TAXADIENE SYNTHASE TCTS2, ENCODING NUCLEOTIDE SEQUENCE AND USE THEREOF

Information

  • Patent Application
  • 20230220369
  • Publication Number
    20230220369
  • Date Filed
    December 29, 2022
    2 years ago
  • Date Published
    July 13, 2023
    a year ago
Abstract
Provided are a taxadiene synthase TcTS2, an encoding nucleotide sequence and use thereof. The amino acid sequence of TcTS2 includes or consists of: (a) an amino acid sequence represented by SEQ ID NO: 1; or (b) a functional homologous sequence having at least 80% sequence similarity with the amino acid sequence represented by SEQ ID NO: 1; or (c) an amino acid sequence having TcTS2 activity with addition, deletion, or substitution of one or more amino acids in the amino acid sequence represented by SEQ ID NO: 1. TcTS2 and the nucleotide sequence encoding the TcTS2 provide new gene resources for improving the yield of taxol, and they may be used for modifying chassis hosts by plant genetic engineering and metabolic engineering strategies to produce taxol and the intermediates thereof etc., thereby having significant economic and social value.
Description
TECHNICAL FIELD

The present disclosure relates to the technical field of plant genetic engineering, in particular to a taxadiene synthase TcTS2, an encoding nucleotide sequence and use thereof in synthesizing baccatin III or taxol.


BACKGROUND ART

Taxol is a diterpenoid alkaloid, which was first isolated from the bark of Taxus brevifolia. It is a widely used anticancer drug, and is widely used in the clinical treatment of various cancers. Cancer is one of the top ten causes of human death. At present, the annual incidence of cancer in the world is still more than 10 million (WHO). Taxol and its preparations are important first-line anticancer drugs. Currently, the main production method of taxol is semi-synthetic method, i.e., firstly the natural precursors baccatin III and 10-deacetylbaccatin III (10-DAB) are extracted, and then taxol is chemically synthesized. (Li et al., 2015; Liu et al., 2016), but the precursor substances used in this method still rely on extraction from plants and are limited by plant or cell resources, which cannot completely solve the supply problem.


Taxadiene synthase (TS) was firstly cloned from Taxus brevifolia. Taxadiene synthase (TS) catalyzes the cyclization of Geranylgeranyl Diphosphate (GGPP) to form taxadiene, and taxadiene undergoes a series of functional group reactions to form baccatin III, TS plays an indispensable role in the synthesis of taxol (Wildung et al., 1996).


Taxadiene synthase is the first-step enzyme that catalyzes the formation of taxane skeleton as parent of taxol, and its efficiency of catalyzing cyclization of GGPP is very low as compared with that of other cyclases of gymnosperm. This step is a rate-limiting step of the taxol synthesis pathway, and TS was confirmed to be a slow-rate enzyme. Therefore, it is of great significance to discover taxol biosynthesis genes and the enzymes encoded by them which have higher enzymatic activity.


SUMMARY OF THE INVENTION

In view of this, the object of the present disclosure is to provide a taxadiene synthase TcTS2, which improves the efficiency of catalyzing the cyclization of GGPP, so that the yield of the intermediates taxadiene, baccatin III and the product taxol in the process of synthesizing taxol are greatly improved, thereby significantly reducing the production cost of taxol, and effectively solving the current problem that taxol is expensive and in short supply in the market.


In a first aspect of the disclosure, provided is a taxadiene synthase TcTS2, wherein an amino acid sequence of the taxadiene synthase TcTS2 comprises or consists of:


a) an amino acid sequence represented by SEQ ID NO: 1; or


b) a functional homologous sequence having at least 80% sequence similarity with the amino acid sequence represented by SEQ ID NO: 1; or


c) an amino acid sequence having TcTS2 activity with addition, deletion, or substitution of one or more amino acids in the amino acid sequence represented by SEQ ID NO: 1.


The inventors of the disclosure discovered a new taxadiene synthase gene (named TcTS2) in Taxus chinensis var. maire, and successfully obtained a encoding protein of this gene (i.e., taxadiene synthase, it is also named as TcTS2 in this disclosure). With research and analysis, the inventors of the disclosure found that the efficiency of TcTS2 for catalyzing the substrate GGPP is significantly higher than that of another type of taxadiene synthase gene TcTS1, and it shows inducible expression pattern under the stress of plant hormone methyl jasmonate (MeJA).


In one implementation of the disclosure, the amino acid sequence of the taxadiene synthase TcTS2 is the amino acid sequence represented by SEQ ID NO: 1, with a total of 758 amino acids.


In one implementation of the disclosure, the amino acid sequence of the taxadiene synthase TcTS2 is a functional homologous sequence having at least 80% sequence similarity with the amino acid sequence represented by SEQ ID NO: 1. The functional homologous sequences with identity includes, but is not limited to, the amino acid sequences having about 80% or more, 82% or more, 84% or more, 85% or more, 88% or more, 90% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.5% or more, 99.9% or more identity with the amino acid sequence represented by SEQ ID NO: 1.


In one implementation of the disclosure, the amino acid sequence of the taxadiene synthase TcTS2 is an amino acid sequence having TcTS2 activity with addition, deletion, or substitution of one or more (e.g., may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) amino acids in the amino acid sequence represented by SEQ ID NO: 1.


