, Esculentin-1B
GIFSKLAGKKLKNLLISGLKNVGKEVG
762



(frog)
MDVVRTGIDIAGCKIKGEC






AP00083
P40845, Esculentin-2A
GILSLVKGVAKLAGKGLAKEGGKFGL
763



(frog)
ELIACKIAKQC






AP00084
P40846, Esculentin-2B
GIFSLVKGAAKLAGKGLAKEGGKFGL
764



(ES2B_RANES, frog)
ELIACKIAKQC






AP00299
P46156, Chicken
GRKSDCFRKSGFCAFLKCPSLTLISGK
765



gallinacin 1 (Gal 1,
CSRFYLCCKRIW




avian beta-defensin,





bird)







AP00300
P46157, Gallinacin 1
GRKSDCFRKNGFCAFLKCPYLTLISGK
766



alpha (avian beta-
CSRFHLCCKRIW




defensin, Bird),







AP00298
P46158, Chicken
LFCKGGSCHFGGCPSHLIKVGSCFGFR
767



gallinacin 2 (Gal 2,
SCCKWPWNA




avian beta-defensin,





bird)







AP00037
P46160, Beta-defensin 2
VRNHVTCRINRGFCVPIRCPGRTRQIG
768



(cow)
TCFGPRIKCCRSW






AP00038
P46161, Beta-defensin 3
QGVRNHVTCRINRGFCVPIRCPGRTRQ
769



(cow)
IGTCFGPRIKCCRSW






AP00039
P46162, Beta-defensin 4
QRVRNPQSCRWNMGVCIPFLCRVGM
770



(cow)
RQIGTCFGPRVPCCRR






AP00040
P46163, Beta-defensin 5
QVVRNPQSCRWNMGVCIPISCPGNMR
771



(cow)
QIGTCFGPRVPCCRRW






AP00041
P46164, Beta-defensin 6
QGVRNHVTCRIYGGFCVPIRCPGRTR
772



(cow)
QIGTCFGRPVKCCRRW






AP00042
P46165, Beta-defensin 7
QGVRNFVTCRINRGFCVPIRCPGHRRQ
773



(cow)
IGTCLGPRIKCCR






AP00043
P46166, Beta-defensin 8
VRNFVTCRINRGFCVPIRCPGHRRQIG
774



(cow)
TCLGPQIKCCR






AP00044
P46167, Beta-defensin 9
QGVRNFVTCRINRGFCVPIRCPGHRRQ
775



(cow)
IGTCLAPQIKCCR






AP00045
P46168, Beta-defensin
QGVRSYLSCWGNRGICLLNRCPGRMR
776



10 (cow)
QIGTCLAPRVKCCR






AP00046
P46169, Beta-defensin
GPLSCRRNGGVCIPIRCPGPMRQIGTC
777



11 (cow)
FGRPVKCCRSW






AP00048
P46171, Bovine beta-
SGISGPLSCGRNGGVCIPIRCPVPMRQI
778



defensin 13 (cow)
GTCFGRPVKCCRSW






AP00350
P48821, Enbocin
PWNIFKEIERAVARTRDAVISAGPAVR
779



(insect, moth)
TVAAATSVAS






AP00173
P49112, GNCP-2
RCICTTRTCRFPYRRLGTCLFQNRVYT
780



(Guinea pig neutrophil
FCC




cationic peptide 2)







AP00369
P49930, PMAP-23
RIIDLLWRVRRPQKPKFVTVWVR
781



(PMAP23, pig





cathelicidin)







AP00370
P49931, PMAP-36
VGRFRRLRKKTRKRLKKIGKVLKWIP
782



(PMAP36, pig
PIVGSIPLGCG




cathelicidin)







AP00371
P49932, PMAP-37
GLLSRLRDFLSDRGRRLGEKIERIGQKI
783



(PMAP37, pig
KDLSEFFQS




cathelicidin)







AP00220
P49933, Protegrin 4
RGGRLCYCRGWICFCVGR
784



(PG-4, pig cathelicidin)







AP00221
P49934, Protegrin 5
RGGRLCYCRPRFCVCVGR
785



(PG-5, pig cathelicidin)







AP00346
P50720, Hyphancin IIID
RWKIFKKIERVGQNVRDGIIKAGPAIQ
786



(Fall webworm, insect)
VLGTAKAL






AP00347
P50721, Hyphancin IIIE
RWKFFKKIERVGQNVRDGLIKAGPAI
787



(Fall webworm, insect)
QVLGAAKAL






AP00348
P50722, Hyphancin IIIF
RWKVFKKIEKVGRNIRDGVIKAGPAI
788



(Fall webworm, insect)
AVVGQAKAL






AP00349
P50723, Hyphancin IIIG
RWKVFKKIEKVGRHIRDGVIKAGPAIT
789



(Fall webworm, insect)
VVGQATAL






AP00281
P51473, mCRAMP
GLLRKGGEKIGEKLKKIGQKIKNFFQK
790



(mouse cathelicidin;
LVPQPEQ




derivatives: CRAMP





18)







AP00366
P54228, BMAP-27
GRFKRFRKKFKKLFKKLSPVIPLLHLG
791



(BMAP27, cow





cathelicidin, ZZHs,





derivatives BMAP-18





and BMAP-15)







AP00367
P54229, BMAP-28
GGLRSLGRKILRAWKKYGPIIVPIIRIG
792



(BMAP28, cow





cathelicidin)







AP00450
P54230, Cyclic
RICRIIFLRVCR
793



dodecapeptide (sheep





cathelicidin)







AP00359
P54684, Lebocin 1/2
DLRFLYPRGKLPVPTPPPFNPKPIYIDM
794



(insect, silk moth)
GNRY






AP00360
P55796, Lebocin 3
DLRFLYPRGKLPVPTLPPFNPKPIYIDM
795



(insect, silk moth)
GNRY






AP00307
P55897, Buforin I (toad)
AGRGKQGGKVRAKAKTRSSRAGLQF
796




PVGRVHRLLRKGNY






AP00308
P55897, Buforin II
TRSSRAGLQFPVGRVHRLLRK
797



(toad)







AP00240
P56226, Caerin 1.1
GLLSVLGSVAKHVLPHVVPVIAEHL
798



(frog, ZZHa)







AP00241
P56227, Caerin 1.2
GLLGVLGSVAKHVLPHVVPVIAEHL
799



(frog)







AP00242
P56228, Caerin 1.3
GLLSVLGSVAQHVLPHVVPVIAEHL
800



(frog)







AP00243
P56229, Caerin 1.4
GLLSSLSSVAKHVLPHVVPVIAEHL
801



(frog)







AP00244
P56230, Caerin 1.5
GLLSVLGSVVKHVIPHVVPVIAEHL
802



(frog)







AP00245
P56231, Caerin 1.6
GLFSVLGAVAKHVLPHVVPVIAEK
803



(frog)







AP00246
P56232, Caerin 1.7
GLFKVLGSVAKHLLPHVAPVIAEK
804



(frog)







AP00249
P56233, Caerin 2.1
GLVSSIGRALGGLLADVVKSKGQPA
805



(frog)







AP00250
P56234, Caerin 2.2
GLVSSIGRALGGLLADVVKSKEQPA
806



(frog)







AP00251
P56236, Caerin 2.4
GLVSSIGKALGGLLADVVKTKEQPA
807



(frog)







AP00252
P56236, Caerin 2.5
GLVSSIGRALGGLLADVVKSKEQPA
808



(frog)







AP00253
P56238, Caerin 3.1
GLWQKIKDKASELVSGIVEGVK
809



(frog)







AP00254
P56238, Caerin 3.2
GLWEKIKEKASELVSGIVEGVK
810



(frog)







AP00255
P56240, Caerin 3.3
GLWEKIKEKANELVSGIVEGVK
811



(frog)







AP00256
P56241, Caerin 3.4
GLWEKIREKANELVSGIVEGVK
812



(frog)







AP00257
P56242, Caerin 4.1
GLWQKIKSAAGDLASGIVEGIKS
813



(frog)







AP00258
P56243, Caerin 4.2
GLWQKIKSAAGDLASGIVEAIKS
814



(frog)







AP00259
P56244, Caerin 4.3
GLWQKIKNAAGDLASGIVEGIKS
815



(frog)







AP00434
P56249, Frenatin 3
GLMSVLGHAVGNVLGGLFKS
816



(frog)







AP00272
P56386, Murine beta-
DQYKCLQHGGFCLRSSCPSNTKLQGT
817



defensin 1 (mBD-1,
CKPDKPNCCKS




mouse)







AP00368
P56425, BMAP-34
GLFRRLRDSIRRGQQKILEKARRIGERI
818



(BMAP34, cow
KDIFRG




cathelicidin)







AP00273
P56685, Buthinin
SIVPIRCRSNRDCRRFCGFRGGRCTYA
819



(Sahara scorpion)
RQCLCGY






AP00282
P56872,
SIPCGESCVFIPCTVTALLGCSCKSKVC
820



Cyclopsychotride A
YKN




(CPT, plant cyclotides,





XXC)







AP00094
P56917, Temporin A
FLPLIGRVLSGIL
821



(XXA, frog)







AP00096
P56918, Temporin C
LLPILGNLLNGLL
822



(XXA, frog)







AP00097
P56920, Temporin E
VLPIIGNLLNSLL
823



(XXA, frog)







AP00098
P56921, Temporin F
FLPLIGKVLSGIL
824



(XXA, frog)







AP00100
P56923, Temporin K
LLPNLLKSLL
825



(XXA, frog)







AP00295
P56928, eNAP-2 (horse)
EVERKHPLGGSRPGRCPTVPPGTFGHC
826




ACLCTGDASEPKGQKCCSN






AP00101
P57104, Temporin L
FVQWFSKFLGRIL
827



(XXA, frog)







AP00095
P79874, Temporin B
LLPIVGNLLKSLL
828



(XXA, frog)







AP00099
P79875, Temporin G
FFPVIGRILNGIL
829



(XXA, frog)







AP00413
P80032, Coleoptericin
SLQGGAPNFPQPSQQNGGWQVSPDLG
830



(insect)
RDDKGNTRGQIEIQNKGKDHDFNAG





WGKVIRGPNKAKPTWHVGGTYRR






AP00396
P80054, PR-39 (PR39,
RRRPRPPYLPRPRPPPFFPPRLPPRIPPG
831



pig cathelicidin)
FPPRFPPRFP






AP00182
P80154, Insect defensin
GFGCPLDQMQCHRHCQTITGRSGGYC
832




SGPLKLTCTCYR






AP00444
P80223, Corticostatin
GICACRRRFCLNFEQFSGYCRVNGAR
833



VI (CS-VI) (animal
YVRCCSRR




defensin, rabbit)







AP00208
P80230, Peptide 3910
RADTQTYQPYNKDWIKEKIYVLLRRQ
834



(pig)
AQQAGK






AP00157
P80277, Dermaseptin-
ALWKTMLKKLGTMALHAGKAALGA
835



S1 (Dermaseptin S1,
AADTISQGTQ




DRS S1, DRS-S1, frog)







AP00158
P80278, Dermaseptin-
ALWFTMLKKLGTMALHAGKAALGA
836



S2 (Dermaseptin S2,
AANTISQGTQ




DRS S2, DRS-S2, frog)







AP00159
P80279, Dermaseptin-
ALWKNMLKGIGKLAGKAALGAVKKL
837



S3 (Dermaseptin S3,
VGAES




DRS S3, DRS-S3, frog)







AP00160
P80280, Dermaseptin-
ALWMTLLKKVLKAAAKALNAVLVG
838



S4 (Dermaseptin S4,
ANA




DRS S4, DRS-S4, frog)







AP00161
P80281, Dermaseptin-
GLWSKIKTAGKSVAKAAAKAAVKAV
839



S5 (Dermaseptin S5,
TNAV




DRS S5, DRS-S5, frog)







AP00293
P80282, Dermaseptin-
AMWKDVLKKIGTVALHAGKAALGA
840



B1 (DRS-B1, DRS B1,
VADTISQ




frog)







AP00264
P80389, Chicken
GRKSDCFRKSGFCAFLKCPSLTLISGK
841



Heterophil Peptide 1
CSRFYLCCKRIR




(CHP1, bird, animal)







AP00265
P80390, Chicken
GRKSDCFRKNGFCAFLKCPYLTLISGL
842



Heterophil Peptide 2
CSFHLC




(CHP2, bird, animal)







AP00266
P80391, Turkey
GKREKCLRRNGFCAFLKCPTLSVISGT
843



Heterophil Peptide 1
CSRFQVCC




(THP1, turkey)







AP00267
P80392, Turkey
LFCKRGTCHFGRCPSHLIKVGSCFGFR
844



Heterophil Peptide 2
SCCKWPWDA




(THP2, bird, anaimal)







AP00269
P80393, Turkey
LSCKRGTCHFGRCPSHLIKGSCSGG
845



Heterophil Peptide 3





(THP3, bird, animal)







AP00085
P80395, Gaegurin-1
SLFSLIKAGAKFLGKNLLKQGACYAA
846



(Gaegurin 1, frog)
CKASKQC






AP00086
P80396, Gaegurin-2
GIMSIVKDVAKNAAKEAAKGALSTLS
847



(Gaegurin 2, frog)
CKLAKTC






AP00087
P80397, Gaegurin-3
GIMSIVKDVAKTAAKEAAKGALSTLS
848



(Gaegurin 3, frog)
CKLAKTC






AP00089
P80399, Gaegurin-5
FLGALFKVASKVLPSVFCAITKKC
849



(Gaegurin 5, frog)







AP00090
P80400, Gaegurin-6
FLPLLAGLAANFLPTIICKISYKC
850



(Gaegurin 6, frog)







AP00362
P80408, Metalnikowin I
VDKPDYRPRPRPPNM
851



(insect)







AP00363
P80409, Metalnikowin
VDKPDYRPRPWPRPN
852



IIA (insect)







AP00364
P80410, Metalnikowin
VDKPDYRPRPWPRNMI
853



IIB (insect)







AP00365
P80411, Metalnikowin
VDKPDYRPRPWPRPNM
854



III (insect)







AP00632
P80569, Piscicolin 126/
KYYGNGVSCNKNGCTVDWSKAIGIIG
855



Piscicocin Via
NNAAANLTTGGAAGWNKG




(PiscV1a, Pisc126, class





IIA bacteriocin,





bacteria)







AP01003
P80666, Mutacin B-
FKSWSFCTPGCAKTGSFNSYCC
856



Ny266 (bacteria)







AP00276
P80710, Clavanin A
VFQFLGKIIHHVGNFVHGFSHVF
857



(urochordates, sea





squirts, and sea pork,





tunicate)







AP00277
P80711, Clavanin B
VFQFLGRIIHHVGNFVHGFSHVF
858



(Sea squirt, tunicate)







AP00278
P80712, Clavanin C
VFHLLGKIIHHVGNFVYGFSHVF
859



(Sea squirt, tunicate)







AP00279
P80713, Clavanin D
AFKLLGRIIHHVGNFVYGFSHVF
860



(Sea squirt, tunicate)







AP00280
P80713, Clavanin D
LFKLLGKIIHHVGNFVHGFSHVF
861



(Sea squirt, tunicate)







AP00294
P80930, eNAP-1 (horse)
DVQCGEGHFCHDQTCCRASQGGACC
862




PYSQGVCCADQRHCCPVGF






AP00400
P80952, Skin peptide
YPPKPESPGEDASPEEMNKYLTALRH
863



tyrosine-tyrosine (skin-
YINLVTRQRY




PYY, SPYY, frog)







AP00091
P80954, Rugosin A
GLLNTFKDWAISIAKGAGKGVLTTLS
864



(frog)
CKLDKSC






AP00092
P80955, Rugosin B
SLFSLIKAGAKFLGKNLLKQGAQYAA
865



(frog)
CKVSKEC






AP00093
P80956, Rugosin C
GILDSFKQFAKGVGKDLIKGAAQGVL
866



(frog)
STMSCKLAKTC






AP00392
P81056, Penaeidin-1
YRGGYTGPIPRPPPIGRPPLRLVVCAC
867



(shrimp, Crustacea)
YRLSVSDARNCCIKFGSCCHLVK






AP00393
P81057, Penaeidin-2a
YRGGYTGPIPRPPPIGRPPFRPVCNACY
868



(shrimp, Crustacea)
RLSVSDARNCCIKFGSCCHLVK






AP00394
P81058, Penaeidin-3a
QVYKGGYTRPIPRPPPFVRPLPGGPIGP
869



(shrimp, Crustacea)
YNGCPVSCRGISFSQARSCCSRLGRCC





HVGKGYS






AP00247
P81251, Caerin 1.8
GLFKVLGSVAKHLLPHVVPVIAEK
870



(frog)







AP00248
P81252, Caerin 1.9
GLFGVLGSIAKHVLPHVVPVIAEK
871



(frog, ZZHa)







AP00126
P81417, Cecropin A
GGLKKLGKKLEGVGKRVFKASEKAL
872



(insect, mosquito)
PVAVGIKALG






AP00169
P81437, Formaecin 2
GRPNPVNTKPTPYPRL
873



(insect, ants)







AP00168
P81438, Formaecin 1
GRPNPVNNKPTPHPRL
874



(insect, ants)







AP00296
P81456, Fabatin-1
LLGRCKVKSNRFHGPCLTDTHCSTVC
875



(plant defensin)
RGEGYKGGDCHGLRRRCMCLC






AP00297
P81457, Fabatin-2
LLGRCKVKSNRFNGPCLTDTHCSTVC
876



(plant defensin)
RGEGYKGGDCHGLRRRCMCLC






AP01215
P81463, European
FVPYNPPRPYQSKPFPSFPGHGPFNPKI
877



bumblebee abaecin
QWPYPLPNPGH




(insect)







AP01214
P81464, Apidaecin
GNRPVYIPPPRPPHPRL
878



(insect)







AP00440
P81465, defensin
VTCFCRRRGCASRERHIGYCRFGNTIY
879



HANP-1 (hamster)
RLCCRR






AP00441
P81466, defensin
CFCKRPVCDSGETQIGYCRLGNTFYRL
880



HANP-2 (hamster)
CCRQ






AP00442
P81467, defensin
VTCFCRRRGCASRERLIGYCRFGNTIY
881



HANP-3 (hamster)
GLCCRR






AP00439
P81468, defensin
VTCFCKRPVCDSGETQIGYCRLGNTF
882



HANP-4 (hamster)
YRLCCRQ






AP00328
P81469, Styelin A (Sea
GFGKAFHSVSNFAKKHKTA
883



squirt, tunicate, XXA)







AP00329
P81470, Styelin B (Sea
GFGPAFHSVSNFAKKHKTA
884



squirt, tunicate, XXA)







AP00492
P81474, Misgurin (fish)
RQRVEELSKFSKKGAAARRRK
885





AP00165
P81485, Dermaseptin-
ALWKNMLKGIGKLAGQAALGAVKTL
886



B3 (Dermaseptin B3,
VGAE




DRS-B3, DRS B3, frog)







AP00163
P81486, Dermaseptin-
ALWKDILKNVGKAAGKAVLNTVTDM
887



B4 (Dermaseptin B4,
VNQ




DRS-B4, DRS B4,





DRS-TR1, IRP, frog)







AP00162
P81487, Dermaseptin-
GLWNKIKEAASKAAGKAALGFVNEMV
888



B5 (Dermaseptin B5,





DRS-B5, DRS B5, frog)







AP00164
P81488, Dermaseptin-
ALWKTIIKGAGKMIGSLAKNLLGSQA
889



B9 (Dermaseptin B9,
QPES




DRS-B9, DRS DRG3,





frog)







AP00167
P81565, Phylloxin
GWMSKIASGIGTFLSGMQQ
890



(phylloxin-B1, PLX-B1,





XXA, frog)







AP00291
P81568, Defensin D5
MFFSSKKCKTVSKTFRGPCVRNAN
891



(So-D5) (plant defensin)







AP00290
P81569, Defensin D4
MFFSSKKCKTVSKTFRGPCVRNA
892



(So-D4) (plant defensin)







AP00289
P81570, Defensin D3
GIFSSRKCKTVSKTFRGICTRNANC
893



(So-D3) (plant defensin)







AP00288
P81572, Defensin D1
TCESPSHKFKGPCATNRNCES
894



(So-D1) (plant defensin)







AP00292
P81573, Defensin D7
GIFSSRKCKTPSKTFKGYCTRDSNCDT
895



(So-D7) (plant defensin)
SCRYEGYPAGD






AP00270
P81591, Pn-AMP
QQCGRQASGRLCGNRLCCSQWGYCG
896



(PnAMP, plant
STASYCGAGCQSQCRS




defensin)







AP00412
P81592, Acaloleptin A1
SLQPGAPNVNNKDQPWQVSPHISRDD
897



(insect)
SGNTRTDINVQRHGENNDFEAGWSK





VVRGPNKAKPTWHIGGTHRW






AP00433
P81605, human
SSLLEKGLDGAKKAVGGLGKLGKDA
898



Dermcidin (DCD-1)
VEDLESVGKGAVHDVKDVLDSV






AP00332
P81612, Mytilin A
GCASRCKAKCAGRRCKGWASASFRG
899



(Blue mussel)
RCYCKCFRC






AP00333
P81613, Mytilin B
SCASRCKGHCRARRCGYYVSVLYRG
900



(Blue mussel)
RCYCKCLRC






AP00334
P81613, Moronecidin
FFHHIFRGIVHVGKTIHKLVTG
901



(fish)







AP00351
P81835, Citropin 1.1
GLFDVIKKVASVIGGL
902



(amphibian, frog)







AP00352
P81840, Citropin 1.2
GLFDIIKKVASVVGGL
903



(amphibian, frog)







AP00353
P81846, Citropin 1.3
GLFDIIKKVASVIGGL
904



(amphibian, frog)







AP00338
P81903, Histone H2B-
PDPAKTAPKKGSKKAVTKA
905



1(HLP-1) (fish)







AP00271
P82018, ChBac5 (Goat
RFRPPIRRPPIRPPFNPPFRPPVRPPFRPP
906



cathelicidin)
FRPPFRPPIGPFP






AP00316
P82027, Uperin 2.1
GIVDFAKKVVGGIRNALGI
907



(amphibian, toad)







AP00317
P82028, Uperin 2.2
GFVDLAKKVVGGIRNALGI
908



(amphibian, toad)







AP00318
P82029, Uperin 2.3
GFFDLAKKVVGGIRNALGI
909



(amphibian, toad)







AP00319
P82030, Uperin 2.4
GILDFAKTVVGGIRNALGI
910



(amphibian, toad)







AP00320
P82031, Uperin 2.5
GIVDFAKGVLGKIKNVLGI
911



(amphibian, toad)







AP00323
P82032, Uperin 3.1
GVLDAFRKIATVVKNVV
912



(amphibian, toad)







AP00326
P82035, Uperin 4.1
GVGSFIHKVVSAIKNVA
913



(amphibian, toad)







AP00321
P82039, Uperin 2.7
GIIDIAKKLVGGIRNVLGI
914



(amphibian, toad)







AP00322
P82040, Uperin 2.8
GILDVAKTLVGKLRNVLGI
915



(amphibian, toad)







AP00324
P82042, Uperin 3.5
GVGDLIRKAVSVIKNIV
916



(amphibian, toad)







AP00325
P82042, Uperin 3.6
GVIDAAKKVVNVLKNLP
917



(amphibian, toad)







AP00327
P82050, Uperin 7.1
GWFDVVKHIASAV
918



(amphibian, frog)







AP00260
P82066, Maculatin 1.1
GLFVGVLAKVAAHVVPAIAEHF
919



(XXA, frog, ZZHa)







AP00261
P82067, Maculatin 1.2
GLFVGLAKVAAHNNPAIAEHFQA
920



(XXA, frog)







AP00262
P82068, Maculatin 2.1
GFVDFLKKVAGTIANVVT
921



(frog)







AP00263
P82069, Maculatin 3.1
GLLQTIKEKLESLESLAKGIVSGIQA
922



(frog)







AP00345
P82104, Caerin 1.10
GLLSVLGSVAKHVLPHVVPVIAEKL
923



(frog)







AP00456
P82232, Brevinin-1T
VNPIILGVLPKFVCLITKKC
924



(frog)







AP00459
P82233, Brevinin-1TA
FITLLLRKFICSITKKC
925



(frog)







AP00457
P82234, Brevinin-2TC
GLWETIKNFGKKFTLNILHKLKCKIGG
926



(frog)
GC






AP00458
P82235, Brevinin-2TD
GLWETIKNFGKKFTLNILHNLKCKIGG
927



(frog)
GC






AP00397
P82238, Salmocidin 2A
SGFVLKGYTKTSQ
928



(fish, trout)







AP00398
P82239, Salmocidin 2B
AGFVLKGYTKTSQ
929



(fish, trout)







AP00055
P82282, Bombinin H1
IIGPVLGMVGSALGGLLKKI
930



(frog)







AP00056
P82284, Bombinin H4
LIGPVLGLVGSALGGLLKKI
931



(frog, XXA, XXD)







AP00057
P82285, Bombinin H5
IIGPVLGLVGSALGGLLKKI
932



(frog, XXD)







AP00419
P82286, Bombinin-like
GIGASILSAGKSALKGFAKGLAEHFAN
933



peptides 2 (amphibian,





toad)







AP00137
P82293, Cryptdin-1
LRDLVCYCRTRGCKRRERMNGTCRK
934



(Crp1, animal defensin,
GHLMYTLCCR




alpha, mouse)







AP00443
P82317, defensin
ACYCRIPACLAGERRYGTCFYMGRV
935



RMAD-2 (monkey)
WAFCC






AP00012
P82386, Aurein 1.1
GLFDIIKKIAESI
936



(amphibian, frog)







AP00014
P82388, Aurein 2.1
GLLDIVKKVVGAFGSL
937



(amphibian, frog)







AP00015
P82389, Aurein 2.2
GLFDIVKKVVGALGSL
938



(amphibian, frog)







AP00016
P82390, Aurein 2.3
GLFDIVKKVVGAIGSL
939



(XXA, amphibian, frog)







AP00017
P82391, Aurein 2.4
GLFDIVKKVVGTIAGL
940



(XXA, amphibian, frog)







AP00018
P82392, Aurein 2.5
GLFDIVKKVVGAFGSL
941



(XXA, amphibian, frog)







AP00019
P82393, Aurein 2.6
GLFDIAKKVIGVIGSL
942



(XXA, amphibian, frog)







AP00020
P82394, Aurein 3.1
GLFDIVKKIAGHIAGSI
943



(XXA, amphibian, frog)







AP00021
P82395, Aurein 3.2
GLFDIVKKIAGHIASSI
944



(XXA, amphibian, frog)







AP00022
P82396, Aurein 3.3
GLFDIVKKIAGHIVSSI
945



(XXA, amphibian, frog)







AP00376
P82414, Ponericin G1
GWKDWAKKAGGWLKKKGPGMAKA
946



(ants)
ALKAAMQ






AP00377
P82415, Ponericin G2
GWKDWLKKGKEWLKAKGPGIVKAA
947



(ants)
LQAATQ






AP00378
P82416, Ponericin G3
GWKDWLNKGKEWLKKKGPGIMKAA
948



(ants)
LKAATQ






AP00379
P82417, Ponericin G4
DFKDWMKTAGEWLKKKGPGILKAA
949



(ants)
MAAAT






AP00380
P82418, Ponericin G5
GLKDWVKIAGGWLKKKGPGILKAAM
950



(ants)
AAATQ






AP00381
P82419, Ponericin G6
GLVDVLGKVGGLIKKLLP
951



(ants)







AP00382
P82420, Ponericin G7
GLVDVLGKVGGLIKKLLPG
952



(ants)







AP00383
P82421, Ponericin L1
LLKELWTKMKGAGKAVLGKIKGLL
953



(ants)







AP00384
P82422, Ponericin L2
LLKELWTKIKGAGKAVLGKIKGLL
954



(ants)







AP00386
P82423, Ponericin W1
WLGSALKIGAKLLPSVVGLFKKKKQ
955



(ants)







AP00387
P82424, Ponericin W2
WLGSALKIGAKLLPSVVGLFQKKKK
956



(ants)







AP00388
P82425, Ponericin W3
GIWGTLAKIGIKAVPRVISMLKKKKQ
957



(ants)







AP00389
P82426, Ponericin W4
GIWGTALKWGVKLLPKLVGMAQTKKQ
958



(ants)







AP00390
P82427, Ponericin W5
FWGALIKGAAKLIPSVVGLFKKKQ
959



(ants)







AP00391
P82428, Ponericin W6
FIGTALGIASAIPAIVKLFK
960



(ants)







AP00303
P82651, Tigerinin-1
FCTMIPIPRCY
961



(frog)







AP00304
P82652, Tigerinin-2
RVCFAIPLPICH
962



(frog)







AP00305
P82653, Tigerinin-3
RVCYAIPLPICY
963



(frog)







AP00301
P82656, Hadrurin
GILDTIKSIASKVWNSKTVQDLKRKGI
964



(scorpion)
NWVANKLGVSPQAA






AP00113
P82740,
GLLSGLKKVGKHVAKNVAVSLMDSL
965



RANATUERIN 1T
KCKISGDC




(frog)







AP00114
P82741,
SMLSVLKNLGKVGLGFVACKINKQC
966



RANATUERIN 1





(Ranatuerin-1, frog)







AP00115
P82742,
GLFLDTLKGAAKDVAGKLEGLKCKIT
967



RANATUERIN 2
GCKLP




(Ranatuerin-2, frog)







AP00116
P82780,
GFLDIINKLGKTFAGHMLDKIKCTIGT
968



RANATUERIN 3
CPPSP




(Ranatuerin-3, frog)







AP00117
P82819,
FLPFIARLAAKVFPSIICSVTKKC
969



RANATUERIN 4





(Ranatuerin-4, frog)







AP00405
P82821,
FISAIASMLGKFL
970



RANATUERIN 6 (frog)







AP00406
P82822,
FLSAIASMLGKFL
971



RANATUERIN 7 (frog)







AP00407
P82823,
FISAIASFLGKFL
972



RANATUERIN 8 (frog)







AP00408
P82824,
FLFPLITSFLSKVL
973



RANATUERIN 9 (frog)







AP00461
P82825, Brevinin-1LA
FLPMLAGLAASMVPKLVCLITKKC
974



(frog)







AP00462
P82826, Brevinin-1LB
FLPMLAGLAASMVPKFVCLITKKC
975



(frog)







AP00118
P82828,
GILDSFKGVAKGVAKDLAGKLLDKLK
976



RANATUERIN 2La
CKITGC




(Ranatuerin-2La, frog)







AP00119
P82829,
GILSSIKGVAKGVAKNVAAQLLDTLK
977



RANATUERIN 2Lb
CKITGC




(Ranatuerin-2Lb, frog)







AP00109
P82830, Temporin-1La
VLPLISMALGKLL
978



(Temporin 1La, frog)







AP00110
P82831, Temporin-1Lb
NFLGTLINLAKKIM
979



(Temporin 1Lb, frog)







AP00111
P82832, Temporin-1Lc
FLPILINLIHKGLL
980



(Temporin 1Lc, frog)







AP00463
P82833, Brevinin-1BA
FLPFIAGMAAKFLPKIFCAISKKC
981



(frog)







AP00464
P82834, Brevinin-1BB
FLPAIAGMAAKFLPKIFCAISKKC
982



(frog)







AP00465
P82835, Brevinin-1BC
FLPFIAGVAAKFLPKIFCAISKKC
983



(frog)







AP00466
P82836, Brevinin-1BD
FLPAIAGVAAKFLPKIFCAISKKC
984



(frog)







AP00467
P82837, Brevinin-1BE
FLPAIVGAAAKFLPKIFCVISKKC
985



(frog)







AP00468
P82838, Brevinin-1BF
FLPFIAGMAANFLPKIFCAISKKC
986



(frog)







AP00120
P82840,
GLLDTIKGVAKTVAASMLDKLKCKIS
987



RANATUERIN 2B
GC




(Ranatuerin-2B, frog)







AP00469
P82841, Brevinin-1PA
FLPIIAGVAAKVFPKIFCAISKKC
988



(frog)







AP00460
P82842, Brevinin-1PB
FLPIIAGIAAKVFPKIFCAISKKC
989



(frog)







AP00470
P82843, Brevinin-1PC
FLPIIASVAAKVFSKIFCAISKKC
990



(frog)







AP00471
P82844, Brevinin-1PD
FLPIIASVAANVFSKIFCAISKKC
991



(frog)







AP00472
P82845, Brevinin-1PE
FLPIIASVAAKVFPKIFCAISKKC
992



(frog)







AP00121
P82847,
GLMDTVKNVAKNLAGHMLDKLKCKI
993



RANATUERIN 2P
TGC




(Ranatuerin-2P, frog)







AP00112
P82848, Temporin-1P
FLPIVGKLLSGLL
994



(Temporin 1P, frog)







AP00452
P82871, Brevinin-1SY
FLPVVAGLAAKVLPSIICAVTKKC
995



(frog)







AP00122
P82875, Ranatuerin-1C
SMLSVLKNLGKVGLGLVACKINKQC
996



(Ranatuerin 1C, frog)







AP00514
P82876, Ranalexin-1Ca
FLGGLMKAFPALICAVTKKC
997



(frog)







AP00515
P82877, Ranalexin-1Cb
FLGGLMKAFPAIICAVTKKC
998



(frog)







AP00124
P82878, Ranatuerin-2Ca
GLFLDTLKGAAKDVAGKLLEGLKCKI
999



(Ranatuerin 2Ca, frog)
AGCKP






AP00123
P82879, Ranatuerin-
GLFLDTLKGLAGKLLQGLKCIKAGCKP
1000



2Cb (Ranatuerin 2Cb,





frog)







AP00104
P82880, Temporin-1Ca
FLPFLAKILTGVL
1001



(Temporin 1Ca, frog)







AP00105
P82881, Temporin-1Cb
FLPLFASLIGKLL
1002



(Temporin 1Cb, frog)







AP00106
P82882, Temporin-1Cc
FLPFLASLLTKVL
1003



(Temporin 1Cc, frog)







AP00107
P82883, Temporin-1Cd
FLPFLASLLSKVL
1004



(Temporin 1Cd, frog)







AP00108
P82884, Temporin-1Ce
FLPFLATLLSKVL
1005



(Temporin 1Ce, frog)







