The present invention relates to a teat and a baglet, in particular a teat for a baby product, such as a bottle, and a baglet for a soother.
If a teat were to collapse whilst feeding a baby, then milk flow from the teat may be significantly impeded or even cut off thereby frustrating the feeding baby. Teats having stiffening ribs or reinforcing projections on their inner wall ribs to resist the collapse of a teat due to pressure on the outside of the teat (e.g. from a baby's lips, gums or teeth, or reduced pressure within the bottle) are known. EP 0151862 B1, for example, discloses a teat having inclined inwardly directed stiffening ribs formed in a sidewall of a mouthpiece of the teat. Stiffening ribs are also disclosed in GB 2402347.
Strengthening against teat collapse is fine up to a point. However, the stiffening ribs are not able to completely prevent teat collapse under typical usage unless the teat or ribs are made with thick walls or rigid materials such as rigid grade of silicone. However, both of these options would provide a teat that is inflexible and alien to a feeding baby as such a teat would be very different to their mother's breast and nipple. This can lead to problems with rejection of rigid teats by a baby.
A key safety issue of flexible teats, e.g. made from a relatively soft grade silicon material, is that they must have a high bite-resistance so that even after prolong use and frequent biting by the baby, the teat is not damaged. If the teat were damaged, then the baby could bite off the tip of the teat which would constitute a dangerous choking hazard.
When a teat has a smooth wall, bite resistance of such a teat can be adequately high, even with soft grades of silicon, as the bite force from a baby on teat wall portions is evenly distributed over a relatively large surface area. However, when a baby bites a teat having inwardly projecting ribs, the ribs apply a force to a small localised region of the wall against which the ribs are pressed resulting in a large amount of localised pressure. This localised pressure significantly increases damage to the teat particularly at such regions and reduces the time taken for detrimental damage to occur. Such a problem is further exacerbated if ribs on opposing wall portions are pressed together when the teat is bitten. This would result in an even more highly localised high region of pressure at the point where ribs on opposing wall portions intersect one another.
Accordingly, in previous teats the presence of ribs means that bite resistance of the teat can fall short of safety standards unless teat walls are thickened or harder grades of material are used. However, such modifications then lead to the problem of a baby rejecting the resulting rigid teat.
Additionally, in previous teats, in some instances when a bite force is applied to the teat, opposing walls can contact one another and then move laterally relative to one another. Such rolling action is undesirable as it may disrupt the gums or newly erupted teeth of the feeding infant.
The invention is as set out in the claims.
Embodiments of the present invention seek to overcome or mitigate the above issues and problems. According to one embodiment, a flexible teat is provided. The walls of the teat are of a thickness and/or made of a material such that they are deformable and collapsible i.e. where generally opposing wall portions can be moved towards one another. In order to provide some measure of structural support and reinforcement, strengthening ribs are provided on inner wall portions of the teat. The teats and protrusions are designed so as not to preclude the possibility of the teat collapsing under relatively normal conditions which might arise when feeding, i.e. biting forces of a baby or internal/external pressure differentials induced during feeding. By providing a teat which allows for collapsing, whilst still allow enabling the passage of fluid therethrough, embodiments provide a teat that is not too flexible or rigid for a baby but, as will be described below, is sufficiently bite resistant so as to prevent any possible choking hazard. A first elongate protrusion is disposed on an inner surface of a first portion of the teat wall and second elongate protrusion disposed on an inner surface of a second portion of the teat wall which is generally opposite the first portion of the teat wall. The first elongate protrusion is arranged such that when a force is applied to one of the portions of the walls, such that the portions are brought towards one another, the first elongate protrusion is brought into contact with the inner face of the second portion of the walls. Likewise, the second elongate protrusion is arranged such that it contacts the inner surface of the first portion of the wall. The shape of the upper surface of the protrusions is designed such that it corresponds to and is complementary with the shape of the surface of the inner wall portion against which the protrusion contacts. This ensures a maximal surface area contact region between each protrusion and its respective inner wall portion. Such an arrangement, along with the addition of a number of elongate protrusions on the inner walls of the teat, enables biting force applied to the teat wall, e.g. from a baby biting the same, to be spread out amongst the number of elongate protrusions ensuring that there are no localised regions where the pressure levels are such that they reach a level that damages the teat. Furthermore, when an external force, such as a biting force, is applied to one of the portions of the wall such that the portions of the wall are brought proximal to one another thereby resulting in a collapsed state of the teat, the protrusions are arranged that such that they are spaced apart from one another and furthermore arranged such that they maintain separation between opposing inner surfaces of the teat wall. This inhibits complete collapse of the teat whereby the inner wall portions would otherwise contact each other and cut off passage of fluid through the teat. The arrangement of protrusions provides channels between the protrusions and the inner faces of the wall enabling the flow of fluid therethrough even when the teat has collapsed. Accordingly, not only do the protrusions provide structural support to the flexible teat aiding its resistance to biting and external forces, but also should the teat collapse the protrusions are arranged so as to distribute the force along the length and breadth of the protrusion and also spread the force amongst the protrusions, whilst still allowing passage of fluid through passages defined between the protrusions. Thus, an unimpeded feed can still take place even in the event that the teat is in a collapsed state. Further, the where first and second protrusions are on opposing inner walls of the teat then compressing the teats means that the protrusions lie adjacent to one another, effectively interlocking and restricting “rolling” of the teat as the protrusions cannot pass over one another.