In one implementation of the disclosure, the amino acid sequence of the taxadiene synthase TcTS2 is the amino acid sequence represented by SEQ ID NO: 2, with a total of 815 amino acids, which has extra 57 amino acids at the N-terminus as signal peptide sequence as compared with the amino acid sequence represented by SEQ ID NO: 1.


In one implementation of the disclosure, the amino acid sequence of the taxadiene synthase TcTS2 is a functional homologous sequence having at least 80% sequence similarity with the amino acid sequence represented by SEQ ID NO: 2.


In one implementation of the disclosure, the functional homologous sequences with identity includes, but is not limited to, the amino acid sequences having about 80% or more, 82% or more, 84% or more, 85% or more, 88% or more, 90% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.5% or more, 99.9% or more identity with the amino acid sequence represented by SEQ ID NO: 2.


In one implementation of the disclosure, the amino acid sequence of the taxadiene synthase TcTS2 is an amino acid sequence having TcTS2 activity with addition, deletion, or substitution of one or more (e.g., may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) amino acids in the amino acid sequence represented by SEQ ID NO: 2.


The taxadiene synthase TcTS2 of the disclosure significantly improves the efficiency of catalyzing the cyclization of GGPP, reduces the rate-limiting effect, so that the yield of the intermediates taxadiene, baccatin III and the product taxol in the process of synthesizing taxol are greatly improved, thereby significantly reducing the production cost of taxol, and effectively solving the current problem that taxol is expensive and in short supply in the market.


In addition, the expression of taxadiene synthase TcTS2 in plant cells is significantly induced and regulated by methyl jasmonate (MeJA), which is beneficial to the application of synthetic biological technology. The expression of taxadiene synthase TcTS2 may be better regulated by combining the induction of small molecule MeJA and other synthetic biology techniques, which may be used in plant genetic engineering and metabolic engineering to produce taxol and its intermediates in the future.


In a second aspect of the disclosure, provided is a nucleotide sequence encoding the taxadiene synthase TcTS2.


Further, on the basis of the technical solution provided in this disclosure, the nucleotide sequence encoding taxadiene synthase TcTS2 comprises or consists of:


a) a nucleotide sequence represented by SEQ ID NO: 3; or


b) a complementary sequence, a degenerate sequence or a homologous sequence of the nucleotide sequence represented by SEQ ID NO: 3 (preferably with a homology of 70% or more); or


c) a nucleotide sequence that hybridizes to the nucleotide sequence represented by SEQ ID NO: 3 under stringent conditions and is capable of encoding a taxadiene synthase TcTS2; or


d) a cDNA sequence of any one of the nucleotide sequences a)-c).


In one implementation of the disclosure, the nucleotide sequence encoding taxadiene synthase TcTS2 is the nucleotide sequence represented by SEQ ID NO: 3, with a full length of 5138 bases.


In one implementation of the disclosure, the nucleotide sequence encoding taxadiene synthase TcTS2 is a complementary sequence of the nucleotide sequence represented by SEQ ID NO: 3 which is formed according to the principle of base pairing.


In one implementation of the disclosure, the nucleotide sequence encoding taxadiene synthase TcTS2 is a degenerate sequence of the nucleotide sequence represented by SEQ ID NO: 3. Degenerate sequence means that after one or more nucleotide bases of SEQ ID NO: 3 are changed, the encoded amino acid species corresponding to the position having the changed nucleotide base remains unchanged, and will not affect the function of taxadiene synthase TcTS2 gene and the expression level of taxadiene synthase TcTS2.


In one implementation of the disclosure, the nucleotide sequence encoding taxadiene synthase TcTS2 is a homologous sequence of the nucleotide sequence represented by SEQ ID NO: 3.


The homologous nucleotide sequence includes a mutant gene, an allele gene or a derivative that is capable of encoding taxadiene synthase and has enzyme catalytic activity which is formed by addition, and/or substitution, and/or deletion of one or more amino acids in the amino acid sequence represented by SEQ ID NO: 3.


More preferably, the homologous sequence is a polynucleotide having about 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, 99.6% or more, 99.7% or more, 99.8% or more, or 99.9% or more identity with the nucleotide sequence represented by SEQ ID NO: 3.


In one implementation of the disclosure, the nucleotide sequence encoding taxadiene synthase TcTS2 is a nucleotide sequence which is capable of hybridizing with the nucleotide sequence of SEQ ID NO: 3 under stringent conditions and encoding taxadiene synthase TcTS2.


Exemplarily, the “stringent conditions” refer to conditions under which a probe will hybridize to its target sequence to a detectable degree higher than that of the hybridization to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and vary with the environment. By controlling the stringency of hybridization and/or wash conditions, target sequences with 100% complementary to the probe can be identified. Alternatively, stringency conditions can be adjusted to allow some sequence mismatches such that lower degrees of similarity are detected, while such sequence mismatches result in a nucleotide sequence encoding taxadiene synthase TcTS2 without affecting its normal enzymatic activity.


Further, the sequence of the cDNA comprises or consists of:


a) a nucleotide sequence represented by SEQ ID NO: 4; or


b) a degenerate sequence or a homologous sequence of the nucleotide sequence represented by SEQ ID NO: 4; preferably, the homologous sequence is a polynucleotide having about 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.5% or more, or 99.9% or more identity with the nucleotide sequence represented by SEQ ID NO: 4.


