The present invention relates to inhibitors for tau aggregation that causes neurologic deficits and synaptic losses.
Alzheimer's disease (AD) is a type of dementia whose main symptoms are cognitive decline and personality change. Dementia is a common disorder, and about 25% of Japanese aged 85 years or older develop, and about a half of dementia cases are caused by AD. In Japan, there are about 1.6 to 1 8 million AD patients in 2011, and the number of AD patients has been increasing with aging of the population. This is a serious issue especially in Japan which has a decreasing birth rate and an aging population.
An acetylcholinesterase inhibitor that is considered as a most effective inhibitor for prevention and treatment of AD is effective only for patients with mild to moderate symptoms, and many researchers find no effectiveness of the acetylcholinesterase inhibitor for patients with advanced cases.
Although neuropathological findings on AD patients have two features: senile plaques of β-amyloid; and neurofibrillary tangles (NFTs) formed by abnormal accumulation of tau, a mainstream of current AD research is based on the amyloid-β hypothesis that abnormal accumulation of amyloid-β peptide eventually leads to AD.
However, it has been revealed that mutation of the tau gene promotes NFT formation and causes dementia in frontotemporal dementia and parkinsonism (FTDP) and that only aggregation and accumulation of tau in the brain cause neuronal abnormalities. Thus, the correlation between tau aggregation and AD occurrence has attracted attention in recent years.
Neuronal cells in CNS contain a large amount of tau, which is essential for the function of axons constituting the neural network of brain. Insoluble aggregation of tau in cells hinders axonal transport, leading to neuronal death.
PATENT DOCUMENT 1 describes a drug containing, as a main component, a naphthoquinone-type compound that inhibits tau aggregation for improving AD symptoms. This drug reduces tau aggregation in cells to some extent so that NFT formation is reduced and AD symptoms are alleviated.
[PATENT DOCUMENT 1] Japanese Unexamined Patent Publication (Japanese Translation of PCT Application) No. 2004-534854.
The tau aggregation inhibitor described above, however, does not sufficiently inhibit tau aggregation in cells, and is insufficient for treatment of tauopathies including AD.
It is therefore an object of the present invention to provide a tau aggregation inhibitor that can sufficiently reduce tau aggregation in cells.
An example of a tau aggregation inhibitor according to the present disclosure includes isoprenaline or a salt thereof. Isoprenaline included in the tau aggregation inhibitor may be d-enantiomer. Alternatively, isoprenaline included in the tau aggregation inhibitor may be d/l-racemic mixture. It should be noted that d-enantiomer or d-isoprenaline refers to (S)-(+)-isoprenaline and d/l-racemic mixture or d/l-isoprenaline refers to a mixture of (S)-(+)-isoprenaline and (R)-(−)-isoprenaline.
Another example of the tau aggregation inhibitor according to the present invention includes a catechol structure-containing compound or a salt thereof, and the catechol structure-containing compound is selected from the group consisting of dopamine, dobutamine, levodopa, levodopa/carbidopa, trimetoquinol, hexoprenaline, methyldopa, and droxidopa.
According to the present invention, tau aggregation in cells can be sufficiently reduced. Thus, patients suffering from tauopathies including AD, for which no effective therapies have not been discovered yet, can be cured. In the current era of aging society, the technique disclosed herein can achieve more effective social contributions by, for example, improving quality of life in elderly population, alleviating the burden of cares, and reducing medical expenses.
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
An embodiment of the present invention will be specifically described with reference to the attached figures. The embodiment below is intended to facilitate understanding of the principle of the invention. The scope of the invention is not limited to the embodiment below, and includes other embodiments expected by those skilled in the art by making replacements or modifications to the embodiment when necessary.
Inventors of the present invention have intensively investigated, to find for the first time that catechol structure-containing compounds are effective for prevention or therapy of tauopathies. Based on this finding, the inventors have achieved the invention. A catechol structure-containing compound herein refers to a compound containing a catechol structure in its constitutional formula. The catechol structure refers to a structure of catechol that is a compound in which two of its substituents are hydroxyl groups and these two hydroxyl groups are in ortho-positions each other.
