The invention generally relates to the field of network traffic classification. In particular, the invention relates to a mechanism for classifying network traffic by means of including at least one application identifier in an analyzed data packet of a data flow. The invention also relates to validating a mechanism for classifying network traffic.
The amount of network traffic transmitted in communication networks is steadily increasing. One reason for this increase is the rising popularity of applications requiring a high network bandwidth, e.g. video download applications, media streaming applications or Peer-to-Peer (P2P) file sharing applications.
Network operators and developers of communication networks and network related software have an interest to know how the network traffic associated with particular applications is distributed. For this purpose, the network traffic needs to be classified. The resulting information may be used for network management tasks such as flow prioritization, traffic shaping or diagnostic monitoring. Thus, classifying network traffic has the aim to accurately identify and categorise network traffic according to the type of application which has generated the network traffic.
Passive and active methods for classifying network traffic are known. Passive methods for classifying network traffic are based on passive measurements of network traffic such as e.g. associating a monitored port number with an application or only monitoring specific byte patterns in data packets of network traffic. However, such passive methods for classifying network traffic have the disadvantage that the classification accuracy varies, for example, depending on the kind of application that has generated the network traffic, so that the overall classification accuracy is often not satisfying.
Active methods for classifying network traffic are based on active traffic measurements. However, known active methods for classifying network traffic have the disadvantage that they do not capture all relevant network traffic and therefore do not provide accurate network traffic classification results. Moreover, many active methods for classifying network traffic cannot be used in actively operating communication networks since the flow of network traffic would be deteriorated, and they additionally require a high amount of processing power.
A further disadvantage of known methods for classifying network traffic is the fact that there is no reliable technique for validating such methods available. Usually, the accuracy of a known method for classifying network traffic is validated by means of another known method for classifying network traffic. However, the accuracy of the other known method for classifying network traffic, which acts as a sort of reference method, is often likewise not known.
Accordingly, there is a need for a technique for classifying network traffic and a technique for validating a mechanism for classifying network traffic which avoid at least some of the disadvantages outlined above.
This need is satisfied according to a first aspect by a method for classifying network traffic in the form of data packets generated by multiple applications installed on a device. The method as performed by the device comprises the steps of receiving data packets belonging to one or more data flows, each data flow including the data packets generated by a specific one of the multiple applications, analyzing the received data packets to identify the application associated with each analyzed data packet, and classifying at least one data flow by including an application identifier in at least one of the data packets of this data flow. The network traffic may be any kind of packet-based network traffic which is capable of being transmitted within a communication network.
The analyzing of the received data packets and the classifying of the at least one data flow may be performed in a protocol layer below an Internet Protocol (IP) layer, i.e. logically close to the network interface of the device. Since all network traffic to be transmitted to and received from the communication network has to pass through the network interface of the device, all network traffic can be captured and classified and no network traffic gets lost.
The analyzing of the received data packets and the classifying of the at least one data flow may be performed by a kernel of an operating system of the device. The kernel can directly execute instructions and reference memory addresses without any control by the operating system. Therefore, the analyzing and classifying may be performed in a time-optimized manner.
The analyzing of the received data packets and the classifying of the at least one data flow may be performed by means of at least one network driver component. The network driver component may be a network driver responsible for transmitting data packets associated with a specific network protocol. By executing the steps of analyzing the received data packets and classifying the at least one data flow by means of a network driver component, the network traffic transmission tasks, i.e. the transmission rate, of the device are not adversely affected.
The device may be a terminal device. The terminal device may be any kind of communication device which is capable of sending network traffic within a communication network, e.g. a mobile telephone or a personal computer. However, the device may as well be an intermediate network element (such as a router or gateway) on which a plurality of applications is installed. The device does not necessarily have to support receipt of network traffic.
The multiple applications may be terminal-specific applications. The multiple application may comprise at least one of a P2P application, e.g. BitTorrent, eDonkey, Gnutella or DirectConnect, a Voice over Internet Protocol (VoIP) application, e.g. Skype, a chat application, e.g. Microsoft Network (MSN) Live, a file transfer application, e.g. a File Transfer Protocol (FTP) application, an e-mail application, a Secure Shell (SSH)—based application, a Session Control Protocol (SCP)—based application, a gaming application, e.g. a First-Person Shooter (FPS) or a Massively Multiplayer Online Role Playing Game (MMORPG) application, and a streaming application, e.g. streaming radio, streaming video or web based streaming.