In one implementation of the disclosure, the nucleotide sequence encoding taxadiene synthase TcTS2 is the cDNA sequence of the nucleotide sequence represented by SEQ ID NO: 4, with a full length of 2448 bases.


In a third aspect of the disclosure, provided is use of the taxadiene synthase TcTS2 or the nucleotide sequence encoding the taxadiene synthase TcTS2 in the synthesis of baccatin III and/or taxol.


Particularly, use of the taxadiene synthase TcTS2 in the synthesis of baccatin III and/or taxol includes the following aspects: (1) the taxadiene synthase TcTS2 provided in this disclosure, or a polypeptide comprising at least part of the amino acid sequence represented by SEQ ID NO: 1, may still have the biological activity of TcTS2 or even have new biological activities after removing or replacing some amino acids, or improve the yield or optimize the protein kinetic characteristics or other properties to be committed to obtain; (2) involved in the biosynthesis of taxadiene; (3) involved in the biosynthesis of taxol and its intermediates (such as baccatin III).


Use of the nucleotide sequence encoding taxadiene synthase TcTS2 in the synthesis of baccatin III or taxol includes the following aspects: (1) the nucleotide sequence or at least part of the nucleotide sequence provided in this disclosure is modified or mutated by means of insertion, deletion, polymerase chain reaction (PCR), error-prone PCR, rejoining of different sequences, directed evolution of different parts of the sequence or homologous sequences from other sources, or mutagenesis by chemical agents, etc.; (2) the cloned gene of the nucleotide sequence or at least part of the nucleotide sequence provided in this disclosure is expressed in an exogenous host through a suitable expression system to obtain the corresponding TcTS2 enzyme or a TcTS2 enzyme with higher biological activity or yield; (3) the gene or gene cluster of the nucleotide sequence or at least part of the nucleotide sequence provided in this disclosure may be used to construct a recombinant plasmid through genetic recombination to obtain a novel biosynthetic pathway, alternatively, a novel biosynthetic pathway may be obtained by insertion, substitution, deletion, or inactivation.


In a fourth aspect of the disclosure, provided are primers for detecting the nucleotide sequence.


There is no specific limitation on the nucleotide sequences for amplifying the PCR product of the nucleotide sequence encoding taxadiene synthase TcTS2, as long as the primers may meet the requirements of specific amplification or specific detection of the nucleotide sequence encoding taxadiene synthase TcTS2.


In a preferred implementation of the disclosure, the primers include an upstream primer and/or a downstream primer; wherein the nucleotide sequence of the upstream primer is represented by SEQ ID NO: 5: 5′-CGAGGCTTGCAAGTTACACA-3′; and/or the nucleotide sequence of the downstream primer is represented by SEQ ID NO: 6: 5′-CAGGGCATTTGAAACCTCAT-3′.


In a fifth aspect of the disclosure, provided is a vector into which the nucleotide sequence is introduced.


The type of the vector is not specifically limited, and it may be a vector commonly used in the art. Examples of the vector include, but are not limited to, pET28b, pIJ702, pUCP19, pYMB03 or pHT43; preferably pET28b.


In a sixth aspect of the disclosure, provided is a host cell into which the nucleotide sequence or the vector is introduced.


Further, the host cells include plant cells and/or microbial cells.


Further, the plant cells include but are not limited to Taxus cells, tobacco cells, Pseudotaxus chienii cells, and Artemisia carvifolia cells.


Further, the microbial cells include, but are not limited to Streptomyces, Pseudomonas, Bacillus, yeast cells, and Escherichia coli.


Further, in vivo and in vitro methods for introducing the nucleotide sequence encoding taxadiene synthase TcTS2, or the recombinant plasmid, or the expression vector into a host cell include but are not limited to: electroporation, polyethylene glycol (PEG) transformation, lipofection, heat shock, calcium phosphate precipitation, virus mediation and microinjection.


In a seventh aspect of the disclosure, provided is a method for expressing taxadiene synthase TcTS2 in a plant, which comprises transforming the nucleotide sequence, or the vector, or the host cell into a plant to obtain the taxadiene synthase TcTS2.


Further, the plants include but are not limited to: Taxus, Pseudotaxus chienii, tobacco, and Artemisia carvifolia.


Further, the plant body also includes plant parts such as explants, including but not limited to, cuttings, tissue cultures, cell suspensions, and calli.


Further, the plant is more preferably Taxus and/or tobacco.


In an eighth aspect of the disclosure, provided is a method for producing taxol and its intermediates, which includes expressing the taxadiene synthase TcTS2 in a plant.


Further, the method includes: transforming the nucleotide sequence, or the vector, or the host cell into a plant to express the taxadiene synthase TcTS2 to obtain taxol and its intermediates.


This disclosure adopts the above-mentioned technical solutions to have the following beneficial effects:


(1) The disclosure provides a taxadiene synthase TcTS2, which improves the efficiency of catalyzing the cyclization of GGPP, so that the yield of the intermediates taxadiene, baccatin III and the product taxol in the process of synthesizing taxol are greatly improved, thereby significantly reducing the production cost of taxol, and effectively solving the current problem that taxol is expensive and in short supply in the market.