Specifically, the catechol structure-containing compound is selected from the group consisting of isoprenaline, dopamine, dobutamine, levodopa, levodopa/carbidopa, trimetoquinol, hexoprenaline, methyldopa, and droxidopa. A tau aggregation inhibitor according to this embodiment may be a catechol structure-containing compound alone or a combination of some or all of the catechol structure-containing compounds described above.
The catechol structure-containing compound is preferably isoprenaline. Isoprenaline may be preferably used in any one of l-enantiomer (R-configuration), d-enantiomer (S-configuration), or d/l-racemic mixture. Side effects of isoprenaline include palpitation and myocardial ischemia. In isoprenaline, l-enantiomer has greater effects than d-enantiomer, and side effects thereof decrease in the order of l-enantiomer, d/l-racemic mixture, and d-enantiomer. On the other hand, as described below, d-isoprenaline exhibits a tau aggregation inhibition effect to a degree similar to that of d/l-isoprenaline. Thus, between optical isomers, d-enantiomer is considered to be most preferable for use in a therapeutic agent for dementia because d-enantiomer has a similar tau aggregation inhibition effect but has smaller side effects than l-enantiomer.
Salts of these catechol structure-containing compounds are pharmacologically acceptable salts. Examples of the salts include: inorganic basic salts such as metal salts including alkali metal salts (e.g., potassium salt and sodium salt) and alkali-earth metal salts (e.g., magnesium salt and calcium salt), alkali metal carbonates (e.g., lithium carbonate, potassium carbonate, sodium carbonate, and cesium carbonate), alkali metal hydrogen carbonates (e.g., lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate), and alkali metal hydroxides (e.g., sodium hydroxide and potassium hydroxide); organic basic salts such as trialkylamine (e.g., trimethylamine and triethylamine), pyridine, quinoline, piperidine, imidazole, picoline, dimethylamino pyridine, dimethylaniline, N-alkyl-morpholine, DBN, and DBU; inorganic acid salts such as hydrochloric acid salt, hydrobromide, hydriodic acid salt, sulfate, nitrate, and phosphate; and organic acid salts such as formate, acetate, propionate, oxalate, malonate, succinate, fumarate, maleate, lactate, malate, citrate, tartrate, citrate, carbonate, picrate, methanesulfonate, and glutamate.
The tau aggregation inhibitor of this embodiment may contain an effective amount of at least one selected from the group consisting of catechol structure-containing compounds and salts thereof, together with a pharmacologically acceptable carrier. The carrier may be a solid such as an excipient or liquid such as a diluent. Specifically, examples of the carrier include magnesium stearate, lactose, starch, gelatin, agar, talc, pectin, gum arabic, olive oil, sesame oil, cacao butter, ethylene glycol, and distilled water.
Tauopathies are neurodegenerative diseases in which accumulation of phosphorylated tau occurs in neuronal cells and glia cells. Tauopathies are, for example, AD, Down's syndrome, Pick's disease, corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP).
Prevention of tauopathies means preventing occurrence of tauopathy disorder. Therapy of tauopathies means preventing or improving/reducing progress of tauopathy disorder.
The tau aggregation inhibitor of this embodiment may contain, if necessary, one or more additives selected from the group consisting of pharmaceutically acceptable tonicity adjusting agents, buffers, solubilizers, preservatives, and pH adjusters.
Examples of the tonicity adjusting agents include potassium chloride, sodium chloride, boric acid, mannitol, glycerol, propylene glycol, polyethylene glycol, maltose, sucrose, sorbitol, and glucose.
Examples of the buffers include organic acids such as amino acid and succinic acid, inorganic acids such as boric acid and phosphoric acid, and pharmaceutically acceptable salts thereof.
Examples of the solubilizers include: polymers such as polyethylene glycol, polyvinylpyrrolidone, polyvinyl alcohol, and hydroxypropyl methylcellulose; surfactants such as polysorbate, polyoxyethylene hydrogenated castor oil, and polyoxyethylene polyoxypropylene; polyhydric alcohol such as propylene glycol; organic acids such as benzoic acid and sorbic acid; and amino acids such as aspartic acid, histidine, glycine, and lysine.