According to one aspect, the method comprises the further steps of determining whether a received data packet is an outgoing or an incoming data packet and excluding the received data packet at least from the classifying step in case the data packet is an incoming data packet. Since the method for classifying network is directed at classifying network traffic generated by multiple applications installed on the device, only outgoing data packets of the device may be considered for the classifying of the at least one data flow.
According to another aspect, the method further comprises the steps of determining the size of a received data packet and excluding the data packet at least from the classifying in case its size exceeds a predetermined value. In one implementation, the predetermined value depends on the size of a Maximum Transferable Unit (MTU). The MTU defines the largest size of a data packet that a network interface can transmit without the need to fragment the data packet. In case the size of the at least one received data packet equals (or almost equals) the size of the MTU, an extension of the at least one received data packet with the application identifier would lead to a fragmentation of the data packet. To avoid this, only those received data packets may be considered for classifying, whose size is smaller than the MTU decreased by the size of the application identifier.
According to still another aspect, the method further comprises the steps of determining a network protocol with which a received data packet is associated and excluding the data packet at least from the classifying step in case the data packet is not associated with at least one predetermined network protocol. The at least one predetermined network protocol may be any kind of network protocol, e.g. the Transmission Control Protocol (TCP). By means of these method steps, classification of network traffic may be limited to network traffic which is associated with a certain kind of network protocol. This may be useful if only a specific type of network traffic is desired to be classified.
The analyzing step may further comprise the steps of assessing a data flow-specific identifier associated with the received data packet and determining, based on the data flow-specific identifier, whether information regarding the application that has generated the analyzed data packet is available in a local memory. Since each data flow only comprises data packets generated by the same application, a data flow-specific identifier may internally be associated within the device with the application that has generated the analyzed data packet. The data flow-specific identifier may for example (also) be included in the received data packet. The data flow-specific identifier may be a multi-tuple identifier, e.g. a five-tuple identifier including a source IP address, a destination IP address, a source port number, a destination port number and a transport protocol.
In case information regarding the application that has generated the analyzed data packet is available in the local memory, such information does not have to be requested from the operating system. Since such a request to the operating system is resource consuming and cannot be executed when the device is transmitting data packets at a high transmission rate, avoiding this request prevents adverse affection of the performance of the device.
In order to directly and in a fast manner access the information stored in the local memory with regard to the application that has generated the analyzed data packet, the information may be coded by means of a hash function. The hash function trans-forms the information into a smaller amount of data that serves as a digital “finger-print” of the information and that may be accessed by means of this fingerprint.
According to a further aspect, the method may further comprise the step of requesting at least one of a network number (or address), e.g. an IP address, and a process ID associated with the analyzed data packet in case no information regarding the application that has generated the analyzed data packet is available in the local memory. In case no such information is available in the local memory, the information may be requested from the operating system of the device. The network number or process ID may be used to provide an association with the application that has generated the analyzed data packet.
The step of including the application identifier in at least one of the analyzed data packets of the data flow may comprise at least one of including application identifiers in all analyzed data packets of the data flow, including an application identifier only in the first analyzed data packet of the data flow, and randomly including application identifiers in analyzed data packets of the data flow. It is also possible to exclude the step of including an application identifier in at least one of the analyzed data packets for a specific application. As regards the option of randomly including application identifiers in analyzed data packets of the data flow, it is also possible that an application identifier is always or never included in the first analyzed data packet of the data flow.
The application identifier may be included in an option field of the analyzed data packet, and the option field may be transparent within the network. For example, the application identifier may be included in the Router Alert Option field of the data packet. The existence of the Router Alert Option field is transparent within the communication network, i.e. for the routers in the transmission path and also for the receiver host. The Router Alert Option field is explained in detail in specification RFC 2113 “IP router alert option” by the Network Working Group, which is hereby incorporated by reference in its entirety. Other option fields of the analyzed data packet may of course as well be used. The inclusion of the application identifier may be in conformity with the security policy of the communication network. Otherwise, the included application identifier may be removed by e.g. an edge router at the boarder of an access network.
In one implementation, the application identifier is derived from an executable file name of the application. For example, the first two characters of the corresponding executable file name of the application may be added in the option field of the analyzed data packet (accordingly, the characters “sk” may be included for a Skype application). In this case, the size of the data packet is increased by four bytes.
