Tdma transceiver

Information

  • Patent Application
  • 20040109427
  • Publication Number
    20040109427
  • Date Filed
    January 31, 2003
    22 years ago
  • Date Published
    June 10, 2004
    20 years ago
Abstract
The invention relates to a TDMA transceiver. A baseband unit (2) and a HF radio component part (1) are connected by an interface (4). The baseband unit (2) is independent of norms. The HF radio component part (1) has a sequence control system (3) which can be configured with reference to the TDMA parameters.
Description


[0001] The present invention relates to a TDMA transceiver. The invention generally relates to the use of universal radio modules in the terminals of various TDMA radio systems (e.g. GSM, DECT, Bluetooth).


[0002] In the prior art (see FIG. 3), special burst mode controllers 14 have hitherto been used which are integrated as dedicated hard-wired logic (Standard Specific Control Circuit) in the processor of the baseband block 15. At the end of the RF radio section 16, there is an application-specific IC (RF ASIC) which is responsible for a radio transmission method according to a special standard (GSM, DECT, Bluetooth). The baseband processor 15 and the RF radio section 16 are connected to one another via a mixed-mode interface 8, that is to say via analog and digital control lines.


[0003] The burst mode controller 14 is responsible for all timing sequences in the TDMA method. It is intended to implement the special time slot output or time slot sequence of the corresponding TDMA standard. FIGS. 4 and 5 show what this looks like in the known DECT and GSM methods.


[0004] Thus, in the GSM system (FIG. 5), carrier frequencies are used which are in each case spaced apart by 200 kHz and which, in turn, are subdivided again into 8 time slots each (slots 12). In the European DECT standard, up to 10 frequency channels are used which, in turn, are subdivided into 12 time slots each for uplink and downlink. Each slot 12 is subdivided into a data field for the payload 11 and a field for synchronization and signaling purposes 10. The latter can be located directly at the start (preamble 10) or in the center (midamble 13) of the slot 12. In DECT systems (see FIG. 4), for example, a preamble 10 is used, whereas the GSM system (FIG. 5) uses a midamble 13.


[0005] So that no interference occurs between adjacent time slots, a guardband 19 of corresponding length must be provided as one of numerous timing parameters between the slots 12. Thus, the respective time slot masks of the TDMA radio systems considered require different timing parameters which are specified by the burst mode controller 14 in the prior art.


[0006] Considering the multiplicity of current and planned TDMA radio systems (GSM, DECT, Bluetooth etc.), it appears to be a meaningful task to enable components in a TDMA transmission system to be used more universally. The present invention represents an attempt to use a universal standard-independent radio module in the terminals of different systems.


[0007] According to the invention, this object is achieved in that parts of the burst mode controller is moved into the RF radio section in the form of a sequence control which can be configured with respect to the TDMA parameters. This logic, which is also at circuit level but can be programmed from the outside, is thus included in the RF section and is independent of the baseband block.


[0008] The interface between baseband block and RF section thus becomes a purely digital interface.


[0009] The RF radio section and the sequence control can be combined to form one radio module and integrated in one chip.


[0010] Furthermore, a mobile radio device can be equipped with such a TDMA transceiver.






[0011] Further advantages, features and characteristics of the present invention will now be explained in greater detail by means of exemplary embodiments, referring to the attached drawings, in which:


[0012]
FIG. 1 diagrammatically shows the TDMA transceiver,


[0013]
FIG. 2 also diagrammatically shows the TDMA transceiver,


[0014]
FIG. 3 diagrammatically shows a TDMA transceiver according to the prior art,


[0015]
FIG. 4 diagrammatically shows the TDMA time slot structure of the DECT standard, and


[0016]
FIG. 5 diagrammatically shows the TDMA time slot structure of the GSM standard.






[0017] There is currently a multiplicity of different TDMA radio systems in existence (GSM, DECT, Bluetooth) and others are being planned. This fact makes it appear to be appropriate to use a universal radio module consisting of a universal sequence control 3 and an RF section 6, 7 as shown in FIG. 1 in the terminals of different systems.


[0018] As can be seen from FIG. 1, the TDMA transceiver consists of an RF radio module 1 and a baseband block 2. The connection between baseband block 2 and RF radio module 1 is made via a purely digital interface 4. The RF radio module 1 is composed of a transmitter 6 and a receiver 7, the so-called RF section, which will not be considered in greater detail here, and a programmable sequence control 3 by means of which the particular specifications for the corresponding time slot structure for the respective TDMA radio system can be configured from the outside.


[0019] The burst mode controller 14 provides the structure of the respective time slot masks 10, 11, 13 of the TDMA radio system considered and, as a hardware-coded TDMA system-specific component, is an impediment on the path to implementing a universal radio module in the terminal.


[0020] A part of this burst mode controller 14 has now been moved, in the form of the sequence control 3, into the RF radio section 6, 7 which is independent of the baseband controller 14. The configurable sequence control 3 thus becomes universal. As a result of the fact that it can be programmed or configured from the outside in accordance with the desired standard, it becomes possible to use it to configure the timing sequence parameters required by the respective time slot mask 10, 11, 13 of the TDMA radio system considered.


[0021] This requires a simple, purely digital interface 4 for triggering the sequence control 3, and a simple programming interface 5 to the outside for configuring or programming the sequence control 3 in accordance with the respective TDMA radio system.


[0022] Transmitter 6 and receiver 7, as the actual radio section, can be advantageously combined with the sequence control 3 to form one radio module 1. The aim of this is to integrate the sequence control 3 and the radio section 6, 7 in one chip.


[0023]
FIG. 2 again represents the TDMA transceiver. The universal RF radio module 1 contains a programmable sequence control 3 and overall is independent of the baseband block 2 which contains the baseband processor. The two units are connected via a digital interface 4.

Claims
  • 1. A TDMA transceiver exhibiting a baseband block (2) and a radio module (1), the baseband block (2) and radio module (1) being connected by an interface (4), characterized in that the baseband block (2) is standard-independent and the radio module (1) exhibits a sequence control (3) which can be configured with respect to the TDMA parameters, and an RF radio section (6, 7), the RF radio section (6, 7) exhibiting a transmitter (6) and a receiver (7).
  • 2. The TDMA transceiver as claimed in claim 1, characterized in that the sequence control (3) is independent of the baseband block (2).
  • 3. The TDMA transceiver as claimed in claim 1 or 2, characterized in that the sequence control (3) can be programmed from the outside.
  • 4. The TDMA transceiver as claimed in one of claims 1, 2 or 3, characterized in that the interface (4) is a digital interface.
  • 5. The TDMA transceiver as claimed in one of the preceding claims, characterized in that the RF radio section (6, 7) and the sequence control (3) can be combined to form one radio module (1).
  • 6. The TDMA transceiver as claimed in one of the preceding claims, characterized in that the RF radio section (6, 7) and the sequence control (3) can be integrated in one chip.
  • 7. A mobile radio device exhibiting a TDMA transceiver as claimed in one of the preceding claims.
Priority Claims (1)
Number Date Country Kind
100-37-469.7 Aug 2000 DE
PCT Information
Filing Document Filing Date Country Kind
PCT/DE01/02681 7/18/2001 WO