Healthcare facilities such as hospitals are presently experiencing nursing staff shortages. Temporary solutions for covering these shortages have included incentivizing overtime, offering hiring bonuses, and bringing in traveling nurses. However, these temporary solutions do not address the core concerns of nurses who are presently caring for more patients who are often sicker and require more specialized care than before. This has led to increasing burnout and departures from the nursing profession, which in turn has led to further nursing staff shortages. These shortages can negatively affect patient experience and outcomes.
In general terms, the present disclosure relates to assigning tasks in a clinical care environment. In one possible configuration, a system provides a technical effect by determining whether a staff shortage in a clinical care environment exists, and if so, routing tasks to an optimal volunteer based on consideration of one or more factors. Various aspects are described in this disclosure, which include, but are not limited to, the following aspects.
One aspect relates to a system for assigning nursing tasks, the system comprising: at least one processing device; and at least one memory storage device storing instructions which, when executed by the at least one processing device, cause the at least one processing device to: determine a staff shortage in a clinical care environment exists; categorize tasks based on skill level, the tasks being categorized into a first group of tasks for completion by a first type of personnel, and into a second group of tasks for completion by a second type of personnel, the second type of personnel having a skill set different from that of the first type of personnel; and route a task of the second group to a member of the second type of personnel.
Another aspect relates to a method of assigning nursing tasks, the method comprising: determining a staff shortage in a clinical care environment exists; categorizing tasks based on skill level, the tasks being categorized into a first group of tasks for completion by a first type of personnel, and into a second group of tasks for completion by a second type of personnel, the second type of personnel having a skill set different from that of the first type of personnel; and routing a task of the second group to a member of the second type of personnel.
Another aspect relates to a non-transitory computer readable storage medium, comprising instructions stored thereon which, when read and executed by one or more computing devices, cause the one or more computing devices to: determine a staff shortage in a clinical care environment exists; categorize tasks based on skill level, the tasks being categorized into a first group of tasks for completion by a first type of personnel, and into a second group of tasks for completion by a second type of personnel, the second type of personnel having a skill set different from that of the first type of personnel; and route a task of the second group to a member of the second type of personnel.
The following drawing figures, which form a part of this application, are illustrative of the described technology and are not meant to limit the scope of the disclosure in any manner.
As shown in
Each of the nursing staff members N and the volunteers V operates a device 102 on which a task assignment application 112 is installed or is accessible. Examples of the devices 102 can include smartphones, tablet computers, or other type of computing devices providing access to the task assignment application 112. In some examples, the task assignment application 112 can be downloaded on the devices 102. In further examples, the task assignment application 112 can be a web-based or cloud-based application that is accessible on the devices 102. As an example, the task assignment application 112 can be hosted or otherwise supported by a task assignment server 106, which will be described in more detail below.
In certain examples, the task assignment server 106 can provide communication channels allowing the nursing staff members N, administrators, or patients P to leave video, audio, or text messages to thank the volunteers V based on performance of their assigned tasks. In some examples, the task assignment application 112 is an extension of the Voalte® platform available from Hillrom Holdings, Inc. In certain examples, the task assignment application 112 incorporates elements of the systems and methods described in U.S. Pat. No. 9,749,825, granted Aug. 29, 2017, titled Connection-Oriented Messaging and Signaling in Mobile Health Networks, and U.S. Pat. No. 9,872,148, granted Jan. 16, 2018, titled Adaptive Mobile Wireless Call Rescue, which are incorporated herein in their entireties.
The task assignment application 112 enables the nursing staff member N to assign tasks to the volunteers V when the nursing staff member N is unable or too busy to perform the tasks such as during a staff shortage at the clinical care environment 10. Staff shortages can occur due to a medical surge when a sudden increase in patient admissions to the clinical care environment 10 challenges or exceeds the care capacity of the clinical care environment 10.
The assignment of tasks from the nursing staff member N to the volunteers V is managed by the task assignment server 106 across a communications network 116. As shown in
In one embodiment, the nursing staff member N can manually request help for certain tasks and patients. In such examples, a task assignment request from the nursing staff member N is received by the task assignment server 106 through a connection with the device 102 operated by the nursing staff member N via the communications network 116. The task assignment server 106 can then route the task assignment request to a volunteer V using routing logic based on at least one of an availability of the volunteer, a skill level of the volunteer, a physical ability of the volunteer, one or more preferences of the volunteer, and a location of the volunteer relative to a location where the task is to be performed in the clinical care environment 10.