(2) The expression of taxadiene synthase TcTS2 in plant cells is significantly induced and regulated by methyl jasmonate (MeJA), by combining the induction of small molecule MeJA and other synthetic biology techniques, which may be used in plant genetic engineering and metabolic engineering modification to produce taxol and its intermediates and other aspects in the future.


(3) The nucleotide sequence encoding taxadiene synthase TcTS2 provided in this disclosure provides new gene resource for improving the yield of taxol, and the nucleotide sequence and TcTS2 may be used for modifying chassis hosts by plant genetic engineering and metabolic engineering strategies to produce taxol and the intermediates thereof etc., thereby having significant economic and social value.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an analysis of the in vitro biochemical activity of TcTSs. Particularly, A is a chromatogram of GC-MS detection of TcTSs enzymatic reaction product, and the characteristic ion m/z 122 of taxadiene is extracted; B is a schematic diagram of TcTSs-catalyzed GGPP cyclization reaction to generate taxadiene; C is a mass spectrum of TcTSs enzymatic reaction product.



FIG. 2 shows changes in metabolite content and the expression pattern of TcTSs genes under MeJA stress. Particularly, A is a relative change of the yields of baccatin III and taxol under MeJA stress; B is an expression pattern of TcTS1 gene under MeJA stress; C is an expression pattern of TcTS2 gene under MeJA stress; MeJA+ indicates 100 μM MeJA treatment group; MeJA− indicates a solvent control group.



FIG. 3 shows the growth curves of induced fermentation of the engineered strains E. coli TbTS and E. coli TcTS2 in Embodiment 4.



FIG. 4 shows the comparison of the yields of taxadiene products synthesized by the engineered strains E. coli TbTS and E. coli TcTS2 in Embodiment 4.





DETAILED DESCRIPTION OF THE EMBODIMENTS

In this disclosure, the term “TcTS2” may refer to taxadiene synthase, or taxadiene synthase gene, or a nucleotide sequence encoding taxadiene synthase, and the specific meaning can be determined according to the context.


In this disclosure, the term “gene” is defined as a genetic unit (usually represented by a DNA sequence) that occupies a specific location in a chromosome and contains genetic instructions that contribute to an underlying phenotypic character or trait in a plant.


In this disclosure, the term “nucleotide” is used in its ordinary meaning as understood by those skilled in the art.


In this disclosure, the term “amino acid” refers to any amino acid (both standard and non-standard amino acids), including but not limited to: alpha-amino acids, beta-amino acids, gamma-amino acids, and delta-amino acids. Examples of suitable amino acids include, but are not limited to: alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, tyrosine, arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine.


Unless otherwise defined, all scientific and technical terms used in this disclosure have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure relates.


The technical solutions in the embodiments of the disclosure will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the disclosure. Obviously, the described embodiments are only a part of the embodiments of the present disclosure, but not all of the embodiments. Based on the embodiments in the disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the disclosure.


The materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.


The disclosure will be described in detail below with reference to specific embodiments, which are used to understand rather than limit the disclosure.


Embodiment 1: Cloning, Expression and Purification of Taxadiene Synthase TcTSs Genes

1. Cloning and Sequence Analysis of Taxadiene Synthase TcTSs Gene


Taxadiene synthase TbTS from Taxus brevifolia (GeneBank NO.U48796) with a known function was used as a target sequence to search in the genome of Taxus chinensis var. mairei, and two taxadiene synthase genes were found and named as TcTS1 and TcTS2, respectively. Particularly, after sequence comparison and analysis, it was found that: the amino acid sequence of the reading frame of TcTS1 is 98% homologous to TbTS, while TcTS2 is a newly discovered taxadiene synthase gene, and the genomic DNA sequence of TcTS2 is represented by SEQ ID NO: 3 and has 42% similarity with TbTS nucleotide. The reading frame nucleotide sequence and amino acid sequence of the TcTS2 are represented by SEQ ID NO: 4 and SEQ ID NO: 1 respectively, and the similarity of nucleotide and the homology of amino acid sequence with TbTS are both 79%.


Previous studies have confirmed that, when taxadiene synthase is heterologously expressed in the E. coli system, its 5′ terminal signal peptide sequence will affect its catalytic activity (Wildung et al., 1996). Therefore, the applicant selected three online softwares (Plant-Ploc, ChloroP and TargetP) to predict the positions of TcTS1 and TcTS2 chloroplast transit peptides, and the results showed that: the 58 amino acids at the 5′ end of TcTS1 are signal peptide sequences, and the 57 amino acids at the 5′ end of TcTS2 are signal peptide sequences.


For subsequent biochemical function identification, based on the nucleotide sequences of the TcTS1 and TcTS2 genes, the applicant designed primers P1 and P2, primers P3 and P4 for respectively amplifying the TcTS1 and TcTS2 genes according to the sequences after deleting the position of the signal peptide. The primers comprise part of the sequence of prokaryotic expression vector pET28b, and a vector whose N-terminus is fused and expressed with 6 histidines was constructed for the convenience of subsequent purification. The sequence of the first 40 amino acids at the N-terminal encoded by SEQ ID No. 3 is the sequence on the pET28b vector.


Using the cDNA of Taxus chinensis var. mairei cell line 104 as the template, PCR was used to amplify the TcTS1 and TcTS2 genes. After the PCR product was recovered by gel cutting, it was recombined with the linear pET28b vector double-digested by Sal I and Not I. Hieff Clone™ one-step cloning kit (YEASEN, China) was used for cloning and sequencing, and the positive recombinant plasmids were named as pET28b-TcTS1 and pET28b-TcTS2, respectively.