AP00453
P82904, Brevinin-1SA
FLPAIVGAAGQFLPKIFCAISKKC
1006



(frog)







AP00454
P82905, Brevinin-1SB
FLPAIVGAAGKFLPKIFCAISKKC
1007



(frog)







AP00455
P82906, Brevinin-1SC
FFPIVAGVAGQVLKKIYCTISKKC
1008



(frog)







AP00996
P82907, Lichenin
ISLEICAIFHDN
1009



(bacteria)




AP00302
P82951, Hepcidin (fish)
GCRFCCNCCPNMSGCGVCCRF
1010





AP00058
P83080, Maximin 1
GIGTKILGGVKTALKGALKELASTYAN
1011



(toad)







AP00059
P83081, Maximin 2
GIGTKILGGVKTALKGALKELASTYVN
1012



(toad)







AP00060
P83082, Maximin 3
GIGGKILSGLKTALKGAAKELASTYLH
1013



(toad, ZZHa)







AP00061
P83083, Maximin 4
GIGGVLLSAGKAALKGLAKVLAEKYAN
1014



(toad)







AP00062
P83084, Maximin 5
SIGAKILGGVKTFFKGALKELASTYLQ
1015



(toad)







AP00063
P83085, Maximin 6
ILGPVISTIGGVLGGLLKNL
1016



(toad)







AP00064
P83086, Maximin 7
ILGPVLGLVGNALGGLIKNE
1017



(toad)







AP00065
P83087, Maximin 8
ILGPVLSLVGNALGGLLKNE
1018



(toad)







AP00355
P83171, Ginkbilobin
ANTAFVSSAHNTQKIPAGAPFNRNLR
1019



(Chinese plant)
AMLADLRQNAAFAG






AP00475
P83188, Pseudin 1
GLNTLKKVFQGLHEAIKLINNHVQ
1020



(frog)







AP00476
P83189, Pseudin 2
GLNALKKVFQGIHEAIKLINNHVQ
1021



(frog)







AP00477
P83190, Pseudin 3
GINTLKKVIQGLHEVIKLVSNHE
1022



(frog)







AP00478
P83191, Pseudin 4
GINTLKKVIQGLHEVIKLVSNHA
1023



(frog)







AP00410
P83287, Oncorhyncin
SKGKKANKDVELARG
1024



III (fish)







AP00357
P83305, Japonicin-1
FFPIGVFCKIFKTC
1025



(amphibian, frog)







AP00358
P83306, Japonicin-2
FGLPMLSILPKALCILLKRKC
1026



(amphibian, frog)







AP00385
P83312, Parabutoporin
FKLGSFLKKAWKSKLAKKLRAKGKE
1027



(scorpion)
MLKDYAKGLLEGGSEEVPGQ






AP00374
P83313, Opistoporin 1
GKVWDWIKSTAKKLWNSEPVKELKN
1028



(scorpion)
TALNAAKNLVAEKIGATPS






AP00375
P83314, Opistoporin 2
GKVWDWIKSTAKKLWNSEPVKELKN
1029



(scorpion)
TALNAAKNFVAEKIGATPS






AP00336
P83327, Histone H2A
AERVGAGAPVYL
1030



(fish)







AP00335
P83338, Histone H6-
PKRKSATKGDEPA
1031



like protein (fish)







AP00411
P83374, Oncorhyncin II
KAVAAKKSPKKAKKPAT
1032



(fish)







AP00999
P83375, Serracin-P 43 kDa
DYHHGVRVL
1033



subunit (bacteria)







AP00284
P83376, Dolabellanin
SHQDCYEALHKCMASHSKPFSCSMKF
1034



B2 (sea hare)
HMCLQQQ






AP00998
P83378, Serracin-P 23 kDa
ALPKKLKYLNLFNDGFNYMGVV
1035



subunit





(bacteriocin, bacteria)







AP00129
P83403, Cecropin
GWLKKIGKKIERVGQNTRDATVKGLE
1036



(insect, moth)
VAQQAANVAATVR






AP00127
P83413, Cecropin A
RWKVFKKIEKVGRNIRDGVIKAAPAIE
1037



(insect, moth)
VLGQAKAL






AP00372
P83416, Virescein
GKIPIGAIKKAGKAIGKGLRAVNIAST
1038



(insect)
AHDVYTFFKPKKRH






AP00356
P83427, Heliocin
QRFIHPTYRPPPQPRRPVIMRA
1039



(insect)







AP00409
P83428, Locustin
ATTGCSCPQCIIFDPICASSYKNGRRGF
1040



(insect)
SSGCHMRCYNRCHGTDYFQISKGSKCI






AP00339
P83545, Chrysophsin-1
FFGWLIKGAIHAGKAIHGLIHRRRH
1041



(Red sea bream, madai)







AP00340
P83546, Chrysophsin-2
FFGWLIRGAIHAGKAIHGLIHRRRH
1042



(Red sea bream, madai)







AP00341
P83547, Chrysophsin-3
FIGLLISAGKAIHDLIRRRH
1043



(Red sea bream, madai)







AP01004
P84763, Thuricin-S
DWTAWSALVAAACSVELL
1044



(bacteria)







AP00553
P84868, Sesquin (plant,
KTCENLADTY
1045



ZZHp)







AP00132
Q06589, Cecropin 1
GWLKKIGKKIERVGQHTRDATIQTIAV
1046



(insect, fly)
AQQAANVAATAR






AP00135
Q06590, Cecropin 2
GWLKKIGKKIERVGQHTRDATIQTIGV
1047



(insect fly)
AQQAANVAATLK






AP00416
Q17313, Ceratotoxin C
SLGGVISGAKKVAKVAIPIGKAVLPVV
1048



(insect, fly)
AKLVG






AP00171
Q24395, Metchnikowin
HRHQGPIFDTRPSPFNPNQPRPGPIY
1049



(insect)







AP00354
Q27023, Tenecin 1
VTCDILSVEAKGVKLNDAACAAHCLF
1050



(insect)
RGRSGGYCNGKRVCVCR






AP00401
Q28880, Lingual
GFTQGVRNSQSCRRNKGICVPIRCPGS
1051



antimicrobial peptide
MRQIGTCLGAQVKCCRRK




(LAP, beta defensin,





cow)







AP00224
Q62713, RatNP-3 (rat)
CSCRTSSCRFGERLSGACRLNGRIYRL
1052




CC






AP00225
Q62714, RatNP-4 (rat)
ACYCRIGACVSGERLTGACGLNGRIY
1053




RLCCR






AP00223
Q62715, RatNP-2 (rat)
VTCYCRSTRCGFRERLSGACGYRGRI
1054




YRLCCR






AP00222
Q62716, RatNP-1 (rat)
VTCYCRRTRCGFRERLSGACGYRGRI
1055




YRLCCR






AP00174
Q64365, GNCP-1
RRCICTTRTCRFPYRRLGTCIFQNRVY
1056



(Guinea pig neutrophil
TFCC




cationic peptide 1)







AP00311
Q90W78, Galensin
CYSAAKYPGFQEFINRKYKSSRF
1057



(frog)







AP00395
Q95NT0, Penaeidin-4a
HSSGYTRPLPKPSRPIFIRPIGCDVCYGI
1058



(shrimp, Crustacea)
PSSTARLCCFRYGDCCHR






AP00423
Q962B0, Penaeidin-3n
QGYKGPYTRPILRPYVRPVVSYNACT
1059



(shrimp, Crustacea)
LSCRGITTTQARSCSTRLGRCCHVAKG





YS






AP00422
Q962B1, Penaeidin-3m
QGCKGPYTRPILRPYVRPVVSYNACT
1060



(shrimp, Crustacea)
LSCRGITTTQARSCCTRLGRCCHVAK





GYS






AP00421
Q963C3, Penaeidin-4C
YSSGYTRPLPKPSRPIFIRPIGCDVCYGI
1061



(shrimp, Crustacea)
PSSTARLCCFRYGDCCHR






AP00210
Q99134, PGLa (African
GMASKAGAIAGKIAKVALKAL
1062



clawed frog, XXA)







AP00054
Q9DET7, Bombinin-
GIGGALLSAGKSALKGLAKGLAEHFAN
1063



like peptide 7 (BLP-7,





toad)







AP00315
Q9PT75, Dermatoxin
SLGSFLKGVGTTLASVGKVVSDQFGK
1064



(Two-colored leaf frog)
LLQAGQ






AP00133
Q9Y0Y0, Cecropin B
GGLKKLGKKLEGVGKRVFKASEKAL
1065



(insect, mosquito)
PVLTGYKAIG






AP00004
Ref, Ct-AMP1
NLCERASLTWTGNCGNTGHCDTQCR
1066



(CtAMP1, C. ternatea-
NWESAKHGACHKRGNWKCFCYFDC




antimicrobial peptide 1,





plant defensin)







AP00027
Ref, hexapeptide
RRWQWR
1067



(synthetic)







AP00529
Ref, Lantibiotic Ericin S
WKSESVCTPGCVTGVLQTCFLQTITC
1068



(bacteria)
NCHISK






AP00306
Ref, Tigerinin-4 (frog)
RVCYAIPLPIC
1069





AP00309
Ref, Human KS-27
KSKEKIGKEFKRIVQRIKDFLRNLVPR
1070



(KS27 from LL-37)







AP00344
Ref, Apidaecin II
GNNRPIYIPQPRPPHPRL
1071



(honeybee, insect)







AP00424
Ref, XT1 (frog)
GFLGPLLKLAAKGVAKVIPHLIPSRQQ
1072





AP00425
Ref, XT 2 (frog)
GCWSTVLGGLKKFAKGGLEAIVNPK
1073





AP00426
Ref, XT 4 (frog)
GVFLDALKKFAKGGMNAVLNPK
1074





AP00427
Ref, XT 7 (frog)
GLLGPLLKIAAKVGSNLL
1075





AP00431
Ref, human LLP 1
RVIEVVQGACRAIRHIPRRIRQGLERIL
1076





AP00432
Ref, human LLP
RIAGYGLRGLAVIIRICIRGLNLIFEIIR
1077





AP00447
Ref, Anoplin (insect)
GLLKRIKTLL
1078





AP00474
Ref, Piscidin 3 (fish)
FIHHIFRGIVHAGRSIGRFLTG
1079





AP00481
Ref, Kaliocin-1
FFSASCVPGADKGQFPNLCRLCAGTG
1080



(synthetic)
ENKCA






AP00482
Ref, Thionin mutation
KSCCRNTWARNCYNVCRLPGTISREIC
1081



(synthetic)
AKKCRCKIISGTTCPSDYPK






AP00484
Ref, Stomoxyn (insect,
RGFRKHFNKLVKKVKHTISETAHVAK
1082



fly)
DTAVIAGSGAAVVAAT






AP00486
Ref, Cupiennin 1b
GFGSLFKFLAKKVAKTVAKQAAKQG
1083



(spider)
AKYIANKQME






AP00487
Ref, Cupiennin 1c
GFGSLFKFLAKKVAKTVAKQAAKQG
1084



(spider)
AKYIANKQTE






AP00488
Ref, Cupiennin 1D
GFGSLFKFLAKKVAKTVAKQAAKQG
1085



(spider)
AKYVANKHME






AP00489
Ref, Hipposin (fish)
SGRGKTGGKARAKAKTRSSRAGLQFP
1086




VGRVHRLLRKGNYAHRVGAGAPVYL






AP00923
Ref, Carnobacteriocin
AISYGNGVYCNKEKCWVNKAENKQA
1087



B1 (XXO, class IIa
ITGIVIGGWASSLAGMGH




bacteriocin, bacteria)







AP00496
Ref, HP 2-20 (synthetic)
AKKVFKRLEKLFSKIQNDK
1088





AP00497
Ref, Maximin H5 (toad)
ILGPVLGLVSDTLDDVLGIL
1089





AP00498
Ref, rCRAMP (rat
GLVRKGGEKFGEKLRKIGQKIKEFFQ
1090



cathelicidin)
KLALEIEQ






AP00500
Ref, S9-P18 (synthetic)
KWKLFKKISKFLHLAKKF
1091





AP00501
Ref, L9-P18 (synthetic)
KWKLFKKILKFLHLAKKF
1092





AP00502
Ref, Clavaspirin (sea
FLRFIGSVIHGIGHLVHHIGVAL
1093



squirt, tunicate)







AP00503
Ref, human P-113D
AKRHHGYKRKFH
1094





AP00504
Ref, human MUC7 20-
LAHQKPFIRKSYKCLHKRCR
1095



Mer







AP00507
Ref, Nigrocin 2 (frog)
GLLSKVLGVGKKVLCGVSGLC
1096





AP00508
Ref, Nigrocin 1 (frog)
GLLDSIKGMAISAGKGALQNLLKVAS
1097




CKLDKTC






AP00509
Ref, human Calcitermin
VAIALKAAHYHTHKE
1098





AP00510
Ref, Dicynthaurin (sea
ILQKAVLDCLKAAGSSLSKAAITAIYN
1099



peach)
KIT






AP00511
Ref, KIGAKI
KIGAKIKIGAKIKIGAKI
1100



(synthetic)







AP00516
Ref, Lycotoxin I
IWLTALKFLGKHAAKHLAKQQLSKL
1101



(spider)







AP00517
Ref, Lycotoxin II
KIKWFKTMKSIAKFIAKEQMKKHLGGE
1102



(spider)







AP00518
Ref, Ib-AMP3 (plant
QYRHRCCAWGPGRKYCKRWC
1103



defensin, balsam)







AP00519
Ref, Ib-AMP4 (plant
EWGRRCCGWGPGRRYCRRWC
1104



defensin, balsam)







AP00521
Ref, Dhvar4 (synthetic)
KRLFKKLLFSLRKY
1105





AP00522
Ref, Dhvar5 (synthetic)
LLLFLLKKRKKRKY
1106





AP00525
Ref, Maximin H2 (toad)
ILGPVLSMVGSALGGLIKKI
1107





AP00526
Ref, Maximin H3 (toad)
ILGPVLGLVGNALGGLIKKI
1108





AP00527
Ref, Maximin H4 (toad)
ILGPVISKIGGVLGGLLKNL
1109





AP00528
Ref, Anionic peptide
DDDDDD
1110



SAAP (sheep)







AP00530
Ref, Lantibiotic Ericin
VLSKSLCTPGCITGPLQTCYLCFPTFA
1111



A (bacteria)
KC






AP00531
Ref, Kenojeinin I (sea
GKQYFPKVGGRLSGKAPLAAKTHRRL
1112



skate)
KP






AP00532
Ref, Lunatusin (plant,
KTCENLADTFRGPCFATSNC
1113



ZZHp)







AP00533
Ref, Fallaxin (frog)
GVVDILKGAAKDIAGHLASKVMNKL
1114





AP00534
Ref, Tu-AMP 2
KSCCRNTTARNCYNVCRIPG
1115



(TuAMP2, thionin-like





antimicrobial peptides,





plant defensin, tulip)







AP00535
Ref, Pilosulin 1 (Myr b
GLGSVFGRLARILGRVIPKVAKKLGPK
1116



I) (Australian ants)
VAKVLPKVMKEAIPMAVEMAKSQEE





QQPQ






AP00536
Ref, Luxuriosin (insect)
SVRTQDNAVNRQIFGSNGPYRDFQLS
1117




DCYLPLETNPYCNEWQFAYHWNNAL





MDCERAIYHGCNRTRNNFITLTACKN





QAGPICNRRRH






AP00537
Ref, SAMP H1 (fish,
AEVAPAPAAAAPAKAPKKKAAAKPK
1118



Atlantic salmon)
KAGPS






AP00538
Ref, Halocidin (dimer
WLNALLHHGLNCAKGVLA
1119



Hal18 + Hal15)





(tunicate)







AP00539
Ref, AOD (American
GFGCPWNRYQCHSHCRSIGRLGGYCA
1120



oyster defensin, animal
GSLRLTCTCYRS




defensin)







AP00540
Ref, Pentadactylin
GLLDTLKGAAKNVVGSLASKVMEKL
1121



(frog)







AP00541
Ref, Polybia-MPI
IDWKKLLDAAKQIL
1122



(insect, social wasp)







AP00542
Ref, Polybia-CP (insect,
ILGTILGLLKSL
1123



social wasp)







AP00543
Ref, Ocellatin-1 (XXA,
GVVDILKGAGKDLLAHLVGKISEKV
1124



frog)







AP00544
Ref, Ocellatin-2 (XXA,
GVLDIFKDAAKQILAHAAEKQI
1125



frog)







AP00545
Ref, Ocellatin-3 (frog)
GVLDILKNAAKNILAHAAEQI
1126





AP00548
Ref, CMAP 27 (chicken
RFGRFLRKIRRFRPKVTITIQGSARFG
1127



myeloid antimicrobial





peptide 27, bird





cathelicidin, chicken





cathelicidin)







AP00550
Ref, Tu-AMP-1
KSCCRNTVARNCYNVCRIPGTPRPVC
1128



(TuAMP 1, thionin-like
AATCDCKLITGTKCPPGYEK




antimicrobial peptides,





plant defensin, tulip)







AP00551
Ref, Combi-2
FRWWHR
1129



(synthetic)







AP00552
Ref, Maximin 9 (frog)
GIGRKFLGGVKTTFRCGVKDFASKHLY
1130





AP00554
Ref, S1 moricin (insect)
GKIPVKAIKKAGAAIGKGLRAINIAST
1131




AHDVYSFFKPKHKKK






AP00555
Ref, Parasin I (catfish)
KGRGKQGGKVRAKAKTRSS
1132





AP00556
Ref, Kassinatuerin-1
GFMKYIGPLIPHAVKAISDLI
1133



(frog)







AP00557
Ref, Fowlicidin-1
RVKRVWPLVIRTVIAGYNLYRAIKKK
1134



(chCATH-1, bird





cathelicidin, chicken





cathelicidin)







AP00559
Ref, Eryngin
ATRVVYCNRRSGSVVGGDDTVYYEG
1135



(mushroom, fungi)







AP00560
Ref, Dendrocin (plant,
TTLTLHNLCPYPVWWLVTPNNGGFPII
1136



bamboo)
DNTPVVLG






AP00561
Ref, Coconut antifungal
EQCREEEDDR
1137



peptide (plant)







AP00562
Ref, Pandinin 1 (African
GKVWDWIKSAAKKIWSSEPVSQLKG
1138



scorpion)
QVLNAAKNYVAEKIGATPT






AP00563
Ref, White cloud bean
KTCENLADTFRGPCFATSNCDDHCKN
1139



defensin (plant
KEHLLSGRCRDDFRCWCTRNC




defensin)







AP00564
Ref, Dybowskin-1
FLIGMTHGLICLISRKC
1140



(frog)







AP00565
Ref, Dybowskin-2
FLIGMTQGLICLITRKC
1141



(frog)







AP00566
Ref, Dybowskin-3
GLFDVVKGVLKGVGKNVAGSLLEQL
1142



(frog)
KCKLSGGC






AP00567
Ref, Dybowskin-4
VWPLGLVICKALKIC
1143



(frog)







AP00568
Ref, Dybowskin-5
GLFSVVTGVLKAVGKNVAKNVGGSL
1144



(frog)
LEQLKCKKISGGC






AP00569
Ref, Dybowskin-6
FLPLLLAGLPLKLCFLFKKC
1145



(frog)







AP00570
Ref, Pleurain-A1 (frog)
SIITMTKEAKLPQLWKQIACRLYNTC
1146





AP00571
Ref, Pleurain-A2 (frog)
SIITMTKEAKLPQSWKQIACRLYNTC
1147





AP00574
Ref, Esculentin-IGRa
GLFSKFAGKGIKNLIFKGVKHIGKEVG
1148



(frog)
MDVIRTGIDVAGCKIKGEC






AP00575
Ref, Brevinin-2GRa
GLLDTFKNLALNAAKSAGVSVLNSLS
1149



(frog)
CKLSKTC






AP00576
Ref, Brevinin-2GRb
GVLGTVKNLLIGAGKSAAQSVLKTLS
1150



(frog)
CKLSNDC






AP00577
Ref, Brevinin-2GRc
GLFTLIKGAAKLIGKTVAKEAGKTGLE
1151



(frog)
LMACKITNQC






AP00578
Ref, Brevinin-1GRa
FLPLLAGLAANFLPKIFCKITKKC
1152



(frog)







AP00579
Ref, Nigrocin-2GRa
GLLSGILGAGKHIVCGLSGLC
1153



(frog)







AP00580
Ref, Nigrocin-2GRb
GLFGKILGVGKKVLCGLSGMC
1154



(frog)







AP00581
Ref, Nigrocin-2GRc
GLLSGILGAGKNIVCGLSGLC
1155



(frog)







AP00582
Ref, Brevinin-2GHa
GFSSLFKAGAKYLLKSVGKAGAQQLA
1156



(frog)
CKAANNCA






AP00583
Ref, Brevinin-2GHb
GVITDALKGAAKTVAAELLRKAHCKL
1157



(frog)
TNSC






AP00584
Ref, Guentherin (frog)
VIDDLKKVAKKVRRELLCKKHHKKLN
1158





AP00585
Ref, Brevinin-2GHc
SIWEGIKNAGKGFLVSILDKVRCKVA
1159



(frog)
GGCNP






AP00586
Ref, Temporin-GH
FLPLLFGAISHLL
1160



(frog)







AP00587
Ref, Brevinin-2TSa
GIMSLFKGVLKTAGKHVAGSLVDQLK
1161



(frog)
CKITGGC






AP00588
Ref, Brevinin-1TSa
FLGSIVGALASALPSLISKIRN
1162



(frog)







AP00589
Ref, Temporin-1TSa
FLGALAKIISGIF
1163



(frog)







AP00593
Ref, Brevinin-1CSa
FLPILAGLAAKIVPKLFCLATKKC
1164



(frog)







AP00594
Ref, Temporin-1CSa
FLPIVGKLLSGLL
1165



(frog)







AP00595
Ref, Temporin-1CSb
FLPIIGKLLSGLL
1166



(frog)







AP00596
Ref, Temporin-1CSc
FLPLVTGLLSGLL
1167



(frog)







AP00597
Ref, Temporin-1CSd
NFLGTLVNLAKKIL
1168



(frog)







AP00598
Ref, Temporin-1SPb
FLSAITSLLGKLL
1169



(frog)







AP00599
Ref, Brevinin-2-related
GIWDTIKSMGKVFAGKILQNL
1170



(frog)







AP00600
Ref, Odorranain-HP
GLLRASSVWGRKYYVDLAGCAKA
1171



(frog)







AP00601
Ref, Brevinin-1DYa
FLSLALAALPKFLCLVFKKC
1172



(frog)







AP00602
Ref, Brevinin-1DYb
FLSLALAALPKLFCLIFKKC
1173



(frog)







AP00603
Ref, Brevinin-1DYc
FLPLLLAGLPKLLCLFFKKC
1174



(frog)







AP00607
Ref, Brevinin-2DYb
GLFDVVKGVLKGAGKNVAGSLLEQL
1175



(frog)
KCKLSGGC






AP00608
Ref, Brevinin-2DYc
GLFDVVKGVLKGVGKNVAGSLLEQL
1176



(frog)
KCKLSGGC






AP00609
Ref, Brevinin-2DYd
GIFDVVKGVLKGVGKNVAGSLLEQLK
1177



(frog)
CKLSGGC






AP00610
Ref, Brevinin-2DYe
GLFSVVTGVLKAVGKNVAKNVGGSL
1178



(frog)
LEQLKCKISGGC






AP00611
Ref, Temporin-1DYa
FIGPIISALASLFG
1179



(frog)







AP00615
Ref, Palustrin-1b (frog)
ALFSILRGLKKLGNMGQAFVNCKIYK
1180




KC






AP00616
Ref, Palustrin-1c (frog)
ALSILRGLEKLAKMGIALTNCKATKKC
1181





AP00617
Ref, Palustrin-1d (frog)
ALSILKGLEKLAKMGIALTNCKATKKC
1182





AP00619
Ref, Palustrin-2b (frog)
GFFSTVKNLATNVAGTVIDTLKCKVT
1183




GGCRS






AP00620
Ref, Palustrin-2c (frog)
GFLSTVKNLATNVAGTVIDTLKCKVT
1184




GGCRS






AP00621
Ref, Palustrin-3a (frog)
GIFPKIIGKGIKTGIVNGIKSLVKGVGM
1185




KVFKAGLNNIGNTGCNEDEC






AP00622
Ref, Palustrin-3b (frog)
GIFPKIIGKGIKTGIVNGIKSLVKGVGM
1186




KVFKAGLSNIGNTGCNEDEC






AP00624
Ref, human ALL-38 (an
ALLGDFFRKSKEKIGKEFKRIVQRIKD
1187



LL-37 analog released
FLRNLVPRTES




from its precursor





hCAP-18 by gastricsin





in vivo)







AP00625
Ref, human KR-20
KRIVQRIKDFLRNLVPRTES
1188



(KR20 from LL-37)







AP00626
Ref, human KS-30
KSKEKIGKEFKRIVQRIKDFLRNLVPR
1189



(KS30 from LL-37)
TES






AP00627
Ref, human RK-31
RKSKEKIGKEFKRIVQRIKDFLRNLVP
1190



(RK31 from LL-37)
RTES






AP00628
Ref, human LL-23
LLGDFFRKSKEKIGKEFKRIVQR
1191



(LL23 from LL-37)







AP00629
Ref, human LL-29
LLGDFFRKSKEKIGKEFKRIVQRIKDFLR
1192



(LL29 from LL-37)







AP00630
Ref, Amoeba peptide
GEILCNLCTGLINTLENLLTTKGAD
1193



(protozoan para







AP00631
Ref, Mundticin
KYYGNGVSCNKKGCSVDWGKAIGIIG
1194



(bacteria)
NNSAANLATGGAAGWSK






AP00638
Ref, Citropin 2.1 (frog)
GLIGSIGKALGGLLVDVLKPKL
1195





AP00639
Ref, Citropin 2.1.3
GLIGSIGKALGGLLVDVLKPKLQAAS
1196



(frog)







AP00640
Ref, Maculatin 1.3
GLLGLLGSVVSHVVPAIVGHF
1197



(frog)







AP00641
Ref, Pardaxin 1
GFFALIPKIISSPLFKTLLSAVGSALSSS
1198



(Pardaxin P-1, Pardaxin
GEQE




P1, Pa1, flat fish)







AP00642
Ref, Pardaxin 2
GFFALIPKIISSPIFKTLLSAVGSALSSS
1199



(Pardaxin P-2, Pardaxin
GGQE




P2, Pa2, flat fish)







AP00643
Ref, Pardaxin 3
GFFAFIPKIISSPLFKTLLSAVGSALSSS
1200



(Pardaxin P-3, Pardaxin
GEQE




P3, Pa3, flat fish)







AP00645
Ref, Pardaxin 5
GFFAFIPKIISSPLFKTLLSAVGSALSSS
1201



(Pardaxin P-5, Pardaxin
GDQE




P5, Pa5, flat fish)







AP00647
Ref, Brevinin-1PLb
FLPLIAGLAANFLPKIFCAITKKC
1202



(frog)







AP00648
Ref, Brevinin-1PLc
FLPVIAGVAAKFLPKIFCAITKKC
1203



(frog)







AP00649
Ref, Esculentin-1PLa
GLFPKINKKKAKTGVFNIIKTVGKEAG
1204



(frog)
MDLIRTGIDTIGCKIKGEC






AP00650
Ref, Esculentin-1PLb
GIFTKINKKKAKTGVFNIIKTIGKEAG
1205



(frog)
MDVIRAGIDTISCKIKGEC






AP00651
Ref, Esculentin-2PLa
GLFSILKGVGKIALKGLAKNMGKMGL
1206



(frog)
DLVSCKISKEC






AP00652
Ref, Ranatuerin-2PLa
GIMDTVKNVAKNLAGQLLDKLKCKIT
1207



(frog)
AC






AP00653
Ref, Ranatuerin-2PLb
GIMDTVKNAAKDLAGQLLDKLKCRIT
1208



(frog)
GC






AP00654
Ref, Ranatuerin-2PLc
GLLDTIKNTAKNLAVGLLDKIKCKMT
1209



(frog)
GC






AP00655
Ref, Ranatuerin-2PLd
GIMDSVKNVAKNIAGQLLDKLKCKIT
1210



(frog)
GC






AP00656
Ref, Ranatuerin-2PLe
GIMDSVKNAAKNLAGQLLDTIKCKIT
1211



(frog)
AC






AP00657
Ref, Ranatuerin-2PLf
GIMDTVKNAAKDLAGQLDKLKCRITGC
1212



(frog)







AP00658
Ref, Temporin-1PLa
FLPLVGKILSGLI
1213



(frog)







AP00659
Ref, Ranatuerin 5 (frog)
FLPIASLLGKYL
1214





AP00661
Ref, Esculentin-2L
GILSLFTGGIKALGKTLFKMAGKAGA
1215



(frog)
EHLACKATNQC






AP00662
Ref, Esculentin-2B
GLFSILRGAAKFASKGLGKDLTKLGV
1216



(ESC2B-RANBE, frog)
DLVACKISKQC






AP00663
Ref, Esculentin-2P
GFSSIFRGVAKFASKGLGKDLARLGV
1217



(frog)
NLVACKISKQC






AP00664
Ref, Peptide A1 (frog)
FLPAIAGILSQLF
1218





AP00665
Ref, Peptide B9 (frog)
FLPLIAGLIGKLF
1219





AP00666
Ref, PG-L (frog)
EGGGPQWAVGHFM
1220





AP00667
Ref, PG-KI (frog)
EPHPDEFVGLM
1221





AP00668
Ref, PG-KII (frog)
EPNPDEFVGLM
1222





AP00669
Ref, PG-KIII (frog)
EPHPNEFVGLM
1223





AP00670
Ref, PG-SPI (frog)
EPNPDEFFGLM
1224





AP00660
Ref, Pandinin 2 (African
FWGALAKGALKLIPSLFSSFSKKD
1225



scorpion)







AP00671
Ref, PG-SPII (frog)
EPNPNEFFGLM
1226





AP00673
Ref, Lantibiotic Ericin S
WKSESVCTPGCVTGVLQTCFLQTITC
1227



(bacteria
NCHISK






AP00674
Ref, Lantibiotic Ericin
VLSKSLCTPGCITGPLQTCYLCFPTFA
1228



A (bacteria
KC






AP00675
Ref, Human beta
FELDRICGYGTARCRKKCRSQEYRIGR
1229



defensin 4 (HBD-4,
CPNTYACCLRKWDESLLNRTKP




HBD4, human defensin)







AP00676
Ref, RL-37 (RL37,
RLGNFFRKVKEKIGGGLKKVGQKIKD
1230



monkey cathelicidin)
FLGNLVPRTAS






AP00677
Ref, CAP11 (Guinea pig
GLRKKFRKTRKRIQKLGRKIGKTGRK
1231



cathelicidin)
VWKAWREYGQIPYPCRI






AP00678
Ref, Canine cathelicidin
RLKELITTGGQKIGEKIRRIGQRIKDFF
1232



(K9CATH) (dog)
KNLQPREEKS






AP00679
Ref, Esculentin 2VEb
GLFSILKGVGKIAIKGLGKNLGKMGL
1233



(frog)
DLVSCKISKEC






AP00680
Ref, SMAP-34 (sheep
GLFGRLRDSLQRGGQKILEKAERIWC
1234



cathelicidin)
KIKDIFR






AP00681
Ref, OaBac5 (sheep
RFRPPIRRPPIRPPFRPPFRPPVRPPIRPP
1235



cathelicidin)
FRPPFRPPIGPFP






AP00682
Ref, OaBac6 (sheep
RRLRPRHQHFPSERPWPKPLPLPLPRP
1236



cathelicidin)
GPRPWPKPLPLPLPRPGLRPWPKPL






AP00683
Ref, OaBac7.5 (sheep
RRLRPRRPRLPRPRPRPRPRPRSLPLPR
1237



cathelicidin)
PQPRRIPRPILLPWRPPRPIPRPQIQPIPR





WL






AP00684
Ref, OaBac11 (sheep
RRLRPRRPRLPRPRPRPRPRPRSLPLPR
1238



cathelicidin)
PKPRPIPRPLPLPRPRPKPIPRPLPLPRP





RPRRIPRPLPLPRPRPRPIPRPLPLPQPQ





PSPIPRPL






AP00685
Ref, Ranatuerin 2VEb
GIMDTVKGVAKTVAASLLDKLKCKIT
1239



(frog)
GC






AP00686
Ref, eCATH-1 (horse
KRFGRLAKSFLRMRILLPRRKILLAS
1240



cathelicidin)







AP00687
Ref, eCATH-2 (horse
KRRHWFPLSFQEFLEQLRRFRDQLPFP
1241



cathelicidin)







AP00688
Ref, eCATH-3 (horse
KRFHSVGSLIQRHQQMIRDKSEATRH
1242



cathelicidin)
GIRIITRPKLLLAS






AP00689
Ref, Prophenin-1 (pig
AFPPPNVPGPRFPPPNFPGPRFPPPNFP
1243



cathelicidin)
GPRFPPPNFPGPRFPPPNFPGPPFPPPIFP





GPWFPPPPPFRPPPFGPPRFP






AP00690
Ref, Prophenin-2 (pig
AFPPPNVPGPRFPPPNVPGPRFPPPNFP
1244



cathelicidin)
GPRFPPPNFPGPRFPPPNFPGPPFPPPIFP





GPWFPPPPPFRPPPFGPPRFP






AP00691
Ref, HFIAP-1 (hagfish
GFFKKAWRKVKHAGRRVLDTAKGV
1245



cathelicidin)
GRHYVNNWLNRYR






AP00692
Ref, HFIAP-3 (hagfish
GWFKKAWRKVKNAGRRVLKGVGIH
1246



cathelicidin)
YGVGLI






AP00693
Ref, Trout cath (fish
RICSRDKNCVSRPGVGSIIGRPGGGSLI
1247



cathelicidin)
GRPGGGSVIGRPGGGSPPGGGSFNDEF





IRDHSDGNRFA






AP00694
Ref, MRP (melittin-
AIGSILGALAKGLPTLISWIKNR
1248



related peptide)







AP00695
Ref, Temporin-1TGa
FLPILGKLLSGIL
1249



(frog)







