The present application relates to a technique for limiting transmission of fault current.
In electric power transmission and distribution networks, fault current conditions may occur. A fault current condition is an abrupt surge in the current flowing through the network caused by faults or short circuits in the network. Causes of the faults may include lightning striking the network, and downing and grounding of the transmission power lines due to severe weather or falling trees. When faults occur, load appears to be reduced instantaneously. The network, in response, delivers a large amount of current (i.e. overcurrent) to this load or, in this case, the faults. This surge or fault current condition is undesirable as the condition may damage the network or equipment connected to the network. In particular, the network and the equipment connected thereto may burn or, in some cases, explode.
One of the systems used to protect power equipments from damages caused by fault currents may be a current limiting reactor. Referring to
Although connecting the current limiting reactor 104 to the network equipment 102 may protect the equipment 102 during the fault condition, the reactor 104 has many disadvantages. Among others, the current limiting reactor 104 may also limit the amount of voltage available to the network equipment 102 during the normal operation. If the power network is a constant voltage network, this voltage loss must be compensated for through the use of capacitors, dynamic volt ampere reactive (VAR) compensators, or other means. These systems also can change the phase angle of the power, causing difficulty in transmitting real power to the end user. As such, great amounts of power are lost during normal operation. For example, as much as 3% of the power is lost due to the reactor 104. To compensate for this loss, additional current or power must be generated. Generating additional current or power may place undue financial burden on the power generator and/or power distributor and, ultimately to the power consumer.
As such, a new technique for limiting transmission of fault current is needed.
Several embodiments of a novel technique for limiting transmission of fault current are disclosed. Current power distribution systems typically have an impedance, or reactor, on the output of the network equipment to limit current in the case of a fault condition. A low resistance switch, which changes its resistance in the presence of high current, is connected in parallel with this reactor. Thus, in normal operation, the current from the power generator bypasses the reactor, thereby minimizing power loss. However, in the presence of a fault, the resistance of the switch increases, forcing the current to pass through the reactor, thereby limiting the fault current.
For a better understanding of the present disclosure, reference is made to the accompanying drawings, which are incorporated herein by reference and in which:
In the present disclosure, several embodiments of a novel technique for limiting transmission of fault current are introduced. Referring to
In the present embodiment, the current limiting switch 202 may be a fault current limiter. The current limiting switch 202 of the present embodiment may comprise an enclosure 204 and a circuit 206 connected to the reactor 104 in a parallel connection. In the present embodiment, the circuit 206 may preferably be a superconducting circuit. However, the present disclosure does not preclude the circuit 206 made out of other types of electrical conductor. For example, circuits comprising other conducting or semiconducting materials may be included. The inclusion of any circuit 206 in parallel with the reactor 104 will necessarily lower the overall impedance. However, it may be preferable that the circuit 206 has resistance or impedance less than the resistance or impedance of the reactor 104.
To manufacture the network 200 of the present embodiment, the current limiting switch 202 may be connected to the existing network 100 such that the current limiting switch 202 is in parallel connection to the reactor 104. By providing the current limiting switch 202 to the existing network 100, the components in the network such as, for example, the network equipment 102 need not be taken down, and the operation of the network equipment 102 need not be interrupted.
During normal operation, current may flow into or out of the network equipment 102. If the current limiting switch 202 includes a superconducting circuit 206 that is connected to the reactor 104 in a parallel connection, the resistance or impedance of the reactor 104 and the current limiting switch 202, taken together, may be negligible. In effect, the current flowing into or out of the network equipment 102 may bypass the reactor 104. Even if a circuit other than the superconducting circuit is included in the current limiting switch 202, the resistance or impedance experienced by the current flowing into or out of the network equipment 102 will be less than the resistance or impedance without the current limiting switch 202 with parallel connection.
During the fault condition, the superconducting circuit 206 may be quenched and its resistance or impedance may surge. In the process, the fault current flowing into or out of the network equipment 102 may be limited by the reactor 104 and the current limiting switch 202. For example, if the resistance or impedance of the circuit 206 increases significantly, the overall impedance of the parallel circuit may approach that of the reactor 104.