Among the primers used, P1 and P2 were used to amplify TcTS1, and P3 and P4 were used to amplify TcTS2, particularly the primer sequences are as follows:











P1:



(SEQ ID NO: 7)



5′-CCGAATTCGAGCTCCGTCGACATGAGCA







GCAGCACTGGCACTAGC-3′



(Cleavage site of Sal I restriction



enzyme is underlined)







P2:



(SEQ ID NO: 8)



5′-GTGGTGCTCGAGTGCGGCCGCTCATACT







TGAATTGGATCAATATA-3′



(Cleavage site of Not I restriction



enzyme is underlined)







P3:



(SEQ ID NO: 9)



5′-CCGAATTCGAGCTCCGTCGACATGAGCG







GTAGCCCGACCAAGTTGGC-3′



(Cleavage site of Sal I restriction



enzyme is underlined)







P4:



(SEQ ID NO: 10)



5′-GTGGTGCTCGAGTGCGGCCGCTCATACT







TGAATCGGTTCAATGTAAACT-3′.



(Cleavage site of Not I restriction



enzyme is underlined)






2. Heterologous Expression and Purification of Taxadiene Synthase TcTSs


Induced expression of TcTSs-His6 fusion protein: the constructed fusion expression vectors pET28b-TcTS1 and pET28b-TcTS2 were respectively transferred into E. coli BL21(DE3) to obtain BL21(DE3)/pET28b-TcTS1 and BL21(DE3)/pET28b-TcTS2 transgenic strain; positive single clones were picked and inoculated in LB medium (containing 50 μg/mL of kanamycin), incubating overnight at 37° C.; the overnight culture was taken to add into 300 mL of fresh LB medium (containing 50 μg/mL of kanamycin) at a ratio of 1:100 to expand and culture at 37° C. to an OD600 value of 0.4-0.6; IPTG (isopropyl thiogalactoside) was added to a final concentration of 1.0 mmol/L for induced expression at 16° C., 160 rpm for 12 h; then centrifuging at 12,000 rpm to collect the strains for purification.


The TcTSs-His6 fusion protein was purified according to HisPur Ni NTA Resin and desalting ultrafiltration tube method of Thermo Scientific Company in the United States: the collected strains were resuspended in 20 mL of lysis buffer (50 mM sodium phosphate, pH 8.0, 300 mM NaCl, 10 mM imidazole), ultrasonic degradation method was used to break the wall, centrifuging at 4° C., 4,000 g for 20 min, the supernatant was loaded into a 1.5 mL HisPur Ni-NTA resin packing column (Thermo Scientific, USA), after removing impurities elution buffer solution (50 mM sodium phosphate, 300 mM NaCl, 50 mM imidazole) was used for eluting.


The purified recombinant TcTSs-His6 was desalted by using a 30 kDa ultrafiltration tube, and stored in enzyme reaction buffer (25 mM HEPES, pH8.5, 10% glycerol, 5 mM DTT, 5 mM sodium ascorbate, 5 mM sodium metabisulfite and 1 mM MgCl2). The content and purity of the recombinant protein TcTSs-His6 were detected by using BCA protein detection kit (Beyotime, China), bovine serum albumin (BSA) standard and SDS-PAGE gel electrophoresis, respectively.


The results show that: TcTS1-His6 fusion protein and TcTS2-His6 fusion protein are both soluble expression, and the purity of purified protein is as high as 98%, and the concentrations are 3.4 μg/μL and 1.8 μg/μL, respectively.


Embodiment 2: Biochemical Function Analysis of Taxadiene Synthase TcTSs

1. In Vitro Activity of TcTSs-His6


The in vitro enzymatic reaction system was 500 μL, containing 100 μg purified protein, 100 μM GGPP (Sigma-Aldrich) and enzyme reaction buffer (25 mM, pH 8.5, 10% glycerol, 5 mM DTT, 5 mM ascorbate, 5 mM sodium metabisulfite and 1 mM MgCl2), the reaction mixture was covered with 500 μL of pentane (Macklin, GC-MS grade) and reacted in a 32° C. water bath for 2 h, vortexing for 2 min, centrifuging at 5000 rpm for 10 min; the pentane layer was taken out, putting into 2 mL of the sample, concentrating at low temperature by using a nitrogen blower; the product was analyzed by gas chromatography mass spectrometry (GC-MS) instrument.


The control group was the reaction product of purified recombinant protein TcTSs-His6 after being boiled at 100° C. for 10 min. The GC-MS instrument was Agilent 7890B/7000C (Agilent Technologies, Waldbronn, USA), mass spectrometry detector parameters: 70 eV, helium flow rate 1.2 mL/min, chromatographic column Agilent HP-5MS (5% phenylmethyl silica, 30 m×250 μm inner diameter, 0.25 μm film thickness), the injection volume is 1-5 μL; the temperature program of the column oven is as follows: 45° C. for 1 min, then 10° C./min gradient increase to 250° C., and remaining at 250° C. for 5 min. The temperature of the injection port was 250° C.; the mass-to-charge ratio (m/z) of the scan was 40-350, and the qualitative analysis of the enzymatic product was carried out with the taxadiene standard as the reference.