Examples of the preservatives include: quaternary ammonium salts such as benzethonium, benzalkonium, and benzododecinium; cation compound salts such as chlorhexidine; parahydroxybenzoic acid esters such as methyl parahydroxybenzoate and propyl parahydroxybenzoate; and alcohol compounds such as chlorobutanol and benzyl alcohol.
Examples of the pH adjusters include sulfuric acid, hydrochloric acid, acetic acid, lactic acid, calcium hydroxide, potassium hydroxide, sodium hydroxide, magnesium hydroxide, monoethanolamine, triethanolamine, diisopropanolamine, and triisopropanolamine.
The dose of the tau aggregation inhibitor of this embodiment is not specifically limited as long as appropriate effects are obtained, and is determined in consideration of the degree of symptoms, sexuality, and ages of patients to be treated. For example, the dose of the tau aggregation inhibitor can be 0.0001 to 1000 mg per day for an adult. This dose of the inhibitor per day may be administered once daily or may be divided for several administrations daily.
The tau aggregation inhibitor of this embodiment can be prepared in formulation types in accordance with the manner of administration. Examples of oral administration types include solid formulations and solution formulations including granules, balls, tablets, capsules, powders, and solutions. Examples of parenteral administration types include injections such as intravenous injection and intramuscular injection.
When phosphorylated, tau-tau association occurs and tau oligomers are formed. When these tau oligomers grow to have a beta-pleated sheet structure, spherical granular tau aggregation is formed. The granular tau aggregation is considered to be constituted by about 40 tau molecules. The granular tau aggregations are joined together to form tau neurofibrillary tangles (NFTs) called paired helical filaments (PHFs). Recent researches using mouse models shows that inhibition of tau overexpression in the period of NFT formation improves memory learning of mice but formation of NFTs continues. This suggests that neuronal dysfunction occurs mainly in the process of formation of NFTs, rather than being caused by NFTs themselves. NFTs themselves are not toxic, and products formed in the process of NFT formation is considered to be a major cause of neurotoxicity. The tau aggregation inhibitor of this embodiment inhibits not only tau aggregation in the process of PHF formation by joined granular tau aggregation but also tau aggregation in the process of formation of spherical granular tau aggregations. Neurodegeneration in brain occurs by not only accumulation of mutant tau protein but also accumulation of wild-type tau. The tau aggregation inhibitor of the present invention can inhibit aggregation of wild-type tau. Thus, tauopathy symptoms including AD can be prevented or treated.
Compounds that can be bound to tau were screened. First, 10 μM of 2N4R tau (TAU-441 HUMAN) and 10 μM of heparin were mixed together and incubated at 37° C. to form tau aggregates. This aggregated tau sample (1 ml) was loaded onto a sucrose-density gradient solution (consisting of 1 ml layers 20%, 30%, 40%, and 50%), and was centrifuged (at 200000×g for 2 h at 20° C.). Then, the solution was collected in units of 1 ml from the top layer to obtain samples of fractions (Fr) 1-5. The resultant pellets were suspended in an HEPES solution to obtain a fraction Fr6. Thereafter, binding capacities between tau included in Fr 1, 3, and 5 with predetermined 6600 compounds were analyzed by a surface plasmon resonance technique. The surface plasmon resonance technique is a technique for analyzing an intermolecular interaction between two molecules by monitoring a change in refractive index caused by, for example, a change in molecular mass fixed on a thin gold film. The surface plasmon resonance technique can be performed with a commercially available surface plasmon resonance system, e.g., BIAcore 2000 (produced by Pharmacia Biosensor). As a result, it was found that 111 compounds out of the 6600 compounds were bound to tau.