In another embodiment, an oval teat is provided. With such a shaped teat, the teat is always orientated in one of only two orientations in a baby's mouth. This ensures that the baby always bites the teat in the same regions and the regions where external forces are applied can be predicted. The protrusions can then be arranged such that, when the teat is bitten, the protrusions do not press or touch against other protrusions, thereby avoiding the possibility of a protrusion intersecting another protrusion were the teat to collapse. Also, the protrusions can be arranged such that the biting pressure is dispersed amongst a number of protrusions at any one time. By utilising a number of protrusions, the biting force is spread over a larger area and the localised regions of an overly high pressure are prevented thereby reducing damage to the teat wall. Again, the protrusions are aligned so that compressing the teats means that the protrusions lie adjacent to one another, effectively interlocking and restricting “rolling” of the teat as the protrusions cannot pass over one another.
Other features and advantages of embodiments of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description of specific embodiments is given by way of non-limiting sample only, with reference to the accompanying drawings, in which:
Referring to
A biting region, which generally comprises the nipple section and/or the areola section, corresponds to a region of the teat where a baby's lips, gums or teeth are placed around the teat. This region is where a biting force 10 would be applied to one or both generally opposing portions of the teat wall. Where the force is sufficient, it causes the teat to collapse as shown in the cross-sectional plan view of
The elongate protrusions are aligned in a direction towards an end 11 of the nipple section. By providing such an alignment, the ribs on opposing portions of the wall do not intersect or overlap one another which would cause localised regions of high pressure at points of intersection or overlap when the teat was in a compressed state. Such an issue is avoided with the alignment of the elongate ribs all towards the end point of the nipple section.
Preferably, the elongate ribs are structured so as to enable the distribution of any force therethrough substantially evenly along the rib's length. Similarly, the distribution of the protrusions around the inner surface of their respective portion of the wall is arranged such that any force transmitted through the ribs is evenly distributed among the ribs.
As has been previously described, when in a collapsed state, the first and second ribs of the teat are constructed so as to contact an opposing inner wall portion. This prevents opposing inner wall portions from touching one another and enables a channel 12 to be defined between the ribs, as shown in
The teat shown in
In the embodiment shown in
On the inside walls are provided two pairs of strengthening ribs 18 and 19. The pairs are located on opposing wall sections along the long sides 7 and 6 of the areola section of the teat, so that the first pair of ribs 18 is located on a first long inner wall section 6 and the second pair 19 is located on an opposing second long inner wall section 7. The pairs of ribs are arranged so that if the areola section is bitten and the long inner walls sections are forced together, then the first pair of strengthening ribs 18 will fit outside the second pair 19. In this arrangement, the biting force will be spread evenly among the four ribs, so that the damage caused by a biting force to the opposing inner wall sections is significantly reduced.
The arrangement of the strengthening ribs is such that even when the teat collapses (through biting or significantly reduced pressure within the feeding bottle) there are channels between the ribs and between the inner wall portions. These channels ensure that milk can still flow from the bottle to the teat and out of the opening in the tip of the teat 11 even when the teat is in a collapsed state.
Further, the ribs are aligned so that compressing the teats means that the ribs lie adjacent to one another, effectively interlocking and restricting “rolling” of the teat as the protrusions cannot pass over one another.
The teat can be attached to a feeding bottle in a standard manner such as a screw cap fitting (not shown) over a flange 16 of the base section 2 of the teat for securing the teat to a standard plastic or glass bottle by interacting the screw cap with a complimentary screw thread around the neck of the bottle. Additionally, the teat may be moulded with vents 15, e.g. slit valves or dome valves. Alternatively, the venting might be provided by channels in a screw cap (now shown).
In the alternative embodiment shown in
Referring to
Referring to yet a further embodiment, shown in
Referring to the embodiments shown in
The teat and ribs can be formed in any appropriate manner, for example compression or injection moulding and formed of any appropriate plastic material such as silicon, latex or thermoplastic elastomer (TPE). Injection moulded silicon provides a desirable degree of elasticity in the teat. The teat can have a texture such as a skin like texture mould or otherwise patterned on its surface. The ribs are preferably integrally formed with the teat. The teat can be of any appropriate shape which maybe, for example, cylindrical or non-symmetrical or closely mimicking the shape of the human breast.
It will be noted that other teat shapes include the circular or oval cross-sections as shown which can be applied as appropriate in each of the embodiments. It will further be noted that where appropriate any of the embodiments can have opposing thick and thin walls as discussed with reference to
It will be appreciated that whilst embodiments have been described with regards to a teat, the above described arrangement of ribs on inner wall portions can also be used in baglets for infant soothers so as to achieve the same beneficial effect of increased bite resilience and reduced choking hazard.
Baglets comprise a nipple connected to an intermediate portion, such as a shaft, having a tubular section which has a diameter no larger than the nipple. The other end of the shaft extends to a base. A soother comprises such a baglet which is secured to a rigid shield to prevent swallowing and choking on the soother. The same arrangement of ribs as described above with respect to a teat nipple and/or areola portion can equally well be applied to a nipple and/or shaft portion of a baglet. Baglets are typically closed, so liquid does not have to flow through channels between the ribs. However, if the soother is of a type able to deliver liquid medication into an infant's mouth, then channels formed by ribs within an open baglet of the soother will work equally well to enable flow of liquid medication even in the event that the baglet collapses due to biting pressure or reduced pressure within the baglet.
The invention is not restricted to the features of the described embodiments. It will be readily apparent to those skilled in the art that is possible to embody the invention in specific forms other than those of the embodiments described above. The invention is defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
0904863.8 | Mar 2009 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2010/000524 | 3/22/2010 | WO | 00 | 12/12/2011 |