Since the value of the packet size field in an IP header of the analyzed data packet is increased after including an application identifier into it, a cyclic redundancy check field of a header of the analyzed data packet may be recalculated.
According to a further aspect, a method of validating a mechanism for classifying network traffic is provided. The method comprises the steps of receiving at least one data flow of the network traffic, the data flow comprising data packets and at least one of the data packets of the data flow including an application identifier assigned to the data flow in accordance with a first mechanism for classifying network traffic, the application identifier classifying the data flow with respect to an application that has generated the data flow, analyzing at least one of the data packets of the received data flow in order to determine a first classification of the data flow based on an application identifier included in the analyzed data packet, providing a second classification of the data flow by means of a second mechanism for classifying network traffic that is different from the first mechanism for classifying network traffic and validating the second classification mechanism for classifying network traffic by comparing the first and the second classification of the network traffic.
Network traffic is classified by the first classification mechanism and the second classification mechanism. The second classification mechanism may thus be validated by means of the first classification mechanism. The first classification mechanism may be independent from the second classification mechanism and may represent a sort of reference mechanism for the second classification mechanism. Therefore, by comparing the first and the second classifications of the network traffic, the second classification mechanism may be validated, i.e. its accuracy may be determined. As an example, the first classification mechanism is based on the present (active) technique for classifying network traffic and the second classification mechanism traffic is based on a passive method for classifying network traffic.
The techniques presented herein can be practiced in the form of hardware, in the form of software and in the form of a combined hardware/software approach. As for a software aspect, a computer program product is provided. The computer program product comprises program code portions for performing one or more of the steps of the methods and techniques described above when the computer program product is run on one or more components of a network. The computer program product may be stored on a computer readable recording medium.
As for a hardware aspect, a device (e.g. a terminal device) for classifying network traffic in the form of data packets generated by multiple applications installed on the device is provided. The device comprises a function for receiving data packets belonging to one or more data flows, each data flow including the data packets generated by a specific one of the multiple applications, a function for analyzing the received data packets to identify the application associated with each analyzed data packet, and a function for classifying at least one data flow by including an application identifier in at least one of the analyzed data packets of this data flow. Each function may be realized as a hardware or software module
The device may further comprise a network driver component. The network driver component may comprise the function for analyzing the received data packets and the function for classifying at least one data flow. In one implementation, the function for analyzing the received data packets and the function for classifying at least one data flow are included in a protocol layer below an IP layer.
According to a further hardware aspect, an apparatus for validating a mechanism for classifying network traffic is provided. The apparatus comprises a function for receiving at least one data flow of the network traffic, the data flow comprising data packets and at least one of the data packets of the data flow including an application identifier assigned to the data flow in accordance with a first mechanism for classifying network traffic, the application identifier classifying the data flow with respect to an application that has generated the data flow, a function for analyzing at least one of the data packets of the at least one received data flow in order to determine a first classification of the data flow based on an application identifier included in the analyzed data packet, a function for providing a second classification of the data flow by means of a second mechanism for classifying network traffic that is different from the first mechanism for classifying network traffic and a function for validating the second classification mechanism for classifying network traffic by comparing the first and the second classifications.
In one implementation, the function for receiving at least one data flow, the function for analyzing at least one of the data packets, the function for providing a second classification of the data flow and the function for validating the second classification mechanism are included in a single network element, e.g. a network node.
In the following, the invention will be described with reference to exemplary embodiments illustrated in the drawings, wherein
In the following, for purposes of explanation and not limitation, specific details are set forth, such as particular sequences of steps, interfaces and configurations, in order to provide a thorough understanding of the present invention. It will be apparent to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details.
Moreover, those skilled in the art will appreciate that the functions and processes explained herein below may be implemented using software functioning in conjunction with a programmed microprocessor or with general purpose computers. It will also be appreciated that while the embodiments are primarily described in the form of methods and apparatuses, the invention may also be embodiment in a computer program product as well as in a system comprising a computer processor and a memory coupled to the processor, wherein the memory is encoded with one or more programs that may perform the functions disclosed herein.
The device 100 is a terminal device, e.g. a mobile telephone or a personal computer. The terminal device 100 is communicating via a communication link 105 with network router 107. Communication link 105 is a fixed or wireless communication link. Three terminal specific applications 110, 115 and 120 are installed on the terminal device 100. For example, application 110 is an e-mail application, application 115 is a P2P application and application 120 is a streaming application. The terminal device 100 further comprises a local memory 125 (e.g. a cache memory) and a network driver component 130.