AP00696
Ref, Dahlein 1.1 (frog)
GLFDIIKNIVSTL
1250





AP00697
Ref, Dahlein 1.2 (frog)
GLFDIIKNIFSGL
1251





AP00698
Ref, Dahlein 4.1 (frog)
GLWQLIKDKIKDAATGFVTGIQS
1252





AP00699
Ref, Dahlein 4.2 (frog)
GLWQFIKDKLKDAATGLVTGIQS
1253





AP00700
Ref, Dahlein 4.3 (frog)
GLWQFIKDKFKDAATGLVTGIQS
1254





AP00701
Ref, Dahlein 5.1 (frog)
GLLGSIGNAIGAFIANKLKP
1255





AP00702
Ref, Dahlein 5.2 (frog)
GLLGSIGNAIGAFIANKLKPK
1256





AP00703
Ref, Dahlein 5.3 (frog)
GLLASLGKVLGGYLAEKLKP
1257





AP00704
Ref, Dahlein 5.4 (frog)
GLLGSIGKVLGGYLAEKLKPK
1258





AP00705
Ref, Dahlein 5.5 (frog)
GLLASLGKVLGGYLAEKLKPK
1259





AP00706
Ref, Dahlein 5.6 (frog)
GLLASLGKVFGGYLAEKLKPK
1260





AP00709
Ref, Mytilus defensin
GFGCPNDYPCHRHCKSIPGRAGGYCG
1261



(mytilin) A (mollusc)
GAHRLRCTCYR






AP00711
Ref, Mussel defensin
GFGCPNNYACHQHCKSIRGYCGGYC
1262



MGD2
AGWFRLRCTCYRCG






AP00712
Ref, scorpion defensin
GFGCPLNQGACHRHCRSIRRRGGYCA
1263




GFFKQTCCYRN






AP00713
Ref, Androctonus
GFGCPFNQGACHRHCRSIRRRGGYCA
1264



defensin
GLFKQTCTCYR






AP00714
Ref, Orinthodoros
GYGCPFNQYQCHSHCSGIRGYKGGYC
1265



defensin A (soft ticks)
KGTFKQTCKCY






AP00715
Ref, VaD1 (plant
RTCMKKEGWGKCLIDTTCAHSCKNR
1266



defensin)
GYIGGNCKGMTRTCYCLVNC






AP00722
Ref, Cryptonin (insect,
GLLNGLALRLGKRALKKIIKRLCR
1267



cicada)







AP00723
Ref, Decoralin (insect)
SLLSLLRKLIT
1268





AP00724
Ref, RTD-2 (rhesus
RCLCRRGVCRCLCRRGVC
1269



theta-defensin-2,





minidefensin, XXC,





BBS, lectin, ZZHa)







AP00725
Ref, RTD-3 (rhesus
RCICTRGFCRCICTRGFC
1270



theta-defensin-3,





minidefensin, XXC,





BBS, lectin, ZZHa)







AP00726
Ref, Combi-1
RRWWRF
1271



(synthetic)







AP00748
Ref, Gm pro-rich pept1
DIQIPGIKKPTHRDIIIPNWNPNVRTQP
1272



(insect)
WQRFGGNKS






AP00749
Ref, Gm anionic pept 1
EADEPLWLYKGDNIERAPTTADHPILP
1273



(insect)
SIIDDVKLDPNRRYA






AP00750
Ref, Gm pro-rich pept 2
EIRLPEPFRFPSPTVPKPIDIDPILPHPWS
1274



(insect)
PRQTYPIIARRS






AP00752
Ref, Gm defensin-like
DKLIGSCVWGATNYTSDCNAECKRR
1275



peptide (insect)
GYKGGHCGSFWNVNCWCEE






AP00753
Ref, Gm
VQETQKLAKTVGANLEETNKKLAPQI
1276



apolipophoricin (insect)
KSAYDDFVKQAQEVQKKLHEAASKQ






AP00754
Ref, Gm anionic pept2
ETESTPDYLKNIQQQLEEYTKNFNTQV
1277



(insect)
QNAFDSDKIKSEVNNFIESLGKILNTE





KKEAPK






AP00755
Ref, Gm cecropin D-
ENFFKEIERAGQRIRDAIISAAPAVETL
1278



like pept, insect
AQAQKIIKGGD






AP00756
Ref, Dermaseptin-B6
ALWKDILKNAGKAALNEINQLVNQ
1279



(DRS-B6, DRS B6,





XXA, frog)







AP00759
Ref, Phylloseptin-O1
FLSLIPHAINAVSTLVHHSG
1280



(PLS-O1, Phylloseptin-





4, PS-4, XXA, frog)







AP00760
Ref, Phylloseptin-O2
FLSLIPHAINAVSAIAKHS
1281



(PLS-O2, Phylloseptin-





5, PS-5, XXA, frog)







AP00761
Ref, Phylloseptin-6
SLIPHAINAVSAIAKHF
1282



(Phylloseptin-H4, PLS-





H4, PS-6, XXA, frog)







AP00762
Ref, Phylloseptin-7
FLSLIPHAINAVSAIAKHF
1283



(Phylloseptin-H5, PLS-





H5, PS-7, XXA, frog)







AP00763
Ref, Dermaseptin DPh-1
GLWSTIKNVGKEAAIAAGKAALGAL
1284



(XXA, frog)







AP00764
Ref, Dermaseptin-S9
GLRSKIWLWVLLMIWQESNKFKKM
1285



(DRS-S9, DRS S9, frog)







AP00765
Ref, Human salvic
MHDFWVLWVLLEYIYNSACSVLSATS
1286




SVSSRVLNRSLQVKVVKITN






AP00766
Ref, Gassericin A
IYWIADQFGIHLATGTARKLLDAMAS
1287



(XXC, XXD2, class IV
GASLGTAFAAILGVTLPAWALAAAGA




bacteriocin, Gram-
LGATAA




positive bacteria)







AP00767
Ref, Circularin A (XXC,
VAGALGVQTAAATTIVNVILNAGTLV
1288



class IV bacteriocin,
TVLGIIASIASGGAGTLMTIGWATFKA




Gram-positive bacteria)
TVQKLAKQSMARAIAY






AP00768
Ref, Closticin 574
PNWTKIGKCAGSIAWAIGSGLFGGAK
1289



(bacteria)
LIKIKKYIAELGGLQKAAKLLVGATT





WEEKLHAGGYALINLAAELTGVAGIQ





ANCF






AP00769
Ref, Caerin 1.11 (XXA,
GLLGAMFKVASKVLPHVVPAITEHF
1290



frog)







AP00770
Ref, Maculatin 1.4
GLLGLLGSVVSHVLPAITQHL
1291



(XXA, frog)







AP00771
Ref, Magainin 1 (frog)
GIGKFLHSAGKFGKAFVGEIMKS
1292





AP00772
Ref, Oxyopinin 1
FRGLAKLLKIGLKSFARVLKKVLPKA
1293



(spider)
AKAGKALAKSMADENAIRQQNQ






AP00773
Ref, Oxyopinin 2a
GKFSVFGKILRSIAKVFKGVGKVRKQF
1294



(spider)
KTASDLDKNQ






AP00774
Ref, Oxyopinin 2b
GKFSGFAKILKSIAKFFKGVGKVRKGF
1295



(spider)
KEASDLDKNQ






AP00775
Ref, Oxyopinin 2c
GKLSGISKVLRAIAKFFKGVGKARKQ
1296



(spider)
FKEASDLDKNQ






AP00776
Ref, Oxyopinin 2d
GKFSVFSKILRSIAKVFKGVGKVRKGF
1297



(spider)
KTASDLDKNQ






AP00777
Ref, NRC-1 (XXA, fish,
GKGRWLERIGKAGGIIIGGALDHL
1298



gene predicted)







AP00778
Ref, NRC-2 (XXA, fish,
WLRRIGKGVKIIGGAALDHL
1299



gene predicted)







AP00779
Ref, NRC-3 (XXA, fish,
GRRKRKWLRRIGKGVKIIGGAALDHL
1300



gene predicted)







AP00781
Ref, NRC-5 (XXA, fish,
FLGALIKGAIHGGRFIHGMIQNHH
1301



gene predicted)







AP00782
Ref, NRC-6 (XXA, fish,
GWGSIFKHGRHAAKHIGHAAVNHYL
1302



gene predicted)







AP00783
Ref, NRC-7 (XXA, fish,
RWGKWFKKATHVGKHVGKAALTAYL
1303



gene predicted)







AP00784
Ref, NRC-10 (XXA,
FFRLLFHGVHHVGKIKPRA
1304



fish, gene predicted)







AP00785
Ref, NRC-11 (XXA,
GWKSVFRKAKKVGKTVGGLALDHYL
1305



fish, gene predicted)







AP00786
Ref, NRC-12 (XXA,
GWKKWFNRAKKVGKTVGGLAVDHYL
1306



fish, gene predicted)







AP00787
Ref, NRC-13 (XXA,
GWRLLLKKAEVKTVGKLALKHYL
1307



fish, gene predicted)







AP00788
Ref, NRC-14 (XXA,
AGWGSIFKHIFKAGKFIHGAIQAHND
1308



fish, gene predicted)







AP00789
Ref, NRC-15 (XXA,
GFWGKLFKLGLHGIGLLHLHL
1309



fish, gene predicted)







AP00790
Ref, NRC-16 (XXA,
GWKKWLRKGAKHLGQAAIK
1310



fish, gene predicted)







AP00791
Ref, NRC-17 (XXA,
GWKKWLRKGAKHLGQAAIKGLAS
1311



fish, gene predicted)







AP00792
Ref, NRC-19 (XXA,
FLGLLFHGVHHVGKWIHGLIHGHH
1312



fish, gene predicted)







AP00793
Ref, Bombinin H2
IIGPVLGLVGSALGGLLKKI
1313



(XXA, frog)







AP00794
Ref, Bombinin H3 (frog,
IIGPVLGMVGSALGGLLKKI
1314



XXD, XXA)







AP00795
Ref, Bombinin H7 (frog,
ILGPILGLVSNALGGLL
1315



XXD, XXA)







AP00796
Ref, Bombinin GH-1L
IIGPVLGLVGKPLESLLE
1316



(XXA, toad)







AP00797
Ref, Bombinin GH-1D
IIGPVLGLVGKPLESLLE
1317



(toad, XXD, XXA)







AP00807
Ref, Enterocin E-760
NRWYCNSAAGGVGGAAGCVLAGYV
1318



(bacteriocin, bacteria)
GEAKENIAGEVRKGWGMAGGFTHNK





ACKSFPGSGWASG






AP00808
Ref, hepcidin (fish)
CRFCCRCCPRMRGCGLCCRF
1319





AP00809
Ref, hepcidin TH1-5
GIKCRFCCGCCTPGICGVCCRF
1320



(fish)







AP00810
Ref, hepcidin TH2-3
QSHLSLCRWCCNCCRSNKGC
1321



(fish)







AP00811
Ref, human LEAP-2
MTPFWRGVSLRPIGASCRDDSECITRL
1322




CRKRRCSLSVAQE






AP00812
Ref, Enkelytin (cow)
FAEPLPSEEEGESYSKEPPEMEKRYGG
1323




FM






AP00732
Ref, Spheniscin-1
SFGLCRLRRGSCAHGRCRFPSIPIGRCS
1324



(Sphe-1, avian defensin)
RFVQCCRRVW






AP00733
Ref, Organgutan
LLGDFFRKAREKIGEEFKRIVQRIKDFL
1325



ppyLL-37 (Great Ape,
RNLVPRTES




primate cathelicidin)







AP00734
Ref, Gibbon hmdSL-37
SLGNFFRKARKKIGEEFKRIVQRIKDF
1326



(hylobatidae, primate
LQHLIPRTEA




cathelicidin)







AP00735
Ref, pobRL-37
RLGNFFRKAKKKIGRGLKKIGQKIKDF
1327



(cercopithecidae,
LGNLVPRTES




primate cathelicidin)







AP00736
Ref, cjaRL-37 (primate
RLGDILQKAREKIEGGLKKLVQKIKDF
1328



cathelicidin)
FGKFAPRTES






AP00737
Ref, Plasticin PBN2KF
GLVTSLIKGAGKLLGGLFGSVTG
1329



(XXA, DRP-PBN2,





frog)







AP00738
Ref, Plasticin ANCKF
GLVTGLLKTAGKLLGDLFGSLTG
1330



(XXA, synthetic)







AP00739
Ref, Plasticin PD36KF
GVVTDLLKTAGKLLGNLFGSLSG
1331



(XXA, synthetic)







AP00740
Ref, Plasticin PD36K
GVVTDLLKTAGKLLGNLVGSLSG
1332



(XXA, synthetic)







AP00741
Ref, Chicken
PITYLDAILAAVRLLNQRISGPCILRLR
1333



cathelicidin-B1 (bird
EAQPRPGWVGTLQRRREVSFLVEDGP




cathelicidin)
CPPGVDCRSCEPGALQHCVGTVSIEQ





QPTAELRCRPLRPQ






AP00742
Ref, Chicken gallinacin
MRILYLLLSVLFVVLQGVAGQPYFSSP
1334



4 (Gal 4)
IHACRYQRGVCIPGPCRWPYYRVGSC





GSGLKSCCVRNRWA






AP00743
Ref, Chicken gallinacin
MKILCFFIVLFVAVHGAVGFSRSPRYH
1335



7 (Gal 7)
MQCGYRGTFCTPGKCPYGNAYLGLC





RPKYSCCRWL






AP00744
Ref, Chicken gallinacin
MQILPLLFAVLLLMLRAEPGLSLARGL
1336



9 (Gal 9)
PQDCERRGGFCSHKSCPPGIGRIGLCS





KEDFCCRSRWYS






AP00745
Ref, Chicken LEAP-2
MTPFWRGVSLRPVGASCRDNSECITM
1337



(cLEAP-2)
LCRKNRCFLRTASE






AP00814
Ref, Caerulein
GLGSILGKILNVAGKVGKTIGKVADA
1338



precursor-related
VGNKE




fragment Ea (CPRF-Ea,





frog)







AP00815
Ref, Caerulein
GLGSFLKNAIKIAGKVGSTIGKVADAI
1339



precursor-related
GNKE




fragment Eb (CPRF-Eb,





frog)







AP00816
Ref, Caerulein
GLGSFFKNAIKIAGKVGSTIGKVADAI
1340



precursor-related
GNKE




fragment Ec (CPRF-Ec,





frog)







AP00817
Ref, Temporin-1Oa
FLPLLASLFSRLL
1341



(frog)







AP00818
Ref, Temporin-1Ob
FLPLIGKILGTIL
1342



(frog)







AP00819
Ref, Temporin-1Oc
FLPLLASLFSRLF
1343



(frog)







AP00820
Ref, Temporin-1Od
FLPLLASLFSGLF
1344



(frog)







AP00821
Ref, Brevinin-20a (frog)
GLFNVFKGLKTAGKHVAGSLLNQLK
1345




CKVSGGC






AP00822
Ref, Brevinin-20b (frog)
GIFNVFKGALKTAGKHVAGSLLNQLK
1346




CKVSGEC






AP00824
Ref, Temporin-1Gb
SILPTIVSFLSKFL
1347



(XXA, frog)







AP00825
Ref, Temporin-1Gc
SILPTIVSFLTKFL
1348



(XXA, frog)







AP00826
Ref, Temporin-1Gd
FILPLIASFLSKFL
1349



(XXA, frog)







AP00827
Ref, Ranatuerin-1Ga
SMISVLKNLGKVGLGFVACKVNKQC
1350



(frog)







AP00829
Ref, Ranalexin-1G
FLGGLMKIIPAAFCAVTKKC
1351



(frog)







AP00830
Ref, Ranatuerin-2G
GLLLDTLKGAAKDIAGIALEKLKCKIT
1352



(frog)
GCKP






AP00831
Ref, Odorranain-NR
GLLSGILGAGKHIVCGLTGCAKA
1353



(frog)







AP00832
Ref, Maximin H1
ILGPVISTIGGVLGGLLKNL
1354



(XXA, toad)







AP00834
Ref, G. mellonella
KVNANAIKKGGKAIGKGFKVISAAST
1355



moricin-like peptide A
AHDVYEHIKNRRH




(Gm-mlpA, insect)







AP00835
Ref, G. mellonella
GKIPVKAIKKGGQIIGKALRGINIASTA
1356



moricin-like peptide B
HDIISQFKPKKKKNH




(Gm-mlpB, insect)







AP00836
Ref, G. mellonella
KVPIGAIKKGGKIIKKGLGVIGAAGTA
1357



moricin-like peptide C1
HEVYSHVKNRH




(Gm-mlpC1, insect)







AP00837
Ref, G. mellonella
KVPIGAIKKGGKIIKKGLGVLGAAGTA
1358



moricin-like peptide C2
HEVYNHVRNRQ




(Gm-mlpC2, insect)







AP00838
Ref, G. mellonella
KVPIGAIKKGGKIIKKGLGVIGAAGTA
1359



moricin-like peptide C3
HEVYSHVKNRQ




(Gm-mlpC3, insect)







AP00839
Ref, G. mellonella
KVPVGAIKKGGKAIKTGLGVVGAAGT
1360



moricin-like peptide
AHEVYSHIRNRH




C4/C5 (Gm-mlpC4/C5,





insect)







AP00840
Ref, G. mellonella
KGIGSALKKGGKIIKGGLGALGAIGTG
1361



moricin-like peptide D
QQVYEHVQNRQ




(Gm-mlpD, insect)







AP00841
Ref, Enterocin A (EntA,
TTHSGKYYGNGVYCTKNKCTVDWAK
1362



class IIA bacteriocin,
ATTCIAGMSIGGFLGGAIPGKC




i.e. pediocin-like





peptide, bacteria)







AP00842
Ref, Divercin V41
TKYYGNGVYCNSKKCWVDWGQASG
1363



(DvnV41, class IIa
CIGQTVVGGWLGGAIPGKC




bacteriocin, pediocin-





like peptide, bacteria.





DvnRV41 is the





recombinant form)







AP00843
Ref, Divergicin M35
TKYYGNGVYCNSKKCWVDWGTAQG
1364



(class IIa bacteriocin,
CIDVVIGQLGGGIPGKGKC




pediocin-like peptide,





bacteria)







AP00844
Ref, Coagulin
KYYGNGVTCGKHSCSVDWGKATTCII
1365



(bacteriocin, pediocin-
NNGAMAWATGGHQGTHKC




like peptide, bacteria)







AP00845
Ref, Listeriocin 743A
KSYGNGVHCNKKKCWVDWGSAISTI
1366



(class IIa bacteriocin,
GNNSAANWATGGAAGWKS




pediocin-like peptide,





bacteria)







AP00846
Ref, Mundticin KS
KYYGNGVSCNKKGCSVDWGKAIGIIG
1367



(enterocin CRL35,
NNSAANLATGGAAGWKS




mundticin ATO6,





mundticin QU2, class





IIa bacteriocin,





pediocin-like peptide,





bacteria)







AP00847
Ref, Sakacin 5X
KYYGNGLSCNKSGCSVDWSKAISIIGN
1368



(Sak5X, class IIa
NAVANLTTGGAAGWKS




bacteriocin, pediocin-





like peptide, bacteria)







AP00848
Ref, Leucocin C (class
KNYGNGVHCTKKGCSVDWGYAWAN
1369



IIa bacteriocin,
IANNSVMNGLTGGNAGWHN




pediocin-like peptide,





bacteria)







AP00849
Ref, Lactococcin
TSYGNGVHCNKSKCWIDVSELETYKA
1370



MMFII (class IIa
GTVSNPKDILW




bacteriocin, pediocin-





like peptide, bacteria)







AP00850
Ref, Sakacin G (SakG,
KYYGNGVSCNSHGCSVNWGQAWTC
1371



class IIa bacteriocin,
GVNHLANGGHGVC




pediocin-like peptide,





bacteria)







AP00851
Ref, Plantaricin 423
KYYGNGVTCGKHSCSVNWGQAFSCS
1372



(class IIa bacteriocin,
VSHLANFGHGKC




pediocin-like peptide,





bacteria)







AP00852
Ref, Plantaricin C19
KYYGNGLSCSKKGCTVNWGQAFSCG
1373



(class IIa bacteriocin,
VNRVATAGHHKC




pediocin-like peptide,





bacteria)







AP00853
Ref, Enterocin P (EntP,
ATRSYGNGVYCNNSKCWVNWGEAK
1374



class IIa bacteriocin,
ENIAGIVISGWASGLAGMGH




pediocin-like peptide,





bacteria)







AP00854
Ref, Bacteriocin 31
ATYYGNGLYCNKQKCWVDWNKASR
1375



(Bac 31, Bac31, class
EIGKIIVNGWVQHGPWAPR




IIa bacteriocin,





pediocin-like peptide,





bacteria)







AP00855
Ref, MSI-78 (XXA,
GIGKFLKKAKKFGKAFVKILKK
1376



synthetic)







AP00856
Ref, MSI-594 (XXA,
GIGKFLKKAKKGIGAVLKVLTTGL
1377



synthetic)







AP00857
Ref, Catestatin (human
SSMKLSFRARAYGFRGPGPQL
1378



CHGA(352-372),





human Cst)







AP00858
Ref, Temporin D (XXA,
LLPIVGNLLNSLL
1379



frog)







AP00859
Ref, Temporin H (XXA,
LSPNLLKSLL
1380



frog)







AP00861
Ref, Brevinin-ALb
FLPLAVSLAANFLPKLFCKITKKC
1381



(frog)







AP00862
Ref, Brevinin 1E (frog)
FLPLLAGLAANFLPKIFCKITKRC
1382





AP00863
Ref, Temporin-ALa
FLPIVGKLLSGLSGLL
1383



(XXA, frog)







AP00864
Ref, Temporin 1ARa
FLPIVGRLISGLL
1384



(XXA, frog)







AP00865
Ref, Temporin 1AUa
FLPIIGQLLSGLL
1385



(XXA, Temporin-





1AUa) (frog)







AP00866
Ref, Temporin 1Bya
FLPIIAKVLSGLL
1386



(XXA, Temporin-1Bya,





frog)







AP00867
Ref, Temporin 1Ec
FLPVIAGLLSKLF
1387



(XXA, frog)







AP00869
Ref, Temporin 1Ja
ILPLVGNLLNDLL
1388



(XXA, Temporin-1Ja,





frog)







AP00873
Ref, Temporin 1Pra
ILPILGNLLNGLL
1389



(XXA, frog)







AP00874
Ref, Temporin 1VE
FLPLVGKILSGLI
1390



(XXA, frog)







AP00875
Ref, Temporin 1Va
FLSSIGKILGNLL
1391



(XXA, frog)







AP00876
Ref, Temporin 1Vb
FLSIIAKVLGSLF
1392



(XXA, frog)







AP00877
Ref, Brevinin-1Ja (frog)
FLGSLIGAAIPAIKQLLGLKK
1393





AP00878
Ref, Brevinin-1BYa
FLPILASLAAKFGPKLFCLVTKKC
1394



(frog)







AP00884
Ref, Ixosin-B (tick)
QLKVDLWGTRSGIQPEQHSSGKSDVR
1395




RWRSRY






AP00885
Ref, Brevinin-1BYb
FLPILASLAAKLGPKLFCLVTKKC
1396



(frog)







AP00886
Ref, Brevinin-1BYc
FLPILASLAATLGPKLLCLITKKC
1397



(frog)







AP00887
Ref, Brevinin-2BYa
GILSTFKGLAKGVAKDLAGNLLDKFK
1398



(frog)
CKITGC






AP00888
Ref, Brevinin-2BYb
GIMDSVKGLAKNLAGKLLDSLKCKIT
1399



(frog)
GC






AP00891
Ref, Pilosulin 3 (Myr b
IIGLVSKGTCVLVKTVCKKVLKQG
1400



III)(ants)







AP00892
Ref, Pilosulin 4 (Myr b
PDITKLNIKKLTKATCKVISKGASMCK
1401



IV)(ants)
VLFDKKKQE






AP00893
Ref, Pilosulin 5 (Myr b
DVKGMKKAIKGILDCVIEKGYDKLAA
1402



III)(ants)
KLKKVIQQLWE






AP00894
Ref, Ocellatin 4 (XXA,
GLLDFVTGVGKDIFAQLIKQI
1403



frog)







AP00895
Ref, OH-CATH (snake
KRFKKFFKKLKNSVKKRAKKFFKKPR
1404



cathelicidin, reptile
VIGVSIPF




cathelicidin, or elapid





cathelicidins)







AP00896
Ref, BF-CATH (snake
KRFKKFFKKLKKSVKKRAKKFFKKPR
1405



cathelicidin)
VIGVSIPF






AP00897
Ref, NA-CATH (snake
KRFKKFFKKLKNSVKKRAKKFFKKPK
1406



cathelicidin)
VIGVTFPF






AP00898
Ref, Temporin-1Sa
FLSGIVGMLGKLF
1407



(XXA, frog)







AP00899
Ref, Temporin-1Sb
FLPIVTNLLSGLL
1408



(XXA, frog)







AP00900
Ref, Temporin-1Sc
FLSHIAGFLSNLF
1409



(XXA, frog)







AP00913
Ref, Ib-AMP1
EWGRRCCGWGPGRRYCVRWC
1410



(IbAMP1, plant





defensin)







AP00914
Ref, Ib-AMP2
QYGRRCCNWGPGRRYCKRWC
1411



(IBAMP2, plant





defensin)







AP00915
Ref, Ee-CBP (EeCBP,
QQCGRQAGNRRCANNLCCSQYGYCG
1412



plant defensin, hevein-
RTNEYCCTSQGCQSQCRRCG




type, E. europaeus





chitin-binding protein)







AP00916
Ref, Pa-AMP1
AGCIKNGGRCNASAGPPYCCSSYCFQI
1413



(PaAMP1, plant
AGQSYGVCKNR




defensin, C6 type)







AP00917
Ref, Pa-AMP2
ACIKNGGRCVASGGPPYCCSNYCLQI
1414



(PaAMP2, plant
AGQSYGVCKKH




defensin, C6 type)







AP00924
Ref, Ornithodoros
GYGCPFNQYQCHSHCRGIRGYKGGY
1415



defensin B (soft ticks)
CTGRFKQTCKCY






AP00925
Ref, Ornithodoros
GYGCPFNQYQCHSHCSGIRGYKGGYC
1416



defensin C (soft ticks)
KGLFKQTCNCY






AP00926
Ref, Ornithodoros
GFGCPFNQYECHAHCSGVPGYKGGY
1417



defensin D (soft ticks)
CKGLFKQTCNCY






AP00927
Ref, Butyrivibriocin
IYFIADKMGIQLAPAWYQDIVNWVSA
1418



AR10 (XXC, class IV
GGTLTTGFAIIVGVTVPAWIAEAAAAF




bacteriocin, gram-
GIASA




positive bacteria)







AP00929
Ref, AS-48 (enterocin 4,
ASLQFLPIAHMAKEFGIPAAVAGTVIN
1419



XXC, class IV
VVEAGGWVTTIVSILTAVGSGGLSLLA




bacteriocin or class IId
AAGRESIKAYLKKEIKKKGKRAVIAW




bacteriocin, Gram-





positive bacteria)







AP00930
Ref, Reutericin 6 (XXC,
IYWIADQFGIHLATGTARKLLDAMAS
1420



XXD1, class IV
GASLGTAFAAILGVTLPAWALAAAGA




bacteriocin, Gram-
LGATAA




positive bacteria)







AP00931
Ref, Uberolysin (XXC,
LAGYTGIASGTAKKVVDAIDKGAAAF
1421



class IV bacteriocin,
VIISIISTVISAGALGAVSASADFIILTVK




Gram-positive bacteria)
NYISRNLKAQAVIW






AP00932
Ref, Acidocin B (XXC,
IYWIADQFGIHLATGTARKLLDAVAS
1422



class IV bacteriocin,
GASLGTAFAAILGVTLPAWALAAAGA




Gram-positive bacteria)
LGATAA






AP00980
Ref, Phormia defensin B
ATCDLLSGTGINHSACAAHCLLRGNR
1423



(insect defensin B)
GGYCNRKGVCVCRN






AP00990
Ref, Pth-St1 (plant
RNCESLSHRFKGPCTRDSN
1424



defensin)







AP00991
Ref, Snakin-1 (StSN1,
GSNFCDSKCKLRCSKAGLADRCLKYC
1425



plant defensin)
GICCEECKCVPSGTYGNKHECPCYRD





KKNSKGKSKCP






AP00992
Ref, Snakin-2 (StSN2,
YSYKKIDCGGACAARCRLSSRPRLCN
1426



plant defensin)
RACGTCCARCNCVPPGTSGNTETCPC





YASLTTHGNKRKCP






AP00993
Ref, So-D2 (S. oleracea
GIFSSRKCKTPSKTFKGICTRDSNCDTS
1427



defensin D2, plant
CRYEGYPAGDCKGIRRRCMCSKPC




defensin)







AP00994
Ref, So-D6 (S. oleracea
GIFSNMYARTPAGYFRGP
1428



defensin D6, plant





defensin)







AP00997
Ref, Nisin Q
ITSISLCTPGCKTGVLMGCNLKTATCN
1429



(lantibiotic,
CSVHVSK




bacteriocins, bacteria)







AP01008
Ref, Tachystatin A1
YSRCQLQGFNCVVRSYGLPTIPCCRGL
1430



(BBS, horseshoe crabs)
TCRSYFPGSTYGRCQRF






AP01009
Ref, Tachystatin C
DYDWSLRGPPKCATYGQKCRTWSPR
1431



(BBS, horseshoe crabs)
NCCWNLRCKAFRCRPR






AP01012
Ref, Latarcin 3a (Ltc3a,
SWKSMAKKLKEYMEKLKQRA
1432



XXA, BBM, spider)







AP01013
Ref, Latarcin 3b (Ltc3b,
SWASMAKKLKEYMEKLKQRA
1433



XXA, BBM, spider)







AP01014
Ref, Latarcin 4a (Ltc4a,
GLKDKFKSMGEKLKQYIQTWKAKF
1434



XXA, BBM, spider)







AP01015
Ref, Latarcin 4b (Ltc4b,
SLKDKVKSMGEKLKQYIQTWKAKF
1435



XXA, BBM, spider)







AP01016
Ref, Latarcin 5 (Ltc5,
GFFGKMKEYFKKFGASFKRRFANLKK
1436



XXA, BBM, spider)
RL






AP01018
Ref, Latarcin 6a (Ltc6a,
QAFQTFKPDWNKIRYDAMKMQTSLG
1437



BBM, spider)
QMKKRFNL






AP01019
Ref, Latarcin 7 (Ltc7,
GETFDKLKEKLKTFYQKLVEKAEDLK
1438



BBM, spider)
GDLKAKLS






AP01049
Ref, Kalata B2 (plant
VCGETCFGGTCNTPGCSCTWPICTRD
1439



cyclotides, XXC)
GLP






AP01141
Ref, Cryptdin-6 (Crp6,
LRDLVCYCRARGCKGRERMNGTCRK
1440



animal defensin, alpha,
GHLLYMLCCR




mouse)







AP01142
Ref, Rabbit kidney
KPYCSCKWRCGIGEEEKGICHKFPIVT
1441



defensin RK-2 (animal
YVCCRRP




defensin, alpha-





defensin)







AP01146
Ref, Gallinacin 6 (Gal6,
DTLACRQSHGSCSFVACRAPSVDIGTC
1442



Gal-6, avian beta
RGGKLKCCKWAPSS




defensin, bird)







AP01147
Ref, Gallinacin 8 (Gal8,
DTVACRIQGNFCRAGACPPTFTISGQC
1443



Gal-8, avian beta
HGGLLNCCAKIPAQ




defensin, bird)







AP01148
Ref, Gallinacin 3 (Gal3,
IATQCRIRGGFCRVGSCRFPHIAIGKCA
1444



Gal-3, avian beta
TFISCCGRAY




defensin, bird)







AP01152
Ref, Lactococcin Q
SIWGDIGQGVGKAAYWVGKAMGNM
1445



(class IIb bacteriocin,
SDVNQASRINRKKKH




bacteria, chain a. For





chain b, see Info)







AP01155
Ref, Enterocin 1071
ESVFSKIGNAVGPAAYWILKGLGNMS
1446



(Ent1071A, class IIb
DVNQADRINRKKH




bacteriocin, bacteria;





chain B is Enterocin





1071B or Ent1071B, see





info)







AP01156
Ref, Plantaricin S (chain
NKLAYNMGHYAGKATIFGLAAWALLA
1447



a, class IIb bacteriocin,





bacteria)







AP01159
Ref, Hinnavin II (Hin II,
KWKIFKKIEHMGQNIRDGLIKAGPAV
1448



XXA, insect)
QVVGQAATIYK






AP01160
Ref, NK-2 (synthetic,
KILRGLCKKIMRSFLRRISWDILTGKK
1449



XXA)







AP01167
Ref, Plantaricin NC8
LTTKLWSSWGYYLGKKARWNLKHPY
1450



(PLNC8, chain a, class
VQF




IIb bacteriocin, bacteria.





For chain b, see Info)







AP01168
Ref, Carnocyclin A (a
LVAYGIAQGTAEKVVSLINAGLTVGSI
1451



circular bacteriocin,
ISILGGVTVGLSGVFTAVKAAIAKQGI




XXC, bacteria)
KKAIQL






AP01169
Ref, Lactacin F (LafX,
NRWGDTVLSAASGAGTGIKACKSFGP
1452



class IIb bacteriocin,
WGMAICGVGGAAIGGYFGYTHN




bacteria. For LafA, see





Info)







AP01170
Ref, Brochocin C
YSSKDCLKDIGKGIGAGTVAGAAGGG
1453



(BrcC, chain BrcA,
LAAGLGAIPGAFVGAHFGVIGGSAACI




class IIb bacteriocin,
GGLLGN




bacteria. For BrcB, see





Info)







AP01171
Ref, Thermophilin 13
YSGKDCLKDMGGYALAGAGSGALW
1454



(chain a ThmA, 2-chain
GAPAGGVGALPGAFVGAHVGAIAGG




class IIb bacteriocin,
FACMGGMIGNKFN




bacteria. For chain B





ThmB, see Info)







AP01172
Ref, ABP-118 (chain a:
KRGPNCVGNFLGGLFAGAAAGVPLGP
1455



Abp118alpha, class IIb
AGIVGGANLGMVGGALTCL




bacteriocin, bacteria.





