Targeted Treatment of Recurrent Small Cell Lung Cancer with Anti-AbnV2 Antibodies

Information

  • Research Project
  • 8455161
  • ApplicationId
    8455161
  • Core Project Number
    R44CA162613
  • Full Project Number
    2R44CA162613-02
  • Serial Number
    162613
  • FOA Number
    PA-12-088
  • Sub Project Id
  • Project Start Date
    9/7/2011 - 13 years ago
  • Project End Date
    8/31/2014 - 10 years ago
  • Program Officer Name
    LOU, XING-JIAN
  • Budget Start Date
    9/26/2012 - 12 years ago
  • Budget End Date
    8/31/2013 - 11 years ago
  • Fiscal Year
    2012
  • Support Year
    02
  • Suffix
  • Award Notice Date
    9/26/2012 - 12 years ago

Targeted Treatment of Recurrent Small Cell Lung Cancer with Anti-AbnV2 Antibodies

DESCRIPTION (provided by applicant): There is currently no effective treatment for recurrent small-cell lung cancer (rSCLC). The objective of this project is to utilize a monoclonal antibody, Abner, to develop new, rational, and successful treatment of rSCLC. The hypothesis being tested is that an abnormal vasopressin type 2 receptor (AbnV2R) present on these tumors will provide a sensitive, tumor-specific, and reliable target for the effective treatment by Abner antibodies. The data from the studies of Phase 1 of the project clearly show that treatment of variant SCLC tumor xenografts, with native and 90Yttrium-labelled mouse Abner significantly slows growth, but this growth is completely impaired when antibody treatment follows cyclophosphamide. Our data indicate AbnV2R expression is a feature common to all, or most, SCLC and that AbnV2R is a surface protein. Phase 2 is directed at advancing treatment of rSCLC with Abner by developing a human chimeric form (cAbner) of the mouse monoclonal antibody, and then a humanized form (hAbner) as potential clinical candidates. The ability of cAbner and hAbner to target and prevent growth of human variant SCLC xenografts in mice will then be tested. Phase 2 goals are directed towards (i) generating a chimeric form (cAbner) of mouse Abner with the constant regions of human IgG1; (ii) establishing that the targeting, recognition, and treatment profiles of mAbner are retained by cAbner; (iii) modeling a humanized form (hAbner) of Abner from the cAbner with genetically grafting CDRs from the VH and VL regions of mMAG-1 into the DNA framework of a human antibody; (iv) establishing that the targeting, recognition, and treatment profiles of mAbner are retained by hAbner. These investigations will employ, RT-PCR, ligation, and cloning, DNA recombinance, DNA sequencing, immunohistochemistry, antibody modification, Northern and Western analysis with densiometric quantitation, ELISA, RIA, tumor-directed targeting, whole-body scintigraphy for 99mTechnetium, cytofluorographic and radiometric quantitation, confocal microscopy, radioligand binding, flow cytometry, and cell and tumor growth assessments with mechanism analysis in vitro and for nu/nu mice. A successful end-point of our Phase 2 studies would be the generation of cAbner and/or hAbner forms of our antibody that show a similar binding affinity as mAbner, recognize all or most recurrent (and primary) cancers, do not react with normal tissues, and can reduce the size of tumors, and/or prevent their growth in vivo. The proposed research is expected to rapidly lead to new and successful therapeutic approaches for managing recurrent small-cell lung cancer. PUBLIC HEALTH RELEVANCE: This project will introduce a new targeted therapeutic approach for the treatment of recurrent small-cell lung cancer, a disease that is refractory to all current treatments. This refractoriness means < 10% expected 5 year survival rate for patients representing > 40,000 new cases of SCLC that arise in the USA each year. Our targeted approach is directed at a newly discovered abnormal receptor which seems to be a tumor-specific surface marker of recurrent small-cell lung cancer. Targeting will employ an available monoclonal antibody to treat this deadly disease. This antibody recognizes a unique extracellular portion of the marker. Currently patients with recurrent SCLC usually succumb to the disease in 3 to 6 months. The proposed research is expected to lead to new successful therapies for managing recurrent SCLC, thereby leading to a higher long- term survival rate for these patients.

IC Name
NATIONAL CANCER INSTITUTE
  • Activity
    R44
  • Administering IC
    CA
  • Application Type
    2
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    491150
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    395
  • Ed Inst. Type
  • Funding ICs
    NCI:491150\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    WOOMERA THERAPEUTICS, INC.
  • Organization Department
  • Organization DUNS
    149245123
  • Organization City
    LEBANON
  • Organization State
    NH
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    037661429
  • Organization District
    UNITED STATES