In another embodiment, the task assignment server 106 can proactively assign or triage tasks automatically without requiring manual input from the nursing staff member N. For example, the task assignment server 106 can determine a staff shortage exists in the clinical care environment, and then automatically route task assignment requests to the volunteers V using routing logic based on at least one of availability of the volunteers, skill level of the volunteers, physical ability of the volunteers, preferences of the volunteers, and locations of the volunteers relative to the locations where the tasks are to be performed in the clinical care environment 10.
As a further illustrative example, the task assignment server 106 can consider the tasks that are accepted and in queue for completion by a volunteer V, and can estimate the completion time for each task in the queue based on the type of task, the volunteer V’s distance from the patient P, patient P’s location as it relates to the task (e.g., distance from ice machine), and other types of factors. The task assignment server 106 can then determine the volunteer V’s availability based on the estimated completion time of the tasks accepted by the volunteer V, and can route new task assignment requests to the volunteer V based on their availability. As another example, the task assignment server 106 can optimize the assignment of tasks such as by assigning low-skilled tasks to lower skilled volunteers to leave open availability of higher skilled volunteers. Such optimization can especially occur when the task assignment server 106 determines that higher skilled tasks are likely to be assigned based on historical data and trends.
The routing logic that is used by the task assignment server 106 to route the task assignment requests to the volunteers V can be customized. For example, the routing logic can be customized based on the individual needs of the nursing staff member N, the needs of the team, unit, or department within the clinical care environment 10 where the nursing staff member N is assigned their shift, or the overall needs of the clinical care environment 10.
Examples of the tasks that can be assigned by the task assignment server 106 to the volunteers V can include, without limitation, getting ice chips and water, feeding the patient P, helping the patient P to the bathroom or to ambulate around the clinical care environment 10, holding and/or calming the patient P during a medical procedure, watching the patient P to prevent falls (e.g., being a sitter), calming the patient P, preventing extubation of an endotracheal tube (ET), monitoring the patient P for seizures, accompanying the patient P for end of life (e.g., hospice care), and other common types of tasks for providing care in the clinical care environment 10. In accordance with the foregoing examples, the tasks assigned by the task assignment server 106 to the volunteers V often do not require advanced medical training.
The task assignment server 106 can check one or more credentials of the volunteers V to ensure that the tasks are only assigned to volunteers V with appropriate experience, training, and/or physical capabilities. For example, tasks such as retrieving ice chips, feeding a patient, or accompanying a lonely patient may be open to all volunteers V, but a task of helping a patient to the bathroom may only be assigned to volunteers V with basic training. The volunteers V may also set the tasks that they prefer doing or are unable/unwilling to do which would be considered by the task assignment server 106 when assigning the tasks to the volunteers V.
In some examples, the task assignment server 106 can be programmed to perform advance scheduling for some tasks. For example, a volunteer V may be scheduled to help feed patients at lunchtime, or if a patient needs a “sitter” to prevent falls, shifts can be scheduled in advance. Administrators may also add tasks that are less time sensitive (e.g., replacing the batteries in clocks) to a queue that could be assigned after more urgent tasks are completed.
Advantages of the task assignment server 106 for the patient P can include eliminating the need to transfer the patient P to another clinical care environment or location that has care capacity, and minimizing patient deterioration through faster clinical intervention. Advantages of the task assignment server 106 for the nursing staff member N can include receiving assistance during medical surges to reduce fatigue and burnout. Further advantages of the task assignment server 106 can include increasing the care capacity of the clinical care environment 10 to provide clinical care for a higher number of admitted patients.
As shown in
As further shown in the example provided in
In alternative examples, the location of the nursing staff member N and the volunteers V can be monitored by tracking the movement of the devices 102. In examples where the devices 102 are portable computing devices such as smartphones or table computers that are carried by the nursing staff member N and the volunteers V, the location of the devices 102 can be tracked by various tracking techniques including multilateration of radio signals between cell towers of a telecommunications network and the devices 102, or by using geo-spatial positioning techniques by satellite navigation systems such as the Global Positioning System (GPS).
As shown in the example of
The method 200 includes an operation 202 of monitoring a staffing level of a first type of personnel in the clinical care environment 10. In some examples, the first type of personnel includes the nursing staff members N. In further examples, the first type of personnel includes additional types of medical professionals in the clinical care environment 10.
The staffing level of the first type of personnel can be monitored by tracking how many of the first type of personnel (e.g., nursing staff members N) are logged into the task assignment server 106. Alternatively, the staffing level of the first type of personnel can be monitored by tracking a presence and/or location of the first type of personnel (e.g., nursing staff members N in the clinical care environment 10 using the RTLS 110. As described above, the RTLS 110 receives data from the antennas 114 that are placed throughout the clinical care environment 10. The antennas 114 are used to detect the presence and/or location of the tags 104 worn by the first type of personnel (e.g., nursing staff members N).