For chain b:





Abp118beta, see Info)







AP01173
Ref, Salivaricin P (chain
KRGPNCVGNFLGGLFAGAAAGVPLGP
1456



a: Sln1; class IIb
AGIVGGANLGMVGGALTCL




bacteriocin, bacteria.





For chain b: Sln2, see





Info)







AP01174
Ref, Mutacin IV (chain
KVSGGEAVAAIGICATASAAIGGLAG
1457



a: NlmA, class IIb
ATLVTPYCVGTWGLIRSH




bacteriocin, bacteria.





For chain b: NLmB, see





Info)







AP01175
Ref, Lactocin 705
GMSGYIQGIPDFLKGYLHGISAANKH
1458



(chain a: Lac705alpha;
KKGRLGY




class IIb bacteriocin,





bacteria. For chain b:





Lac705beta, see Info)







AP01176
Ref, Cytolysin (CylLS,
TTPACFTIGLGVGALFSAKFC
1459



bacteria; Chain B:





CylLL)







AP01177
Ref, Plantaricin EF
FNRGGYNFGKSVRHVVDAIGSVAGIL
1460



(chain a: PlnE, class IIb
KSIR




bacteriocin, bacteria.





Chain b: PlnF)







AP01178
Ref, Plantaricin JK
GAWKNFWSSLRKGFYDGEAGRAIRR
1461



(chain a: PlnJ; class IIb





bacteriocin, bacteria.





Chain b: PlnK)







AP01179
Ref, Enterocin SE-K4
NGVYCNKQKCWVDWSRARSEIIDRG
1462



(class IIa bacteriocin,
VKAYVNGFTKVLGGIGGR




bacteria)







AP01180
Ref, Acidocin J1132
NPKVAHCASQIGRSTAWGAVSGA
1463



(class IIb bacteriocin,





bacteria)







AP01181
Ref, Curvaticin L442
AYPGNGVHCGKYSCTVDKQTAIGNIG
1464



(class IIa bacteriocin,
NNAA




bacteria)







AP01182
Ref, Bacteriocin 32
FTPSVSFSQNGGVVEAAAQRGYIYKK
1465



(Bac 32, class IIa
YPKGAKVPNKVKMLVNIRGKQTMRT




bacteriocin, bacteria)
CYLMSWTASSRTAKYYYYI






AP01183
Ref, Bacteriocin 43
ATYYGNGLYCNKEKCWVDWNQAKG
1466



(Bac 43, bacteriocin,
EIGKIIVNGWVNHGPWAPRR




bacteria)







AP01184
Ref, Bacteriocin T8
ATYYGNGLYCNKEKCWVDWNQAKG
1467



(Bac T8, class IIa
EIGKIIVNGWVNHGPWAPRR




bacteriocin, bacteria)







AP01185
Ref, Enterocin B (EntB,
ENDHRMPNNLNRPNNLSKGGAKCGA
1468



bacteriocin, bacteria)
AIAGGLFGIPKGPLAWAAGLANVYSK





CN






AP01186
Ref, Acidocin A
KTYYGTNGVHCTKKSLWGKVRLKNV
1469



(bacteriocin, bacteria)
IPGTLCRKQSLPIKQDLKILLGWATGA





FGKTFH






AP01187
Ref, Enterocin Q (EntQ,
MNFLKNGIAKWMTGAELQAYKKKY
1470



class IIc bacteriocin,
GCLPWEKISC




leaderless, i.e. no signal





peptide, bacteria)







AP01188
Ref, Enterocin EJ97
MLAKIKAMIKKFPNPYTLAAKLTTYEI
1471



(EntEJ97, class IIc
NWYKQQYGRYPWERPVA




bacteriocin, leaderless,





i.e. no signal peptide,





bacteria)







AP01189
Ref, Enterocin RJ-11
APAGLVAKFGRPIVKKYYKQIMQFIG
1472



(EntRJ-11, class IIc
EGSAINKIIPWIARMWRT




bacteriocin, leaderless,





i.e. no signal sequence,





bacteria)







AP01190
Ref, Enterocin L50 (old
MGAIAKLVAKFGWPIVKKYYKQIMQ
1473



name: pediocin L50,
FIGEGWAINKIIEWIKKHI




EntL50A, a two-chain





class IIc bacteriocin,





leaderless, i.e. no signal





peptide, bacteria. The





sequence of EntL50B is





provided in Info)







AP01191
Ref, MR10 (MR10A,
MGAIAKLVAKFGWPIVKKYYKQIMQ
1474



class IIc bacteriocin,
FIGEGWAINKIIDWIKKHI




leaderless, i.e. no signal





peptide, bacteria. For





the sequence of chain b,





see Info)







AP01192
Ref, Halocin S8 (HalS8,
SDCNINSNTAADVILCFNQVGSCALCS
1475



microhalocin,
PTLVGGPVP




archaeocins, archeae)







AP01193
Ref, Halocin C8
DIDITGCSACKYAAGQVCTIGCSAAG
1476



(HalC8, microhalocins,
GFICGLLGITIPVAGLSCLGFVEIVCTV




archaeocins, archaea)
ADEYSGCGDAVAKEACNRAGLC






AP01194
Ref, Lacticin 3147
CSTNTFSLSDYWGNNGAWCTLTHEC
1477



(chain A1, a two-chain
MAWCK




lantibiotic, bacteriocin,





bacteria. The sequence





of chain A2 is given in





Info; XXD3)







AP01195
Ref, Salivaricin A
KRGSGWIATITDDCPNSVFVCC
1478



(SalA, lantibiotic,





bacteriocin, bacteria)







AP01196
Ref, Microcin E492
ATYYGNGLYCNKEKCWVDWNQAKG
1479



(MccE492, class IIb
EIGKIIVNGWVNHGPWAPRR




microcins, bacteriocin,





bacteria; BBM; u-





MccE492, siderophore





peptide, BBI, XXG)







AP01197
Ref, Hiracin JM79
ATYYGNGLYCNKEKCWVDWNQAKG
1480



(HirJM79, a Sec-
EIGKIIVNGWVNHGPWAPRR




dependent class II





bacteriocin, bacteria)







AP01198
Ref, Thermophilin 9
LSCDEGMLAVGGLGAVGGPWGAAV
1481



(BlpDst, class IIb
GVLVGAALYCF




bacteriocin, bacteria.





beta-chains: BlpUst,





BlpEst, BapFst)







AP01199
Ref, Penocin A (PenA,
KYYGNGVHCGKKTCYVDWGQATASI
1482



class IIa bacteriocin,
GKIIVNGWTQHGPWAHR




bacteria)







AP01200
Ref, Salivaricin B
GGGVIQTISHECRMNSWQFLFTCCS
1483



(SalB, lantibotic,





bacteriocin, bacteria)







AP01201
Ref, Lacticin 481
KGGSGVIHTISHECNMNSWQFVFTCCS
1484



(lantibiotic, class I





bacteriocin, bacteria)







AP01202
Ref, Bacteriocin J46
KGGSGVIHTISHEVIYNSWNFVFTCCS
1485



(BacJ46, bacteriocin,





bacteria)







AP01203
Ref, Nukacin A (NucA,
KKKSGVIPTVSHDCHMNSFQFVFTCCS
1486



Nukacin ISK-1,





NukISK-1, bacteriocin,





bacteria)







AP01204
Ref, Streptococcin A-
GKNGVFKTISHECHLNTWAFLATCCS
1487



FF22 (LANTIBIOTIC,





class I bacteriocin,





bacteria)







AP01210
Ref, Jelleine-I
PFKLSLHL
1488



(honeybees, insect,





XXA)







AP01211
Ref, Jelleine-II
TPFKLSLHL
1489



(honeybees, insect,





XXA)







AP01212
Ref, Jelleine-III
EPFKLSLHL
1490



(honeybees, insect,





XXA)







AP01213
Ref, Hymenoptaecin
EFRGSIVIQGTKEGKSRPSLDIDYKQR
1491



(honeybees, insect
VYDKNGMTGDAYGGLNIRPGQPSRQ




defensin, XXcooh)
HAGFEFGKEYKNGFIKGQSEVQRGPG





GRLSPYFGINGGFRF






AP01216
Ref, Ascaphin-1 (frog,
GFRDVLKGAAKAFVKTVAGHIAN
1492



XXA)







AP01218
Ref, Ascaphin-3 (frog)
GFRDVLKGAAKAFVKTVAGHIANI
1493





AP01220
Ref, Ascaphin-5 (frog)
GIKDWIKGAAKKLIKTVASNIANQ
1494





AP01222
Ref, Ascaphin-7 (frog)
GFKDWIKGAAKKLIKTVASSIANQ
1495





AP01223
Ref, Ascaphin-8 (frog,
GFKDLLKGAAKALVKTVLF
1496



XXA)







AP01226
Ref, Microcin C7
MRTGNAD
1497



(MccC7, microcin C51,





MccC51, class I





microcins, bacteriocins,





bacteria. Others: MccA;





XXamp; BBPe)







AP01227
Ref, Microcin B17
VGIGGGGGGGGGGSCGGQGGGCGGC
1498



(MccB17, class I
SNGCSGGNGGSGGSGSHI




microcins, bacteriocins,





Gram-negative bacteria;





BBPe)







AP01228
Ref, Microcin V (MccV,
ASGRDIAMAIGTLSGQFVAGGIGAAA
1499



(old name) Colicin V,
GGVAGGAIYDYASTHKPNPAMSPSGL




ColV; class II
GGTIKQKPEGIPSEAWNYAAGRLCNW




microcins, bacteriocins,
SPNNLSDVCL




Gram-negative bacteria)







AP01229
Ref, Microcin L (MccL,
GDVNWVDVGKTVATNGAGVIGGAFG
1500



class IIa microcins,
AGLCGPVCAGAFAVGSSAAVAALYD




bacteriocins, Gram-
AAGNSNSAKQKPEGLPPEAWNYAEG




negative bacteria)
RMCNWSPNNLSDVCL






AP01230
Ref, Microcin M
DGNDGQAELIAIGSLAGTFISPGFGSIA
1501



(MccM, class IIb
GAYIGDKVHSWATTATVSPSMSPSGI




microcins, bacteriocins,
GLSSQFGSGRGTSSASSSAGSGS




Gram-negative bacteria)







AP01231
Ref, Microcin H47
GGAPATSANAAGAAAIVGALAGIPGG
1502



(MccH47, class IIb
PLGVVVGAVSAGLTTGIGSTVGSGSA




microcins, bacteriocins,
SSSAGGGS




Gram-negative bacteria)







AP01232
Ref, Microcin I47
MNLNGLPASTNVIDLRGKDMGTYIDA
1503



(MccI47, class IIb
NGACWAPDTPSIIMYPGGSGPSYSMSS




microcins, bacteriocins,
STSSANSGS




Gram-negative bacteria)








Aibellin
*Ac U A U A U A Q U F U G U U P V U
1504




U E E





[NHC(CH2Ph)HCH2NHCH2CH2]OH







Alamethicin_F-30
*Ac U P U A U A Q U V U G L U P V U
1505




U E Q F OH







Alamethicin_F-50
*Ac U P U A U A Q U V U G L U P V U
1506




U Q Q F OH







Alamethicin_II
*Ac U P U A U U Q U V U G L U P V U
1507




U E Q F OH







Ampullosporin
*Ac W A U U L U Q U U U Q L U Q L
1508




OH







Ampullosporin_B
*Ac W A U U L U Q A U U Q L U Q L
1509




OH







Ampullosporin_C
*Ac W A U U L U Q U A U Q L U Q L
1510




OH







Ampullosporin_D
*Ac W A U U L U Q U U A Q L U Q L
1511




OH







Ampullosporin_E1
*Ac W A U U L U Q A U U Q L A Q L
1512




OH







Ampullosporin_E2
*Ac W A U U L U Q U A A Q L U Q L
1513




OH







Ampullosporin_E3
*Ac W A U U L U Q U U A Q L A Q L
1514




OH







Ampullosporin_E4
*Ac W A U U L U Q A A U Q L U Q L
1515




OH







Antiamoebin_I
*Ac F U U U J G L U U O Q J O U P F
1516




OH







Antiamoebin_II
*Ac F U U U J G L U U O Q J P U P F
1517




OH







Antiamoebin_III
*Ac F U U U U G L U U O Q J O U P F
1518




OH







Antiamoebin_IV
*Ac F U U U J G L U U O Q J O U P F
1519




OH







Antiamoebin_V
*Ac F U U U J A L U U O Q J O U P F
1520




OH







Antiamoebin_VI
*Ac F U U U U G L U U O Q U O U P F
1521




OH







Antiamoebin_VII
*Ac F A U J U G L U U O Q J O U P F
1522




OH







Antiamoebin_VIII
*Ac F U U U J G L U U O Q U O U P F
1523




OH







Antiamoebin_IX
*Ac F U A U J G L U U O Q J O U P F
1524




OH







Antiamoebin_X
*Ac F U U U J G L J U O Q U O U P F
1525




OH







Antiamoebin_XI
*Ac F U U U U A L U U O Q J O U P F
1526




OH







Antiamoebin_XII
*Ac F U U U U G L A U O Q J O U P F
1527




OH







Antiamoebin_XIII
*Ac V U U U U G L U U O Q J O U P F
1528




OH







Antiamoebin_XIV
*Ac V U U U V G L U U O Q J O U P F
1529




OH







Antiamoebin_XV
*Ac L U U U U G L U U O Q J O U P F
1530




OH







Antiamoebin_XVI
*Ac L U U U J G L U U O Q J O U P F
1531




OH







Atroviridin_A
*Ac U P U A U A Q U V U G L U P V U
1532




U Q Q F OH







Atroviridin_B
*Ac U P U A U A Q U V U G L U P V U
1533




J Q Q F OH







Atroviridin_C
*Ac U P U A U U Q U V U G L U P V U
1534




J Q Q F OH







Bergofungin_A
*Ac V U U U V G L U U O Q J O U F
1535




OH







Bergofungin_B
*Ac V U U U V G L V U O Q U O U F
1536




OH







Bergofungin_C
*Ac V U U U V G L U U O Q U O U F
1537




OH







Bergofungin_D
*Ac V U U V G L U U O Q U O U F OH
1538






Boletusin
*Ac F U A U J L Q G U U A A U P U U 
1539




U Q W OH







Cephaibol_A
*Ac F U U U U G L J U O Q J O U P F
1540




OH







Cephaibol_A2
*Ac F U U U U A L J U O Q J O U P F
1541




OH







Cephaibol_B
*Ac F U U U J G L J U O Q J O U P F
1542




OH







Cephaibol_C
*Ac F U U U U G L J U O Q U O U P F
1543




OH







Cephaibol_D
*Ac F U U U U G L U U O Q U O U P F
1544




OH







Cephaibol_E
*Ac F U U U U G L U U O Q J O U P F
1545




OH







Cephaibol_P
*Ac F J Q U I T U L U O Q U O U P F S
1546




OH







Cephaibol_Q
*Ac F J Q U I T U L U P Q U O U P F S
1547




OH







Cervinin_1
*Ac L U P U L U P A U P V L OH
1548






Cervinin_2
*Ac L U P U L U P A U P V L OCOCH3
1549






Chrysospermin_A
*Ac F U S U U L Q G U U A A U P U U
1550




U Q W OH







Chrysospermin_B
*Ac F U S U U L Q G U U A A U P J U U
1551




Q W OH







Chrysospermin_C
*Ac F U S U J L Q G U U A A U P U U U
1552




Q W OH







Chrysospermin_D
*Ac F U S U J L Q G U U A A U P J U U
1553




Q W OH







Clonostachin
*Ac U O L J O L J O U J U O J I
1554




O[CH(CH(OH)CH2OH)CH(OH)CH(OH)CH2]OH







Emerimicin_II_A
*Ac W I Q U I T U L U O Q U O U P F
1555




OH







Emerimicin_II_B
*Ac W I Q J I T U L U O Q U O U P F
1556




OH







Emerimicin_III
*Ac F U U U V G L U U O Q J O U F OH
1557






Emerimicin_IV
*Ac F U U U V G L U U O Q J O A F OH
1558






Harzianin_HB_I
*Ac U N L I U P J L U P L OH
1559






Harzianin_HC_I
*Ac U N L U P S V U P U L U P L OH
1560






Harzianin_HC_III
*Ac U N L U P S V U P J L U P L OH
1561






Harzianin_HC_IX
*Ac U N L U P A I U P J L U P L OH
1562






Harzianin_HC_VI
*Ac U N L U P A V U P U L U P L OH
1563






Harzianin_HC_VIII
*Ac U N L U P A V U P J L U P L OH
1564






Harzianin_HC_VIII
*Ac U N L U P A V U P J L U P L OH
1565






Harzianin_HC_X
*Ac U Q L U P A V U P J L U P L OH
1566






Harzianin_HC_XI
*Ac U N L U P S I U P U L U P L OH
1567






Harzianin_HC_XII
*Ac U N L U P S I U P J L U P L OH
1568






Harzianin_HC_XIII
*Ac U Q L U P S I U P J L U P L OH
1569






Harzianin_HC_XIV
*Ac U N L U P A I U P U L U P L OH
1570






Harzianin_HC_XV
*Ac U Q L U P A I U P J L U P L OH
1571






Harzianin_HK_VI
*Ac U N I I U P L L U P L OH
1572






Harzianin_PCU4
*Ac U N L U P S I U P U L U P V OH
1573






Helioferin_A
*Fa P ZZ A U I I U U AAE
1574






Helioferin_B
*Fa P ZZ A U I I U U AMAE
1575






Heptaibin
*Ac F U U U V G L U U O Q U O U F
1576




OH







Hypelcin_A
*Ac U P U A U U Q L U G U U U P V U
1577




U Q Q L OH







Hypelcin_A_I
*Ac U P U A U U Q U L U G U U P V U
1578




U Q Q L OH







Hypelcin_A_II
*Ac U P U A U A Q U L U G U U P V U
1579




U Q Q L OH







Hypelcin_A_III
*Ac U P U A U U Q U L U G U U P V U
1580




U Q Q [C7H16NO]







