Various features of the present disclosure relate to tattoo machines, methods of making tattoo machines and methods of using tattoo machines. More particularly, one or more implementations of the present disclosure relate to tattoo machines employing a motor adapted to drive the linear motion of a tattoo needle.
Tattoo machines have been in use for many years. A tattoo machine typically has a reciprocating needle that moves up and down within a tubular structure, carrying ink into the skin of an individual in the process. The reciprocating needle typically punctures the skin at a high rate. The needles are installed in the machine and dipped in ink, which is sucked up through the machine's tube system. Then, the tattoo machine induces an up-and-down motion of the needle to puncture the top layer of the skin and drive insoluble particles of ink into the dermal layer of skin.
Mechanically speaking, conventional tattoo machines typically comprise either a coil tattoo machine or a rotary tattoo machine. Coil tattoo machines are more widely used currently due to their relative availability and relatively lower cost. A coil tattoo machine employs an electromagnetic circuit to move the needle grouping up and down. Differentiations and variants can be found in a wide array, ranging from single coiled machines to triple coiled machines. Generally, the coil tattoo employs one or more DC coils and spring point(s) that induce the linear up and down motion of a bar that is coupled to the needle. Coil tattoo machines typically allow some “give” in the needle (i.e., absorb some of the force resulting when the needle impacts the skin), inhibiting blowout that is caused when the needle extends too far into or beyond the dermal layer of skin. However, coil tattoo machines are generally relatively heavy and more difficult to maneuver during use. In addition, the electromagnetic switching of coil type tattoo machines generates a significant amount of noise, which can turn off first-time customers who may already be hesitant about getting a tattoo. Further, coil tattoo machines can be used as either a liner or a shader, but not both, since shaders generally have thicker barrels and typically need heavier coils to produce the extra power needed to drive the ink into the skin, while liners typically have thinner barrels and lighter coils for extra comfort.
A conventional rotary tattoo machine uses an electric motor with a rotatable shaft that is coupled with the needle to drive the needle in the reciprocating up and down motion. Rotary tattoo machines can offer several advantages to the coil machines in that a rotary tattoo machine is typically lighter weight, substantially less noisy, and can be used as either a liner or a shader. However, the rotary tattoo machines typically do not allow the needle to “give” (i.e., absorb some of the impact force between the needle and the skin) when the machine is pushed too hard against the skin, which can result in blowout when the needle pierces too far into or beyond the dermal layer of skin.
In view of the shortcomings in conventional tattoo machines, it would be advantageous to provide a tattoo machine which is relatively quieter, lighter and more versatile as well as capable of providing “give” in the needle to reduce or even eliminate blowout.
Various embodiments of the present disclosure comprise tattoo machines configured to provide “give” in the needle for reducing or even eliminating blowout, while also providing quieter operation, lighter weight and increased versatility. In one or more embodiments, a tattoo machine may comprise a frame, and a motor pivotably coupled to the frame. The motor may include an eccentrically weighted shaft. A needle drive mechanism may be coupled with the motor in order to facilitate driving a needle when the motor is energized.
Other embodiments of the disclosure comprise methods of making a tattoo machine. One or more implementations of such methods may comprise obtaining a frame, obtaining a motor that includes an eccentrically weighted shaft, and coupling the motor to the frame so that the motor is able to pivot about a pivot axis.
Still additional embodiments of the disclosure comprise methods operational of a tattoo machine. According to one or more implementations of such methods, an eccentrically weighted shaft is rotated on a motor that is pivotably coupled to a frame. In response to the rotation of the eccentrically weighted shaft, the motor is pivoted about a pivot axis.
The illustrations presented herein are, in some instances, not actual views of any particular housing assembly, motor assembly, or tattoo machine, but are merely idealized representations which are employed to describe various features associated with one or more embodiments of the present disclosure. Additionally, elements common between figures may retain the same numerical designation.
Various embodiments of the present disclosure are directed toward tattoo machines. Referring to
As shown in the illustrated embodiment, the frame 104 can be formed as a housing in some embodiments. In other embodiments, the frame 104 can be formed with a more simple configuration comprising features adapted to be coupled with various components as described herein, without necessarily housing the components. The frame 104 may comprise any suitable material, including but not limited to a metal or metal alloy, a polymer, a ceramic material, or other suitable material, as well as combinations thereof.
The tattoo machine 100 may also include a needle 108 positioned to extend through the inside of the tube 102 and is coupled to a needle drive mechanism 110, such as a needle arm. The needle 108 can comprise any of the various kinds of conventional tattoo needles known generally to those of ordinary skill in the art.
In some environments and/or according to the preference of a user, it may be desirable to provide additional lighting to the surface of the skin surface being tattooed. Accordingly, the frame 104 can be configured to receive an optional lighting mechanism 112 that may be fixedly or removably coupled thereto to provide additional light to the skin surface being tattooed.