Next, the method 200 includes an operation 204 of determining whether a staffing shortage exists in the clinical care environment 10. In one example, the staff shortage is determined by receiving a trigger input from a manager of the first type of personnel. For example, a staffing shortage can be triggered by a nurse manager responsible for managing the nursing staff members N in the clinical care environment 10. In this example, the staffing shortage is manually triggered. Advantageously, the manager can use their firsthand observations of the clinical care environment 10 to determine whether to trigger a staff shortage.
In another example, the staff shortage is determined when average wait times for completion of tasks by the first type of personnel (e.g., nursing staff members N) exceed a threshold set for the clinical care environment 10. In this example, the staffing shortage is automatically triggered by the task assignment server 106. For example, the task assignment server 106 can monitor average times for completion of tasks by monitoring usage of the task assignment application 112 by the nursing staff members N. The threshold can be set by a manager or administrator in the clinical care environment 10, and the average wait times can be compared to the threshold for determining whether to trigger the staff shortage in operation 204.
In another example, the staff shortage is determined when a ratio of the first type of personnel (e.g., nursing staff members N) to patients exceeds a threshold set for the clinical care environment. This is another example of when the staffing shortage is automatically triggered by the task assignment server 106. In one example, the ratio of the first type of personnel to patients is calculated by determining a total number of the first type of personnel logged into the task assignment application 112, determining a total number of patients admitted to the clinical care environment 10 using data acquired from the ADT system 108, and then comparing the total number of the first type of personnel to the total number of patients.
In another example, the ratio of the first type of personnel to patients is calculated by determining a total number of the first type of personnel in the clinical care environment using location data acquired from the RTLS 110, determining a total number of patients admitted to the clinical care environment 10 using data acquired from the ADT system 108, and then comparing the total number of the first type of personnel to the total number of patients.
As shown in
In one example, operation 206 includes categorizing the tasks based on skill level. For example, operation 206 can include categorizing the tasks into a first group of tasks for completion by the first type of personnel (e.g., the nursing staff members N), and into a second group of tasks for completion by a second type of personnel (e.g., the volunteers V). In this example, the second type of personnel have a different skill set than the first type of personnel. For example, the volunteers V can have a lower skill level the nursing staff members N.
Next, the method 200 includes an operation 208 of routing tasks in the second group of tasks to members of the second type of personnel (e.g., the volunteers V). In some examples, the task assignment server 106 routes the tasks in the second group of tasks to the devices 102 of the members of the second type of personnel using the communications network 116.
The task is routed to the members of the second type of personnel based on routing logic that factors at least one of availability of the members (including their availability based on estimated completion time of accepted tasks in queue for completion by each member of the second type of personnel), skill level of the members, physical ability of the members, preferences of the members, and proximity of the members to locations where tasks are scheduled for completion in the clinical care environment 10. This ensure the tasks are routed to the most qualified or well-suited member of the second type of personnel.
As an illustrative example, when a task is related to providing care to the patient P shown in
In the example shown in
In this example, the task requests 402 that are included in the task list 400 are routed to the volunteer based on the availability of the volunteer, skill level of the volunteer, physical ability of the volunteer, preferences of the volunteer, and location of the volunteer such that the task list 400 includes task requests 402 that are well-suited for completion by the volunteer. The task list 400 can be dynamically updated based on acceptance and/or completion of the task requests 402 by the volunteer, and by other volunteers in the clinical care environment 10.
Also, the order of the task requests 402 in the task list 400 can be dynamically updated based on escalation of the task requests 402. For example, when a task request 402 remains unassigned or uncompleted for more than a predefined amount of time, the task request 402 is escalated to have a higher urgency level, which can cause the task request 402 to have a higher ranking in the task list 400, or to have a different appearance such as a different color, font size, or other visual indicator to communicate the higher urgency level. Accordingly, the task list 400 can dynamically rank the task requests 402 based on urgency such that task requests 402 having a higher urgency are ranked before task requests 402 having a lower urgency.
As shown in
When operation 502 determines that the task request is accepted, the method 500 proceeds to an operation 508 of monitoring performance of the task. Operation 508 can include monitoring metrics such as whether the task is completed or not. When the task is determined as completed, operation 508 can further include monitoring additional metrics such as the time it took to complete the task, and satisfaction by the patient P and/or nursing staff member N.