Each of the applications 110, 115 and 120 generates a specific data flow in the form of data packets. The plurality of data flows, when sent towards the network router 107, constitute network traffic. Before being transmitted via communication link 105 to network router 107, the data packets pass network driver component 130.
Network driver component 130 is a network driver which is responsible for transmitting data packets associated with a specific network protocol. Network driver component 130 is logically located close to a network interface of the terminal device 100, i.e. a network interface which is providing access to the communication network including network router 107. Therefore, all data packets generated by applications 110, 115 and 120 have to pass network driver component 130 before being transmitted over communication link 105.
Network driver component 130 comprises an interface function 135 for receiving data flows generated by applications 110, 115 and 120. Each data flow includes the data packets generated by a specific one of the applications 110, 115 and 120. Furthermore, network driver component 130 comprises a function 140 for analyzing the received data packets and a function 145 for classifying at least one data flow.
The function 140 for analyzing the received data packets analyzes each data packet received by function 135 in order to identify the application associated with the data packet. The analyzing within function 140 comprises the steps of determining whether a received data packet is an outgoing or an incoming data packet, determining the size of the received data packet and determining a network protocol with which the data packet is associated. By means of determining whether a received data packet is an outgoing or an incoming data packet, incoming data packets can be excluded from further analyzing. Furthermore, by means of determining the size of the received data packet, data packets exceeding a predetermined size can be excluded from further analyzing. Thereby, fragmentation of data packets can be avoided. Additionally, by means of determining a network protocol with which the data packet is associated, data packets which are not associated with a predetermined network protocol may be excluded from further analyzing.
In case a received data packet is not excluded from further analyzing during the above mentioned analyzing steps, it is determined by function 140 whether information regarding the application that has generated the analyzed data packet is available in the local memory 125. In case such information is available in the local memory 125, the information is retrieved from the local memory 125.
In case no such information is available in the local memory 125, the information is requested by function 140 from the operating system (not shown in
Each application identifier is associated with and uniquely identifies the application 110, 115, 120 that has generated the data flow. The application identifier is derived from an executable file name of the application. In the present embodiment, application identifiers are only included in the first analyzed data packet of each data flow. In case the received (function 135) and analyzed (function 140) data packet is the first analyzed data packet of the data flow, function 145 includes the respective application identifier in the data packet. However, no application identifiers are included in the following data packets of the data flow.
The application identifier is included in the Router Alert Option field of the data packet. After the application identifier has been included in the Router Alert Option field of the data packet, a cyclic redundancy check field of a header of the analyzed data packet is recalculated. Thereafter, the data packet is transmitted via communication link 105 to network router 107. Network router 107 then transmits the data packet within a communication network, such as the Internet.
Therefore, at least one data packet of each data flow includes an application identifier. Hence, it may be determined within the network (e.g. by network router 107) how the network traffic generated by terminal device 100, i.e. applications 110, 115 an 120, is distributed. Thus, a classification of the network traffic generated by terminal device 100 can be provided.
The method starts in step 205 with receiving data packets belonging to one or more data flows. Each data flow includes data packets generated by a specific one of multiple applications installed on the device. The multiple applications may be terminal-specific applications.
In a next step 210, the received data packets are analyzed in order to identify the application associated with each analyzed data packet. During analyzing step 210, it is determined whether (and which) application identifiers are to be included into specific data packets. If it is determined that application identifiers are to be included into specific data packets, an application identifier is included in step 215 in at least one of the analyzed data packets of this data flow.
Subsequent to step 310, at least one of the received data packets is analyzed. In particular, in step 315 it is analyzed whether the received data packet is an incoming or an outgoing data packet. In case the received data packet is an incoming data packet, the data packet is excluded from including an application identifier into it and is sent to the communication network, as indicated by arrow 317.
In case the received data packet is an outgoing data packet, the method proceeds to step 320, as indicated by arrow 316. In step 320, the size of the received data packet is determined. In case the size of the received data packet (optionally including the size of an application identifier) exceeds a predetermined data packet size, the data packet is excluded from including an application identifier into it. Hence, the data packet is sent to the communication network, as indicated by arrow 319. For example, the predetermined data packet size may depend on the MTU.
