Targeting Interleukin-6 Trans-signaling in Diabetic Retinopathy

Information

  • Research Project
  • 9157948
  • ApplicationId
    9157948
  • Core Project Number
    R01EY026936
  • Full Project Number
    1R01EY026936-01
  • Serial Number
    026936
  • FOA Number
    PA-13-302
  • Sub Project Id
  • Project Start Date
    9/1/2016 - 7 years ago
  • Project End Date
    8/31/2020 - 3 years ago
  • Program Officer Name
    MCKIE, GEORGE ANN
  • Budget Start Date
    9/1/2016 - 7 years ago
  • Budget End Date
    8/31/2017 - 6 years ago
  • Fiscal Year
    2016
  • Support Year
    01
  • Suffix
  • Award Notice Date
    8/9/2016 - 7 years ago

Targeting Interleukin-6 Trans-signaling in Diabetic Retinopathy

Project Summary Diabetic retinopathy (DR) is a sight-threatening neurovasculopathy, which is the leading cause of blindness in working-aged Americans. The new therapies to prevent retinal injury and enhance repair is a critical unmet need. The main focus of this proposal is to test a novel pharmacological compound sgp130Fc for the treatment of DR. Interleukin-6 (IL-6) is the major mediator of inflammation and increasing evidence suggests that the IL-6 pathway plays a prominent role in the pathogenesis of DR. Interestingly, even though the retinal endothelial cells lack membrane bound IL-6 receptor, IL-6 mediated signaling is observed in these cells. Studies have shown that IL-6/soluble IL-6R complex can bind to glycoprotein 130 (gp130) to initiate downstream signaling in cells that do not express the IL-6 receptor and this process is known as IL-6 trans-signaling. Current approaches to block IL-6 signaling inhibit both classical and trans-signaling pathways. Recent studies suggest that IL-6 trans-signaling is particularly important in regulating processes localized to the site of disease or infection and is crucially involved in inflammatory diseases. We hypothesize that inhibiting only the trans-signaling pathway of IL-6 will be superior to complete IL-6 blockade, because important physiologic functions of IL-6 will remain intact. This novel intervention strategy represents the first attempt to investigate the effects of selective IL-6 trans-signaling blockade in DR treatment. We have exciting preliminary data showing that inhibition of IL-6 trans-signaling significantly decreases the inflammatory response in human retinal endothelial cells and diabetic mice retina. In this proposal we will test the hypothesis that sgp130-Fc will slow disease progression and attenuate pathological ocular inflammation in diabetic retinopathy, when administered either prior to onset of DR or later at a clinically evident disease stage. In Aim-1, we will use in vitro approaches to determine the effects of IL-6 trans-signaling on endothelial-pericyte interaction, expression of adhesion and tight junctions molecules in the endothelial system, maintenance of barrier function, pericyte migration, ROS production, apoptosis and proliferation of endothelial cells and pericytes. In Aim-2, we will use the streptozotocin (STZ)-induced type-1 diabetes (T1D) mouse model to determine the effect of sgp130Fc drug treatment on the diabetes-induced retinal vascular pathology by conducting molecular, structural and functional studies in diabetic mice retinas. This project has the potential to provide a new therapeutic approach to treat retinal vascular pathology associated with diabetes.

IC Name
NATIONAL EYE INSTITUTE
  • Activity
    R01
  • Administering IC
    EY
  • Application Type
    1
  • Direct Cost Amount
    250000
  • Indirect Cost Amount
    130000
  • Total Cost
    380000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    867
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NEI:380000\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    GEORGIA REGENTS UNIVERSITY
  • Organization Department
    OPHTHALMOLOGY
  • Organization DUNS
    809593387; 966668691
  • Organization City
    AUGUSTA
  • Organization State
    GA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    309120004
  • Organization District
    UNITED STATES