Hypelcin_A_IV
*Ac U P U A U U Q U I U G U U P V U
1581




U Q Q L OH







Hypelcin_A-III
*Ac U P U A U U Q U L U G U U P V U
1582




J Q Q L OH







Hypelcin_A-IX
*Ac U P U A U U Q U I U G U U P V U J
1583




Q Q L OH







Hypelcin_A-V
*Ac U P U A U U Q U L U G U U P V U
1584




U Q Q I OH







Hypelcin_A-VI
*Ac U P U A U A Q U L U G U U P V U
1585




U Q Q I OH







Hypelcin_A-VII
*Ac U P U A U A Q U L U G U U P V U
1586




J Q Q L OH







Hypelcin_A-VIII
*Ac U P U A U A Q U I U G U U P V U
1587




U Q Q L OH







Hypelcin_B_I
*Ac U P U A U U Q U L U G U U P V U
1588




U E Q L OH







Hypelcin_B_II
*Ac U P U A U A Q U L U G U U P V U
1589




U E Q L OH







Hypelcin_B_III
*Ac U P U A U U Q U L U G U U P V U
1590




J E Q L OH







Hypelcin_B_IV
*Ac U P U A U U Q U I U G U U P V U
1591




U E Q L OH







Hypelcin_B_V
*Ac U P U A U U Q U L U G U U P V U
1592




U E Q I OH







Hypomurocin_A_I
*Ac U Q V V U P L L U P L OH
1593






Hypomurocin_A_II
*Ac J Q V V U P L L U P L OH
1594






Hypomurocin_A_III
*Ac U Q V L U P L I U P L OH
1595






Hypomurocin_A_IV
*Ac U Q I V U P L L U P L OH
1596






Hypomurocin_A_V
*Ac U Q I I U P L L U P L OH
1597






Hypomurocin_A_Va
*Ac U Q I L U P L I U P L OH
1598






Hypomurocin_B_I
*Ac U S A L U Q U V U G U U P L U U
1599




Q V OH







Hypomurocin_B_II
*Ac U S A L U Q U V U G U U P L U U
1600




Q L OH







Hypomurocin_B_IIIa
*Ac U A A L U Q U V U G U U P L U U
1601




Q V OH







Hypomurocin_B_IIIb
*Ac U S A L U Q J V U G U U P L U U
1602




Q V OH







Hypomurocin_B_IV
*Ac U S A L U Q U V U G J U P L U U
1603




Q V OH







Hypomurocin_B_V
*Ac U S A L U Q U V U G J U P L U U
1604




Q L OH







Leu1_Zervamicin
*Ac L I Q J I T U L U O Q U O U P F OH
1605






Longibrachin_A_I
*Ac U A U A U A Q U V U G L U P V U
1606




U Q Q F OH







Longibrachin_A_II
*Ac U A U A U A Q U V U G L U P V U
1607




J Q Q F OH







Longibrachin_A_III
*Ac U A U A U U Q U V U G L U P V U
1608




U Q Q F OH







Longibrachin_A_IV
*Ac U A U A U U Q U V U G L U P V U
1609




J Q Q F OH







Longibrachin_B_II
*Ac U A U A U A Q U V U G L U P V U
1610




U E Q F OH







Longibrachin_B_III
*Ac U A U A U A Q U V U G L U P V U
1611




J E Q F OH







LP237_F5
*Oc U P Y U Q Q U Zor Q A L OH
1612






LP237_F7
*Ac U P F U Q Q U U Q A L OH
1613






LP237_F8
*Oc U P F U Q Q U Zor Q A L OH
1614






NA_VII
*Ac U A A U J Q U U U S L U OCH3
1615






Paracelsin_A
*Ac U A U A U A Q U V U G U U P V U
1616




U Q Q F OH







Paracelsin_B
*Ac U A U A U A Q U L U G U U P V U
1617




U Q Q F OH







Paracelsin_C
*Ac U A U A U U Q U V U G U U P V U
1618




U Q Q F OH







Paracelsin_D
*Ac U A U A U U Q U L U G U U P V U
1619




U Q Q F OH







Paracelsin_E
*Ac U A U A U A Q U L U G U A P V U
1620




U Q Q F OH







Peptaibolin
*Ac L U L U F OH
1621






Peptaivirin_A
*Ac F U A U J L Q G U U A A U P J U U
1622




Q W OH







Peptaivirin_B
*Ac F U S U J L Q G U U A A U P J U U
1623




Q F OH







Polysporin_A
*Ac U P U A U U Q U V U G V U P V U
1624




U Q Q F OH







Polysporin_B
*Ac U P U A U U Q U V U G L U P V U
1625




U Q Q F OH







Polysporin_C
*Ac U P U A U U Q U I U G L U P V U
1626




U Q Q F OH







Polysporin_D
*Ac U P U A U U Q U I U G L U P V U
1627




V Q Q F OH







Pseudokinin_KLIII
*Ac U N I I U P L L U P NH2
1628






Pseudokinin_KLVI
*Ac U N I I U P L V
1629




hydroxyketopiperazine







Samarosporin_I
*Ac F U U U V G L U U O Q J O A F OH
1630






Samarosporin_II
*Ac F U U U V G L U U O Q J O U F OH
1631






Saturnisporin_SA_I
*Ac U A U A U A Q U L U G U U P V U
1632




U Q Q F OH







Saturnisporin_SA_II
*Ac U A U A U A Q U L U G U U P V U
1633




J Q Q F OH







Saturnisporin_SA_III
*Ac U A U A U U Q U L U G U U P V U
1634




U Q Q F OH







Saturnisporin_SA_IV
*Ac U A U A U U Q U L U G U U P V U
1635




J Q Q F OH







Stilbellin_I
*Ac F U U U V G L U U O Q J O A F OH
1636






Stilbellin_II
*Ac F U U U V G L U U O Q J O U F OH
1637






Stilboflavin_A_1
*Ac U P U A U A Q U V U G U U P V U
1638




U E Q V OH







Stilboflavin_A_2
*Ac U P U A U A Q U L U G U U P V U
1639




U E Q V OH







Stilboflavin_A_3
*Ac U P U A U U Q U V U G U A P V U
1640




U E Q L OH







Stilboflavin_A_4
*Ac U P U A U A Q U L U G U U P V U
1641




U E Q L OH







Stilboflavin_A_5
*Ac U P U A U U Q U L U G U U P V U
1642




U E Q V OH







Stilboflavin_A_6
*Ac U P U A U A Q U L U G U U P V U
1643




U E Q J OH







Stilboflavin_A_7
*Ac U P U A U U Q U L U G U U P V U
1644




U E Q I OH







Stilboflavin_B_1
*Ac U P U A U A Q U V U G U U P V U
1645




U Q Q V OH







Stilboflavin_B_2
*Ac U P U A U A Q U L U G U U P V U
1646




U Q Q V OH







Stilboflavin_B_3
*Ac U P U A U A Q U V U G U U P V U
1647




U Q Q L OH







Stilboflavin_B_4
*Ac U P U A U A Q U L U G U U P V U
1648




U Q Q L OH







Stilboflavin_B_5
*Ac U P U A U U Q U L U G U U P V U
1649




U Q Q V OH







Stilboflavin_B_6
*Ac U P U A U U Q U V U G U U P V U
1650




U Q Q V OH







Stilboflavin_B_7
*Ac U P U A U U Q U L U G U U P V U
1651




U Q Q L OH







Stilboflavin_B_8
*Ac U P U A U U Q U V U G U U P V U
1652




U Q Q L OH







Stilboflavin_B_9
*Ac U P U A U U Q U L U G U U P V U
1653




U Q Q I OH







Stilboflavin_B_10
*Ac U P U A U U Q U V U G U U P V U
1654




U Q Q I OH







Suzukacillin
*Ac U A U A U A Q U U U G L U P V U
1655




U Q Q F OH







Trichobrachin_A-I
*Ac U N L L U P L U U P L OH
1656






Trichobrachin_A-II
*Ac U N L L U P V L U P V OH
1657






Trichobrachin_A-III
*Ac U N V L U P L L U P V OH
1658






Trichobrachin_A-IV
*Ac U N L V U P L L U P V OH
1659






Trichobrachin_B-I
*Ac U N L L U P V U V P L OH
1660






Trichobrachin_B-II
*Ac U N V L U P L U V P L OH
1661






Trichobrachin_B-III
*Ac U N L V U P L U V P L OH
1662






Trichobrachin_B-IV
*Ac U N L L U P L U V P V OH
1663






Trichocellin_TC-A-I
*Ac U A U A U A Q U L U G U U P V U
1664




U Q Q F OH







Trichocellin_TC-A-II
*Ac U A U A U A Q U L U G U U P V U
1665




J Q Q F OH







Trichocellin_TC-A-III
*Ac U A U A U A Q U I U G U U P V U
1666




U Q Q F OH







Trichocellin_TC-A-IV
*Ac U A U A U A Q U I U G U U P V U
1667




J Q Q F OH







Trichocellin_TC-A-V
*Ac U A U A U A Q U L U G L U P V U
1668




U Q Q F OH







Trichocellin_TC-A-VI
*Ac U A U A U A Q U L U G L U P V U
1669




J Q Q F OH







Trichocellin_TC-A-VII
*Ac U A U A U A Q U I U G L U P V U
1670




U Q Q F OH







Trichocellin_TC-A-VIII
*Ac U A U A U A Q U I U G L U P V U J
1671




Q Q F OH







Trichocellin_TC-B-I
*Ac U A U A U A Q U L U G U U P V U
1672




U E Q F OH







Trichocellin_TC-B-II
*Ac U A U A U A Q U L U G U U P V U
1673




J E Q F OH







Trichodecenin_TD_I
*(Z)-4-decenoyl G G L U G I L OH
1674






Trichodecenin_TD_II
*(Z)-4-decenoyl G G L U G L L OH
1675






Trichogin_A_IV
*Oc U G L U G G L U G I L OH
1676






Trichokindin_Ia
*Ac U S A U U Q J L U A U U P L U U
1677




Q I OH







Trichokindin_Ib
*Ac U S A U J Q U L U A U U P L U U
1678




Q I OH







Trichokindin_IIa
*Ac U S A U U Q U L U A J U P L U U
1679




Q I OH







Trichokindin_IIb
*Ac U S A U J Q J L U A U U P L U U Q
1680




L OH







Trichokindin_IIIa
*Ac U S A U U Q J L U A J U P L U U Q
1681




L OH







Trichokindin_IIIb
*Ac U S A U J Q U L U A J U P L U U Q
1682




L OH







Trichokindin_IV
*Ac U S A U J Q J L U A U U P L U U Q
1683




I OH







Trichokindin_Va
*Ac U S A U U Q J L U A J U P L U U Q
1684




I OH







Trichokindin_Vb
*Ac U S A U J Q U L U A J U P L U U Q
1685




I OH







Trichokindin_VI
*Ac U S A U J Q J L U A J U P L U U Q
1686




L OH







Trichokindin_VII
*Ac U S A U J Q J L U A J U P L U U Q I
1687




OH







Trichokonin_Ia
*Ac U A U A U A Q U V U G L A P V U
1688




U Q Q F OH







Trichokonin_Ib
*Ac U G U A U A Q U V U G L U P V U
1689




U Q Q F OH







Trichokonin_IIa
*Ac U A U A U A Q U V U G L U P A U
1690




U Q Q F OH







Trichokonin_IIb
*Ac A A U A U A Q U V U G L U P V U
1691




U Q Q F OH







Trichokonin_IIc
*Ac U A A A U A Q U V U G L U P V U
1692




U Q Q F OH







Trichokonin_V
*Ac U A U A U Q U V U G L U P V U U
1693




Q Q F OH







Trichokonin_VII
*Ac U A U A U A Q U V U G L U P V U
1694




J Q Q F OH







Trichokonin_VIII
*Ac U A U A U U Q U V U G L U P V U
1695




U Q Q F OH







Trichokonin_IX
*Ac U A U A U A Q U V U G L U P V U
1696




J Q Q F OH







Tricholongin_BI
*Ac U G F U U Q U U U S L U P V U U
1697




Q Q L OH







Tricholongin_BII
*Ac U G F U U Q U U U S L U P V U J Q
1698




Q L OH







Trichopolyn_I
*Fa P ZZ A U U I A U U AMAE
1699






Trichopolyn_II
*Fa P ZZ A U U V A U U AMAE
1700






Trichopolyn_III
*Fa P ZZ A U U I A U A AMAE
1701






Trichopolyn_IV
*Fa P ZZ A U U V A U A AMAE
1702






Trichopolyn_V
*Fa′ P ZZ A U U I A U U AMAE
1703






Trichorovin_TV_Ia
*Ac U N V Lx U P Lx Lx U P V OH
1704






Trichorovin_TV_Ib
*Ac U N V V U P Lx Lx U P Lx OH
1705






Trichorovin_TV_IIa
*Ac U N V V U P Lx Lx U P Lx OH
1706






Trichorovin_TV_IIb
*Ac U N Lx V U P Lx Lx U P V OH
1707






Trichorovin_TV_IIIa
*Ac U Q V V U P Lx Lx U P Lx OH
1708






Trichorovin_TV_IIIb
*Ac U Q V Lx U P Lx Lx U P V OH
1709






Trichorovin_TV_IVa
*Ac U Q V V U P Lx Lx U P Lx OH
1710






Trichorovin_TV_IVb
*Ac U Q Lx V U P Lx Lx U P V OH
1711






Trichorovin_TV_IVc
*Ac U N V Lx U P Lx Lx U P Lx OH
1712






Trichorovin_TV_IXa
*Ac U Q V Lx U P Lx Lx U P Lx OH
1713






Trichorovin_TV_IXb
*Ac U Q Lx Lx U P Lx Lx U P V OH
1714






Trichorovin_TV_Va
*Ac U N V Lx U P Lx Lx U P Lx OH
1715






Trichorovin_TV_Vb
*Ac U N Lx Lx U P Lx Lx U P V OH
1716






Trichorovin_TV_VIa
*Ac U N V Lx U P Lx Lx U P Lx OH
1717






Trichorovin_TV_VIb
*Ac U N Lx Lx U P Lx Lx U P V OH
1718






Trichorovin_TV_VIIa
*Ac U N Lx V U P Lx Lx U P Lx OH
1719






Trichorovin_TV_VIIb
*Ac U Q V Lx U P Lx Lx U P V OH
1720






Trichorovin_TV_VIII
*Ac U Q V Lx U P Lx Lx U P Lx OH
1721






Trichorovin_TV_Xa
*Ac U Q Lx V U P Lx Lx U P Lx OH
1722






Trichorovin_TV_Xb
*Ac U N Lx Lx U P Lx Lx U P Lx OH
1723






Trichorovin_TV_XIIa
*Ac U N I I U P L L U P I OH
1724






Trichorovin_TV_XIIb
*Ac U N Lx Lx U P Lx Lx U P L OH
1725






Trichorovin_TV_XIII
*Ac U Q Lx Lx U P Lx Lx U P Lx OH
1726






Trichorovin_TV_XIV
*Ac U Q Lx Lx U P Lx Lx U P Lx OH
1727






Trichorozin_I
*Ac U N I L U P I L U P V OH
1728






Trichorozin_II
*Ac U Q I L U P I L U P V OH
1729






Trichorozin_III
*Ac U N I L U P I L U P L OH
1730






Trichorozin_IV
*Ac U Q I L U P I L U P L OH
1731






Trichorzianine_TA_IIIc
*Ac U A A U U Q U U U S L U P V U I
1732




Q Q W OH







Trichorzianine_TB_IIa
*Ac U A A U U Q U U U S L U P L U I Q
1733




E W OH







Trichorzianine_TB_IIIc
*Ac U A A U U Q U U U S L U P V U I
1734




Q E W OH







Trichorzianine_TB_IVb
*Ac U A A U J Q U U U S L U P V U I Q
1735




E W OH







Trichorzianine_TB_Vb
*Ac U A A U U Q U U U S L U P L U I Q
1736




E F OH







Trichorzianine_TB_VIa
*Ac U A A U J Q U U U S L U P L U I Q
1737




E F OH







Trichorzianine_TB_VIb
*Ac U A A U U Q U U U S L U P V U I
1738




Q E F OH







Trichorzianine_TB_VII
*Ac U A A U J Q U U U S L U P V U I Q
1739




E F OH







Trichorzin_HA_I
*Ac U G A U U Q U V U G L U P L U U
1740




Q L OH







Trichorzin_HA_II
*Ac U G A U U Q U V U G L U P L U J
1741




Q L OH







Trichorzin_HA_III
*Ac U G A U J Q U V U G L U P L U U
1742




Q L OH







Trichorzin_HA_V
*Ac U G A U J Q U V U G L U P L U J Q
1743




L OH







Trichorzin_HA_VI
*Ac U G A U J Q J V U G L U P L U J Q
1744




L OH







Trichorzin_HA_VII
*Ac U G A U J Q V V U G L U P L U J Q
1745




L OH







Trichorzin_MA_I
*Ac U S A U U Q U L U G L U P L U U
1746




Q V OH







Trichorzin_MA_II
*Ac U S A U J Q U L U G L U P L U U Q
1747




V OH







Trichorzin_MA_III
*Ac U S A U J Q J L U G L U P L U U Q
1748




V OH







Trichorzin_PA_II
*Ac U S A U J Q U V U G L U P L U U
1749




Q W OH







Trichorzin_PA_IV
*Ac U S A U J Q J V U G L U P L U U Q
1750




W OH







Trichorzin_PA_V
*Ac U S A J J Q U V U G L U P L U U Q
1751




W OH







Trichorzin_PA_VI
*Ac U S A U J Q U V U G L U P L U U
1752




Q F OH







Trichorzin_PA_VII
*Ac U S A J J Q U V U G L U P L U U Q
1753




W OH







Trichorzin_PA_VIII
*Ac U S A U J Q J V U G L U P L U U Q
1754




F OH







Trichorzin_PA_IX
*Ac U S A J J Q U V U G L U P L U U Q
1755




F OH







Trichorzin_PAU4
*Ac U S A U U Q U V U G L U P L U U
1756




Q W OH







Trichosporin_TS-B-1a-1
*Ac U A G U A U Q U Lx A A Vx A P V
1757




U Vx Q Q F OH







Trichosporin_TS-B-1a-2
*Ac U A G A U U Q U Lx A A Vx A P V
1758




U Vx Q Q F OH







Trichosporin_TS-B-1b
*Ac U A G A U U Q U Lx U G Lx A P V
1759




U A Q Q F OH







Trichosporin_TS-B-1d
*Ac U A S A U U Q U Lx U G Lx A P V
1760




U U Q Q F OH







Trichosporin_TS-B-1e
*Ac U A G A U U Q U Lx U G Lx U P V
1761




U U Q Q F OH







Trichosporin_TS-B-1f
*Ac U A S A U U Q U Lx U G Lx U P V
1762




U U Q Q F OH







Trichosporin_TS-B-1g
*Ac U A G A U U Q U Lx U G Lx A P V
1763




U U Q Q F OH







Trichosporin_TS-B-1h
*Ac U A G A U U Q U Lx U G Lx U P V
1764




U Vx Q Q F OH







Trichosporin_TS-B-Ia
*Ac U A S A U U Q U L U G L U P V U
1765




U Q Q F OH







Trichosporin_TS-B-IIIa
*Ac U A A A U U Q U L U G L U P V U
1766




U Q Q F OH







Trichosporin_TS-B-IIIb
*Ac U A A A U U Q U I U G L U P V U
1767




A Q Q F OH







Trichosporin_TS-B-IIIc
*Ac U A A A A U Q U I U G L U P V U
1768




U Q Q F OH







Trichosporin_TS-B-IIId
*Ac U A A A U U Q U V U G L U P V U
1769




U Q Q F OH







Trichosporin_TS-B-IVb
*Ac U A A A U U Q U L U G L U P V U
1770




J Q Q F OH







Trichosporin_TS-B-IVc
*Ac U A U A U U Q U V U G L U P V U
1771




U Q Q F OH







Trichosporin_TS-B-IVd
*Ac U A A A U U Q U V U G L U P V U
1772




J Q Q F OH







Trichosporin_TS-B-V
*Ac U A A A U U Q U I U G L U P V U
1773




U Q Q F OH







Trichosporin_TS-B-VIa
*Ac U A U A U U Q U I U G L U P V U
1774




U Q Q F OH







Trichosporin_TS-B-VIb
*Ac U A A A U U Q U I U G L U P V U J
1775




Q Q F OH







Trichotoxin_A-40
*Ac U G U L U E U U U A U U P L U J
1776




Q V OH







Trichotoxin_A-40_I
*Ac U G U L U Q U U A A U U P L U U
1777




E V OH







Trichotoxin_A-40_II
*Ac U G U L U Q U U U A A U P L U U
1778




E V OH







Trichotoxin_A-40_III
*Ac U G U L U Q U U A A U U P L U J
1779




E V OH







Trichotoxin_A-40_IV
*Ac U G U L U Q U U U A U U P L U U
1780




E V OH







Trichotoxin_A-40_V
*Ac U G U L U Q U U U A U U P L U J
1781




E V OH







Trichotoxin_A-40_Va
*Ac U A U L U Q U U U A U U P L U U
1782




E V OH







Trichotoxin_A-50_E
*Ac U G U L U Q U U U A A U P L U U
1783




Q V OH







Trichotoxin_A-50_F
*Ac U G U L U Q U U A A A U P L U J
1784




Q V OH







Trichotoxin_A-50_G
*Ac U G U L U Q U U U A A U P L U J
1785




Q V OH







Trichotoxin_A-50_H
*Ac U A U L U Q U U U A A U P L U J
1786




Q V OH







Trichotoxin_A-50_I
*Ac U G U L U Q U U U A U U P L U J
1787




Q V OH







Trichotoxin_A-50_J
*Ac U A U L U Q U U U A U U P L U J
1788




Q V OH







Trichovirin-Ia
*Ac U G A L A Q Vx V U G U U P L U
1789




U Q L OH







Trichovirin-Ib
*Ac U G A L U Q A V U G J U P L U U
1790




Q L OH







Trichovirin-IIa
*Ac U G A L A Q U V U G J U P L U U
1791




Q L OH







Trichovirin-IIb
*Ac U G A L U Q U V U G U U P L U U
1792




Q L OH







Trichovirin-IIc
*Ac U G A L U Q Vx V U G U U P L U
1793




U Q L OH







Trichovirin-IIIa
*Ac U G A L U Q J V U G U U P L U U
1794




Q L OH







Trichovirin-IIIb
*Ac U G A L J Q J U U G U U P L U U Q
1795




L OH







Trichovirin-IVa
*Ac U G A L J Q J V U G U U P L U U Q
1796




L OH







Trichovirin-IVb
*Ac U G A L U Q U V U G J U P L U U
1797




Q L OH







Trichovirin-V
*Ac U G A L U Q J V U G J U P L U U Q
1798




L OH







Trichovirin-VIa
*Ac U G A L U Q J L U G J U P L U U Q
1799




L OH







Trichovirin-VIb
*Ac U G A L J Q J V U G J U P L U U Q
1800




L OH







Trikoningin_KA_V
*Ac U G A U I Q U U U S L U P V U I Q
1801




Q L OH







Trikoningin_KB_I
*Oc U G V U G G V U G I L OH
1802






Trikoningin_KB_II
*Oc J G V U G G V U G I L OH
1803






Tylopeptin_A
*Ac W V U J A Q A U S U A L U Q L
1804




OH







Tylopeptin_B
*Ac W V U U A Q A U S U A L U Q L
1805




OH







XR586
*Ac W J Q U I T U L U P Q U O J P F G
1806




OH







Zervamicin_A-1-16
*Boc W I A U I V U L U P A U P U P F
1807




OCH3







Zervamicin_ZIA
*Ac W I E J V T U L U O Q U O U P F
1808




OH







Zervamicin_ZIB
*Ac W V E J I T U L U O Q U O U P F
1809




OH







Zervamicin_ZIB′
*Ac W I E U I T U L U O Q U O U P F
1810




OH







Zervamicin_ZIC
*Ac W I E J I T U L U O Q U O U P F
1811




OH







Zervamicin_ZII-1
*Ac W I Q U V T U L U O Q U O U P F
1812




OH







Zervamicin_ZII-2
*Ac W I Q U I T U V U O Q U O U P F
1813




OH







Zervamicin_ZII-3
*Ac W V Q U I T U L U O Q U O U P F
1814




OH







Zervamicin_ZII-4
*Ac W I Q J V T U L U O Q U O U P F
1815




OH







Zervamicin_ZII-5
*Ac W I Q J I T U V U O Q U O U P F
1816




OH







Zervamicin_ZIIA
*Ac W I Q U I T U L U O Q U O U P F
1817




OH







Zervamicin_ZIIB
*Ac W I Q J I T U L U O Q U O U P F
1818




OH







CAMEL135 (CAM135)
GWRLIKKILRVFKGL
1819






Novispirin G2
KNLRIIRKGIHIIKKY*
1820






B-33
FKKFWKWFRRF
1821






B-34
LKRFLKWFKRF
1822






B-35
KLFKRWKHLFR
1823






B-36
RLLKRFKHLFK
1824






B-37
FKTFLKWLHRF
1825






B-38
IKQLLHFFQRF
1826






B-39
KLLQTFKQIFR
1827






B-40
RILKELKNLFK
1828






B-41
LKQFVHFIHRF
1829






B-42
VKTLLHIFQRF
1830






B-43
KLVEQLKEIFR
1831






B-44
RVLQEIKQILK
1832






B-45
VKNLAELVHRF
1833






B-46
ATHLLHALQRF
1834






B-47
KLAENVKEILR
1835






B-48
RALHEAKEALK
1836






B-49
FHYFWHWFHRF
1837






B-50
LYHFLHWFQRF
1838






B-51
YLFQTWQHLFR
1839






B-52
YLLTEFQHLFK
1840






B-53
FKTFLQWLHRF
1841






B-54
IKTLLHFFQRF
1842






B-55
KLLQTFNQIFR
1843






B-56
TILQSLKNIFK
1844






B-57
LKQFVKFIHRF
1845






B-58
VKQLLKIFNRF
1846






B-59
KLVQQLKNIFR
1847






B-60
RVLNQVKQILK
1848






B-61
VKKLAKLVRRF
1849






B-62
AKRLLKVLKRF
1850






B-63
KLAQKVKRVLR
1851






B-64
RALKRIKHVLK
1852






1C-1
RRRRWWW
1853






1C-2
RRWWRRW
1854






1C-3
RRRWWWR
1855






1C-4
RWRWRWR
1856






2C-1
RRRFWWR
1857






2C-2
RRWWRRF*
1858






2C-3
RRRWWWF*
1859






2C-4
RWRWRWF*
1860






3C-1
RRRRWWK
1861






3C-2
RRWWRRK
1862






3C-3
RRRWWWK
1863






3C-4
RWRWRWK
1864






4C-1
RRRKWWK
1865






4C-2
RRWKRRK
1866






4C-3
RRRKWWK
1867






4C-4
RWRKRWK
1868






a-3
LHLLHQLLHLLHQF*
1869






a-4
AQAAHQAAHAAHQF*
1870






a-5
KLKKLLKKLKKLLK
1871






a-6
LKLLKKLLKLLKKF*
1872






a-7
LQLLKQLLKLLKQF*
1873






a-8
AQAAKQAAKAAKQF*
1874






a-9
RWRRWWRHFHHFFH*
1875






a-10
KLKKLLKRWRRWWR
1876






a-11
RWRRLLKKLHHLLH*
1877






a-12
KLKKLLKHLHHLLH*
1878






BD-1
FVF RHK WVW KHR FLF
1879






BD-2
VFI HRH VWV HKH VLF
1880






BD-3
WR WR AR WR WR LR WR F
1881






BD-4
WR IH LR AR LH VK FR F
1882






BD-5
LR IH AR FK VH IR LK F
1883






BD-6
FH IK FR VH LK VR FH F
1884






BD-7
FH VK IH FR LH VK FH F
1885






BD-8
LH IH AH FH VH IH LH F
1886






BD-9
FK IH FR LK VH IR FK F
1887






BD-10
FK AH IR FK LR VK FH F
1888






BD-11
LK AK IK FK VK LK IK F
1889






BD-12
WIW KHK FL HRH FLF
1890






BD-13
VFL HRH VI KHK LVF
1891






BD-14
FL HKH VL RHR IVF
1892






BD-15
VF KHK IV HRH ILF
1893






BD-16
FLF KH LFL HR IFF
1894






BD-17
LF KH ILI HR VIF
1895






BD-18
FL HKH LF KHK LF
1896






BD-19
VF RHR FI HRH VF
1897






BD-20
FI HK LV HKH VLF
1898






BD-21
VL RH LF RHR IVF
1899






BD-22
LV HK LIL RH LLF
1900






BD-23
VF KR VLI HK LIF
1901






BD-24
IV RK FLF RHK VF
1902






BD-25
VL KH VIA HKR LF
1903






BD-26
FI RK FLF KH LF
1904






BD-27
VI RH VWV RK LF
1905






BD-28
FLF RHR F RHR LVF
1906






BD-29
LFL HKH A KHK FLF
1907






BD-30
F KHK F KHK FIF
1908






BD-31
L RHR L RHR LIF
1909






BD-32
LIL K FLF K FVF
1910






BD-33
VLI R ILV R VIF
1911






BD-34
F RHR F RHR F
1912






BD-35
L KHK L KHK F
1913






BD-36
F K F KHK LIF
1914






BD-37
L R L RHR VLF
1915






BD-38
F K FLF K FLF
1916






BD-39
L R LFL R WLF
1917






BD-40
F K FLF KHK F
1918






BD-41
L R LFL RHR F
1919






BD-42
F K FLF K F
1920






BD-43
L R LFL R F
1921






AA-1
HHFFHHFHHFFHHF*
1922






AA-2
FHFFHHFFHFFHHF*
1923






AA-3
KLLK-GAT-FHFFHHFFHFFHHF
1924






AA-4
KLLK-FHFFHHFFHFFHHF
1925






AA-5
FHFFHHFFHFFHHFKLLK
1926






RIP
YSPWTNF*
1927





Abreviations:


Oc - Octyl;


Fa - 2-methyloctanoyl (MOA) (helioferins),


(2R) - methyldecanoyl (MDA) (trichopolyns);


Fa′ - 3-hydroxy-2-methyldecanoic acid (HMDA);


ZZ - 2-amino-4-methyl-6-hydroxy-8-oxo-decanoic acid (AHMOD);


AAE - 2-(2′-aminopropyl)-aminoethanol;


AMAE - 2-[(2′-aminopropyl)-methylamino]-ethanol;


Boc - N-((1,1-dimethylethoxy)carbonyl);


U - Aminoisobutyric Acid (Aib);


J - Isovaline (Iva);


O - Hydroxyproline (Hyp);


Z - Ethylnorvaline (EtNor);


x or xx means L or I at that position;


Ac - optionally acetylated N-term;


OH, OCH3 - optional C-term;


Alkane long chains are noted in brackets;


*optionally amidated C-terminus.






A number of antimicrobial peptides are also disclosed in U.S. Pat. Nos. 7,271,239, 7,223,840, 7,176,276, 6,809,181, 6,699,689, 6,420,116, 6,358,921, 6,316,594, 6,235,973, 6,183,992, 6,143,498, 6,042,848, 6,040,291, 5,936,063, 5,830,993, 5,428,016, 5,424,396, 5,032,574, 4,623,733, which are incorporated herein by reference for the disclosure of particular antimicrobial peptides.


Ligands.


In certain embodiments the effector can comprise one or more ligands, epitope tags, and/or antibodies. In certain embodiments preferred ligands and antibodies include those that bind to surface markers on immune cells. Chimeric moieties utilizing such antibodies as effector molecules act as bifunctional linkers establishing an association between the immune cells bearing binding partner for the ligand or antibody and the target microorganism(s).


The term “epitope tag” or “affinity tag” are used interchangeably herein, and as used refers to a molecule or domain of a molecule that is specifically recognized by an antibody or other binding partner. The term also refers to the binding partner complex as well. Thus, for example, biotin or a biotin/avidin complex are both regarded as an affinity tag. In addition to epitopes recognized in epitope/antibody interactions, affinity tags also comprise “epitopes” recognized by other binding molecules (e.g. ligands bound by receptors), ligands bound by other ligands to form heterodimers or homodimers, His6 bound by Ni-NTA, biotin bound by avidin, streptavidin, or anti-biotin antibodies, and the like.


Epitope tags are well known to those of skill in the art. Moreover, antibodies specific to a wide variety of epitope tags are commercially available. These include but are not limited to antibodies against the DYKDDDDK (SEQ ID NO:1928) epitope, c-myc antibodies (available from Sigma, St. Louis), the HNK-1 carbohydrate epitope, the HA epitope, the HSV epitope, the His4 (SEQ ID NO:1929), His5 (SEQ ID NO:1930), and His6 (SEQ ID NO:1931) epitopes that are recognized by the His epitope specific antibodies (see, e.g., Qiagen), and the like. In addition, vectors for epitope tagging proteins are commercially available. Thus, for example, the pCMV-Tag1 vector is an epitope tagging vector designed for gene expression in mammalian cells. A target gene inserted into the pCMV-Tag1 vector can be tagged with the FLAG® epitope (N-terminal, C-terminal or internal tagging), the c-myc epitope (C-terminal) or both the FLAG (N-terminal) and c-myc (C-terminal) epitopes.


Lipids and Liposomes.


In certain embodiments the effectors comprise one or more microparticles or nanoparticles that can be loaded with an effector agent (e.g., a pharmaceutical, a label, etc.). In certain embodiments the microparticles or nanoparticles are lipidic particles. Lipidic particles are microparticles or nanoparticles that include at least one lipid component forming a condensed lipid phase. Typically, a lipidic nanoparticle has preponderance of lipids in its composition. Various condensed lipid phases include solid amorphous or true crystalline phases; isomorphic liquid phases (droplets); and various hydrated mesomorphic oriented lipid phases such as liquid crystalline and pseudocrystalline bilayer phases (L-alpha, L-beta, P-beta, Lc), interdigitated bilayer phases, and nonlamellar phases (see, e.g., The Structure of Biological Membranes, ed. by P. Yeagle, CRC Press, Boca Raton, Fla., 1991). Lipidic microparticles include, but are not limited to a liposome, a lipid-nucleic acid complex, a lipid-drug complex, a lipid-label complex, a solid lipid particle, a microemulsion droplet, and the like. Methods of making and using these types of lipidic microparticles and nanoparticles, as well as attachment of affinity moieties, e.g., antibodies, to them are known in the art (see, e.g., U.S. Pat. Nos. 5,077,057; 5,100,591; 5,616,334; 6,406,713; 5,576,016; 6,248,363; Bondi et al. (2003) Drug Delivery 10: 245-250; Pedersen et al., (2006) Eur. J. Pharm. Biopharm. 62: 155-162, 2006 (solid lipid particles); U.S. Pat. Nos. 5,534,502; 6,720,001; Shiokawa et al. (2005) Clin. Cancer Res. 11: 2018-2025 (microemulsions); U.S. Pat. No. 6,071,533 (lipid-nucleic acid complexes), and the like).


A liposome is generally defined as a particle comprising one or more lipid bilayers enclosing an interior, typically an aqueous interior. Thus, a liposome is often a vesicle formed by a bilayer lipid membrane. There are many methods for the preparation of liposomes. Some of them are used to prepare small vesicles (d<0.05 micrometer), some for larger vesicles (d>0.05 micrometer). Some are used to prepare multilamellar vesicles, some for unilamellar ones. Methods for liposome preparation are exhaustively described in several review articles such as Szoka and Papahadjopoulos (1980) Ann. Rev. Biophys. Bioeng., 9: 467, Deamer and Uster (1983) Pp. 27-51 In: Liposomes, ed. M. J. Ostro, Marcel Dekker, New York, and the like.


In various embodiments the liposomes include a surface coating of a hydrophilic polymer chain. “Surface-coating” refers to the coating of any hydrophilic polymer on the surface of liposomes. The hydrophilic polymer is included in the liposome by including in the liposome composition one or more vesicle-forming lipids derivatized with a hydrophilic polymer chain. In certain embodiments, vesicle-forming lipids with diacyl chains, such as phospholipids, are preferred. One illustrative phospholipid is phosphatidylethanolamine (PE), which contains a reactive amino group convenient for coupling to the activated polymers. One illustrative PE is distearoyl PE (DSPE). Another example is non-phospholipid double chain amphiphilic lipids, such as diacyl- or dialkylglycerols, derivatized with a hydrophilic polymer chain.


In certain embodiments a hydrophilic polymer for use in coupling to a vesicle forming lipid is polyethyleneglycol (PEG), preferably as a PEG chain having a molecular weight between 1,000-10,000 Daltons, more preferably between 1,000-5,000 Daltons, most preferably between 2,000-5,000 Daltons. Methoxy or ethoxy-capped analogues of PEG are also useful hydrophilic polymers, commercially available in a variety of polymer sizes, e.g., 120-20,000 Daltons.


Other hydrophilic polymers that can be suitable include, but are not limited to polylactic acid, polyglycolic acid, polyvinylpyrrolidone, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyl methacrylamide, polymethacrylamide, polydimethylacrylamide, and derivatized celluloses, such as hydroxymethylcellulose or hydroxyethylcellulose.


Preparation of lipid-polymer conjugates containing these polymers attached to a suitable lipid, such as PE, have been described, for example in U.S. Pat. No. 5,395,


The liposomes can, optionally be prepared for attachment to one or more targeting moieties described herein. Here the lipid component included in the liposomes would include either a lipid derivatized with the targeting moiety, or a lipid having a polar-head chemical group, e.g., on a linker, that can be derivatized with the targeting moiety in preformed liposomes, according to known methods.


Methods of functionalizing lipids and liposomes with affinity moieties such as antibodies are well known to those of skill in the art (see, e.g., DE 3,218,121; Epstein et al. (1985) Proc. Natl. Acad. Sci., USA, 82:3688 (1985); Hwang et al. (1980) Proc. Natl. Acad. Sci., USA, 77: 4030; EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324, all of which are incorporated herein by reference).


Polymeric Microparticles and/or Nanoparticles.


In certain embodiments the effector(s) comprise polymeric microparticles and/or nanoparticles and/or micelles.


Microparticle and nanoparticle-based drug delivery systems have considerable potential for treatment of various microorganisms. Technological advantages of polymeric microparticles or nanoparticles used as drug carriers are high stability, high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, and feasibility of variable routes of administration, including oral application and inhalation. Polymeric nanoparticles can also be designed to allow controlled (sustained) drug release from the matrix. These properties of nanoparticles enable improvement of drug bioavailability and reduction of the dosing frequency.


Polymeric nanoparticles are typically micron or submicron (<1 μm) colloidal particles. This definition includes monolithic nanoparticles (nanospheres) in which the drug is adsorbed, dissolved, or dispersed throughout the matrix and nanocapsules in which the drug is confined to an aqueous or oily core surrounded by a shell-like wall. Alternatively, in certain embodiments, the drug can be covalently attached to the surface or into the matrix.


Polymeric microparticles and nanoparticles are typically made from biocompatible and biodegradable materials such as polymers, either natural (e.g., gelatin, albumin) or synthetic (e.g., polylactides, polyalkylcyanoacrylates), or solid lipids. In the body, the drug loaded in nanoparticles is usually released from the matrix by diffusion, swelling, erosion, or degradation. One commonly used material is poly(lactide-co-glycolide) (PLG).


Methods of fabricating and loading polymeric nanoparticles or microparticles are well known to those of skill in the art. Thus, for example, Matsumoto et al. (1999) Intl. J. Pharmaceutics, 185: 93-101 teaches the fabrication of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) nanoparticles, Chawla et al. (2002) Intl. J. Pharmaceutics 249: 127-138, teaches the fabrication and use of poly(e-caprolactone) nanoparticles delivery of tamifoxen, and Bodmeier et al. (1988) Intl. J. Pharmaceutics, 43: 179-186, teaches the preparation of poly(D,L-lactide) microspheres using a solvent evaporation method.” Intl. J. Pharmaceutics, 1988, 43, 179-186. Other nanoparticle formulations are described, for example, by Williams et al. (2003) J. Controlled Release, 91: 167-172; Leroux et al. (1996) J. Controlled Release, 39: 339-350; Soppimath et al. (2001) J. Controlled Release, 70:1-20; Brannon-Peppas (1995) Intl. J. Pharmaceutics, 116: 1-9; and the like.


Peptide Preparation.


The peptides described herein can be chemically synthesized using standard chemical peptide synthesis techniques or, particularly where the peptide does not comprise “D” amino acid residues, the peptide can be recombinantly expressed. Where the “D” polypeptides are recombinantly expressed, a host organism (e.g. bacteria, plant, fungal cells, etc.) can be cultured in an environment where one or more of the amino acids is provided to the organism exclusively in a D form. Recombinantly expressed peptides in such a system then incorporate those D amino acids.


In certain embodiments, D amino acids can be incorporated in recombinantly expressed peptides using modified amino acyl-tRNA synthetases that recognize D-amino acids.


In certain embodiments the peptides are chemically synthesized by any of a number of fluid or solid phase peptide synthesis techniques known to those of skill in the art. Solid phase synthesis in which the C-terminal amino acid of the sequence is attached to an insoluble support followed by sequential addition of the remaining amino acids in the sequence is a preferred method for the chemical synthesis of the polypeptides of this invention. Techniques for solid phase synthesis are well known to those of skill in the art and are described, for example, by Barany and Merrifield (1963) Solid-Phase Peptide Synthesis; pp. 3-284 in The Peptides: Analysis, Synthesis, Biology. Vol. 2: Special Methods in Peptide Synthesis, Part A.; Merrifield et al. (1963) J. Am. Chem. Soc., 85: 2149-2156, and Stewart et al. (1984) Solid Phase Peptide Synthesis, 2nd ed. Pierce Chem. Co., Rockford, Ill.


In one embodiment, the peptides can be synthesized by the solid phase peptide synthesis procedure using a benzhydrylamine resin (Beckman Bioproducts, 0.59 mmol of NH2/g of resin) as the solid support. The COOH terminal amino acid (e.g., t-butylcarbonyl-Phe) is attached to the solid support through a 4-(oxymethyl)phenacetyl group. This is a more stable linkage than the conventional benzyl ester linkage, yet the finished peptide can still be cleaved by hydrogenation. Transfer hydrogenation using formic acid as the hydrogen donor can be used for this purpose.


It is noted that in the chemical synthesis of peptides, particularly peptides comprising D amino acids, the synthesis usually produces a number of truncated peptides in addition to the desired full-length product. Thus, the peptides are typically purified using, e.g., HPLC.


D-amino acids, beta amino acids, non-natural amino acids, and the like can be incorporated at one or more positions in the peptide simply by using the appropriately derivatized amino acid residue in the chemical synthesis. Modified residues for solid phase peptide synthesis are commercially available from a number of suppliers (see, e.g., Advanced Chem Tech, Louisville; Nova Biochem, San Diego; Sigma, St Louis; Bachem California Inc., Torrance, etc.). The D-form and/or otherwise modified amino acids can be completely omitted or incorporated at any position in the peptide as desired. Thus, for example, in certain embodiments, the peptide can comprise a single modified acid, while in other embodiments, the peptide comprises at least two, generally at least three, more generally at least four, most generally at least five, preferably at least six, more preferably at least seven or even all modified amino acids. In certain embodiments, essentially every amino acid is a D-form amino acid.


As indicated above, the peptides and/or fusion proteins of this invention can also be recombinantly expressed. Accordingly, in certain embodiments, the antimicrobial peptides and/or targeting moieties, and/or fusion proteins of this invention are synthesized using recombinant expression systems. Generally this involves creating a DNA sequence that encodes the desired peptide or fusion protein, placing the DNA in an expression cassette under the control of a particular promoter, expressing the peptide or fusion protein in a host, isolating the expressed peptide or fusion protein and, if required, renaturing the peptide or fusion protein.


DNA encoding the peptide(s) or fusion protein(s) described herein can be prepared by any suitable method as described above, including, for example, cloning and restriction of appropriate sequences or direct chemical synthesis.


This nucleic acid can be easily ligated into an appropriate vector containing appropriate expression control sequences (e.g. promoter, enhancer, etc.), and, optionally, containing one or more selectable markers (e.g. antibiotic resistance genes).


The nucleic acid sequences encoding the peptides or fusion proteins described herein can be expressed in a variety of host cells, including, but not limited to, E. coli, other bacterial hosts, yeast, fungus, and various higher eukaryotic cells such as insect cells (e.g. SF3), the COS, CHO and HeLa cells lines and myeloma cell lines. The recombinant protein gene will typically be operably linked to appropriate expression control sequences for each host. For E. coli this can include a promoter such as the T7, trp, or lambda promoters, a ribosome binding site and preferably a transcription termination signal. For eukaryotic cells, the control sequences can include a promoter and often an enhancer (e.g., an enhancer derived from immunoglobulin genes, SV40, cytomegalovirus, etc.), and a polyadenylation sequence, and may include splice donor and acceptor sequences.


The plasmids can be transferred into the chosen host cell by well-known methods such as calcium chloride transformation for E. coli and calcium phosphate treatment or electroporation for mammalian cells. Cells transformed by the plasmids can be selected by resistance to antibiotics conferred by genes contained on the plasmids, such as the amp, gpt, neo and hyg genes.


Once expressed, the recombinant peptide(s) or fusion protein(s) can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, generally, R. Scopes, (1982) Protein Purification, Springer-Verlag, N.Y.; Deutscher (1990) Methods in Enzymology Vol. 182: Guide to Protein Purification., Academic Press, Inc. N.Y.). Substantially pure compositions of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity are most preferred.


One of skill in the art would recognize that after chemical synthesis, biological expression, or purification, the peptide(s) or fusion protein(s) may possess a conformation substantially different than desired native conformation. In this case, it may be necessary to denature and reduce the peptide or fusion protein and then to cause the molecule to re-fold into the preferred conformation. Methods of reducing and denaturing proteins and inducing re-folding are well known to those of skill in the art (see, e.g., Debinski et al. (1993) J. Biol. Chem., 268: 14065-14070; Kreitman and Pastan (1993) Bioconjug. Chem., 4: 581-585; and Buchner, et al., (1992) Anal. Biochem., 205: 263-270). Debinski et al., for example, describes the denaturation and reduction of inclusion body proteins in guanidine-DTE. The protein is then refolded in a redox buffer containing oxidized glutathione and L-arginine.


One of skill would recognize that modifications can be made to the peptide(s) and/or fusion protein(s) proteins without diminishing their biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids (e.g., poly His) placed on either terminus to create conveniently located restriction sites or termination codons or purification sequences.


Protecting Groups.


While the various peptides (e.g., targeting peptides, antimicrobial peptides, STAMPs) described herein may be shown with no protecting groups, in certain embodiments they can bear one, two, three, four, or more protecting groups. In various embodiments, the protecting groups can be coupled to the C- and/or N-terminus of the peptide(s) and/or to one or more internal residues comprising the peptide(s) (e.g., one or more R-groups on the constituent amino acids can be blocked). Thus, for example, in certain embodiments, any of the peptides described herein can bear, e.g., an acetyl group protecting the amino terminus and/or an amide group protecting the carboxyl terminus. One example of such a protected peptide is the 1845L6-21 STAMP having the amino acid sequence KFINGVLSQFVLERKPYPKLFKFLRKHLL* (SEQ ID NO:1953), where the asterisk indicates an amidated carboxyl terminus. Of course, this protecting group can be can be eliminated and/or substituted with another protecting group as described herein.


Without being bound by a particular theory, it was discovered that addition of a protecting group, particularly to the carboxyl and in certain embodiments the amino terminus can improve the stability and efficacy of the peptide.


A wide number of protecting groups are suitable for this purpose. Such groups include, but are not limited to acetyl, amide, and alkyl groups with acetyl and alkyl groups being particularly preferred for N-terminal protection and amide groups being preferred for carboxyl terminal protection. In certain particularly preferred embodiments, the protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl, and others. Particularly preferred carboxyl protecting groups include amides, esters, and ether-forming protecting groups. In one preferred embodiment, an acetyl group is used to protect the amino terminus and an amide group is used to protect the carboxyl terminus. These blocking groups enhance the helix-forming tendencies of the peptides. Certain particularly preferred blocking groups include alkyl groups of various lengths, e.g., groups having the formula: CH3—(CH2)n—CO— where n ranges from about 1 to about 20, preferably from about 1 to about 16 or 18, more preferably from about 3 to about 13, and most preferably from about 3 to about 10.


In certain embodiments, the protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl, and others. Particularly preferred carboxyl protecting groups include amides, esters, and ether-forming protecting groups. In one embodiment, an acetyl group is used to protect the amino terminus and/or an amino group is used to protect the carboxyl terminus (i.e., amidated carboxyl terminus). In certain embodiments blocking groups include alkyl groups of various lengths, e.g., groups having the formula: CH3—(CH2)n—CO— where n ranges from about 3 to about 20, preferably from about 3 to about 16, more preferably from about 3 to about 13, and most preferably from about 3 to about 10.


In certain embodiments, the acid group on the C-terminal can be blocked with an alcohol, aldehyde or ketone group and/or the N-terminal residue can have the natural amide group, or be blocked with an acyl, carboxylic acid, alcohol, aldehyde, or ketone group.


Other protecting groups include, but are not limited to Fmoc, t-butoxycarbonyl (t-BOC), 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-florenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl, xanthyl (Xan), trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBl), benzyloxy (BzlO), benzyl (Bzl), benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimentyl-2,6-diaxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl—Z), 2-bromobenzyloxycarbonyl (2-Br—Z), Benzyloxymethyl (Bom), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), Acetyl (Ac), and Trifluoroacetyl (TFA).


Protecting/blocking groups are well known to those of skill as are methods of coupling such groups to the appropriate residue(s) comprising the peptides of this invention (see, e.g., Greene et al., (1991) Protective Groups in Organic Synthesis, 2nd ed., John Wiley & Sons, Inc., Somerset, N.J.). In an illustrative embodiment, for example, acetylation is accomplished during the synthesis when the peptide is on the resin using acetic anhydride. Amide protection can be achieved by the selection of a proper resin for the synthesis. For example, a rink amide resin can be used. After the completion of the synthesis, the semipermanent protecting groups on acidic bifunctional amino acids such as Asp and Glu and basic amino acid Lys, hydroxyl of Tyr are all simultaneously removed. The peptides released from such a resin using acidic treatment comes out with the n-terminal protected as acetyl and the carboxyl protected as NH2 and with the simultaneous removal of all of the other protecting groups.