Then, it was analyzed, by thioflavine T stain, whether the 111 compounds inhibit tau aggregation. For this analysis, 10-μM tau, a compound (1 μM, 10 μM, or 100 μM), and thioflavine T (a beta-pleated sheet structure-specific detection reagent) were mixed together. Thereafter, heparin, which is a tau aggregation inducer, was added to the mixture, and the resulting mixture was incubated at 37° C., thereby allowing tau to aggregate. Subsequently, the thioflavine T activity in an incubation sample was measured at various times to investigate tau aggregation inhibition effects by the compounds. As a result, it was observed that nine out of the 111 compounds noticeably inhibited the thioflavine T activity in a low concentration of 1 μM.
To further investigate the effects of these nine compounds on tau aggregation specifically, samples that had been incubated at 37° C. were centrifuged at 250000 ×g for 2 h, the resultant pellets were obtained so that the amount of insoluble tau were quantified. As a result, it was found that (R)-(−)-epinephrine and pyrocatechol violet reduced the amount of insoluble tau in a concentration dependent manner These two compounds, i.e., (R)-(−)-epinephrine and pyrocatechol violet, were found to have the same skeleton of catechol nucleus.
Then, it was analyzed, by thioflavine T stain, whether compounds whose structures resemble to (R)-(−)-epinephrine and pyrocatechol violet inhibit tau aggregation. As a result, as shown in
Among these samples, the (R)-(−)-epinephrine sample and the isoprenaline samples were divided into fractions Fr1-Fr6 by sucrose-density gradient centrifugation, and tau was detected by SDS-PAGE western blotting. The concentration of the compounds used was 100 μM. As a result, as shown in
Then, it was investigated whether isoprenaline inhibits tau aggregation in cultured cells. As cells, Neuro2a cell lines in which human P301L mutant tau (i.e., mutant tau in which 301st proline of tau is changed to leucine) is expressed in stable were used. To these cells, isoprenaline was added in concentrations of 0.01, 0.1, and 1 μM for 48 hours. Then, SDS-insoluble fractions were obtained so that a change in the amounts of tau was observed. As a result, as shown in
In addition, changes of tau phosphorylation in radio-immunoprecipitation assay (RIPA) buffer-soluble fractions obtained from similar cells were analyzed. As a result, as shown in
Tau phosphorylations at AT8 sites are known to induce a tau conformational change (that can be detected with the MC1 antibody) observed in AD brains. Thus, WT tau was expressed in COS-7 cells (derived from African green monkey kidney), and a tau conformational change was detected by dot blotting using the MC1 antibody. The dot blotting is a technique of fixing protein to a nitrocellulose membrane or a PVDF membrane without separation through electrophoresis and specifically quantitating the protein amount with enzyme-labeled antibodies. As a result, as shown in
It was investigated how isoprenaline affects binding between microtubules and tau. First, 10 μM of isoprenaline was added to COS-7 cells expressing WT tau, and the cells were left for 24 hours and then homogenized with RA buffer (0.1-μM MES, 0.5-mM MgSO4, 1-mM EGTA, 2-mM DTT, 0.1% TritonX-100, 20-μM taxol, and 2-mM GTP). The homogenates were then centrifuged at 3000×g for 5 min at 25° C., and thea supernatant was obtained as a total fraction. The total fraction was further centrifuged at 100000×g for 20 min at 20° C., and a pellet (a microtubule fraction) was obtained. In this manner, the microtubule fraction was taken from the COS-7 cells expressing WT tau, and acetylated tubulin serving as an index of tau and microtubule stabilization was detected.