One consideration of the current limiting switch 202 is its response time. In
Referring to
Within the tank 302, there may be one or more fault current limiting units 320 which, for the purpose of clarity and simplicity, are shown as a block. As illustrated in
Returning to
The temperature of one or more fault current limiting units 320 may be maintained at a desired temperature range by coolant 314 contained in the tank 302. In one embodiment, it may be desirable to maintain the fault current limiting units 320 at a low temperature, for example, ˜77° K. To maintain at such a low temperature range, liquid nitrogen or helium gas may be used as coolant 314. In other embodiment, it may be desirable to maintain the temperature of the one or more fault current limiting units 320 at other temperature range, and other types of coolant, in gaseous or liquid form, may also be used. For example, it may be desirable to maintain the temperature of the fault current limiting units 320 at a room temperature. In such a case, air or water maintained at a room temperature may also be used as the coolant 314. When introduced, the coolants 314 may enter the tank 302 via a feed line (not shown) and a port 315 coupled to the tank 302. In the present disclosure, the feed line and the port 315 may preferably be made from thermally and/or electrically insulating material. However, the present disclosure does not preclude any one of the feed line and the port 315 from containing thermally and/or electrically conductive material. If the feed line and the port 315 do not provide grounding of the tank 302 or any component contained therein, they may be made from any type of material.
In the present embodiment, the tank 302 may be supported from the ground by an optional external support 334. Meanwhile, the fault current limiting units 320 may be supported from the tank 302 by an optional internal support 332. Those of ordinary skill in the art may recognize that both of the internal supports 332 and the external support 334 may be optional as the fault current limiting units 320 may be supported from the tank 302 by some other components. Even if included, the internal support 332 may support the fault current limiting units 320 from the side or top of the fault current limiting units 320, not necessarily from the bottom. Likewise, the tank 302 may be supported from the ground by some other components. Moreover, the external support 334, if included, may support the tank from the side or top of the tank 302, not necessarily from the bottom of the tank 302.
If included, each of the internal support 332 and the external support 334 may preferably be made from thermally and/or electrically insulating material. However, the present disclosure does not preclude thermally and/or electrically conductive internal support 332 and the external support 334. If thermally and/or electrically conductive external support 334 is used, it may be desirable to provide an electrically insulating material between the support 334 and the ground to electrically isolate the tank 302 from the ground.
The SCFCL system 300 may be incorporated into the current distribution network. The tank 302 may be electrically decoupled from the ground by air, which may act as an insulator, and optionally by the external support 334. As noted above, the tank 302 may be metallic tank 302 in some embodiments. In these embodiments, the tank 302 may typically float at a voltage that is close to the voltage of the terminals 344 and 346. It is contemplated that during normal operation, the voltage of the tank 302 may be approximately the same as the voltage being transmitted on the transmission lines 342 as the voltage at transmission lines 342a, 342b remain nearly identical. During fault, the voltage of the metal tank may be between the voltage at transmission lines 342a and 342b.
Referring to
The circuit breaker 402 may be a mechanical based circuit breaker comprising one or more switches that may mechanically open upon detection of the fault current. Alternatively, the circuit breaker 402 may be other types of fault current limiting system. Examples of other types of fault current limiting systems may include solid state fault current limiting systems or semiconductor based fault current limiting systems containing one or more semiconductor based circuits or devices 404. However, other types of circuit breaker 402 are not precluded in the present disclosure. In the case of a solid state fault current limiting system 402, various types of devices 404 may be included in the system 402. For example, a gate turn-off thyristor (GTO) may be used. GTOs have switching frequencies of roughly 1 kHz and can handle hundred or thousands of amps. In addition, multiple components may be placed in parallel if necessary to handle the current requirements. In addition to GTOs, other semiconductor devices, such as integrated gate commutated thyristors (IGCTs) and insulated gate bipolar transistors (IGBTs) may also be used. The inclusion of any circuit breaker 402 in parallel with the reactor 104 may lower the overall impedance. However, it may be preferable that the circuit breaker 402 has resistance or impedance less than the resistance or impedance of the reactor 104.