In case the data packet does not exceed the predetermined data packet size, the method continues with subsequent method step 325, as indicated by arrow 318. In method step 325, the network protocol is determined, with which the received data packet is associated. In case the received data packet is not associated with at least one predetermined network protocol, e.g. TCP or the User Datagram Protocol (UDP), the data packet is excluded from any inclusion of an application identifier into it. In this case, the data packet is sent to the communication network, as indicated by arrow 335.
In case the received data packet is associated with a predetermined network protocol, the method proceeds to step 340, as indicated by arrow 330. In method step 340, it is determined by means of a data flow-specific identifier of the data packet, whether information regarding the application that has generated the received data packet is available in a local memory of the device. The local memory may for example be the memory 125 of terminal device 100 shown in
In case information regarding the application that has generated the received data packet is not available in the local memory, the method proceeds to step 345, as indicated by arrow 342. In step 345, the required information is requested from the operating system of the device. For example, the device may request a network number and/or a process ID associated with the received data packet from the operating system. The process ID is associated locally within the device with the application that has generated the received data packet. Thus, in step 345, the application that has generated the received data packet is determined in case no such information is available in the local memory 125. After the information has been obtained, the method proceeds to step 350, as indicated by arrow 346.
In case information regarding the application that has generated the received data packet is available in the local memory 125, this information is retrieved and the method directly proceeds from step 340 to step 350, as indicated by arrow 341. In step 350, it is determined whether an application identifier actually has to be included in the received data packet. For example, instead of including application identifiers in all received data packets, it may be intended that application identifiers are only included in the first analyzed data packet of a data flow. Alternatively, application identifiers may be randomly included in received data packets of the data flow. Depending on whether an application identifier has to be included in the received data packet or not, the method proceeds to step 355 or step 360.
In case an application identifier has to be included in the data packet, the method continues with step 355, as indicated by arrow 351. In step 355, an application identifier is included in an option field of the data packet. After the inclusion of the application identifier in the received data packet in step 355, the method proceeds to step 360. In step 360, the received data packet is sent to the communication network, as indicated by arrow 356.
In case it has been determined in step 350 that no inclusion of an application identifier into the data packet is necessary, the method proceeds from step 350 to step 360, i.e. the sending of the received data packet to the communication network, as indicated by arrow 352.
Hence, application identifiers are included in at least one data packet of each data flow. Therefore, the network traffic generated by applications installed on a device is classified.
The communication network comprises personal computers or similar terminal devices 400, 405 and 410, a network router 415 and a network element 420. Personal computer 400 is communicating via communication link 422 with network router 415, personal computer 405 is communicating via communication link 424 with network router 415 and personal computer 410 is communicating via communication link 426 with network router 415. Furthermore, network element 420 is communicating via communication link 428 with network router 415. Communication links 424, 425, 426 and 418 may be wired or wireless links. Network router 415 also provides access to the Internet.
As can be seen from the schematic elements within the dotted line, personal computer 400 comprises a local memory 430, a plurality of applications on an application layer 435 and a network driver 460 within a protocol stack 440. The plurality of applications include an Internet Explorer application 445, an Outlook e-mail application 450 and a Skype VoIP application 455. The applications 445, 450 and 450 generate network traffic in the form of data packets belonging to one or more data flows. The data packets pass network driver 460 included in protocol stack 440 before being sent via communication link 422 to network router 415. Network driver 460 enables transmission of the data packets to network router 415. In one variant, the functions of the network driver 460 may be executed by the kernel of the operating system of personal computer 400.
As shown in the protocol stack 440 of personal computer 400, the personal computer 400 only supports the network protocols TCP and UDP. Below an IP layer, a Network Driver Interface Specification (NDIS) library is located. The NDIS library provides an Application Programming Interface (API) with which the network driver 460 has been programmed. Network driver 460 is a Microsoft Windows XP driver, in particular a NDIS hook driver, and is located in a layer below the IP layer. Furthermore, the network driver 460 is logically located close, i.e. directly before, the network interface (not shown in
Before being transmitted to network router 426, the data packets received from the multiple applications 445, 450, 455 are analyzed by network driver 460. The analyzing may be based on the methods shown in
By means of the five-tuple identifier 480, 482, 484, 486, 490, network driver 460 can determine for a specific analyzed data packet an associated process ID 494 from the first look-up table 470. For example, network driver 460 can determine that a data packet having a five-tuple identifier with a data protocol field 480 “TCP”, a source address field 482 “192.168.0.1”, a source port field 484 “2154”, a destination address field 486 “82.99.36.186” and a destination port field 490 “80” is associated with the process ID 5126.