The results of in vitro biochemical function analysis are shown in FIG. 1. The results show that: both TcTS1 and TcTS2 can catalyze the substrate GGPP to generate the main products taxa-4(5), 11(12)-diene (accounting for 94%) and the secondary products taxa-4(20), 11(12)-diene (accounting for 4%), showing the same taxadiene synthase activity. C of FIG. 1 shows a mass spectrum of the product of the enzymatic reaction of TcTSs, which is used to characterize the enzymatic product.


2. Comparison of Kinetic Constants of TcTSs-His6


Kinetic parameter detection: standard enzymatic reaction with a total volume of 100 μL, containing enzyme reaction buffer (25 mM, pH 8.5, 10% glycerol, 5 mM DTT, 5 mM ascorbate, 5 mM sodium metabisulfite and 1 mM MgCl2), 34 μg (TcTS1-His6) or 18 μg (TcTS2-His6) recombinant protein, and 7 different concentrations of GGPP (0.2 μM, 0.5 μM, 1 μM, 2.5 μM, 5 μM, 10 μM, 25 μM, 50 μM) mixed with [1-3H]-GGPP substrate (American Radiolabeled Chemicals, Inc, 30 Ci/mM).


Labeled [1-3H]-GGPP was diluted 400-fold with unlabeled GGPP (Sigma, 1 mg/mL). The reaction mixture was reacted at 32° C. for 30 min, then quenching with 100 μL of stop buffer (containing 1M EDTA and 4M NaOH) for 10 min; the reaction mixture was extracted with 800 μL of n-hexane (vortexing for 2 min, centrifuging at 12,000 rpm for 10 min); 400 μL of n-hexane extract was taken to add into 2 mL of liquid scintillation cocktail to mix well. The total radioactivity of the reaction products was determined by using a liquid scintillation counter (Tri-Carb 2910TR, Perkin Elmer). Kinetic constants were calculated by nonlinear regression fitting of Michaelis-Menten equation through Origin 8.6 software.


The kinetic constant results show that: the Km of TcTS1-His6 and TcTS2-His6 are 5.5±1.6 and 8.6±1.5 (pM/μg/min) respectively, while the Kcat values of TcTS1-His6 and TcTS2-His6 are 0.00292(l/s) and 0.00901(l/s) respectively. It can be seen from their Km and Kcat values, although TcTS1-His6 binds GGPP 1.6 times more strongly than TcTS2-His6, the catalytic efficiency of TcTS2-His6 is 3 times more than that of TcTS1-His6 (Kcat value). The kinetic constant results show that: the enzyme catalytic efficiency of TcTS2 is significantly better than that of TcTS1, and the application prospect of synthetic biology is also significantly better than that of TcTS1.


Embodiment 3: Correlation Analysis of Taxadiene Synthase TcTSs Gene Expression and Taxol Under Methyl Jasmonate Stress

1. Experiments on the Treatment of Taxus chinensis var. mairei Cell Line 211 with Methyl Jasmonate



Taxus chinensis var. mairei cell line 211 were divided into two groups: the experimental group (MeJA+) was soaked with 100 μM methyl jasmonate; the control group (MeJA−) was soaked with 0.05% ethanol solution. The experiments of the two groups were carried out at the same time, and the samples were collected after 0 h, 2 h, 3 h and 4 h respectively, for the analysis of the expression pattern of TcTSs gene and the content of baccatin III and taxol, with three biological replicates.


2. Analysis on the Content Changes of Baccatin III and Taxol for Different Treatment Times of MeJA


The metabolites were extracted by the modified Wolfender method. The specific steps include: weighing 100 mg of lyophilized cell powder to place it in a 2 ml centrifuge tube, adding 1.5 mL of extraction buffer (methanol:water=80:20, v/v) and vortexing to suspend it, containing 500 ng/mL dexamethasone as the internal standard, after ultrasonic extraction for 30 min, centrifuging at 14,000 g for 15 min; the supernatant was centrifuged and dried in a vacuum concentrator (LABCONCO), and finally the sample was resuspended in 200 μL methanol solvent (80:20, v/v) for LCMS analysis. Samples were analyzed by LC-MS by using an ACQUITY UPLC I-Class/AB SCIEX (Waters) instrument.


The separation column was Waters (2.1×50 mm; ACQUITY UPLC™ Waters XselectHSS T3); the injection volume was 10 μL, and the flow rate was 0.2 mL/min.


The mobile phase composition: A was 0.1% formic acid methanol; B was 0.1% formic acid water.


The LC separation procedure was as follows: equilibrating with 40% A for 2 min, followed by gradient elution for 10 min to 100% B, maintaining for 2 min, and then returning to 40% A equilibration for 1 min. ESI ion source, positive ion mode. Data acquisition and processing were performed on AB SCIEXAnalyst 1.6.3 software (Applied Biosystems).


The quantitative analysis of metabolites in A of FIG. 2 shows that: the treatment of 100 μM MeJA significantly promotes the accumulation of taxol and baccatin III, and after treating with MeJA for 2 h, the increased folds of taxol and baccatin III are 9.53 and 1.48 times respectively, as compared to the control group; after treating with MeJA for 4 h, the increase folds of taxol and baccatin III are 12.91 and 7.01 times respectively.