While amino acid sequences are disclosed herein, amino acid sequences comprising, one or more protecting groups, e.g., as described above (or any other commercially available protecting groups for amino acids used, e.g., in boc or fmoc peptide synthesis) are also contemplated.


Peptide Circularization.


In certain embodiments the peptides described herein (e.g., AMPs, compound AMPs, STAMPs, etc.) are circularized/cyclized to produce cyclic peptides. Cyclic peptides, as contemplated herein, include head/tail, head/side chain, tail/side chain, and side chain/side chain cyclized peptides. In addition, peptides contemplated herein include homodet, containing only peptide bonds, and heterodet containing in addition disulfide, ester, thioester-bonds, or other bonds.


The cyclic peptides can be prepared using virtually any art-known technique for the preparation of cyclic peptides. For example, the peptides can be prepared in linear or non-cyclized form using conventional solution or solid phase peptide syntheses and cyclized using standard chemistries. Preferably, the chemistry used to cyclize the peptide will be sufficiently mild so as to avoid substantially degrading the peptide. Suitable procedures for synthesizing the peptides described herein as well as suitable chemistries for cyclizing the peptides are well known in the art.


In various embodiments cyclization can be achieved via direct coupling of the N- and C-terminus to form a peptide (or other) bond, but can also occur via the amino acid side chains. Furthermore it can be based on the use of other functional groups, including but not limited to amino, hydroxy, sulfhydryl, halogen, sulfonyl, carboxy, and thiocarboxy. These groups can be located at the amino acid side chains or be attached to their N- or C-terminus.


Accordingly, it is to be understood that the chemical linkage used to covalently cyclize the peptides of the invention need not be an amide linkage. In many instances it may be desirable to modify the N- and C-termini of the linear or non-cyclized peptide so as to provide, for example, reactive groups that may be cyclized under mild reaction conditions. Such linkages include, by way of example and not limitation amide, ester, thioester, CH2—NH, etc. Techniques and reagents for synthesizing peptides having modified termini and chemistries suitable for cyclizing such modified peptides are well-known in the art.


Alternatively, in instances where the ends of the peptide are conformationally or otherwise constrained so as to make cyclization difficult, it may be desirable to attach linkers to the N- and/or C-termini to facilitate peptide cyclization. Of course, it will be appreciated that such linkers will bear reactive groups capable of forming covalent bonds with the termini of the peptide. Suitable linkers and chemistries are well-known in the art and include those previously described.


Cyclic peptides and depsipeptides (heterodetic peptides that include ester (depside) bonds as part of their backbone) have been well characterized and show a wide spectrum of biological activity. The reduction in conformational freedom brought about by cyclization often results in higher receptor-binding affinities. Frequently in these cyclic compounds, extra conformational restrictions are also built in, such as the use of D- and N-alkylated-amino acids, α,β-dehydro amino acids or α,α-disubstituted amino acid residues.


Methods of forming disulfide linkages in peptides are well known to those of skill in the art (see, e.g., Eichler and Houghten (1997) Protein Pept. Lett. 4: 157-164).


Reference may also be made to Marlowe (1993) Biorg. Med. Chem. Lett. 3: 437-44 who describes peptide cyclization on TFA resin using trimethylsilyl (TMSE) ester as an orthogonal protecting group; Pallin and Tam (1995) J. Chem. Soc. Chem. Comm. 2021-2022) who describe the cyclization of unprotected peptides in aqueous solution by oxime formation; Algin et al. (1994) Tetrahedron Lett. 35: 9633-9636 who disclose solid-phase synthesis of head-to-tail cyclic peptides via lysine side-chain anchoring; Kates et al. (1993) Tetrahedron Lett. 34: 1549-1552 who describe the production of head-to-tail cyclic peptides by three-dimensional solid phase strategy; Tumelty et al. (1994) J. Chem. Soc. Chem. Comm. 1067-1068, who describe the synthesis of cyclic peptides from an immobilized activated intermediate, where activation of the immobilized peptide is carried out with N-protecting group intact and subsequent removal leading to cyclization; McMurray et al. (1994) Peptide Res. 7: 195-206) who disclose head-to-tail cyclization of peptides attached to insoluble supports by means of the side chains of aspartic and glutamic acid; Hruby et al. (1994) Reactive Polymers 22: 231-241) who teach an alternate method for cyclizing peptides via solid supports; and Schmidt and Langer (1997) J. Peptide Res. 49: 67-73, who disclose a method for synthesizing cyclotetrapeptides and cyclopentapeptides.


These methods of peptide cyclization are illustrative and non-limiting. Using the teaching provide herein, other cyclization methods will be available to one of skill in the art.


Joining Targeting Moieties to Effectors.


Chemical Conjugation.


Chimeric moieties are formed by joining one or more of the targeting moieties described herein to one or more effectors. In certain embodiments the targeting moieties are attached directly to the effector(s) via naturally occurring reactive groups or the targeting moiety and/or the effector(s) can be functionalized to provide such reactive groups.


In various embodiments the targeting moieties are attached to effector(s) via one or more linking agents. Thus, in various embodiments the targeting moieties and the effector(s) can be conjugated via a single linking agent or multiple linking agents. For example, the targeting moiety and the effector can be conjugated via a single multifunctional (e.g., bi-, tri-, or tetra-) linking agent or a pair of complementary linking agents. In another embodiment, the targeting moiety and the effector are conjugated via two, three, or more linking agents. Suitable linking agents include, but are not limited to, e.g., functional groups, affinity agents, stabilizing groups, and combinations thereof.


In certain embodiments the linking agent is or comprises a functional group. Functional groups include monofunctional linkers comprising a reactive group as well as multifunctional crosslinkers comprising two or more reactive groups capable of forming a bond with two or more different functional targets (e.g., labels, proteins, macromolecules, semiconductor nanocrystals, or substrate). In some preferred embodiments, the multifunctional crosslinkers are heterobifunctional crosslinkers comprising two or more different reactive groups.


Suitable reactive groups include, but are not limited to thiol (—SH), carboxylate (COOH), carboxyl (—COOH), carbonyl, amine (NH2), hydroxyl (—OH), aldehyde (—CHO), alcohol (ROH), ketone (R2CO), active hydrogen, ester, sulfhydryl (SH), phosphate (—PO3), or photoreactive moieties. Amine reactive groups include, but are not limited to e.g., isothiocyanates, isocyanates, acyl azides, NHS esters, sulfonyl chlorides, aldehydes and glyoxals, epoxides and oxiranes, carbonates, arylating agents, imidoesters, carbodiimides, and anhydrides. Thiol-reactive groups include, but are not limited to e.g., haloacetyl and alkyl halide derivates, maleimides, aziridines, acryloyl derivatives, arylating agents, and thiol-disulfides exchange reagents. Carboxylate reactive groups include, but are not limited to e.g., diazoalkanes and diazoacetyl compounds, such as carbonyldiimidazoles and carbodiimides. Hydroxyl reactive groups include, but are not limited to e.g., epoxides and oxiranes, carbonyldiimidazole, oxidation with periodate, N,N′-disuccinimidyl carbonate or N-hydroxylsuccimidyl chloroformate, enzymatic oxidation, alkyl halogens, and isocyanates. Aldehyde and ketone reactive groups include, but are not limited to e.g., hydrazine derivatives for schiff base formation or reduction amination. Active hydrogen reactive groups include, but are not limited to e.g., diazonium derivatives for mannich condensation and iodination reactions. Photoreactive groups include, but are not limited to e.g., aryl azides and halogenated aryl azides, benzophenones, diazo compounds, and diazirine derivatives.


Other suitable reactive groups and classes of reactions useful in forming chimeric moieties include those that are well known in the art of bioconjugate chemistry. Currently favored classes of reactions available with reactive chelates are those which proceed under relatively mild conditions. These include, but are not limited to, nucleophilic substitutions (e.g., reactions of amines and alcohols with acyl halides, active esters), electrophilic substitutions (e.g., enamine reactions), and additions to carbon-carbon and carbon-heteroatom multiple bonds (e.g., Michael reaction, Diels-Alder addition). These and other useful reactions are discussed in, for example, March (1985) Advanced Organic Chemistry, 3rd Ed., John Wiley & Sons, New York, Hermanson (1996) Bioconjugate Techniques, Academic Press, San Diego; and Feeney et al. (1982) Modification of Proteins; Advances in Chemistry Series, Vol. 198, American Chemical Society, Washington, D.C.


In certain embodiments, the linking agent comprises a chelator. For example, the chelator comprising the molecule, DOTA (DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane), can readily be labeled with a radiolabel, such as Gd3+ and 64Cu, resulting in Gd3+-DOTA and 64Cu-DOTA respectively, attached to the targeting moiety. Other suitable chelates are known to those of skill in the art, for example, 1,4,7-triazacyclononane-N,N′,N″-triacetic acid (NOTA) derivatives being among the most well known (see, e.g., Lee et al. (1997) Nucl Med. Biol. 24: 2225-23019).


A “linker” or “linking agent” as used herein, is a molecule that is used to join two or more molecules. In certain embodiments the linker is typically capable of forming covalent bonds to both molecule(s) (e.g., the targeting moiety and the effector). Suitable linkers are well known to those of skill in the art and include, but are not limited to, straight or branched-chain carbon linkers, heterocyclic carbon linkers, or peptide linkers. In certain embodiments the linkers can be joined to the constituent amino acids through their side groups (e.g., through a disulfide linkage to cysteine). However, in certain embodiments, the linkers will be joined to the alpha carbon amino and carboxyl groups of the terminal amino acids.


A bifunctional linker having one functional group reactive with a group on one molecule (e.g., a targeting peptide), and another group reactive on the other molecule (e.g., an antimicrobial peptide), can be used to form the desired conjugate. Alternatively, derivatization can be performed to provide functional groups. Thus, for example, procedures for the generation of free sulfhydryl groups on peptides are also known (See U.S. Pat. No. 4,659,839).


In certain embodiments the linking agent is a heterobifunctional crosslinker comprising two or more different reactive groups that form a heterocyclic ring that can interact with a peptide. For example, a heterobifunctional crosslinker such as cysteine may comprise an amine reactive group and a thiol-reactive group can interact with an aldehyde on a derivatized peptide. Additional combinations of reactive groups suitable for heterobifunctional crosslinkers include, for example, amine- and sulfhydryl reactive groups; carbonyl and sulfhydryl reactive groups; amine and photoreactive groups; sulfhydryl and photoreactive groups; carbonyl and photoreactive groups; carboxylate and photoreactive groups; and arginine and photoreactive groups. In one embodiment, the heterobifunctional crosslinker is SMCC.


Many procedures and linker molecules for attachment of various molecules to peptides or proteins are known (see, e.g., European Patent Application No. 188,256; U.S. Pat. Nos. 4,671,958, 4,659,839, 4,414,148, 4,699,784; 4,680,338; 4,569,789; and 4,589,071; and Borlinghaus et al. (1987) Cancer Res. 47: 4071-4075). Illustrative linking protocols are provided herein in Examples 2 and 3.


Fusion Proteins.


In certain embodiments where the targeting moiety and effector are both peptides or both comprise peptides, the chimeric moiety can be chemically synthesized or recombinantly expressed as a fusion protein (i.e., a chimeric fusion protein).


In certain embodiments the chimeric fusion proteins are synthesized using recombinant DNA methodology. Generally this involves creating a DNA sequence that encodes the fusion protein, placing the DNA in an expression cassette under the control of a particular promoter, expressing the protein in a host, isolating the expressed protein and, if required, renaturing the protein.


DNA encoding the fusion proteins can be prepared by any suitable method, including, for example, cloning and restriction of appropriate sequences or direct chemical synthesis by methods such as the phosphotriester method of Narang et al. (1979) Meth. Enzymol. 68: 90-99; the phosphodiester method of Brown et al. (1979) Meth. Enzymol. 68: 109-151; the diethylphosphoramidite method of Beaucage et al. (1981) Tetra. Lett., 22: 1859-1862; and the solid support method of U.S. Pat. No. 4,458,066.


Chemical synthesis produces a single stranded oligonucleotide. This can be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template. One of skill would recognize that while chemical synthesis of DNA is limited to sequences of about 100 bases, longer sequences can be obtained by the ligation of shorter sequences.


Alternatively, subsequences can be cloned and the appropriate subsequences cleaved using appropriate restriction enzymes. The fragments can then be ligated to produce the desired DNA sequence.


In certain embodiments, DNA encoding fusion proteins of the present invention may be cloned using DNA amplification methods such as polymerase chain reaction (PCR). Thus, for example, the nucleic acid encoding a targeting antibody, a targeting peptide, and the like is PCR amplified, using a sense primer containing the restriction site for NdeI and an antisense primer containing the restriction site for HindIII. This produces a nucleic acid encoding the targeting sequence and having terminal restriction sites. Similarly an effector and/or effector/linker/spacer can be provided having complementary restriction sites. Ligation of sequences and insertion into a vector produces a vector encoding the fusion protein.


While the targeting moieties and effector(s) can be directly joined together, one of skill will appreciate that they can be separated by a peptide spacer/linker consisting of one or more amino acids. Generally the spacer will have no specific biological activity other than to join the proteins or to preserve some minimum distance or other spatial relationship between them. However, the constituent amino acids of the spacer may be selected to influence some property of the molecule such as the folding, net charge, or hydrophobicity.


The nucleic acid sequences encoding the fusion proteins can be expressed in a variety of host cells, including E. coli, other bacterial hosts, yeast, and various higher eukaryotic cells such as the COS, CHO and HeLa cells lines and myeloma cell lines. The recombinant protein gene will be operably linked to appropriate expression control sequences for each host. For E. coli this includes a promoter such as the T7, trp, or lambda promoters, a ribosome binding site and preferably a transcription termination signal. For eukaryotic cells, the control sequences will include a promoter and preferably an enhancer derived from immunoglobulin genes, SV40, cytomegalovirus, etc., and a polyadenylation sequence, and may include splice donor and acceptor sequences.


The plasmids can be transferred into the chosen host cell by well-known methods such as calcium chloride transformation for E. coli and calcium phosphate treatment or electroporation for mammalian cells. Cells transformed by the plasmids can be selected by resistance to antibiotics conferred by genes contained on the plasmids, such as the amp, gpt, neo and hyg genes.


Once expressed, the recombinant fusion proteins can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, generally, R. Scopes (1982) Protein Purification, Springer-Verlag, N.Y.; Deutscher (1990) Methods in Enzymology Vol. 182: Guide to Protein Purification., Academic Press, Inc. N.Y.). Substantially pure compositions of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity are most preferred for pharmaceutical uses. Once purified, partially or to homogeneity as desired, the polypeptides may then be used therapeutically.


One of skill in the art would recognize that after chemical synthesis, biological expression, or purification, the fusion protein may possess a conformation substantially different than the native conformations of the constituent polypeptides. In this case, it may be necessary to denature and reduce the polypeptide and then to cause the polypeptide to re-fold into the preferred conformation. Methods of reducing and denaturing proteins and inducing re-folding are well known to those of skill in the art (See, Debinski et al. (1993) J. Biol. Chem., 268: 14065-14070; Kreitman and Pastan (1993) Bioconjug. Chem., 4: 581-585; and Buchner, et al. (1992) Anal. Biochem., 205: 263-270).


One of skill would recognize that modifications can be made to the fusion proteins without diminishing their biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids placed on either terminus to create conveniently located restriction sites or termination codons.


As indicated above, in various embodiments a peptide linker/spacer is used to join the one or more targeting moieties to one or more effector(s). In various embodiments the peptide linker is relatively short, typically less than about 10 amino acids, preferably less than about 8 amino acids and more preferably about 3 to about 5 amino acids. Suitable illustrative linkers include, but are not limited to PSGSP ((SEQ ID NO:1932), ASASA (SEQ ID NO: 1933), or GGG (SEQ ID NO: 1934). In certain embodiments longer linkers such as (GGGGS)3 (SEQ ID NO:1935) can be used. Illustrative peptide linkers and other linkers are shown in Table 11.









TABLE 11







Illustrative peptide and non-peptide linkers.








Linker
SEQ ID NO:





AAA
1936





GGG
1937





SGG
1938





GGSGGS
1939





SAT
1940





PYP
1941





PSPSP
1942





ASA
1943





ASASA
1944





PSPSP
1945





KKKK
1946





RRRR
1947





(Gly4Ser)3
1948





GGGG
1954





GGGGS
1955





GGGGS GGGGS
1956





GGGGS GGGGS GGGGS GGGGS
1957





GGGGS GGGGS GGGGS GGGGS GGGGS
1958





GGGGS GGGGS GGGGS GGGGS GGGGS GGGGS
1959





2-nitrobenzene or O-nitrobenzyl






Nitropyridyl disulfide






Dioleoylphosphatidylethanolamine (DOPE)






S-acetylmercaptosuccinic acid






1,4,7,10-tetraazacyclododecane-1,4,7,10-tetracetic acid (DOTA)






β-glucuronide and β-glucuronide variants






Poly(alkylacrylic acid)






Benzene-based linkers (for example: 2,5-Bis(hexyloxy)-1,4-bis[2,5-



bis(hexyloxy)-4-formyl-phenylenevinylene]benzene) and like



molecules






Disulfide linkages






Poly(amidoamine) or like dendrimers linking multiple target and killing



peptides in one molecule






Carbon nanotubes






Hydrazone and hydrazone variant linkers






PEG of any chain length






Succinate, formate, acetate butyrate, other like organic acids






Aldols, alcohols, or enols






Peroxides






alkane or alkene groups of any chain length






One or more porphyrin or dye molecules containing free amide and



carboxylic acid groups






One or more DNA or RNA nucleotides, including polyamine and



polycarboxyl-containing variants






Inulin, sucrose, glucose, or other single, di or polysaccharides






Linoleic acid or other polyunsaturated fatty acids






Variants of any of the above linkers containing halogen or thiol



groups





(all amino-acid-based linkers could be L, D, combinations of L and D forms, β-form, PEG backbone, and the like)






Multiple Targeting Moieties and/or Effectors.


As indicated above, in certain embodiments, the chimeric moieties described herein comprise multiple targeting moieties attached to a single effector or multiple effectors attached to a single targeting moiety, or multiple targeting moieties attached to multiple effectors.


Where the chimeric construct is a fusion protein this is easily accomplished by providing multiple domains that are targeting domains attached to one or more effector domains. FIG. 12 schematically illustrates a few, but not all, configurations. In various embodiments the multiple targeting domains and/or multiple effector domains can be attached to each other directly or can be separated by linkers (e.g., amino acid or peptide linkers as described above).


When the chimeric construct is a chemical conjugate linear or branched configurations (e.g., as illustrated in FIG. 12) are readily produced by using branched or multifunctional linkers and/or a plurality of different linkers.


III. Administration and Formulations.


Pharmaceutical Formulations.


In certain embodiments, the antimicrobial peptides and/or the chimeric constructs (e.g., targeting moieties attached to antimicrobial peptide(s), targeting moieties attached to detectable label(s), etc.) are administered to a mammal in need thereof, to a cell, to a tissue, to a composition (e.g., a food, etc.). In various embodiments the compositions can be administered to detect and/or locate, and/or quantify the presence of particular microorganisms, microorganism populations, biofilms comprising particular microorganisms, and the like. In various embodiments the compositions can be administered to inhibit particular microorganisms, microorganism populations, biofilms comprising particular microorganisms, and the like.


These active agents (antimicrobial peptides and/or chimeric moieties) can be administered in the “native” form or, if desired, in the form of salts, esters, amides, prodrugs, derivatives, and the like, provided the salt, ester, amide, prodrug or derivative is suitable pharmacologically, i.e., effective in the present method(s). Salts, esters, amides, prodrugs and other derivatives of the active agents can be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by March (1992) Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 4th Ed. N.Y. Wiley-Interscience.


Methods of formulating such derivatives are known to those of skill in the art. For example, the disulfide salts of a number of delivery agents are described in PCT Publication WO 00/059863 which is incorporated herein by reference. Similarly, acid salts of therapeutic peptides, peptoids, or other mimetics, and can be prepared from the free base using conventional methodology that typically involves reaction with a suitable acid. Generally, the base form of the drug is dissolved in a polar organic solvent such as methanol or ethanol and the acid is added thereto. The resulting salt either precipitates or can be brought out of solution by addition of a less polar solvent. Suitable acids for preparing acid addition salts include, but are not limited to both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. An acid addition salt can be reconverted to the free base by treatment with a suitable base. Certain particularly preferred acid addition salts of the active agents herein include halide salts, such as may be prepared using hydrochloric or hydrobromic acids. Conversely, preparation of basic salts of the active agents of this invention are prepared in a similar manner using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like. In certain embodiments basic salts include alkali metal salts, e.g., the sodium salt, and copper salts.


For the preparation of salt forms of basic drugs, the pKa of the counterion is preferably at least about 2 pH lower than the pKa of the drug. Similarly, for the preparation of salt forms of acidic drugs, the pKa of the counterion is preferably at least about 2 pH higher than the pKa of the drug. This permits the counterion to bring the solution's pH to a level lower than the pHmax to reach the salt plateau, at which the solubility of salt prevails over the solubility of free acid or base. The generalized rule of difference in pKa units of the ionizable group in the active pharmaceutical ingredient (API) and in the acid or base is meant to make the proton transfer energetically favorable. When the pKa of the API and counterion are not significantly different, a solid complex may form but may rapidly disproportionate (i.e., break down into the individual entities of drug and counterion) in an aqueous environment.


Preferably, the counterion is a pharmaceutically acceptable counterion. Suitable anionic salt forms include, but are not limited to acetate, benzoate, benzylate, bitartrate, bromide, carbonate, chloride, citrate, edetate, edisylate, estolate, fumarate, gluceptate, gluconate, hydrobromide, hydrochloride, iodide, lactate, lactobionate, malate, maleate, mandelate, mesylate, methyl bromide, methyl sulfate, mucate, napsylate, nitrate, pamoate (embonate), phosphate and diphosphate, salicylate and disalicylate, stearate, succinate, sulfate, tartrate, tosylate, triethiodide, valerate, and the like, while suitable cationic salt forms include, but are not limited to aluminum, benzathine, calcium, ethylene diamine, lysine, magnesium, meglumine, potassium, procaine, sodium, tromethamine, zinc, and the like.


In various embodiments preparation of esters typically involves functionalization of hydroxyl and/or carboxyl groups that are present within the molecular structure of the active agent. In certain embodiments, the esters are typically acyl-substituted derivatives of free alcohol groups, i.e., moieties that are derived from carboxylic acids of the formula RCOOH where R is alkyl, and preferably is lower alkyl. Esters can be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.


Amides can also be prepared using techniques known to those skilled in the art or described in the pertinent literature. For example, amides may be prepared from esters, using suitable amine reactants, or they may be prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.


In various embodiments, the active agents identified herein are useful for parenteral, topical, oral, nasal (or otherwise inhaled), rectal, or local administration, such as by aerosol or transdermally, for detection and/or quantification, and or localization, and/or prophylactic and/or therapeutic treatment of infection (e.g., microbial infection). The compositions can be administered in a variety of unit dosage forms depending upon the method of administration. Suitable unit dosage forms, include, but are not limited to powders, tablets, pills, capsules, lozenges, suppositories, patches, nasal sprays, injectables, implantable sustained-release formulations, lipid complexes, etc.


The active agents (e.g., antimicrobial peptides and/or chimeric constructs) described herein can also be combined with a pharmaceutically acceptable carrier (excipient) to form a pharmacological composition. Pharmaceutically acceptable carriers can contain one or more physiologically acceptable compound(s) that act, for example, to stabilize the composition or to increase or decrease the absorption of the active agent(s). Physiologically acceptable compounds can include, for example, carbohydrates, such as glucose, sucrose, or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins, protection and uptake enhancers such as lipids, compositions that reduce the clearance or hydrolysis of the active agents, or excipients or other stabilizers and/or buffers.


Pharmaceutically acceptable carriers can contain one or more physiologically acceptable compound(s) that act, for example, to stabilize the composition or to increase or decrease the absorption of the active agent(s). Physiologically acceptable compounds can include, for example, carbohydrates, such as glucose, sucrose, or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins, protection and uptake enhancers such as lipids, compositions that reduce the clearance or hydrolysis of the active agents, or excipients or other stabilizers and/or buffers.


Other physiologically acceptable compounds, particularly of use in the preparation of tablets, capsules, gel caps, and the like include, but are not limited to binders, diluent/fillers, disentegrants, lubricants, suspending agents, and the like.


In certain embodiments, to manufacture an oral dosage form (e.g., a tablet), an excipient (e.g., lactose, sucrose, starch, mannitol, etc.), an optional disintegrator (e.g. calcium carbonate, carboxymethylcellulose calcium, sodium starch glycollate, crospovidone etc.), a binder (e.g. alpha-starch, gum arabic, microcrystalline cellulose, carboxymethylcellulose, polyvinylpyrrolidone, hydroxypropylcellulose, cyclodextrin, etc.), and an optional lubricant (e.g., talc, magnesium stearate, polyethylene glycol 6000, etc.), for instance, are added to the active component or components (e.g., active) and the resulting composition is compressed. Where necessary the compressed product is coated, e.g., known methods for masking the taste or for enteric dissolution or sustained release. Suitable coating materials include, but are not limited to ethyl-cellulose, hydroxymethylcellulose, polyoxyethylene glycol, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, and Eudragit (Rohm & Haas, Germany; methacrylic-acrylic copolymer).


Other physiologically acceptable compounds include wetting agents, emulsifying agents, dispersing agents or preservatives that are particularly useful for preventing the growth or action of microorganisms. Various preservatives are well known and include, for example, phenol and ascorbic acid. One skilled in the art would appreciate that the choice of pharmaceutically acceptable carrier(s), including a physiologically acceptable compound depends, for example, on the route of administration of the active agent(s) and on the particular physio-chemical characteristics of the active agent(s).


In certain embodiments the excipients are sterile and generally free of undesirable matter. These compositions can be sterilized by conventional, well-known sterilization techniques. For various oral dosage form excipients such as tablets and capsules sterility is not required. The USP/NF standard is usually sufficient.


In certain therapeutic applications, the compositions of this invention are administered, e.g., topically administered or administered to the oral or nasal cavity, to a patient suffering from infection or at risk for infection or prophylactically to prevent dental caries or other pathologies of the teeth or oral mucosa characterized by microbial infection in an amount sufficient to prevent and/or cure and/or at least partially prevent or arrest the disease and/or its complications. An amount adequate to accomplish this is defined as a “therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the active agents of the formulations of this invention to effectively treat (ameliorate one or more symptoms in) the patient.


The concentration of active agent(s) can vary widely, and will be selected primarily based on activity of the active ingredient(s), body weight and the like in accordance with the particular mode of administration selected and the patient's needs. Concentrations, however, will typically be selected to provide dosages ranging from about 0.1 or 1 mg/kg/day to about 50 mg/kg/day and sometimes higher. Typical dosages range from about 3 mg/kg/day to about 3.5 mg/kg/day, preferably from about 3.5 mg/kg/day to about 7.2 mg/kg/day, more preferably from about 7.2 mg/kg/day to about 11.0 mg/kg/day, and most preferably from about 11.0 mg/kg/day to about 15.0 mg/kg/day. In certain preferred embodiments, dosages range from about 10 mg/kg/day to about 50 mg/kg/day. In certain embodiments, dosages range from about 20 mg to about 50 mg given orally twice daily. It will be appreciated that such dosages may be varied to optimize a therapeutic and/or prophylactic regimen in a particular subject or group of subjects.


In certain embodiments, the active agents of this invention are administered to the oral cavity. This is readily accomplished by the use of lozenges, aerosol sprays, mouthwash, coated swabs, and the like.


In certain embodiments, the active agent(s) of this invention are administered topically, e.g., to the skin surface, to a topical lesion or wound, to a surgical site, and the like.


In certain embodiments the active agents of this invention are administered systemically (e.g., orally, or as an injectable) in accordance with standard methods well known to those of skill in the art. In other preferred embodiments, the agents, can also be delivered through the skin using conventional transdermal drug delivery systems, i.e., transdermal “patches” wherein the active agent(s) are typically contained within a laminated structure that serves as a drug delivery device to be affixed to the skin. In such a structure, the drug composition is typically contained in a layer, or “reservoir,” underlying an upper backing layer. It will be appreciated that the term “reservoir” in this context refers to a quantity of “active ingredient(s)” that is ultimately available for delivery to the surface of the skin. Thus, for example, the “reservoir” may include the active ingredient(s) in an adhesive on a backing layer of the patch, or in any of a variety of different matrix formulations known to those of skill in the art. The patch may contain a single reservoir, or it may contain multiple reservoirs.


In one embodiment, the reservoir comprises a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during drug delivery. Examples of suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, polyurethanes, and the like. Alternatively, the drug-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, or it may be a liquid or hydrogel reservoir, or may take some other form. The backing layer in these laminates, which serves as the upper surface of the device, preferably functions as a primary structural element of the “patch” and provides the device with much of its flexibility. The material selected for the backing layer is preferably substantially impermeable to the active agent(s) and any other materials that are present.


Other formulations for topical delivery include, but are not limited to, ointments, gels, sprays, fluids, and creams. Ointments are semisolid preparations that are typically based on petrolatum or other petroleum derivatives. Creams containing the selected active agent are typically viscous liquid or semisolid emulsions, often either oil-in-water or water-in-oil. Cream bases are typically water-washable, and contain an oil phase, an emulsifier and an aqueous phase. The oil phase, also sometimes called the “internal” phase, is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant. The specific ointment or cream base to be used, as will be appreciated by those skilled in the art, is one that will provide for optimum drug delivery. As with other carriers or vehicles, an ointment base should be inert, stable, nonirritating and nonsensitizing.


As indicated above, various buccal, and sublingual formulations are also contemplated.


In certain embodiments, one or more active agents of the present invention can be provided as a “concentrate”, e.g., in a storage container (e.g., in a premeasured volume) ready for dilution, or in a soluble capsule ready for addition to a volume of water, alcohol, hydrogen peroxide, or other diluent.


While the invention is described with respect to use in humans, it is also suitable for animal, e.g., veterinary use. Thus certain preferred organisms include, but are not limited to humans, non-human primates, canines, equines, felines, porcines, ungulates, largomorphs, and the like.


The foregoing formulations and administration methods are intended to be illustrative and not limiting. It will be appreciated that, using the teaching provided herein, other suitable formulations and modes of administration can be readily devised.


Home Health Care Product Formulations.


In certain embodiments, one or more of the antimicrobial peptides (AMPs) and/or chimeric moieties described herein are incorporated into healthcare formulations, e.g., for home use. Such formulations include, but are not limited to toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, wound dressings (e.g., bandages), and the like.


The formulation of such health products is well known to those of skill, and the antimicrobial peptides and/or chimeric constructs are simply added to such formulations in an effective dose (e.g., a prophylactic dose to inhibit dental carie formation, etc.).


For example, toothpaste formulations are well known to those of skill in the art. Typically such formulations are mixtures of abrasives and surfactants; anticaries agents, such as fluoride; tartar control ingredients, such as tetrasodium pyrophosphate and methyl vinyl ether/maleic anhydride copolymer; pH buffers; humectants, to prevent dry-out and increase the pleasant mouth feel; and binders, to provide consistency and shape (see, e.g., Table 12). Binders keep the solid phase properly suspended in the liquid phase to prevent separation of the liquid phase out of the toothpaste. They also provide body to the dentifrice, especially after extrusion from the tube onto the toothbrush.









TABLE 12







Typical components of toothpaste.










Ingredients
Wt %







Humectants
40-70



Water
 0-50



Buffers/salts/tartar control
0.5-10 



Organic thickeners (gums)
0.4-2  



Inorganic thickeners
 0-12



Abrasives
10-50



Actives (e.g., triclosan)
0.2-1.5



Surfactants
0.5-2  



Flavor and sweetener
0.8-1.5







Fluoride sources provide 1000-15000 ppm fluorine.






Table 13 lists typical ingredients used in formulations; the final combination will depend on factors such as ingredient compatibility and cost, local customs, and desired benefits and quality to be delivered in the product. It will be recognized that one or more antimicrobial peptides and/or chimeric constructs described herein can simply be added to such formulations or used in place of one or more of the other ingredients.









TABLE 13







List of typical ingredients













Inorganic



Tartar Control


Gums
Thickeners
Abrasives
Surfactants
Humectants
Ingredient





Sodium
Silica
Hydrated
Sodium
Glycerine
Tetrasodium


carboxymethyl
thickeners
silica
lauryl

pyrophosphate


cellulose


sulfate


Cellulose
Sodium
Dicalcium
Sodium
Sorbitol
Gantrez S-70


ethers
aluminum
phosphate
N-lauryl



silicates
digydrate
sarcosinate


Xanthan Gum
Clays
Calcium
Pluronics
Propylene
Sodium tri-




carbonate

glycol
polyphosphate


Carrageenans

Sodium

Xylitol




bicarbonate


Sodium

Calcium
Sodium
Polyethylene


alginate

pyrophosphate
lauryl
glycol





sulfoacetate


Carbopols

Alumina









One illustrative formulation described in U.S. Pat. No. 6,113,887 comprises (1) a water-soluble bactericide selected from the group consisting of pyridinium compounds, quaternary ammonium compounds and biguanide compounds in an amount of 0.001% to 5.0% by weight, based on the total weight of the composition; (2) a cationically-modified hydroxyethylcellulose having an average molecular weight of 1,000,000 or higher in the hydroxyethylcellulose portion thereof and having a cationization degree of 0.05 to 0.5 mol/glucose in an amount of 0.5% to 5.0% by weight, based on the total weight of the composition; (3) a surfactant selected from the group consisting of polyoxyethylene polyoxypropylene block copolymers and alkylolamide compounds in an amount of 0.5% to 13% by weight, based on the total weight of the composition; and (4) a polishing agent of the non-silica type in an amount of 5% to 50% by weight, based on the total weight of the composition. In certain embodiments, the antimicrobial peptide(s) and/or chimeric construct(s) described herein can be used in place of the bactericide or in combination with the bactericide.