Next, the method 500 can include an operation 510 of aggregating the metrics monitored in operation 508 with metrics from additional tasks completed by the volunteers. For example, operation 510 can include calculating a total number of tasks completed by a volunteer V over a period of time such as a day, a week, or a month. Operation 510 can include calculating metric averages such as average time for completion of each task, average satisfaction of the patients P and nursing staff members N for the tasks completed by the volunteer.
Next, the method 500 includes an operation 512 of issuing an award to one or more of the volunteers V based on the metrics aggregated in operation 510. For example, an award can be an achievement or a reward that is issued to a volunteer V who completed the highest total number of tasks or who performed the longest cumulative amount of time for tasks over a predetermined period of time such as a day, a week, or a month. As another example, an award can be an achievement or a reward that is issued to a volunteer V who had the highest satisfaction rate among the patients P and/or the nursing staff members N in the clinical care environment 10. Additional awards based on additional types of metrics can also be issued.
The awards can provide encouragement and motivation to the volunteers V, which can increase engagement and attendance by the volunteers V, and/or provide acknowledgement to students and non-clinical staff who go beyond their standard responsibilities. Gamification can create goals and/or achievements for the volunteers V. In some instances, physical or virtual badges are awarded to volunteers V, which can be traded for items in a cafeteria or gift shop of the clinical care environment 10. A volunteer of the month or an “unit angel” can be designated based on certain performance metrics (e.g., tasks completed, time on unit, and the like).
As further shown in the example provided in
The task acceptance screen 800 further displays units or departments 804 within the clinical care environment 10 for which the volunteer V has accepted to receive the tasks 802 from. In this example, only tasks 802 from the units or departments 804 that the volunteer V accepts are routed to the device 102 by the task assignment server 106.
The task assignment screen 900 can further display available tasks 904 that have not yet been assigned. The available tasks 904 can include similar information as the assigned tasks 902 such as information that identifies the task, the time for completing the task, and the location for completing the task. Each of the available tasks 904 can be selected by the volunteer V such that the available tasks become assigned tasks 902 for completion by the volunteer V.
In some further examples, the task assignment server 106 allows the nursing staff member N to verbally submit a request for assignment of a task 1102 to a volunteer V such as through a voice command when enabled on the device 102 of the nursing staff member N. Also, the device 102 of the volunteer V can similarly accept voice commands from the volunteer V that allow the volunteer V to verbally accept the task 1102 on their device 102.
As shown in
The task assignment server 106 can also include a mass storage device 1212 that can include an operating system 1214 and store software instructions 1216 and data. The mass storage device 1212 is connected to the processing device 1202 through the system bus 1206. The mass storage device 1212 and associated computer-readable data storage media provide non-volatile, non-transitory storage for the task assignment server 106.
Although the description of computer-readable data storage media contained herein refers to the mass storage device 1212, it should be appreciated by those skilled in the art that computer-readable data storage media can be any available non-transitory, physical device or article of manufacture from which the task assignment server 106 can read data and/or instructions. The computer-readable storage media can be comprised of entirely non-transitory media. The mass storage device 1212 is an example of a computer-readable storage device.
Computer-readable data storage media include volatile and non-volatile, removable, and non-removable media implemented in any method or technology for storage of information such as computer-readable software instructions, data structures, program modules or other data. Example types of computer-readable data storage media include, but are not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid-state memory technology, or any other medium which can be used to store information, and which can be accessed by the device.
The task assignment server 106 operates in a networked environment using logical connections to the devices 102 through the communications network 116. The task assignment server 106 connects to the communications network 116 through a network interface unit 1218 connected to the system bus 1206. The network interface unit 1218 can also connect to additional types of communications networks and devices, including through Bluetooth, Wi-Fi, and cellular telecommunications networks including 4G and 5G networks.
The network interface unit 1218 may also connect the task assignment server 106 to additional networks, systems, and devices such as the ADT system 108 and the RTLS 110 shown in
The task assignment server 106 can also include an input/output unit 1220 for receiving and processing inputs and outputs from a number of peripheral devices. Examples of peripheral devices may include, without limitation, a camera, a touchscreen, speakers, a microphone, and similar devices used for voice and video communications.
The mass storage device 1212 and the RAM 1208 can store software instructions and data. The software instructions can include an operating system 1214 suitable for controlling the operation of the task assignment server 106. The mass storage device 1212 and/or the RAM 1208 can also store software instructions 1216, which when executed by the processing device 1202, cause the device to provide the functionality of the task assignment server 106 discussed herein.
The various embodiments described above are provided by way of illustration only and should not be construed to be limiting in any way. Various modifications can be made to the embodiments described above without departing from the true spirit and scope of the disclosure.
Number | Date | Country | |
---|---|---|---|
63364273 | May 2022 | US |