3. Analysis on Expression Pattern of TcTS2 Gene for Different Treatment Times of MeJA


EASY spin Plant Total RNA Extraction Kit (Aidlab, Beijing) was used to extract and collect the total RNA of the samples with different treatment times. 1 μg of total RNA of different samples was respectively taken for the synthesis of the first-strand cDNA, using it as the template for real-time fluorescence quantitative PCR. Kit Hifair® III 1st Strand cDNA Synthesis (YEASEN, China) and qPCR fluorescent dye kit Hieff® qPCR SYBR® Green Master Mix (Low Rox Plus) (commercial reagents, purchased from YEASEN, China) were used for the first-strand cDNA synthesis. qPCR experiments were performed on the QuantStudio™ 3 system with 2 technical replicates and 3 biological replicates. Actin1 (TcACTIN1) gene of Taxus chinensis var. mairei was used as an internal reference gene, and the relative expression of TcTSs genes was calculated by using the 2−ΔΔCt method.


Gene-specific primers for qPCR are as follows:











P5:



(SEQ ID NO: 11)



5′-GCACGGAATTGTTTCCAACT-3′



(TcACTIN1)






P6:



(SEQ ID NO: 12)



5′-GGCAACATACATTGCAGGTG-3′



(TcACTIN1)






P7:



(SEQ ID NO: 13)



5′-AGCACTGGCACTAGCAAGGT-3′



(TcTS1)






P8:



(SEQ ID NO: 14)



5′-TTCACAACCAGCTCATCTGC-3′



(TcTS1)






P9:



(SEQ ID NO: 5)



5′-CGAGGCTTGCAAGTTACACA-3′



(TcTS2)






P10:



(SEQ ID NO: 6)



5′-CAGGGCATTTGAAACCTCAT-3′.



(TcTS2)






The qPCR results of B and C of FIG. 2 show that: the expressions of TcTS1 and TcTS2 are both up-regulated under MeJA stress, but showing different expression patterns. As for different MeJA treatment times, the up-regulation of TcTS1 tends to be stable, showing a constitutive expression pattern; on the contrary, the up-regulation of TcTS2 is significant, the most significant induction time node is 4 h, and the induction fold is 7 relative to 0 h, showing an inducible expression pattern.


Combined with the results of metabolite quantitative analysis and gene expression pattern analysis, under MeJA stress, the expression of TcTS2 is significantly up-regulated, and the yield of taxol and baccatin III is significantly increased. The above results indicate that: the expression of TcTS2 in plant cells is significantly regulated by the phytohormone methyl jasmonate (MeJA), which promotes the synthesis of baccatin III and taxol. The inducible expression of TcTS2 gene is more conducive to the application of synthetic biological technology, and the synthetic application prospect is significantly better than that of TcTS1.


To sum up, the novel taxadiene synthase gene TcTS2 provided in this disclosure is significantly different from another type of taxadiene synthase gene TcTS1, and the expressed proteins are also significantly different, the enzyme catalytic efficiency of TcTS2 is significantly higher, and inducible expression is presented under MeJA stress, which significantly promotes the synthesis of baccatin III and taxol.


Embodiment 4: Comparison of the Synthesis of Taxadiene by TcTS2 and TbTS in Engineered Strains

1. Construction of Engineered Escherichia coli Strain


Based on reported techniques (Bian et al., 2017), TcTS2 and TbTS were used to construct taxadiene-producing engineered strains E. coli TcTS2 and E. coli TbTS, respectively.


2. Comparison of Synthesis of Taxadiene by the Above Two Engineered Strains


(1) Comparison of growth potential of the two engineered strains: engineered strains E. coli TbTS and E. coli TcTS2 were respectively inoculated in 30 mL of LB-liquid medium containing ampicillin (100 mg/L), kanamycin (50 mg/L) and chloramphenicol (34 mg/L), growing at 37° C. with shaking overnight; the solution of each strain was taken for low-speed centrifugation to remove the supernatant, resuspending with the induction medium to OD600=0.3, adding IPTG for induction (the final concentration is 0.1 mM); 200 μL of the induced culture strain solution was taken to add to a 96-well plate (3 parallel samples), culturing and shaking at 28° C. by a multi-function microplate reader capable of continuously culturing, and automatically detecting OD600 every 15 min; after co-culturing for 40 h, a growth curve is plotted based on the arithmetic mean values, as shown in FIG. 3.


The results in FIG. 3 show that: the growth trends of E. coli TbTS and E. coli TcTS2 strains are basically the same.


The detection of the synthetic taxadiene product of two kinds of engineered strains: the fermentation product of the above engineered strains is respectively detected by GC-MS, and the GC-MS detection method is the same as that in embodiment 2; the target peak of its chromatogram is integrated, and the concentration is converted by area integration, the results are shown in FIG. 4. It can be seen that, the yield of the target product expressed by E. coli TcTS2 is 12 times higher than that of E. coli TbTS.


The comprehensive results show that: the ability of TcTS2 to synthesize taxadiene is significantly better than that of TbTS, and the yield may be greatly improved by using TcTS2 to synthesize taxadiene.


Reference: Bian, G. et al. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6. Biotechnol. J. 12 (2017).


The above examples are only preferred embodiments of the disclosure, and are not intended to limit the disclosure. Any modifications, equivalent replacements, etc. made within the spirit and principles of the disclosure shall be encompassed in the protection scope of the disclosure.