Thereafter, network driver 460 can determine by means of the second look-up table 475 that process ID 5126 is associated with the Internet Explorer Application 445. Hence, network driver 460 obtains the information that the analyzed data packet has been generated by the Internet Explorer Application 445.
The data included in the first look-up table 470 and/or the second look-up table 475 may be accessed by means of a fingerprint of the data generated by a hash function (not shown in
In case no information regarding the application that has generated the data packet is available in the local memory 430, the information is requested from the operating system of the personal computer 400. For this, network driver 460 requests a process ID for the analyzed data packet from the operating system. The process ID may be requested by means of a five-tuple identifier of the analyzed data packet. With the process ID, network driver 460 can look-up the associated application, i.e. the application that has generated the analyzed data packet, in the second look-up table 475.
After the information regarding the application that has generated the data packet is available in network driver 460, the network driver 460 includes an application identifier in at least one data packet of the data flow. Thereafter, a cyclic redundancy check field of a header of the analyzed data packet including the application identifier is recalculated. Subsequently, the data packet is sent via communication link 422 to network router 415.
The application identifier has been included in the Router Alert Option Field 515 of the data packet. The Router Alert Option Field 515 includes the first two characters of the application that has generated the data packet, i.e. “ut” for the uTorrent BitTorrent application, as shown in field 520.
In
Although only three personal computers 400, 405, 410 are shown in
Network element 420 has access to all classified data packets sent from personal computers 400, 405, 410 to network router 415. Network element 420 may analyze the data packets and may provide an overall classification of the network traffic generated by personal computers 400, 405, 410.
Network element 420 may be capable of validating a further mechanism for classifying network traffic by means of the above described mechanism for classifying network. For this, network element 420 may classify the same network traffic generated by personal computers 400, 405 and 410 by means of another mechanism for classifying network traffic and thereafter compare the classification results.
An apparatus realization of network element 420 for validating a mechanism for classifying network traffic, and a method for validating a mechanism for classifying network traffic will be described in the following with regard to the embodiments of
By means of apparatus 600, a second mechanism for network traffic classification may be validated by means of a first (reference) mechanism for network traffic classification. The first mechanism for network traffic classification may be based on at least one of the techniques shown in
The apparatus comprises a first function 610 for classifying network traffic, a second function 630 for classifying network traffic and a function 640 for validating the second classification mechanism for classifying network traffic. Both functions 610 and 630 are independent from each other. The functions 610, 630 and 640 may be included in one single network element 420 as shown in
Network traffic 633 including data packets belonging to data flows are received by apparatus 600 and are independently classified by the first 610 and the second 630 functions for classifying network traffic. Thereafter, the classification results of the first 610 and the second 630 functions for classifying network traffic are validated by means of the function 640 for validating the second classification mechanism for classifying network traffic.
The first function 610 for classifying network traffic comprises a function 615 for receiving at least one data flow of the network traffic. The data flow comprises data packets and at least one of the data packets of the data flow includes an application identifier assigned to the data flow in accordance with the first mechanism for classifying network traffic. The application identifier is classifying the data flow with respect to an application that has generated the data flow. Furthermore, the first function 610 for classifying network traffic comprises a function 620 for analyzing at least one of the data packets of the received data flow in order to determine the first classification of the network traffic based on an application identifier included in the analyzed data packet.
The two different classifications of the network traffic are provided to the function 640 for validating the second classification mechanism for classifying network traffic, as indicated by arrows 645 and 646. Function 640 validates the second classification mechanism for classifying network traffic by comparing the first classification 645 of the network traffic with the second classification 646 of the network traffic. Thus, it can be determined how accurate the second mechanism for classification of network traffic 630 provides classification results.
As shown in
The second mechanism for classifying network traffic may be based on a passive method for classifying network traffic and the first mechanism for classifying network traffic, which represents a reference method for the second mechanism for classifying network traffic, may be based on an active method for classifying network traffic, e.g. one of the methods shown in
The second (passive) mechanism for classifying network traffic may be at least one of complete protocol parsing, a port based classification, a signature based classification, a connection pattern based classification, a statistics based classification, an information theory based classification and a combined classification method. These passive mechanism for classifying network traffic are in the following described in more detail:
In complete protocol parsing, it is intended to analyze and classify all network traffic passing through a measuring point. However, since many network protocols are ciphered due to security reasons, a plurality of applications cannot be determined. Furthermore, complete protocol parsing is very resource consuming, since all network traffic has to be analyzed.