Similarly, mouthwash formulations are also well known to those of skill in the art. Thus, for example, mouthwashes containing sodium fluoride are disclosed in U.S. Pat. Nos. 2,913,373, 3,975,514, and 4,548,809, and in US Patent Publications US 2003/0124068 A1, US 2007/0154410 A1, and the like. Mouthwashes containing various alkali metal compounds are also known: sodium benzoate (WO 9409752); alkali metal hypohalite (US 20020114851A1); chlorine dioxide (CN 1222345); alkali metal phosphate (US 2001/0002252 A1, US 2003/0007937 A1); hydrogen sulfate/carbonate (JP 8113519); cetylpyridium chloride (CPC) (see, e.g., U.S. Pat. No. 6,117,417, U.S. Pat. No. 5,948,390, and JP 2004051511). Mouthwashes containing higher alcohol (see, e.g., US 2002/0064505 A1, US 2003/0175216 A1); hydrogen peroxide (see, e.g., CN 1385145); CO2 gas bubbles (see, e.g., JP 1275521 and JP 2157215) are also known. In certain embodiments, these and other mouthwash formulations can further comprise one or more of the AMPs or compound AMPs of this invention.


Contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, and aerosolizers for oral and/or nasal application, and the like are also well known to those of skill in the art and can readily be adapted to incorporate one or more antimicrobial peptide(s) and/or chimeric construct(s) described herein.


The foregoing home healthcare formulations and/or devices are meant to be illustrative and not limiting. Using teaching provided herein, the antimicrobial peptide(s) and/or chimeric construct(s) described herein can readily be incorporated into other products.


IV. Kits.


In another embodiment this invention provides kits for the inhibition of an infection and/or for the treatment and/or prevention of dental caries in a mammal. The kits typically comprise a container containing one or more of the active agents (i.e., the antimicrobial peptide(s) and/or chimeric construct(s)) described herein. In certain embodiments the active agent(s) can be provided in a unit dosage formulation (e.g., suppository, tablet, caplet, patch, etc.) and/or may be optionally combined with one or more pharmaceutically acceptable excipients.


In certain embodiments the kits comprise one or more of the home healthcare product formulations described herein (e.g., toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, and the like).


In certain embodiments kits are provided for detecting and/or locating and/or quantifying certain target microorganisms and/or cells or tissues comprising certain target microorganisms, and/or prosthesis bearing certain target microorganisms, and/or biofilms comprising certain target microorganisms. In various embodiments these kits typically comprise a chimeric moiety comprising a targeting moiety and a detectable label as described herein and/or a targeting moiety attached to an affinity tag for use in a pretargeting strategy as described herein.


In addition, the kits optionally include labeling and/or instructional materials providing directions (i.e., protocols) for the practice of the methods or use of the “therapeutics” or “prophylactics” or detection reagents of this invention. Certain instructional materials describe the use of one or more active agent(s) of this invention to therapeutically or prophylactically to inhibit or prevent infection and/or to inhibit the formation of dental caries. The instructional materials may also, optionally, teach preferred dosages/therapeutic regiment, counter indications and the like.


While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.


EXAMPLES

The following examples are offered to illustrate, but not to limit the claimed invention.


Example 1
Design and Activity of a “Dual-Targeted” Antimicrobial Peptide

Numerous reports have indicated the important role of human normal flora in the prevention of microbial pathogenesis and disease. Evidence suggests that infections at mucosal surfaces result from the outgrowth of subpopulations or clusters within a microbial community, and are not linked to one pathogenic organism alone. In order to preserve the protective normal flora while treating the majority of infective bacteria in the community, a tunable therapeutic is necessary that can discriminate between benign bystanders and multiple pathogenic organisms. Here we describe the proof-of-principle for such a multi-targeted antimicrobial: a multiple-headed specifically-targeted antimicrobial peptide (MH-STAMP). The completed MH-STAMP, M8(KH)-20, displays specific activity against targeted organisms in vitro (Pseudomonas aeruginosa and Streptococcus mutans) and can remove both species from a mixed planktonic culture with little impact against untargeted bacteria. These results demonstrate that a functional, dual-targeted molecule can be constructed from wide-spectrum antimicrobial peptide precursor.


Introduction


For nearly 30 years antimicrobial peptides (AMPs) have been rigorously investigated as alternatives to small molecule antibiotics and potential solutions to the growing crisis of antibiotic resistant bacterial infections [1, 2]. Numerous reports have characterized potential AMPs from natural sources, and a great body of work has been carried out designing “tailor-made” AMPs due to the approachable nature of solid-phase peptide synthesis (SPPS) [3, 4]. Several examples of the latter have shown remarkable activities in vitro against fungi, Gram-positive and Gram-negative bacteria, as well as some enveloped viruses [5].


Unlike small molecule antibiotics that may lose activity when their basic structures are modified even incrementally, peptides are a convenient canvas for molecular alteration. AMPs can be optimized through the incorporation of more or less hydrophobic or charged amino acids, which has been shown to affect selectivity for Gram-positive, Gram-negative or fungal membranes [6, 7]. Additionally, lysine residues can be utilized to improve AMP activity per μM. In this approach, multiple AMP chains can be attached to a single peptide scaffold through branching from lysine epsilon-amines [8, 9]. AMP activity can be specifically tuned through the attachment of a targeting peptide region, as described for a novel class of molecules, the specifically-targeted antimicrobial peptides, or STAMPs [10, 11]. These chimeric molecules can consist of functionally independent targeting and killing moieties within a linear peptide sequence. A pathogenic bacterium recognized (i.e. bound) by the targeting peptide can be eliminated from a multi-species community with little impact to bystander normal flora. As an extension of this concept, we hypothesized that a STAMP could be constructed with multiple targeting peptide “heads” attached to a single AMP by utilizing a central lysine residue branch point. Potentially, targeting “heads” could be specific for the same pathogen, or have different binding profiles. Utilizing the former approach, microbial resistance evolution linked to a targeting peptide could be inhibited or reduced, as no single microbial population would have the genetic diversity necessary to mutate multiple discrete targeting peptide receptors in one cell [12].


Multi-headed STAMP (MH-STAMP) molecules with differing bacterial targets may have appeal in treating poly-microbial infections, or where it may be advantageous to remove a cluster of biofilm constituents without utilizing several distinct molecules; for example in the simultaneously treatment of dental caries and periodontitis, or in the eradication of the Propionibacteria spp. and Staphylococcus spp. involved in acne and skin infections, respectively.


In this example, we present the proof-of-principle design, synthesis and in vitro activity of such a MH-STAMP, M8(KH)-20. Previously, we identified two functional STAMP targeting domains, one with specific recognition of the cariogenic pathogen S. mutans [10], and the other with Pseudomonas spp.-level selectivity [13]. Conjoined to a normally wide-spectrum linear AMP, we observed antimicrobial effects directed specifically to P. aeruginosa and S. mutans in vitro. Additionally, treatment of mixed bacterial communities with the multi-headed MH-STAMP resulted in the specific eradication of the target organisms with little impact on bystander population levels.


Materials and Methods


Bacterial Strains and Growth Conditions



P. aeruginosa ATCC 15692, Klebsiella pneumoniae KAY 2026 [14], Escherichia coli DH5α (pFW5, spectinomycin resistance) [15], Staphylococcus aureus Newmann [16], and Staphylococcus epidermidis ATCC 35984 were cultivated under aerobic conditions at 37° C. with vigorous shaking. Aerobic Gram-negative organisms were grown in Lauri-Bertaini (LB) broth and Gram-positive bacteria in Brain-heart infusion (BHI) broth. Streptococcus mutans JM11 (spectinomycin resistant, UA140 background) was grown in Todd-Hewitt (TH) broth under anaerobic conditions (80% N2, 15% CO2, 5% H2) at 37° C. [17]. All bacteria were grown overnight to an OD600 of 0.8-1.0 prior to appropriate dilution and antimicrobial testing.


Synthesis of Multi-Head STAMP Peptides


Conventional solid-phase peptide synthesis (SPPS) methodologies were utilized for the construction of all peptides shown in FIG. 13 (Symphony Synthesizer, PTI, Tucson, Ariz.). Chemicals, amino acids, and synthesis resins were purchased from Anaspec (San Jose, Calif.). BD2.20 (FIRKFLKKWLL (SEQ ID NO:1949), amidated C-terminus, mw 1491.92), an antimicrobial peptide developed in our laboratory with robust antimicrobial activity against a number of bacterial species (Table 14), served as the root sequence to which differing targeting peptides were attached: Firstly, BD2.20 was synthesized by SPPS (Rink-Amide-MBHA resin, 0.015 mmol), followed by the stepwise coupling of a functionalized alkane (NH2(CH2)7COOH), and an Fmoc-protected Lys (side-chain protected with 4-methyltrityl (Mtt)) to the N-terminus. Standard SPPS methods were then employed for the step-wise addition of the S. mutans targeting peptide M8 plus a tri-Gly linker region (TFFRFLNR-GGG (SEQ ID NO:1950)) to the N-terminal of the central Lys. After assembly of Fmoc-M8-GGG-K(Mtt)-(CH2)7CO-BD2.20 (SEQ ID NO:1951), the Fmoc group was removed with 25% piperidine in DMF and the N-terminal was re-protected with an acetyl group with Ac2O/DIEA (1:1, 20 molar excess) for 2 hours. The Mtt-protected amino group of the central Lys was then selectively exposed with 2% TFA in DCM (1.5 mL) for 15 minutes (three cycles of 5 min). The resulting product was reloaded into the synthesizer and the peptide sequence built from the Lys side-chain was completed with standard Fmoc SPPS methods. As shown in FIG. 13, the completed MH-STAMP M8(KH)-20 contained the side-chain peptide KH (Pseudomonas spp.-targeting, KKHRKHRKHRKH-GGG (SEQ ID NO:1952)), while in MH-STAMP M8(BL)-20 a peptide with no bacterial binding (data not shown), BL-1 (DAANEA-GGG; SEQ ID NO:2007), was utilized. BL(KH)-20 was constructed identically to M8(KH)-20, utilizing BL-1 in place of M8 (FIG. 13).









TABLE 14







MICs of MH-STAMPs and component peptides.









MIC (μM)















P. aeruginosa


E. coli


K. pneumoniae


S. mutans


S. epidermidis


S. aureus


















BD2.20
14.4 ± 4.40
5.47 ± 1.41
2.98 ± 0.47
2.86 ± 0.60
5.11 ± 1.58
5.625 ± 1.29


M8(KH)-20
11.95 ± 3.32 
2.72 ± 0.59
3.13
6.25
3.13
 5.64 ± 1.07


M8(BL)-20
50
5.97 ± 0.94
6.88 ± 1.98
6.25
6.25
18.05 ± 6.58


BL(KH)-20
27.5 ± 7.90
6.25
6.25
6.25
6.25
6.25





Average MIC with standard deviation, n = 10 assays.






Synthesis progression was monitored by the ninhydrin test, and completed peptides cleaved from the resin with 95% TFA utilizing appropriate scavengers, and precipitated in methyl tert-butyl ether. Purification and MH-STAMP quality was confirmed by HPLC (Waters, Milford, Mass.) using a linear gradient of increasing mobile phase (acetonitrile 10 to 90% in water with 0.1% TFA) and a Waters XBridge BEH 130 C18 column (4.6×100 mm, particle size 5 μm). Absorbance at 215 nm was utilized as the monitoring wavelength, though 260 and 280 nm were also collected. LC spectra were analyzed with MassLynx Software v.4.1 (Waters). Matrix-assisted laser desorption ionization (MALDI) mass spectroscopy was utilized to confirm correct peptide mass (Voyager System 4291, Applied Biosystems) [18].


MIC Assay


Peptides were evaluated for basic antimicrobial activity by broth microdilution, as described previously [10, 11]. Briefly, ˜1×105 cfu/mL bacteria were diluted in TH (S. mutans), or Mueller-Hinton (MH) broth (all other organisms) and distributed to 96-well plates. Serially-diluted (2-fold) peptides were then added and the plates incubated at 37° C. for 18-24 h. Peptide MIC was determined as the concentration of peptide that completely inhibited organism growth when examined by eye (clear well). All experiments were conducted 10 times.


Post-Antibiotic Effect Assay


The activity and selectivity of MH-STAMPs after a 10 min incubation was determined by growth retardation experiments against targeted and untargeted bacteria in monocultures, as described previously [10, 11]. Cells from overnight cultures were diluted to ˜5×106 cfu/mL in MH (or TH with 1% sucrose for S. mutans), normalized by OD600 0.05-0.1 and seeded to 96-well plates. Cultures were then grown under the appropriate conditions for 2 h (3 h for S. mutans) prior to the addition of peptides for 10 min. Plates were then centrifuged at 3000×g for 5 min, the supernatants discarded, fresh medium returned (MH or TH without sucrose for S. mutans), and incubation resumed. Bacterial growth after treatment was then monitored over time by OD600.


Microbial Population Shift Assay


Mixed planktonic populations of P. aeruginosa, E. coli, S. epidermidis, and S. mutans were utilized to examine the potential of MH-STAMPs to direct species composition within a culture after treatment. Samples were prepared containing: ˜6×104 cfu/mL S. mutans, ˜2×104 cfu/mL E. coli, ˜2×104 cfu/mL S. epidermidis, and ˜0.5×104 cfu/mL P. aeruginosa in BHI (mixed immediately before peptide addition). Peptide (10 μM) or mock-treatment (1×PBS) was then added and samples were incubated at 37° C. for 24 h under anaerobic conditions (80% N2, 15% CO2, 5% H2). After incubation, samples were serially diluted (1:10) in 1×PBS and aliquots from each dilution were then spotted to agar plates selective for each species in the mixture: TH plus 800 μg/mL spectinomycin (S. mutans), LB plus 25 μg/mL ampicillin (P. aeruginosa), LB plus 200 μg/mL spectinomycin (E. coli), and mannitol salt agar (MSA, S. epidermidis) in order to quantitate survivors from each species. Plates were then incubated 37° C. under aerobic conditions (TH plates were incubated anaerobically) and colonies counted after 24 h to determine survivors. Expected colony morphologies were observed for each species when plated on selective media. Gram stains and direct microscopic observation (from select isolated colonies) were undertaken to confirm species identity (data not shown). The detection limit of the assay was 200 cfu/mL.


Results


Design and Synthesis of Multi-Headed STAMPs


We constructed a prototype MH-STAMP from the well-established targeting peptides KH (specific to Pseudomonas spp) and M8 (specific for Streptococcus mutans). The wide-spectrum antimicrobial peptide BD2.20 was utilized as the base AMP for all MH171 STAMP construction. BD2.20 is a novel synthetic AMP with a cationic and amphipathic residue arrangement, which has robust MICs against a variety of Gram-negative and Gram-positive organisms (Table 14). For the synthesis of MH-STAMP M8(KH)-20 (construct presented in FIG. 13), BD2.20 and a Lys (Mtt-protected side-chain) residue were joined via an activated alkane spacer, followed by addition of the M8 targeting peptide to the N-terminus of the product. Selective deprotection of the central Lys(Mtt) side chain was then undertaken and the KH targeting peptide attached. The correct molecular mass (4888.79) and ˜90% purity was confirmed by HPLC and MALDI mass spectrometry (FIG. 14).


The non-binding “blank” targeting peptide BL-1 was incorporated into the synthesis scheme in place of KH or M8 to construct variant MH-STAMPs possessing a single functional targeting head: M8(BL)-20 and BL(KH)-20. The correct MW and acceptable purity were observed for these MH-STAMPs (FIG. 13, data not shown).


General Antimicrobial Activity of Multi-Head Constructs


After synthesis, the completed MH-STAMPs were evaluated for general antimicrobial activity by MIC against a panel of bacteria. As shown in Table 14, the MH-STAMP constructs M8(KH)-20, BL(KH)-20, and M8(BL)-20 were found to have similar activity profiles to that of BD2.20 for the organisms examined (less than two titration steps in 10-fold difference). Additionally, we observed a difference in general susceptibility between P. aeruginosa and the other organisms tested, suggesting this bacterium is more resistant to BD2.20. Overall, these data indicate that the addition of the targeting domains to the base sequence was tolerated and did not completely inhibit the activity of the antimicrobial peptide.


Peptide selectivity could not be determined utilizing these methods, as STAMPs and their parent AMP molecules often display similar MICs, but have radically different antimicrobial kinetics and selectivity due to increased specific-killing mediated by the targeting regions [10, 11]. Therefore, we performed different experiments to test for antimicrobial selectivity and functional MH-STAMP construction.


3.3 Selectivity and Post-Antibiotic Effect of MH-STAMP Constructs


MH-STAMP antimicrobial kinetics was ascertained utilizing a variation of the classical post-antibiotic effect assay, which measures the ability of an agent to affect an organism's growth after a short exposure period. Monocultures of MH-STAMP-targeted and untargeted organisms were exposed to M8(KH)-20, M8(BL)-20, BL(KH)-20, or unmodified BD2.20, then allowed to recover. As shown in FIG. 15A, S. mutans growth was effectively retarded by M8-containing constructs (M8(KH)-20, M8(BL)-20), but was not altered by a MH-STAMP construct lacking this region (BL(KH)-20). Similarly, the growth of the other targeted bacterium, P. aeruginosa, was inhibited in a KH-dependant manner (FIG. 15B). In comparison, the non-targeted bacteria E. coli, S. aureus, and S. epidermidis were not inhibited by treatment with any MH-STAMP and were only inhibited by the base antimicrobial peptide BD2.20, which displayed robust antimicrobial activity against all examined strains. These results indicate that MH-STAMPs containing KH or M8 targeting domains have activity against P. aeruginosa or S. mutans, respectively, and not other bacteria. Furthermore, replacement of the targeting region with a non-binding peptide abolishes specific activity.


Ability of MH-STAMPs to Direct a “Population Shift” within a Mixed Species Population


We hypothesized that potential MH-STAMP dual-functionality could affect a particular set of bacteria within a mixed population, thereby promoting the outgrowth of non-targeted organisms and “shifting” the constituent makeup. To examine this possibility, defined mixed populations of planktonic cells were treated continuously and the make-up of the community examined after 24 h. As shown in FIG. 16, treatment with the wide spectrum AMP BD2.20 resulted in a significant loss of recoverable cfu/mL after 24 h from all species in the mixture. Treatment with M8(KH)-20 was found to alter this pattern; we observed ˜1×105 cfu/mL surviving E. coli and S. epidermidis, but did not recover S. mutans or P. aeruginosa cfu/mL. In BL(KH)-20 treated samples, P. aeruginosa cfu/mL were not observed, though we recovered higher than input cfu/mL from S. mutans and unchanged numbers of S. epidermidis and E. coli. In samples exposed to M8(BL)-20, S. mutans recoverable cfu/mL were greatly reduced compared to input cfu/mL, while other species were not affected or affected to a lesser extent. Interestingly, these results suggest that M8(KH)-20, M8(BL)-20, and BL(KH)-20 retain their ability to affect organisms recognized by the targeting regions present, even within a mixed population of bacteria.


Discussion


Our results indicate that we have successfully constructed a STAMP with dual antimicrobial specificities controlled by the targeting peptides present in the molecule; KH for Pseudomonas spp, M8 for S. mutans. In a closed multi-species system (FIG. 16), the dual specificity of M8(KH)-20 was readily discernable: the population of the culture “shifted” away from targeted organisms after MH-STAMP treatment. The targeted bacteria were eliminated and the population of untargeted organisms increased, to varying degrees, above-input cfu/mL. Additionally, interruption of KH or M8 in the MH-STAMP construct with the non-binding peptide BL-1 resulted in the expected elimination of only one targeted species. These results support the hypothesis that functional MH-STAMPs could be constructed from a wide-spectrum AMP base.


The emergence of metagenomics and the development of more sensitive molecular diagnostics has driven an increase in the understanding of human-associated microbial ecologies and host-microbe interactions [19-21]. At mucosal surfaces, it has become clear that our bodies harbor an abundance of residential flora which may impact innate and humoral immunity, nutrient availability, protection against pathogens, and even host physiology [22-25]. Furthermore, findings have indicated that shifts in the diversity of normal flora are associated with negative clinical consequences; for example the overgrowth of S. mutans in the oral cavity during cariogenesis (linked to the uptake of sucrose) or the antibiotic-assisted colonization of the intestine by Clostridium difficle [26, 27]. Other population shifts may be linked to axilla odor (Corynebacteria spp) [28, 29], or even host obesity. Given the quantity and diversity of microbes present, pathogenesis at mucosal surfaces is not likely to be associated with the overgrowth of a single strain or species. More often, it is a population shift resulting in the predominance of two or more species; for example the persistence of Burkholderia cepacia and P. aeruginosa in cystic fibrosis airway or Treponema denticola and Porphymonas gingivalis and other “red cluster” organisms in gingivitis [30, 31]. In many cases (such as the latter) these species may have only distant phylogenetic relationships and display differential susceptibilities to antibiotic therapies resulting in persistent disease progression despite treatment [32, 33]. Currently, available treatments for infections of mucosal surfaces are largely non-specific (traditional small-molecule antibiotics, mechanical removal), and thus are not effective in retaining flora or shifting the constituent balance back to a health-associated composition [34]. There is a need for a therapeutic treatment that can selectively target multiple pathogens, regardless of their phylogenetic relationship, and MH-STAMPs can help achieve this goal.


In monoculture experiments (FIG. 15), our results suggest that M8 or KH inclusion in the MH-STAMP drove activity towards S. mutans or P. aeruginosa, but also that the presence of a targeting domain reduced the activity of the parent AMP BD2.20 against untargeted organisms. In contrast, the results of our MIC assays (Table 14) indicate little difference in activity between BD2.20 and any MH-STAMP. Against untargeted organisms, the M8 and KH regions are likely to have a negative, but not completely inhibitory, impact on BD2.20 activity. Given the long duration of activity and the lower inoculum size in the MIC assay (compared with experiments in FIG. 15), it is likely that all BD2.20-containing peptides could reach equal levels of growth inhibition, despite large and target-specific differences in antimicrobial speed. This pattern of results was also observed when comparing MICs of targeted and untargeted organisms utilizing STAMPs against S. mutans and Pseudomonas mendocina [10, 11].


Although more rigorous studies and a more medically relevant combination of pathogen targets is desirable, these findings indicate that it is possible to design an antimicrobial peptide-based therapeutic with multiple and defined fidelities in vitro. MH-STAMPs may help improve human health through the promotion of healthy microbial constituencies.


REFERENCES



  • 1. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3:710-20.

  • 2. Hancock R E, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol 1998; 16:82-8.

  • 3. Genco C A, Maloy W L, Kari U P, Motley M. Antimicrobial activity of magainin analogues against anaerobic oral pathogens. Int J Antimicrob Agents 2003; 21:75-8.

  • 4. He J, Eckert R, Pharm T, et al. Novel synthetic antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother 2007; 51:1351-8.

  • 5. Brogden K A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3:238-50.

  • 6. Muhle S A, Tam J P. Design of Gram-negative selective antimicrobial peptides. Biochemistry 2001; 40:5777-85.

  • 7. Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 2000; 55:4-30.

  • 8. Tam J P, Lu Y A, Yang Y L. Antimicrobial dendrimeric peptides. European Journal of Biochemistry 2002; 269:923-32.

  • 9. Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, Lelli B, et al. Antimicrobial Activity of Novel Dendrimeric Peptides Obtained by Phage Display Selection and Rational Modification. Antimicrob Agents Chemother 2005; 49:2665-72.

  • 10. Eckert R, He J, Yarbrough D K, Qi F, Anderson M H, Shi W. Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob Agents Chemother 2006; 50:3651-7.

  • 11. Eckert R, Qi F, Yarbrough D K, He J, Anderson M H, Shi W. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother 2006; 50:1480-8.

  • 12. Drake J W, Charlesworth B, Charlesworth D, Crow J F. Rates of Spontaneous Mutation. Genetics 1998; 148:1667-86.

  • 13. Eckert R, Brady K M, Greenberg E P, Qi F, Yarbrough D K, He J, et al. Enhancement of Antimicrobial Activity against Pseudomonas aeruginosa by Coadministration of G10KHc and Tobramycin Antimicrob Agents Chemother 2006; 50:3833-8.

  • 14. Sprenger G A, Lengeler J W. L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis toward sorbose. J Bacteriol 1984; 157:39-45.

  • 15. Podbielski A, Spellerberg B, Woischnik M, Pohl B, Lütticken R. Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS). Gene 1996; 177:137-47.

  • 16. Duthie E S, Lorenz L L. Staphylococcal coagulase; mode of action and antigenicity. J Gen Microbiol 1952; 6:95-107.

  • 17. Merritt J, Kreth J, Qi F, Sullivan R, Shi W. Non-disruptive, real-time analyses of the metabolic status and viability of Streptococcus mutans cells in response to antimicrobial treatments. J Microbiol Methods 2005; 61:161-70.

  • 18. Anderson R C, Rehders M, Yu P L. Antimicrobial fragments of the pro-region of cathelicidins and other immune peptides. Biotechnol Lett 2008; 30:813-8.

  • 19. Aas J A, Paster B J, Stokes L N, Olsen I, Dewhirst F E. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005; 43:5721-32.

  • 20. Boman H G. Innate immunity and the normal microflora. Immunol Rev 2000; 173:5-16.

  • 21. Kreth J, Merritt J, Shi W, Qi F. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 2005; 187:7193-203.

  • 22. Metges C C. Contribution of Microbial Amino Acids to Amino Acid Homeostasis of the Host. J Nutr 2000; 130:1857 S-64.

  • 23. Sears C L. A dynamic partnership: Celebrating our gut flora. Anaerobe 2005; 11:247-251.

  • 24. Lievin-Le Moal V, Servin A L. The Front Line of Enteric Host Defense against Unwelcome Intrusion of Harmful Microorganisms: Mucins, Antimicrobial Peptides, and Microbiota Clin Microbiol Rev 2006; 19:315-37.

  • 25. DiBaise J K, Zhang H, Crowell M D, Krajmalnik-Brown R, Deckert G A, Rittmann B E. Gut microbiota and its possible relationship with obesity. Mayo Clinic Proceedings 2008; 83:460-9.

  • 26. Loesche W J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev 1986; 50:353-80.

  • 27. Gould C V, McDonald L C. Bench-to-bedside review: Clostridium difficile colitis. Crit. Care 2008; 12:203.

  • 28. Leyden J J, McGinley K J, Holzle E, Labows J N, Kligman A M. The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol 1981; 77:413-6.

  • 29. Elsner P. Antimicrobials and the skin physiological and pathological flora. Curr Probl Dermatol 2006; 33:35-41.

  • 30. Govan J R, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev 1996; 60:539-74.

  • 31. Paster B J, Boches S K, Galvin J L, Ericson R E, Lau, C N, Levanos, V A, et al. Bacterial diversity in human subgingival plaque. J Bacteriol 2001; 183:3770-83.

  • 32. Schlessinger D. Failure of aminoglycoside antibiotics to kill anaerobic, low-pH, and resistant cultures. Clin Microbiol Rev 1988; 1:54-9.

  • 33. Tresse O, Jouenne T, Junter G. Antibacterial efficacy of tobramycin against anaerobic Escherichia coli cultures in the presence of electron acceptors J Antimicrob Chemother 1997; 40:419-21.

  • 34. Keene H J, Shklair I L. Relationship of Streptococcus mutans carrier status to the development of carious lesions in initially cariesfree recruits. J Dent Res 1974; 53:1295.

  • 35. Perron G G, Zasloff M, Bell G. Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci 2006; 273:251-6.



Example 2
Synthesis of Peptide-Porphyrin Conjugate

The mixture of coupling reagent HATU (5 eq. excess, 10 mg) and purpurin-18 (MW 564, 5 eq excess, 15 mg) in 600 mL dry dichloromethane (DCM):DMF:dimethylsulphoxide (DMSO) (1:1:1 (v/v)) was added to the peptide resin (1 molar equivalent, 15 mg) which was swelled by placing in minimal DMF for 30 min prior to reaction. 26 μL (10 molar equivalents) DIPEA was then added to the reaction flask to initiate the reaction. The reaction mixture was protected with argon and stirred at room temperature for 3 h.


After finishing, the reaction mixture was then passed down a sintered glass filtered vial and extensively washed with DMF and DCM to remove all waste reagents. The resin was then dried overnight in vacuum, and cleaved with 1 ml of trifluoroacetic acid (TFA)/thioanisole/water/EDT (10/0.5/0.5/025) for 2 hr at room temperature, and the cleavage solution was precipitated with 10 mL methyl-tert butyl ether. The precipitate was washed twice with the same amount of ether.


Example 3
Synthesis of Peptide-CSA Conjugate

To the fully protected peptide (solution of B43-GGG (FIDSFIRSF-GGG (SEQ ID NO:2008), 0.025 mmol) and tri-Boc-CSA-15 (0.0125 mol) in 300 μL DMF, DCC (7.7 mg), HOBt (5.1 mg) and 13 μL DIEA were added in iced-bath. After stirred at room temperature for four days, the reaction mixture was poured into 5 ml water and extracted with chloroform (5×3 mL). The CHCl3 extract was evaporated under vacuum and dried in a lyophilizer overnight. The dried CHCl3 extracts was then dissolved in 1 mL DCM followed by added 1 mL of TFA in iced-bath. The reaction mixture was further stirred at room temperature for 2 hours and precipitated with methyl tert-butyl ether (10 mL). The precipitate was further washed once with the same amount ether and dried in vacuum.


Example 4
Systemically Designed STAMPS Against S. Mutans

We previously reported a novel strategy of “targeted-killing” with the design of narrow-spectrum molecules known as specifically-targeted antimicrobial peptides (STAMPs). Construction of these molecules requires the identification and the subsequent utilization of two conjoined yet functionally independent peptide components: the targeting and killing regions. In this study, we sought to design and synthesize a large number of STAMPs targeting Streptococcus mutans, the primary etiological agent of human dental caries, in order to identify candidate peptides with increased killing speed and selectivity when compared with their unmodified antimicrobial peptides (AMP) precursors. We hypothesized that a combinatorial approach utilizing a set number of AMP, targeting, and linker regions, would be an effective method for the identification of STAMPs with the desired level of activity. STAMPs composed of the S. mutans binding peptide 21 and the AMP PL-135 displayed selectivity at minimal inhibitory concentrations after incubation for 18-24 h. STAMPs where PL-135 was replaced by the B-33 killing domain exhibited both selectivity and rapid killing within one minute of exposure. These results suggest that potent and selective STAMP molecules can be designed and improved via a tunable “building-block” approach.


Introduction


Pathogenic microorganisms have been a continuous source of human suffering and mortality throughout the course of human history and have spurred the clinical development of novel therapeutics. Even today, the overall burden of infectious disease remains high, constituting a leading (and rising) cause of death worldwide (12, 13). The conventional medical response to bacterial infections, small molecule antibiotics, have become less effective against emerging pathogens due to the evolution of drug-resistance stemming in part from the misuse of antibiotics (11). To counter the rapid progression of antibiotic resistance there is an urgent need for the development of novel lead compounds for clinical applications.


Our strategy for creating new antibacterial agents is based on the addition of a targeting peptide to an existing broad-spectrum antimicrobial peptide, thereby generating a specifically-targeted antimicrobial peptide (STAMP) selective for a particular bacterial species or strain. A completed STAMP consists of conjoined but functionally independent targeting and killing regions, separated by a small flexible linker, all within a linear peptide sequence. The STAMP targeting region drives enhancement of antimicrobial activity by increasing binding to the surface of a targeted pathogen, utilizing specific determinants such as overall membrane hydrophobicity and charge, pheromone receptors, etc., which in turn leads to increased selective accumulation of the killing moiety (6, 7).


As both the killing and targeting regions of the STAMP are linear peptides, we approached the design process using a tunable combinatorial methodology where, for example, the targeting peptide component is held constant, while a number of killing peptides are conjoined utilizing a variety of linker molecules, or vise versa, in order to generate a library of related STAMPs. Previously, we successfully demonstrated a pilot version of this approach when constructing G10KHc (6), a STAMP with Pseudomonas-spp selective activity, and when designing C16G2 (7), a STAMP specific for Streptococcus mutans, the leading causative agent of human tooth decay. In this study, synthetic targeting and antimicrobial peptide libraries were utilized as building blocks to generate a number of novel STAMPs with high S. mutans-selective activity. STAMPs designed by these methods were then improved through tuning the linker and killing peptides present to yield completed lead STAMP molecules that demonstrated activity against S. mutans biofilms.


Materials and Methods


Reagents. Wang resin, Rink-MBHA resin, p-Benzyloxybenzyl alcohol resin (100-200 mesh), 9-fluorenylmethoxycarbonyl (Fmoc) amino acids, N-hydroxybenzotriazole hydrate (HOBT) and 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) were obtained from Anaspec (San Jose, Calif.). All other solvents and reagents were purchased from Fisher Scientific (Pittsburgh, Pa.) at HPLC or peptide synthesis grade.


Bacterial Growth All S. mutans (UA159) (1), Streptococcus gordonii Challis (DL 1), Streptococcus sobrinus ATCC 33478, and Streptococcus sanguinis NY101 strains were grown in Brain Heart Infusion (BHI) medium at 37° C. under anaerobic conditions (80% N2, 10% CO2, 10% H2) (6). Pseudomonas aeruginosa (PAK) (17), and Escherichia coli W3110 (20), were cultured in Luria-Bertani (LB) medium under an aerobic atmosphere at 37° C. Methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus faecium (VRE) were grown in BHI under aerobic conditions at 37° C. (4).


Peptide Syntheses and Purification. Peptides were synthesized using standard solid phase (Fmoc) chemistry with an Apex 396 peptide synthesizer (AAPPTec, Louisville, Ky.) at a 0.01 mM scale. N-terminal deblocking during linear peptide synthesis was conducted with 0.6 mL of 25% (v/v) piperidine in dimethylformamide (DMF), followed by agitation for 27 min and wash cycles of dichlormethane DCM (1×1 mL) and NMP (7×0.8 mL). Subsequent amino acid coupling cycles were conducted with a mixture of Fmoc-protected amino acid (5 eq), HOBT (5 eq), HBTU (5 eq), DIEA (10 eq) in DMF (0.1 mL), and NMP (0.2 mL) with agitation for 45 min. The washing cycle was repeated before the next round of deprotection and coupling. After synthesis, peptides were washed in methanol and dried 24 h. Protected peptide was cleaved with 1 mL of trifluoroacetic acid (TFA)/thioanisole/water/1,2-ethanedithiol (10/0.5/0.5/025) for 3 h at room temperature and the resultant peptide solution was precipitated in methyl tert-butyl ether.