Claims
  • 1. A taxadiene synthase TcTS2, wherein the amino acid sequence of the taxadiene synthase TcTS2 comprises or consists of: a) an amino acid sequence represented by SEQ ID NO: 1; orb) a functional homologous sequence having at least 80% sequence similarity with the amino acid sequence represented by SEQ ID NO: 1; orc) an amino acid sequence having TcTS2 activity with addition, deletion, or substitution of one or more amino acids in the amino acid sequence represented by SEQ ID NO: 1.
  • 2. The taxadiene synthase TcTS2 according to claim 1, wherein the amino acid sequence of the taxadiene synthase TcTS2 comprises or consists of: a) an amino acid sequence represented by SEQ ID NO: 2; orb) a functional homologous sequence having at least 80% sequence similarity with the amino acid sequence represented by SEQ ID NO: 2; orc) an amino acid sequence having TcTS2 activity with addition, deletion, or substitution of one or more amino acids in the amino acid sequence represented by SEQ ID NO: 2.
  • 3. A nucleotide sequence encoding the taxadiene synthase TcTS2 according to claim 1.
  • 4. The nucleotide sequence encoding taxadiene synthase TcTS2 according to claim 3, wherein the nucleotide sequence comprises or consists of: a) a nucleotide sequence represented by SEQ ID NO: 3; orb) a complementary sequence, a degenerate sequence or a homologous sequence of the nucleotide sequence represented by SEQ ID NO: 3; orc) a nucleotide sequence that hybridizes to the nucleotide sequence represented by SEQ ID NO: 3 under stringent conditions and is capable of encoding a taxadiene synthase TcTS2; ord) a cDNA sequence of any one of the nucleotide sequences a)-c).
  • 5. The nucleotide sequence according to claim 4, wherein the cDNA sequence comprises or consists of: a) a nucleotide sequence represented by SEQ ID NO: 4; orb) a degenerate sequence or a homologous sequence of the nucleotide sequence represented by SEQ ID NO: 4.
  • 6. Use of the taxadiene synthase TcTS2 according to claim 1 in the synthesis of baccatin III and/or taxol.
  • 7. Use of the nucleotide sequence encoding taxadiene synthase TcTS2 according to claim 3 in the synthesis of baccatin III and/or taxol.
  • 8. Primers for detecting the nucleotide sequence according to claim 3, wherein the primers comprise upstream primer and/or downstream primer.
  • 9. The primer according to claim 8, wherein the upstream primer comprises the sequence of SEQ ID NO: 5; and/or the downstream primer comprises the sequence of SEQ ID NO: 6.
  • 10. A vector comprising the nucleotide sequence according to claim 3.
  • 11. A host cell, wherein the nucleotide sequence encoding the taxadiene synthase TcTS2 or the vector according to claim 10 has been introduced.
  • 12. The host cell according to claim 11, wherein the host cell comprises a plant cell and/or a microbial cell.
  • 13. The host cell according to claim 12, wherein the plant cell comprises a Taxus cell and/or a tobacco cell; and the microbial cell comprises at least one of Streptomyces, Pseudomonas, Bacillus, yeast cell, and Escherichia coli.
  • 14. A method for expressing taxadiene synthase TcTS2 in a plant, wherein the nucleotide sequence according to claim 3 is introduced by genetic engineering method into a plant, so that the taxadiene synthase TcTS2 is expressed in the plant.
  • 15. A method for expressing taxadiene synthase TcTS2 in a plant, wherein the vector according to claim 10 is introduced by genetic engineering method into a plant, so that the taxadiene synthase TcTS2 is expressed in the plant.
  • 16. A method for expressing taxadiene synthase TcTS2 in a plant, wherein the host cell according to 11 is introduced by genetic engineering method into a plant, so that the taxadiene synthase TcTS2 is expressed in the plant.
  • 17. The method according to claim 14, wherein the plant body is Taxus and/or tobacco.
  • 18. The method according to claim 14, wherein the genetic engineering method comprise electroporation, polyethylene glycol transformation, lipofection, heat shock, calcium phosphate precipitation, virus mediation, and microinjection.
  • 19. A method for producing taxol and an intermediate thereof, wherein the taxadiene synthase TcTS2 according to claim 1 is highly expressed in a plant.
  • 20. The method according to claim 19, wherein the method comprises: introducing the nucleotide sequence encoding the taxadiene synthase TcTS2 into a plant by genetic engineering method to express the taxadiene synthase TcTS2, thereby obtaining taxol and its intermediates.
Priority Claims (1)
Number Date Country Kind
202010647327.3 Jul 2020 CN national
CROSS-REFERENCE TO RELATED APPLICATION

This Application is a continuation of International Application No. PCT/CN2021/097561, filed on Jun. 1, 2021, which claims priority to Chinese Patent Application No. 202010647327.3, filed on Jul. 7, 2020. The disclosures of the aforementioned applications are hereby incorporated by reference in their entireties. The contents of the electronic sequence listing (CU724SequenceListing.xml; Size: 25,297 bytes; and Date of Creation: Dec. 29, 2022) is herein incorporated by reference in its entirety.

Continuations (1)
Number Date Country
Parent PCT/CN2021/097561 Jun 2021 US
Child 18147862 US