In port based classification, the classification of network traffic is based on an association of a port number with a specified type of network traffic. For example, World Wide Web traffic may be associated with TCP port 80. Hence, this classification method only needs to access the headers of the data packets. However, this method is not sufficiently reliable in case of dynamically allocated port numbers or tunneled network traffic.
In signature based classification, only specific byte patterns of the data packets are searched. The byte signatures are predefined so that specific types of network traffic may be identified. For example, eDonkey P2P network traffic contains the specific byte pattern “xe3x38” to be searched. A common feature of signature based classification methods is that in addition to the header of the data packet, its payload also has to be accessed. However, this method provides insufficient results for applications using proprietary network protocols for which no specific byte patterns are known. Furthermore, the byte signatures have to be updated regularly and the method cannot classify encrypted network traffic.
Connection pattern based classification methods are based on the principle of checking the communication patterns generated by a particular host and comparing it with the behaviour patterns representing different activities and/or applications. The patterns describe network traffic flow characteristics corresponding to different applications. The patterns may be obtained by analyzing the relationship between the use of source and destination ports and the relative cardinality of the sets of unique destination ports and IP numbers. Connection pattern based classification methods are described in detail in document “BLINC: Multilevel Traffic Classification in the Dark”, in Proc. ACM SIGCOMM, Philadelphia, Pa., USA, August 2005 by T. Karagiannis, A. Papagiannaki and M. Faloutsos, which is hereby incorporated by reference in its entirety. However, patterns are often difficult to find, especially if multiple application types are used simultaneously. In order to identify a connection pattern in a reliable manner, many data flows coming from and going to a host have to be analyzed.
In statistics based classification methods, statistical features of a network trace are captured and used to classify the network traffic. In order to automatically obtain the relevant features of a specific kind of network traffic, the statistical methods may be combined with methods which are based on artificial intelligence. A Bayesian analysis technique may be employed. The Bayesian analysis technique is described in detail in documents “Traffic Classification on the Fly”, volume 36, pages 23-26, New York, N.Y., USA, 2006, ACM Press by L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, K. Salamatian; “Traffic Classification Using Clustering Algorithms” in Proc. MineNet '06, New York, N.Y., USA, 2006 by J. Erman, M. Arlitt and A. Mahanti; and “Automatic Traffic Classification and Applicaton Identification Using Machine Learning” in Proc. IEEE LCN, Sydney, Australia, November 2005 by S. Zander, T. Nguyen and G. Amitagge, which are hereby incorporated by reference in its entirety. A basic requirement of these classification techniques is hand-classified network traffic which provides training and testing data-sets.
In information theory based classification methods, hosts are grouped into typical behaviour schemes, e.g. servers and attackers. The main idea is to look at the variability of randomness of a set of values that are included in the five-tuple identifiers, which belong to a particular source or destination IP address or a source or destination port. Information theory based classification is described in detail in document “Profiling Internet Backbone Traffic: Behaviour Models and Applications” in Proc. ACM SIGCOMM, Philadelphia, Pa., USA, August 2005 by K. Xu, Z. Zhang, and S. Bhattacharyya, which is hereby incorporated by reference in its entirety.
Combined classification methods make use of the advantages of different classification methods. Combined classification methods are e.g. described in document “Accurate Traffic Classification”, in Proc. IEEE WOWMoM, Helsinki, Finland, June 2007 by G. Szabo, I. Szabo and D. Orincsay, which is hereby incorporated by reference in its entirety.
The present technique for validating a mechanism for classifying network is not limited to the above described passive methods for classifying network traffic. In principle, any method for classifying network traffic, passive or not, can be validated. Combinations of the above passive methods for classification network, also with active methods for classification network, are as well possible.
The measurements underlying the classifications took place in a separate access network comprising a plurality of personal computers. All personal computers of the access network independently executed the method for classifying network traffic. The network traffic classification results from all personal computers were thereafter combined in order to provide the distribution of classified network traffic shown in
The measurements lasted 34 hours. The captured data volume within the measurement time was 6 Gigabytes containing 12 million data packets. The measured data included network traffic from P2P applications including BitTorrent, eDonkey, Gnutella and DirectContact, VoIP and chat applications including Skype and MSN Live, FTP applications, file transfer with a download manager applications, e-mail sending and receiving applications, web based e-mail including Gmail, SSH-based applications, SCP-based applications, FPS and MMORPG gaming applications, streaming radio, streaming video and web based streaming applications. The applications were installed and were running during the measurements on the personal computers.