Analytical and preparative HPLC was conducted, as described previously (5, 9), to purify each peptide to 80-90%. Correct peptide mass was confirmed by matrix-assisted laser desorption/ionization mass spectroscopy (MALDI, Voyager instrument, Applied Biosystems), as described previously (9). Measurements were made in linear, positive ion mode with an α-cyano-4-hydroxycinnamic acid matrix (data not shown).


Acetylated and benzoylated peptides derivatives (Ac135(L1)21 and bz135(L1)21, respectively) were synthesized by the same method used for N-terminal fluorescent labeling, described previously (7). Briefly, acetylation (acetic anhydrous) or benzyl addition (benzoatic acid) was undertaken after assembly of the linear sequence by adding to the resin (10 eq in DIEA) for 2 h.


Binding of Targeting Peptides. The binding of peptides 12, 13, 14, 16, 21, and 31 was assessed by fluorescent microscopy. S. mutans UA159 was grown overnight and diluted 1:5000 in fresh TH with 1% sucrose before seeding to 96-well plates (flat bottom). Biofilms were grown 24 h and the spent medium replaced with 1×PBS containing 25 μM peptide. After 5 min incubation at room temperature, the supernatants were removed and the biofilms washed 2× with 1×PBS and imaged by bright-field and fluorescence microscopy (Nikon E400). Digital images were collected and analyzed for semiquantitative binding assessments with the manufacturers supplied software (SPOT, Diagnostics) (6).


Minimum Inhibitory Concentrations (MICs) of Peptides. Peptide MIC was determined by broth microdilution (6, 15). Briefly, two-fold serial dilutions of each peptide were prepared with 50% BHI medium+50% sterile water (for oral streptococci; all other bacteria were diluted in 1× Mueller-Hinton broth) at a volume of 100 μL per well in 96-well flat-bottom microtiter plates. The concentration of peptide for the first test round ranged from 500 to 2 μg/mL or 125 to 1 μg/mL. If activity was detected, a second round of MIC tests was conducted with concentrations of 62.5 to 0.5 μg/mL. In either case, the microtiter plate was inoculated with a bacterial cell suspension to a final concentration of ˜1×105 cells per mL and the plates were incubated at 37° C. for 16-20 h under the appropriate conditions. After incubation, absorbance at 600 nm (A600) was measured using a microplate UV-Vis spectrophotometer (Model 3550, BioRad, Hercules, Calif.) to assess cell growth. The MIC endpoint was calculated as the lowest concentration of antibacterial agent that completely inhibited growth or that produced at least 90% reduction in turbidity when compared with that of a peptide-free control. At least 10 independent tests were conducted per peptide. For peptides insoluble in aqueous solutions, stock solutions were prepared in methanol or ethanol and appropriate solvent controls were utilized. Cell growth was not affected by 5% (v/v) methanol or ethanol, as described previously (10).


Peptide Killing Kinetics. To determine antimicrobial kinetics and specificity, assays similar to traditional time-kill experiments were performed, as described previously (6, 7). Briefly, overnight bacterial cultures were diluted in BHI to A600 0.08 and peptides were added as indicated. Aliquots were then removed at various intervals and diluted 1:50 in BHI and kept on ice until plating on appropriate growth medium. After 24 hours incubation, colonies were counted and the surviving cfu/mL determined. All assays were repeated at least 3 times and the average recovered cfu/mL were presented with standard deviations. Statistical analysis was conducted utilizing an unpaired Student's t-test.


Biofilm Growth Inhibitory Assays. STAMPs were tested for anti-biofilm activity as described previously (6). Briefly, overnight cultures of S. mutans were diluted 1:50 in Todd-Hewitt (TH) broth medium supplemented with 0.5% sucrose and 100 μL of bacterial suspension was added to each well of a 96-well microtiter plate. After centrifugation, bacteria were then incubated under anaerobic conditions at 37° C. for 4 h. Supernatants were then removed and replaced with 25 μM peptide in 1×PBS for 30 s to 1 min, followed by removal, washing, and replacement with 100 μL fresh TH broth (without sucrose). Plates were then incubated at 37° C. under anaerobic conditions and the bacterial recovery monitored by recording A600 after 4 h incubation. An unpaired Student's t-test was utilized for statistical analysis.


Results


STAMPs consist of 3 regions: one targeting and one antimicrobial, connected via a flexible linker. In this report, we conjoined examples of each domain with a variety of linkers to construct a pool of initial STAMP candidates. These peptides were then evaluated for anti-S. mutans activity and selectivity, their designs improved, and the lead STAMPs evaluated against S. mutans biofilms.


Selection of components and initial STAMP library design. As described elsewhere, we generated several novel S. mutans-specific binding peptides, including 24, (previously S3L1-10 (FIKDFIERF; SEQ ID NO:2009)) and 15, (previously S3L1-5 (WWYNWWQDW; SEQ ID NO:2010)) (7). From these base sequences, residues differing in hydrophobicity and/or charge were substituted at defined positions to yield a series of related targeting sequences that were then evaluated for binding to S. mutans biofilms. Several of the 15 variants, and one of the 24 variants, were found to retain biofilm binding (data not shown). These sequences (12; 13; 14; 16; 21; 31), as well as 15, were regarded in the present study as the pool of S. mutans targeting peptides for STAMP construction (shown in Table 15). For the antimicrobial component, we selected PL-135, a peptide based on an AMP isolated from tunicates (19), for the initial round of design (Library 1). We hypothesized that linker regions and attachment orientation would exert an influence on STAMP activity. Therefore, we initially conjugated each potential targeting peptide to the N or C terminus of PL-135 through six different linkers, as shown in Table 15 (GGG (SEQ ID NO:1937), designated L1; SAT (SEQ ID NO:1940), L3; ASASA (SEQ ID NO:1944), L5; PYP (SEQ ID NO:1941), L7; PSGSP (SEQ ID NO:1932), L8; PSPSP (SEQ ID NO:1942), L9) leading to the synthesis of 84 STAMPs.









TABLE 15







STAMP constituent regions utilized


in STAMP Library 1.









S. mutans targeting

Linker


peptides
peptides











Sequence
(name)
Killing peptide


No.
(SEQ ID NO:)
(SEQ ID NO:)
(SEQ ID NO:)





1_2
WWHSWWSTW
GGG (L1)
FHFHLHF* (PL-135)



(2011)
(1937)
(1976)





1_3
WWSYWWTQW
SAT (L3)




(2012)
(1940)






1_4
WWKDWWERW
ASASA (L5)




(2013)
(1944)






1_5
WWYNWWQDW
PYP (L7)




(2010)
(1941)






1_6
WWQDWWNEW
PSGSP (L8)




(2014)
(1932)






2_1
FIKHFIHRF
PSPSP (L9)




(2015)
(1942)






3_1
LIKHILHRL





(2016)





*amidated C-terminus






Antimicrobial activity of initial STAMP library. To roughly gauge Library 1 STAMP antimicrobial activity and S. mutans-selectivity, MIC (minimal inhibitory concentration) assays were conducted against S. mutans and a panel of bacteria, including two oral streptococci, S. sanguinis and S. sobrinus (FIG. 17). STAMPs containing 21 conjoined to the C-terminus of PL-135 (135(L1)21, 135(L3)21, 135(L5)21, 135(L7)21, 135(L8)21, 135(L9)21), or 31 conjoined to the N-terminus of PL-135 (135(L1)31) were found to be active against S. mutans at concentrations lower than 100 μg/mL. These peptides were more active (2-4 2-fold dilution steps) against S. mutans than against the other oral streptococci or non-oral organisms tested. In contrast, native PL-135 had similar MICs against all strains examined (FIG. 17).


Impact of linker and terminal modification on STAMP antimicrobial activity. We sought to investigate the impact of linker length or type, and N-terminal modification on the activity of STAMP 135(L1)21 from Library 1. As shown in Table 16, altered components included: 1) new linkers GGGG (SEQ ID NO:1954) (G4) to GGGGGGG (SEQ ID NO:7) (G7), AAA (SEQ ID NO:1936) (L2), AGA (SEQ ID NO:8) (L10), GAGAG (SEQ ID NO:9) (L11), 8-aminocaprylic acid (LC); 2) increased N-terminal aromacity (benzoic acid addition); 3) acetylation of N-terminus; or 4) component sequence inversion (135i(L1)21i). We observed MICs for these Library 2 STAMPs that were similar to, or 2-fold less-active, than that of the base STAMP 135(L1)21 (FIG. 17), suggesting that the linker, termini and inversion alterations did not lead to improved activity against S. mutans, as measured by these means.









TABLE 16







Minimal inhibitory concentration of (MIC)


of Library 2 STAMPs












S. mutans



No.
Sequence (SEQ ID NO:)a
(MIC)b





135(L1)2_1
FHFHLHFGGGFIKHFIHRF
16



(1971)






135(G4)2_1
FHFHLHFGGGGFIKHFIHRF
16



(2017)






135(G5)2_1
FHFHLHFGGGGGFIKHFIHRF
16



(2018)






135(G6)2_1
FHFHLHFGGGGGGFIKHFIHRF
32



(2019)






135(G7)2_1
FHFHLHFGGGGGGGFIKHFIHRF
32



(2020)






135(L11)2_1
FHFHLHFSGSFIKHFIHRF
32



(2021)






135(L12)2_1
FHFHLHFGSGSGFIKHFIHRF
32



(2022)






Ac135(L1)2_1
Ac-FHFHLHFGGGFIKHFIHRF
32



(2023)






bz135(L1)2_1
benzoate-
32



FHFHLHFGGGFIKHFIHRF




(2024)






135(L2)2_1
FHFHLHFAAAFIKHFIHRF
16



(2025)






135(L13)2_1
FHFHLHFAGAFIKHFIHRF
32



(2026)






135(L14)2_1
FHFHLHFGAGAGFIKHFIHRF
32



(2027)






2_1i(L1)135i
FRHIFHKIFGGGFHLHFHF
16



(2028)






135i(L1)2_1i
FHLHFHFGGGFRHIFHKIF
16



(2029)






135(LC)2_1
FHFHLHF-[NH(CH2)7CO]-
64



FIKHFIHRF (2030)






aall C termini amidated




bMIC (μg/mL) data from all S. mutans isolates tested, with a minimum of three independent trials.







Further potential of PL-135-based STAMPs. Antiseptic mouthrinses, such as Listerine® (Warner-Lambert, Morris Plains, N.J.), are rapid-acting non-selective bactericidal agents that can inactivate viable bacteria within seconds of contact (3). In order for STAMPs to be useful mouthrinse ingredients, the antimicrobial kinetics must approach this scale. Therefore, the killing kinetics of our Library 1 and 2 STAMPs from Table 15 and FIG. 17 were evaluated (data not shown). The results indicate that these PL-135-containing STAMPs, although selective for S. mutans when measured by MIC, are not rapid killers of this bacterium in vitro, requiring several hours of exposure for observable antimicrobial activity. Therefore, we sought to improve our STAMP pool by substituting alternative killing domains for S. mutans STAMP construction.


Tuning the design of 21-containing STAMPs. To improve the identification of rapid-killing S. mutans STAMPs, we conjugated 21 with five AMPs selected from our previous studies (10), to construct Library 3: RWRWRWF (2c-4; SEQ ID NO:1860), FKKFWKWFRRF (B-33; SEQ ID NO:1821), IKQLLHFFQRF (B-38; SEQ ID NO:1826), RWRRLLKKLHHLLH (α-11; SEQ ID NO:1877), LQLLKQLLKLLKQF (α-7; SEQ ID NO:1877); attached at the C- or N-terminus. The linkers selected were L1, SGG (L2; SEQ ID NO:1938), L3 and LC. As shown in FIG. 18, MIC results indicate little difference in activity between constructs where the targeting peptide was attached to the N or C terminus of the AMP region, and little difference between linkers employed. It was also apparent that these STAMPs were more active against S. mutans relative to the other oral and non-oral bacteria tested: peptide 21(L1)B33 demonstrated the lowest MIC range of 4 to 8 which was a 2-4 fold improvement over the MIC for the killing peptide alone (10). Taken together, these data suggest that Library 3 STAMPs can effectively inhibit the growth of S. mutans at generally-improved potencies when compared to PL-135-containing STAMPs in Libraries 1 and 2.


STAMP killing kinetics against oral bacteria. Since the MIC assay measures antimicrobial activity after overnight incubation, large differences in killing rates between STAMPs and parental AMPs may be obscured in this assay, especially when the target organism is susceptible to the AMP (7, 9). To assess any significant selectivity and short-term antimicrobial activity of the Library 3 STAMPs, time-kill assays were performed against a variety of oral bacteria. Against the targeted bacterium S. mutans (examples shown in FIG. 19D), the STAMPs acted significantly faster than the killing peptide alone within 5 min of treatment (p<0.001 comparing B-33 alone vs. 21(L1)B33, or 2C-4 vs. either 2C-4-containing STAMP). In contrast, other oral streptococci, such as S. mitis and S. gordonii, were less affected by STAMP treatments (FIG. 19A-C). Peptide 21(L1)B33 exhibited the fastest killing kinetics and best selectivity: killing was observed even when cells were treated for as little as 30 s, a timescale more appropriate for oral cavity therapeutic applications. As expected from their wide-spectra of activities (10), parental AMPs 2C-4 and B-33 had similar levels of activity against the strains examined.


Inhibition of biofilm growth. Although rapid and selective killing of S. mutans monocultures was apparent from the data shown in FIG. 19, we sought to determine whether these STAMPs would make suitable antimicrobial agents in the oral cavity, where multi-species biofilms known as dental plaque predominate (16, 18). To investigate, S. mutans biofilms were treated with STAMPs and the post-antibiotic effect was observed after 4 h of biofilm recovery. As shown in FIG. 20, STAMPs 21(L1)2C-4, 21(L6)2C-4, and 21(L1)B33 were found to significantly inhibit (p<0.001) the formation of biofilms when cells were treated with the peptide for 1 min at 25 μg/ml, compared to mock-treated biofilms or biofilms treated with untargeted AMP. Similar antimicrobial effects were observed for Listerine and Chlorhexidine. These results suggest that STAMP treatment persists after peptide removal at a level similar to established wide-spectrum oral antiseptics.


DISCUSSION AND CONCLUSION

In this report, we present a novel strategy for the design and synthesis of STAMPs with activity against the oral pathogen S. mutans. Successful design was achieved through a tunable, building-block approach that utilized various combinations of antimicrobial, targeting, and linker STAMP peptide regions. Our results demonstrate that less-efficacious STAMPs could be improved when alternative killing regions were substituted in the design. While it remains unclear whether the alternative moieties were more active, or simply more conjugation tolerant, this process resulted in STAMPs that displayed killing kinetics against biofilms consistent with oral therapeutic applications. Additionally, more understanding was gained regarding AMP or targeting peptide orientation dependencies, impact of linker regions, and appropriate targeting peptide choice, which could positively impact future anti-S. mutans STAMP design and refinement.


From the data presented here, it is difficult to determine the precise mechanism for the S. mutans-selectivity. Previous studies with STAMPs have indicated that the enhanced selectivity for the targeted strain is due to the binding of the targeting peptide moiety (6, 7). Although detailed binding analysis was not conducted in this study, our results suggest that a similar targeting-mediated killing is occurring here: targeting peptides, independently selected for STAMP construction on the basis of their S. mutans-binding abilities, were required to enhance AMP antimicrobial activity and selectivity.


The data presented suggest that PL-135 may be inhibited by conjugation to other peptide subunits, as unmodified PL-135 displayed activity against S. mutans that was 2 to 4-fold higher than in progeny STAMPs, as shown in FIG. 17 and Table 16 (however, these constructs were selective for S. mutans). The unusually small size of this AMP may impart a severe restriction on amino acid additions, especially if the mode of action depends on sequence-dependent self-association on the target-cell membrane, or binding to a discrete intracellular bacterial target (2). Our results suggest that AMPs with quicker “base” antimicrobial kinetics (such as B-33 or 2C-4), and higher tolerance for conjugations, should be selected for the design of STAMPs with optimal levels of enhanced killing kinetics and selectivity.


Outside of PL-135-containing examples (and potentially some α-7 and α-11 molecules, see FIG. 18), STAMPs in this report displayed no difference in activity between oppositely-oriented N and C-terminal AMP-targeting conjugations, suggesting that the optimal arrangement of STAMP domains in likely AMP-specific, and depends on which least affects the antimicrobial mechanism. For example, the Pseudomonas spp-specific STAMPs G10KHc and G10KHn (oriented target-killing and killing-target, respectively) both bind specifically to the target bacterium surface, but only G10KHc has significant membrane disruption activity (5, 7).


Interestingly, 21 and 31 containing STAMPs were active against S. mutans, and the constructs with any other targeting peptide in Table 15, were not. Targeting peptides 12 through 16 are strongly hydrophobic, compared with 21 and 31 (8), and it may be possible that this characteristic limits the dissociation of these molecules from the hydrophobic components of the S. mutans cell wall, resulting in their inhibitory affect on AMPs when conjugated, similarly to some strong LPS-binding AMPs (14). However, the systematic building-block design strategy employed allowed us to generate a diverse array of STAMPs, allowing us to identify useful compounds despite these stumbling blocks.


In conclusion, this report details the rational design of S. mutans-selective STAMPs with enhanced antimicrobial killing kinetics and selectivity when compared to untargeted AMPs. The S. mutans-selective STAMPs were constructed using a tunable, combinatorial approach that generated a diverse number of STAMP sequences for antimicrobial evaluation and improvement; a process may serve as an example for the systematic development of novel selective antimicrobial agents. We propose that these STAMPs could be useful in the design of therapeutics against oral or other mucosal pathogens, where the high diversity of “probiotic” beneficial microflora limits the effectiveness of broad-spectrum antimicrobial agents.


REFERENCES



  • 1. Ajdic, D., W. M. McShan, R. E. McLaughlin, G. Savic, J. Chang, M. B. Carson, C. Primeaux, R. Tian, S. Kenton, H. Jia, S. Lin, Y. Qian, S. L1, H. Zhu, F. Najar, H. Lai, J. White, B. A. Roe, and J. J. Ferretti. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 99:14434-9.

  • 2. Brogden, K. A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238-50.

  • 3. Charles, C. H., P. C. Pan, L. Sturdivant, and J. W. Vincent. 2000. In vivo antimicrobial activity of an essential oil-containing mouthrinse on interproximal plaque bacteria. J Clin Dent 11:94-7.

  • 4. Chen, L., X. Cheng, W. Shi, Q. Lu, V. L. G0, D. Heber, and L. Ma. 2005 Inhibition of growth of Streptococcus mutans, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococci by kurarinone, a bioactive flavonoid isolated from Sophora flavescens. J Clin Microbiol 43:3574-5.

  • 5. Eckert, R., K. M. Brady, E. P. Greenberg, F. Qi, D. K. Yarbrough, J. He, I. McHardy, M. H. Anderson, and W. Shi. 2006. Enhancement of antimicrobial activity against Pseudomonas aeruginosa by coadministration of G10KHc and tobramycin. Antimicrob Agents Chemother 50:3833-8.

  • 6. Eckert, R., J. He, D. K. Yarbrough, F. Qi, M. H. Anderson, and W. Shi. 2006. Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob Agents Chemother. 50:3651-3657.

  • 7. Eckert, R., F. Qi, D. K. Yarbrough, J. He, M. H. Anderson, and W. Shi. 2006. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother 50:1480-8.

  • 8. Fauchere, J. L., and V. Pliska. 1983. Hydrophobic parameters-pi of amino-acid side-chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 18:369-375.

  • 9. He, J., M. H. Anderson, W. Shi, and R. Eckert. 2009. Design and activity of a ‘dual-targeted’ antimicrobial peptide. Int J Antimicrob Agents. doi:10.1016/j.ijantimicag.2008.11.013.

  • 10. He, J., R. Eckert, T. Pharm, M. D. Simanian, C. Hu, D. K. Yarbrough, F. Qi, M. H. Anderson, and W. Shi. 2007. Novel synthetic antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother 51:1351-8.

  • 11. Isturiz, R. 2008. Global resistance trends and the potential impact on empirical therapy. Int J Antimicrob Agents 32 Suppl 4:S201-6.

  • 12. Lopez, A. D., C. D. Mathers, M. Ezzati, D. T. Jamison, and C. J. Murray. 2006. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747-57.

  • 13. Mokdad, A. H., J. S. Marks, D. F. Stroup, and J. L. Gerberding. 2004. Actual causes of death in the United States, 2000. JAMA 291:1238-45.

  • 14. Patrzykat, A., C. L. Friedrich, L. Zhang, V. Mendoza, and R. E. Hancock. 2002. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605-14.

  • 15. Qi, F., J. Kreth, C. M. Levesque, O. Kay, R. W. Mair, W. Shi, D. G. Cvitkovitch, and S. D. Goodman. 2005. Peptide pheromone induced cell death of Streptococcus mutans. FEMS Microbiol Lett 251:321-6.

  • 16. Ruby, J., and M. Goldner. 2007. Nature of symbiosis in oral disease. J Dent Res 86:8-11.

  • 17. Strom, M. S., and S. Lory. 1986. Cloning and expression of the pilin gene of Pseudomonas aeruginosa PAK in Escherichia coli. J Bacteriol 165:367-72.

  • 18. ten Cate, J. M. 2006. Biofilms, a new approach to the microbiology of dental plaque. Odontology 94:1-9.

  • 19. Tincu, J. A., L. P. Menzel, R. Azimov, J. Sands, T. Hong, A. J. Waring, S. W. Taylor, and R. I. Lehrer. 2003. Plicatamide, an antimicrobial octapeptide from Styela plicata hemocytes. J Biol Chem 278:13546-53.

  • 20. Zinder, N. D., V. Lederberg. 1952. Genetic exchange in Salmonella. Journal of Bacteriology 64:679-699.



It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

Claims
  • 1. A chimeric moiety, said moiety comprising: an effector attached to a peptide targeting moiety comprising the amino acid sequence:
  • 2. The chimeric moiety of claim 1, wherein said targeting moiety is a peptide consisting of the amino acid sequence:
  • 3. The chimeric moiety of claim 1, wherein said effector comprises a moiety selected from the group consisting of a detectable label, an antimicrobial peptide, an antibiotic, and a photosensitizer.
  • 4. The chimeric moiety of claim 1, wherein said effector comprises an antimicrobial peptide.
  • 5. The chimeric moiety of claim 1, wherein said effector comprises an antibiotic.
  • 6. The chimeric moiety of claim 1, wherein said effector comprises a photosensitizing agent.
  • 7. The chimeric moiety of claim 6, wherein said effector comprises a photosensitizing agent selected from the group consisting of a porphyrinic macrocycle, a porphyrin, a chlorine, a crown ether, an acridine, an azine, a phthalocyanine, a cyanine, a psoralen, and a perylenequinonoid.
  • 8. The chimeric moiety of claim 4, wherein said effector comprises an antimicrobial peptide wherein said antimicrobial peptide comprises the amino acid sequence:
  • 9. The chimeric moiety of claim 8, wherein said antimicrobial peptide consists of the amino acid sequence:
  • 10. The chimeric moiety according to any one of claims 1-7, 8, and 9, wherein said targeting moiety is chemically conjugated to said effector.
  • 11. The chimeric moiety of claim 10, wherein said targeting moiety is chemically conjugated to said effector via a linker.
  • 12. The chimeric moiety of claim 10, wherein said targeting moiety is chemically conjugated to said effector via a linker comprising a polyethylene glycol (PEG).
  • 13. The chimeric moiety of claim 10, wherein said targeting moiety is chemically conjugated to said effector via a non-peptide linker.
  • 14. The chimeric moiety according to any one of claims 1-7, 8, and 9, wherein said targeting moiety is linked directly to said effector.
  • 15. The chimeric moiety according to any one of claims 1-7, 8, and 9, wherein said targeting moiety is linked to said effector via a peptide linker.
  • 16. The chimeric moiety according to any one of claims 4, 8, and 9, wherein the chimeric moiety is a fusion protein.
  • 17. The chimeric moiety of claim 16, wherein said targeting moiety is attached to said effector via a peptide linker comprising an amino acid sequence selected from the group consisting of AAA (SEQ ID NO:NO:1936), GGG (SEQ ID NO:1937), SGG (SEQ ID NO:1938), GGSGGS (SEQ ID NO:1939), SAT (SEQ ID NO:1940), pyp (SEQ ID NO:1941), PSPSP (SEQ ID NO:1942), ASA (SEQ ID NO:1943), ASASA (SEQ ID NO:1944), PSPSP (SEQ ID NO:1945), KKKIZ (SEQ ID NO:1946), RRRR (SEQ ID NO:1947), GGGGSGGGGSGGGGS (SEQ ID NO:1948), GGGG (SEQ ID NO:1954), GGGGS (SEQ ID NO:1955), GGGGSGGGGS (SEQ ID NO:1956), GGGGSGGGGSGGGGSGGGGS (SEQ ID NO:1957), GGGGSGGGGSG GGGSGGGGSGGGGS (SEQ ID NO:1958), and GGGGSGGGGSGGGGSGGGGSGGGGSG GGGS (SEQ ID NO:1959).
  • 18. The chimeric moiety of claim 15, wherein said chimeric moiety is functionalized with a polymer to increase serum halflife.
  • 19. The chimeric moiety of claim 16, wherein said polymer comprises polyethylene glycol and/or a cellulose or modified cellulose.
  • 20. A pharmaceutical composition comprising a chimeric moiety according to any one of claims 1-7, 8, and 9 in a pharmaceutically acceptable carrier.
  • 21. The composition of claim 20, wherein said composition is formulated as a unit dosage formulation.
  • 22. The composition of claim 20, wherein said composition is formulated for administration by a modality selected from the group consisting of intraperitoneal administration, topical administration, oral administration, inhalation administration, transdermal administration, subdermal depot administration, and rectal administration.
  • 23. The chimeric moiety of claim 5, wherein said effector comprises an antibiotic is selected from the group consisting of Amikacin, Gentamicin, Kanamycin, Neomycin, Netilmicin, Streptomycin, Tobramycin, Paromomycin, Loracarbef, Ertapenem, Doripenem, Imipenem, Cilastatin, Meropenem, Cefadroxil, Cefazolin, Cefalotin, Cefalothin, Cefalexin, Cefaclor, Cefamandole, Cefoxitin, Cefprozil, Cefuroxime, Cefixime, Cefdinir, Cefditoren, Cefoperazone, Cefotaxime, Cefpodoxime, Ceftazidime, Ceftibuten, Ceftizoxime, Ceftriaxone, Cefepime, Ceftobiprole, Teicoplanin, Vancomycin, Macrolides, Zithromax, Biaxin, Dirithromycin, Erythocin, Erythroped, Roxithromycin, Troleandomycin, Ketek, Aztreonam, Amoxicillin, Ampicillin, Azlocillin, Carbenicillin, Cloxacillin, Dicloxacillin, Flucloxacillin, Mezlocillin, Meticillin, Nafcillin, Oxacillin, Penicillin, Piperacillin, Ticarcillin, Bacitracin, Colistin, Polymyxin B, Mafenide, Prontosil, Sulfacetamide, Sulfamethizole, Sulfanilimide, Sulfasalazine, Sulfisoxazole, Trimethoprim Trimethoprim-Sulfamethoxazole (Co-trimoxazole) (TMP-SMX), Demeclocycline, Doxycycline, Minocycline, Oxytetracycline, Tetracycline, squalamine, CSA-8, CSA-11, CSA-13, CSA-15, CSA-25, CSA-46, CSA-54, CSA-90, CSA-97, Arsphenamine, Chloramphenicol, Clindamycin, Lincomycin, Ethambutol, Fosfomycin, Fusidic acid, Furazolidone, Isoniazid, Linezolid, Metronidazole, Mupirocin, Nitrofurantoin, Platensimycin, Pyrazinamide, Quinupristin, Dalfopristin, Rifampin, Rifampicin, and Timidazole.
  • 24. The chimeric moiety of claim 16, wherein said targeting moiety is attached to said effector via a peptide linker the amino acid sequence of which consists of the sequence GGG (SEQ ID NO: 1937).
  • 25. The chimeric moiety of claim 7, wherein said photosensitizing agent is a porphyrin.
  • 26. The chimeric moiety of claim 7, wherein said photosensitizing agent is a phthalocyanine.
  • 27. The chimeric moiety of claim 7, wherein said photosensitizing agent is a compound according to the formula:
  • 28. The chimeric moiety of claim 7, wherein said photosensitizing agent is a compound according to the formula:
  • 29. The chimeric moiety of claim 7, wherein said photosensitizing agent is a compound selected from the group consisting of Monoastral Fast Blue B, and Monoastral Fast Blue G.
  • 30. The chimeric moiety of claim 7, wherein said photosensitizing agent is an azine photosensitizer.
  • 31. The chimeric moiety of claim 7, wherein said photosensitizing agent is selected from the group consisting of methylene blue, toluidine blue 0, neutral red, proflavine, acridine orange, aminacrine, and ethacridine.
  • 32. The chimeric moiety of claim 7, wherein said photosensitizing agent is a cyanine.
  • 33. The chimeric moiety of claim 7, wherein said photosensitizing agent is selected from the group consisting of psoralen, thienocoumarin, 8-azacoumarin, 2-thiofuranocoumarin, and 2-selenofuranocoumarin.
  • 34. The chimeric moiety of claim 7, wherein said photosensitizing agent is selected from the group consisting of hypocrellin A, hypocrellin B, and calphostin C.
  • 35. The chimeric moiety of claim 7, wherein said photosensitizing agent is an acridine.
  • 36. The chimeric moiety of claim 7, wherein said photosensitizing agent is rose bengal.
  • 37. The composition of claim 7, wherein said photosensitizing agent is a crown ether.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/150,287, filed Feb. 5, 2009; and to U.S. Provisional Application No. 61/224,825, filed Jul. 10, 2009, the disclosures of which are incorporated herein by reference in their entirety for all purposes.

US Referenced Citations (7)
Number Name Date Kind
7569542 Eckert et al. Aug 2009 B2
7846895 Eckert et al. Dec 2010 B2
20070111251 Rosania et al. May 2007 A1
20080170991 Shi et al. Jul 2008 A1
20110039761 Eckert et al. Feb 2011 A1
20110262508 Watt et al. Oct 2011 A1
20120003661 Eckert et al. Jan 2012 A1
Foreign Referenced Citations (1)
Number Date Country
2008030988 Mar 2008 WO
Non-Patent Literature Citations (22)
Entry
Adjic et al., “Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen”. Proc Natl Acad Sci USA, vol. 99, No. 22, Oct. 29, 2002, pp. 14434-14439.
Brogden, “Antimicrobial peptides: pore formers or metabolic inhibitors in 10 bacteria?”. Nature Reviews Microbiology, vol. 3, Mar. 2005, pp. 238-250.
Charles et al., “In vivo antimicrobial activity of an essential oil-containing mouthrinse on interproximal plaque bacteria”. Journal of Clinical Dentistry, vol. 11, 2000, pp. 94-97.
Chen et al., “Inhibition 15 of growth of Streptococcus mutans, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococci by kurarinone, a bioactive flavonoid isolated from Sophora flavescens”. Journal of Clinical Microbiology, vol. 43, 2005, pp. 3574-3575.
Eckert et al., “Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide”. Antimicrobial Agents and Chemotherapy, vol. 50, No. 11, Oct. 23, 2006, pp. 3651-3657.
Eckert et al., “Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp ”. Antimicrobial Agents and Chemotherapy, vol. 50, No. 4, 2006, pp. 1480-1488.
Eckert et al., “Enhancement of antimicrobial activity against 20 Pseudomonas aeruginosa by coadministration of G10KHc and tobramycin”. Antimicrobial Agents and Chemotherapy, vol. 50, No. 11, Aug. 28, 2006, pp. 3833-3838.
Fauchere et al., “Hydrophobic parameters-pi of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides”. European Journal of Medicinal Chemistry, vol. 18, No. 4, 1983. pp. 369-375.
He et al., “Novel synthetic antimicrobial peptides against Streptococcus mutans”. Antimicrobial Agents and Chemotherapy, vol. 51, No. 4, Feb. 12, 2007, pp. 1351-1358.
He et al., “Design and activity of a ‘dual-targeted’ antimicrobial peptide”. Int J Antimicrob Agents, vol. 33, No. 6, Jun. 2009, pp. 532-537.
Isturiz, “Global resistance trends and the potential impact on empirical therapy”. International Journal of Antimicrobial Agents, vol. 32, No. S4, 2008, pp. S201-S206.
Lopez et al., “Global and regional burden of disease and risk factors, 200 1 : systematic analysis of population health data”. The Lancet, vol. 367, May 27, 2006, pp. 1747-1757.
Mokdad et al., “Actual causes of death in the United States”. JAMA, vol. 291, No. 10, Mar. 10, 2004, pp. 1238-1245.
Patrzykat et al., “Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli”. Antimicrobial Agents and Chemotherapy, vol. 46, No. 3, 2002, pp. 605-614.
Qi et al., “Peptide pheromone induced cell death of Streptococcus mutans”. FEMS Microbiology Letters, vol. 251, 2005, pp. 321-326.
Ruby et al., “Nature of symbiosis in oral disease”. Journal of Dental Research, vol. 86, 2007, pp. 8-11.
Strom et al., “Cloning and expression of the Pilin gene of Pseudomonas aeruginosa PAK in Escherichia coli”. Journal of Bacteriology, vol. 165, No. 2, Feb. 1986, pp. 367-372.
ten Cate, “Biofilms, a new approach to the microbiology of dental plaque”. Odontology, vol. 94, 2006, pp. 1-9.
Tincu et al., “Plicatamide, an antimicrobial octapeptide from Styela plicata hemocytes”. The Journal of Biological Chemistry, vol. 278, No. 15, Apr. 11, 2003, pp. 13546-13553.
Zinder et al., “Genetic exchange in Salmonella”. Journal of Bacteriology, vol. 64, Apr. 18, 1952, pp. 679-699.
Muhle et al., “Design of Gram-Negative Selective Antimicrobial Peptides”. Biochemistry, vol. 40, 2001, pp. 5777-5785.
International Preliminary Report on Patentability mailed Aug. 9, 2011 and Written Opinion of the International Search Authority mailed Dec. 27, 2010 for International Application No. PCT/US2010/023376, pp. 1-5.
Related Publications (1)
Number Date Country
20100316643 A1 Dec 2010 US
Provisional Applications (2)
Number Date Country
61224825 Jul 2009 US
61150287 Feb 2009 US