The needle drive mechanism 110 that is coupled with the needle 108 comprises a portion of a motor assembly. Turning to
According to a feature, the shaft 208 of the motor 204 is configured to be eccentrically weighted. For example, the shaft 208 itself may be formed in such a manner as to have an integral eccentric weight portion, or an eccentric weight 210 may be coupled to the shaft 208, as well as some combination thereof. As the shaft 208 is rotated, the eccentric weight 210 causes the motor 204 to pivot in the direction of arrows 206, causing the needle drive mechanism 110 to displace an attached needle 108 up and down, as indicated by arrows 212.
The pivot axels 302 can be coupled with bearings 306 to facilitate a smooth pivoting motion of the motor 204 during operation. In other embodiments, the pivot axels 302 may be coupled directly to the frame (e.g., frame 104 in
The needle drive mechanism 110 generally comprises a component adapted to enable a needle to be driven when a motor 204 is energized. In some embodiments, the needle drive mechanism 110 may comprise a needle arm or other shaft configuration to extend from the motor 204 and facilitate coupling a needle 108 with the motor 204. In other embodiments, the needle drive mechanism 110 may simply comprise a feature adapted to facilitate coupling the needle to the body of the motor 204 and/or the sleeve 304.
The needle drive mechanism 110 may be coupled with the body of the motor 204 and/or the sleeve 304 in some examples. In other examples, the body of the motor 204 and/or the sleeve 304 may be formed with an integral needle drive mechanism 110. In embodiments where the needle drive mechanism 110 comprises a needle arm or other shaft, the needle drive mechanism 110 can be positioned to a side of the motor 204 directly opposite from the motor shaft 208 and extending away from the motor 204 in a direction opposite from the motor shaft 208, as illustrated. It should be apparent to a person of ordinary skill in the art, however, that the needle drive mechanism 110 embodied as a needle arm or other shaft can be positioned on other surfaces and/or portions of the motor 204, so long as the needle drive mechanism 110 facilitates driving the up and down motion of a needle during use. The needle drive mechanism 110 can be disposed so that the needle drive mechanism 110 extends from the motor 204 in a direction at least substantially transverse to a pivot axis of the motor 204 (e.g., pivot axis 404 in
As shown in
In conventional systems, a motor is mounted in a manner to inhibit movement of the motor as a result of any such forces. However, in various embodiments of the present tattoo machine, the motor 204 is pivotably mounted so that the motor 204 can move about the pivot axis 404, while inhibiting motion of the motor 204 in other directions as a result of the forces generated by the rotating eccentric weight 210. That is, with the motor 204 coupled to the frame (e.g., frame 104 in
Further embodiments of the present disclosure relate to methods of making tattoo machines.
At step 604, a motor 204 may be obtained, where the motor 204 includes an eccentrically weighted shaft 208. According to various implementations, the shaft 208 can be formed to include an integral eccentric weight portion (e.g., the shaft 208 can be formed eccentrically weighted), an eccentric weight 210 can be coupled to the shaft 208, or the shaft 208 may include both an integral eccentric weight portion and an eccentric weight 210 coupled thereto.
At step 606, pivot axels 302 (shown in
At step 608, a needle drive mechanism 110 is disposed adjacent the motor 204. The needle drive mechanism 110 can be disposed as to extend away from the motor 204 in a direction transverse to the pivot axis 404 (shown in
At step 610, the motor 204 can be coupled to the frame 104 in such a manner as to enable the motor 204 to pivot about the pivot axis 404 (shown in
According to other steps, a tube 102 can be coupled to the frame 104 and a needle 108 may be disposed through the tube 102 and coupled to the needle drive mechanism 110. In the preceding detailed description, embodiments have been described in terms of a process that may be depicted as a flowchart, a flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe operational acts as a sequential process, many of these acts can be performed in another sequence, in parallel, or substantially concurrently. In addition, the order of the acts may be re-arranged.
One or more of the various features described and depicted herein provide tattoo machines that allow some “give” in the needle (i.e., absorb some of the force resulting when the needle impacts the skin), inhibiting blowout that is caused when the needle extends too far into or beyond the dermal layer of skin, while also providing relatively light weight, relatively low noise, and the ability for use as either a liner or a shader.
While certain embodiments have been described and shown in the accompanying drawings, such embodiments are merely illustrative and not restrictive of the scope of the disclosure, and this disclosure is not limited to the specific constructions and arrangements shown and described, since various other additions and modifications to, and deletions from, the described embodiments will be apparent to one of ordinary skill in the art. Thus, the scope of the disclosure is only limited by the literal language, and equivalents, of the claims which follow.
The present Application for Patent claims priority under 35 U.S.C. §119 to Provisional Application No. 61/443,367 entitled Tattoo Machines, Methods of Making Tattoo Machines, and Methods of Using Tattoo Machines, which is hereby expressly incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
3509786 | Buttner | May 1970 | A |
4204438 | Binaris et al. | May 1980 | A |
4864276 | Tribbey et al. | Sep 1989 | A |
4914988 | Chang | Apr 1990 | A |
5107155 | Yamaguchi | Apr 1992 | A |
5165488 | Liu | Nov 1992 | A |
6033421 | Theiss et al. | Mar 2000 | A |
6636007 | Hong et al. | Oct 2003 | B2 |
6765331 | Koyanagi et al. | Jul 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20120209307 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61443367 | Feb 2011 | US |