The classification results shown in
In the bar diagram of
The bar diagram of
As can be seen from
As can be seen from bars 916 and 917 of
Since there is no payload in P2P data packets, signature based classification methods may as well not have delivered satisfying classification results. The data flows are sent from dynamically allocated source ports to not well known destination ports. Therefore, port based classification methods may as well not have delivered satisfying classification results.
Furthermore, some non-P2P data packets were misclassified into the P2P classification. However, the number of such misclassified data packets is small, both with regard to flow numbers and byte volume.
The constant change of P2P protocols may also cause inaccuracy in the classification of network traffic by passive mechanisms for classifying network traffic. In particular, new features are continuously added to P2P applications. However, the existing mechanisms for classifying network traffic are adapted for classifying specific P2P applications, but not the network protocol which the P2P application is using.
Another problem of classifying network is a matter of philosophy. In particular, there is network traffic which is a derivation of other network traffic. For example, Domain Name Server (DNS) network traffic consists of any network traffic which uses domain names instead of specific IP addresses. However, DNS network traffic may be generated in the World Wide Web by users which do not intend to create DNS network traffic on purpose.
As regards a more complicated case, MSN Live applications use the Hypertext Transfer Protocol (HTTP) for transmitting chat messages. However, such massages do not necessarily have to be considered as World Wide Web traffic. Furthermore, MSN Live applications transmit advertisements by means of the HTTP protocol. However, this network traffic cannot be recognized as deliberate World Wide Web browsing. Therefore, the question arises whether such HTTP network traffic from MSN Live applications, which are classified as World Wide Web traffic, would have to be considered as misclassification, or it is acceptable that they are classified as World Wide Web traffic.
For the present validation to be objective, only such kind of network traffic was considered as properly classified, where the classification outcome and the application generating the network traffic, i.e. the validation outcome, matched. For example, the network traffic generated by a chat application on DirectConnect hubs, which has been classified to be generated by a chat application, could have been considered as being correctly classified. However, for the present objective validation, it has been marked as a misclassification.
The high correct classification ratio of VoIP network traffic (see bars 922 and 923 in
The present technique for classifying network traffic may not only be used for validating a mechanism for classifying network traffic. The technique may as well be used for online network traffic classification at a measurement site. This may include that all terminal devices accessing a communication network comprise a proposed driver component. Furthermore, the driver component may be designed tamperproof so that a user cannot manipulate his terminal device in a way that the classification of network traffic can be forged. A respective online classification method may be used for online clustering of network traffic into quality of service (QoS) classes based on the resource requirements of the applications generating the network traffic.
The technique could also be used by network operators to charge on the basis of the applications utilized by the user. Furthermore, the technique for classifying network could be extended by including further information about the application generating the network traffic, e.g. the version number, into the data packets so that network operators may track the security risks of specific applications.
The present technique of validating a mechanism for classifying network traffic is deterministic. This means, the technique does not rely any probabilistic decisions. It may be used for creating firewalls, sniffers, traffic meters or network analyzers.
Each data packet classified by the present technique of classifying network traffic provides reference information that can be compared with the result of the mechanism for classifying network traffic to be validated.
The present technique of validating a mechanism for classifying network traffic is independent from known network traffic classification methods. In other words, the validation of one mechanism for classifying network traffic by another known mechanism for classifying network traffic is avoided. Thereby, validation results having a higher accuracy are provided. Furthermore, by means of the present techniques, it is possible to perform network traffic classifications including a high amount of network traffic to be classified in a highly automated way.
Moreover, the present techniques for classifying network traffic and for validating a mechanism for classifying network traffic may be employed in a realistic network environment. The techniques provide validation results based on realistic network traffic mixtures and provide a highly automated and reliably validation of network traffic classifications.
Although embodiments of the present invention have been illustrated in the accompanying drawings and described in the description, it will be understood that the invention is not limited to the embodiments disclosed herein. In particular, the invention is capable of numerous rearrangements, modifications and substitutions without departing from the scope of the invention as set forth and defined by the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/01891 | 3/10/2008 | WO | 00 | 10/15/2010 |