Targeted Dendritic Cell Activation through Multi-Adjuvant Liposomes

Information

  • Research Project
  • 8432792
  • ApplicationId
    8432792
  • Core Project Number
    R43AI094891
  • Full Project Number
    5R43AI094891-02
  • Serial Number
    094891
  • FOA Number
    PA-10-123
  • Sub Project Id
  • Project Start Date
    3/1/2012 - 12 years ago
  • Project End Date
    2/28/2015 - 9 years ago
  • Program Officer Name
    SALOMON, RACHELLE
  • Budget Start Date
    3/1/2013 - 11 years ago
  • Budget End Date
    2/28/2015 - 9 years ago
  • Fiscal Year
    2013
  • Support Year
    02
  • Suffix
  • Award Notice Date
    2/28/2013 - 11 years ago
Organizations

Targeted Dendritic Cell Activation through Multi-Adjuvant Liposomes

DESCRIPTION (provided by applicant): The overall goal of this SBIR AT application is to develop a multi-adjuvant liposomal vaccine formulation that targets dendritic cells and can be applied to our current vaccine programs. The innovation is a dual adjuvant system where VesiVax(R) lipid vesicles are formulated with a TLR9 agonist (CpG) and CD40 Ligand fused to the Company's proprietary Hydrophobic Domain (HD) technology. The formulations, including testing of single adjuvants, will be assessed with influenza and Herpes Simplex 2 viral antigens in vivo in proven mouse models. We have shown that the TLR4 agonist, MPL has an immunostimulatory effect and hypothesize that other TLR agonists and receptor-binding ligands will influence the immune response elicited by target antigens. The ultimate goal of this program is to build an immunogenic liposome formulation that is broadly applicable to antigens, regardless of whether a predominantly Th1 or Th2 type of immune response is desired. The optimal formulation will be utilized to advance an influenza or Herpes Simplex Virus 2 (HSV2) vaccine candidate towards the clinic. Vaccines based on the VesiVax(R) system can be engineered using two formats: 1) a target antigen or adjuvant protein can be engineered to be expressed as a fusion protein with the HD which facilitates incorporation directly into the liposome or; 2) a target antigen or adjuvant in the form of a peptide or carbohydrate that can be attached via conjugation to the surface of the liposomes, or conjugatable adjuvant lipid vesicles (CALVs). The Company has assembled an internal team, as well as an external collaborator, with expertise in key core competencies in recombinant protein production, understanding structural and functional interactions of proteins and peptides with lipid bilayers in order to prepare liposomes with the appropriate properties, and to analyze the liposomes and lipid, protein, and adjuvant components to confirm the composition. Our collaborator for the proposed in vivo studies has been testing VesiVax(R)-TLR4 vaccines in established challenge models for influenza and HSV2. The approach to evaluating the proposed dual adjuvant system involves creating the CD40L and TLR9 adjuvanted formulations and testing their effect formulated in vaccines containing the influenza M2e or HSV2 gD antigens. Using methods already developed by the Company for M2e-HD and gD-HD, we will prepare CD40L as an HD fusion expressed in E. coli, and we will prepare the selected CpG oligonucleotide sequence either synthesized coupled to a lipid or with a free thiol or free amine on the end to attach to lipid. We will use ou published female mouse model of intravaginal HSV2 infection and mouse influenza intranasal challenge model. These models will allow us to test each adjuvant in separate formulations as well as combined. Ultimately, we hypothesize that the combination of the two adjuvants will stimulate stronger protective immune responses, thus leading to an optimized commercial formulation for our vaccine programs. The first Milestone in this proposal is the production of liposomes formulated with CpG, CD40L-HD, and both CpG and CD40L-HD. The second Milestone is the choice of an optimal formulation by testing in the two infectious disease models. In Phase 2, we will develop commercial production and analytical methods and conduct nonclinical Pharmacology/Toxicology studies to support the filing of an IND. A secondary application of the new adjuvant system would be to make it available to vaccinologists and immunologists in a kit format. A Foresight Science & Technology market research report entitled Liposomal Adjuvant for Vaccine Research was commissioned by the Company. The report identified lipid-based adjuvants as having a very broad range of potential applications and corresponding to more than 80% of the market for vaccines in development, which is estimated to reach more than $18 billion by 2015. Using this statistic, it is estimated that the total addressable market for lipid-based adjuvants may be over $14.4 billion by 2015.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R43
  • Administering IC
    AI
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    300000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:300000\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    MOLECULAR EXPRESS, INC.
  • Organization Department
  • Organization DUNS
    058878682
  • Organization City
    RANCHO DOMINGUEZ
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    902205610
  • Organization District
    UNITED STATES