To manufacture the network 400 of the present embodiment, the circuit breaker 402 may be connected to the existing network 100 such that the circuit breaker 402 is in parallel connection to the reactor 104. By providing the circuit breaker 402 to the existing network 100, the components in the network such as, for example, the network equipment 102 need not be taken down, and the operation of the network equipment 102 need not be interrupted.
During normal operation, the circuit 404 within the circuit breaker 402 may be closed and the current may flow into or out of the network equipment 102. If the circuit 404 in the circuit breaker 402 is a superconducting or semiconductor circuit 404 and if the circuit 404 is connected to the reactor 104 in a parallel connection, the resistance or impedance of the reactor 104 and the circuit breaker 402, taken together, may be negligible when the circuit breaker 402 is closed. In effect, the current flowing into or out of the network equipment 102 may bypass the reactor 104. Even if a circuit other than the superconducting circuit is included in the circuit breaker 402, the resistance or impedance experienced by the current flowing into or out of the network equipment 102 will be less than the resistance or impedance without the circuit breaker 402 in parallel connection.
During the fault condition, the circuit breaker 402 may detect the fault current, and the circuit 404 may be opened. As described above, in some embodiments, the circuit 404 may open in less than ¼ period of the output power to guarantee that the maximum peak current is never delivered during the fault. In the case of 60 Hz operation, this means that the circuit 404 opens in less than 4 milliseconds. In the process, the fault current flowing into or out of the network equipment 102 may be limited by the reactor 104 and the circuit breaker 402. As such, the network equipment 102 may be protected. However, changes to power transmission characteristics, such as power loss, voltage loss and compensation, and phase angle change, may be minimized during normal operation.
Several embodiments of an apparatus for limiting fault current are disclosed. Those of the art will recognize that the present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.
This application is a non-provisional application of and claims priority to U.S. Provisional Patent Application Ser. No. 61/355,890, filed Jun. 17, 2010. The entire specification of U.S. Provisional Patent Application Ser. No. 61/355,890 is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4184186 | Barkan | Jan 1980 | A |
5225956 | Hara et al. | Jul 1993 | A |
5436606 | Cottevieille et al. | Jul 1995 | A |
5446365 | Nomura et al. | Aug 1995 | A |
5514915 | Kim et al. | May 1996 | A |
5561579 | Gyugyi et al. | Oct 1996 | A |
5600522 | Hull | Feb 1997 | A |
5617280 | Hara et al. | Apr 1997 | A |
5650901 | Yamamoto | Jul 1997 | A |
5694279 | Mumford | Dec 1997 | A |
5812353 | Albert et al. | Sep 1998 | A |
5986536 | Ries et al. | Nov 1999 | A |
6016094 | Gerhold | Jan 2000 | A |
6199264 | Marcou et al. | Mar 2001 | B1 |
6650518 | Kuperman et al. | Nov 2003 | B2 |
6654222 | Jungst et al. | Nov 2003 | B2 |
7283339 | Tekletsadik | Oct 2007 | B2 |
7327542 | Juengst et al. | Feb 2008 | B2 |
7545611 | Lee et al. | Jun 2009 | B2 |
7551410 | Darmann | Jun 2009 | B2 |
7724482 | Folts et al. | May 2010 | B2 |
7742264 | Hyun et al. | Jun 2010 | B2 |
8532725 | Folts et al. | Sep 2013 | B2 |
20050153843 | Kubota | Jul 2005 | A1 |
20070139832 | Lee et al. | Jun 2007 | A1 |
20080043382 | Lee et al. | Feb 2008 | A1 |
20100051437 | Kruska et al. | Mar 2010 | A1 |
20100149707 | Folts et al. | Jun 2010 | A1 |
20100182813 | Asano et al. | Jul 2010 | A1 |
20100296208 | Tekletsadik et al. | Nov 2010 | A1 |
20110177953 | Llambes et al. | Jul 2011 | A1 |
20110312498 | Tekletsadik | Dec 2011 | A1 |
20120154959 | Fish | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
61220014 | Sep 1986 | JP |
9827635 | Jun 1998 | WO |
Entry |
---|
Mathias Noe and Michael Steurer—Superconductor. Sci. Technol. vol. 20 No. 3—Jan. 15, 2007. |
Number | Date | Country | |
---|---|---|---|
20110308078 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61355890 | Jun 2010 | US |