As a result, as shown in
In the WT tau-expressing COS-7 cells, the amount of acetylated tubulin increased as compared to vector-expressing cells. Addition of isoprenaline to these cells further increased the amount of acetylated tubulin, as shown in
It was investigated whether isoprenaline inhibits tau aggregation in mice. First, P301L tau Tg mice were given isoprenaline (1.5 mg/g fed) mixed in mash for three months. Then, cerebral cortex and hippocampus were excised from the mice, and stored at −80° C. To obtain fractions including soluble tau and insoluble tau from these tissues, a frozen tissues were homogenized in TBS solution, centrifuged (at 23000 rpm for 15 min at 4° C.), and then fractionated into the supernatant and the pellet. The supernatant was used as a TBS-soluble fraction (including soluble tau). In addition, 0.32 M of sucrose was added to the pellet, and the pellet was homogenized again, centrifuged (at 23000 rpm for 15 min at 4° C.), and then fractionated into the supernatant (including tau aggregation) and the pellet (including nuclei). Thereafter, surfactant (1% sarkosyl) was added to the supernatant, and the resulting supernatant was incubated (at 37° C. for 1 h) and centrifuged (at 200000×g for 1 h at 4° C.). A pellet dissolved with Laemmli buffer (containing 2-mercaptoethanol) was used as a sarkosyl-insoluble fraction. Tau in the TBS-soluble fraction and the sarkosyl-insoluble fraction was detected by SDS-PAGE western blotting. As a result, as shown in
In the brains of P301L tau Tg mice, the numbers of neurons are decreased accompanying tau aggregates formation. Thus, there is the possibility that isoprenaline having a tau aggregation inhibition function can suppress decreases in the number of neuronal cells. Thus, brain slices were prepared from isoprenaline-administered mice, and the number of neuronal cells was counted. To measure the number of neuronal cells, 0.1-mm2 boxes as shown in
A change in tau phosphorylation in TBS-soluble fractions from WT tau Tg mice was investigated. As a result, as shown in
The above examples show effects of isoprenaline. However, since a catechol amine moiety was found as a novel common structure that inhibits tau aggregation (see Example 2) and dopamine, dobutamine, levodopa, levodopa/carbidopa, trimetoquinol, hexoprenaline, methyldopa, and droxidopa have catechol amine structures similar to that of isoprenaline, these materials appear to have the effect of inhibiting tau aggregation in cultured cells and animals, similarly to isoprenaline.
Tau (10 μM), d- and d/l-isoprenaline (1-100 μM), and thioflavine T were mixed together. Then, heparin was added to the mixture, and the resulting mixture was incubated at 37° C., thereby allowing tau to aggregate. In the period shown in the figures, the thioflavine T activity in incubation samples were analyzed to investigate tau aggregation inhibition effects of compounds.
Then, to analyze a change of tau aggregation by d- and d/l-isoprenaline biochemically, an incubated tau aggregation sample was fractionated into Fr1-Fr6 by sucrose-density gradient centrifugation, and tau was detected by SDS-PAGE western blotting.
Thereafter, to analyze a change of tau aggregation by d-isoprenaline morphologically, the sample was investigated by using an atomic force microscope. A tau aggregation sample that had been incubated for 120 hours was loaded on a mica board and adsorbed thereon. After removal of the sample, the mica board was filled with milliQ water, and the aggregated tau was observed with an atomic force microscope.
To investigate tau aggregation inhibition effects of d-isoprenaline in vivo P301L tau Tg mice were used for analysis. First, P301L tau Tg mice aged 20-21 months were given d-isoprenaline (2.168 mg/g fed) mixed in mash for three months. Then, cerebral cortices and hippocampi were excised from the mice and stored at −80° C. Thereafter, a TBS-soluble fraction and a sarkosyl-insoluble fraction were prepared from these brain tissues, and tau was analyzed by SDS-PAGE western blotting.
In a manner similar to the above-described examination of the amount of insoluble tau in cerebral cortex of P301L tau Tg mice, the amount of insoluble tau in hippocampus of P301L tau Tg mice were obtained.
The present invention is useful for treatment of tauopathies.
Number | Date | Country | Kind |
---|---|---|---|
2011-219059 | Oct 2011 | JP | national |
This application is divisional application of U.S. application Ser. No. 14/349,160, filed on Apr. 2, 2014, entitled “TAU AGGREGATION INHIBITOR,” which is the U.S. National Phase of Application No. PCT/JP2012/006363, filed Oct. 3, 2012, which designated the United States, and which claims the benefit of Japanese Patent Application No. 2011-219059, filed Oct. 3, 2011. The disclosures of the above-referenced applications are incorporated herein by reference in their entireties, including any drawings.
Number | Date | Country | |
---|---|---|---|
Parent | 14349160 | Apr 2014 | US |
Child | 15894414 | US |