Technique for protecting guest processes using a layered virtualization architecture

Information

  • Patent Grant
  • 10447728
  • Patent Number
    10,447,728
  • Date Filed
    Friday, August 5, 2016
    8 years ago
  • Date Issued
    Tuesday, October 15, 2019
    5 years ago
Abstract
A technique protects guest processes of a guest operating system kernel using a virtualization layer of a virtualization architecture executing on a node of a network environment. The virtualization layer may include a user mode portion having hyper-processes and a kernel portion having an micro-hypervisor that cooperate to virtualize the guest operating system kernel within a virtual machine and to make hardware resources of the node available for use by the guest operating system kernel, either as pass-through resources, emulated resources, or a combination thereof. Illustratively, the micro-hypervisor may cooperate with the hyper-processes of the virtualization layer to protect the guest processes against attack by one or more exploits that may employ malware. To that end, the guest process protection technique enables the micro-hypervisor and/or hyper-processes of the virtualization layer to determine (i) when the guest operating system switches to a guest process for execution, (ii) an identity of the guest process, and (iii) a protection policy to be associated with the guest process identity.
Description
BACKGROUND
Technical Field

The present disclosure relates to virtualization architectures and, more specifically, to protection of guest processes using a virtualization layer of a virtualization architecture.


Background Information

Data communication in a network involves the exchange of data between two or more entities interconnected by communication links and sub-networks (segments). The entities are typically software processes executing in operating systems of computers, such as endpoint nodes (endpoints) and intermediate nodes. The intermediate nodes interconnect the communication links and segments to enable transmission of data between the endpoints. A local area network (LAN) is an example of segment that provides relatively short distance communication among the interconnected nodes, whereas a wide area network (WAN) enables long distance communication over links provided by telecommunications facilities. The Internet is an example of a WAN that connects disparate computer networks throughout the world, providing global communication between nodes on various networks.


Malicious software (malware) has become a pervasive problem for nodes coupled to networks, such as the Internet. Malware is often embedded within downloadable content intended to adversely influence or attack normal operations of a node. Whereas operating system vulnerabilities have traditionally been common targets of such malware content, attackers have broadened their attack to exploit vulnerabilities in processes or applications, such as web browsers as well as operating system data structures. For example, malware content may be embedded within objects associated with a web page hosted by a malicious web site.


Various types of security enhanced nodes are often deployed at different segments of the networks. These nodes often employ virtualization systems to provide enhanced security needed to uncover the presence of malware embedded within ingress content propagating over the different segments. The enhanced security may include anti-virus scanning software that scans the ingress content for viruses and other forms of malware, as well as virtual machines that replay the content to monitor its behavior during execution so as to detect anomalies that may indicate the presence of malware. However, increasingly sophisticated malware may be able to infect the virtual machines to avoid detection by, e.g., altering states of resources of the nodes, such as operating system data structures. Moreover, strict specifications for some nodes (e.g., endpoints) may require execution of software, despite known vulnerabilities and potential of infection by malware. Thus, a technique to protect the processes executing (as well as operating system data structures) in the virtual machines of the nodes is needed.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the embodiments herein may be better understood by referring to the following description in conjunction with the accompanying drawings in which like reference numerals indicate identically or functionally similar elements, of which:



FIG. 1 is a block diagram of a network environment that may be advantageously used with one or more embodiments described herein;



FIG. 2 is a block diagram of a node that may be advantageously used with one or more embodiments described herein;



FIG. 3 is a block diagram of a virtualization architecture including a virtualization layer that may be advantageously used with one or more embodiments described herein;



FIG. 4 is a block diagram illustrating memory virtualization that may be advantageously used with one or more embodiments described herein;



FIG. 5 is a block diagram illustrating one or more memory views that may be advantageously used with one or more embodiments described herein;



FIG. 6 is a block diagram of a guest page table hierarchy including a control register that may be advantageously used with one or more embodiments described herein;



FIG. 7 is a block diagram of a content analysis approach of a guest process protection technique that may be advantageously used with one or more embodiments described herein; and



FIG. 8 is a flow diagram illustrating application of a protection policy when switching to the guest process.





OVERVIEW

The embodiments described herein provide a technique for protecting guest processes of a guest operating system kernel using a virtualization layer of a virtualization architecture executing on a node of a network environment. The virtualization layer may include a user mode portion having hyper-processes and a kernel portion having a micro-hypervisor (i.e., a type of hypervisor operating at a highest privilege level of a physical processor of the node) that cooperate to virtualize the guest operating system kernel within a virtual machine and to make hardware resources of the node available for use by the guest operating system kernel, either as pass-through resources, emulated resources, or a combination thereof. Illustratively, the micro-hypervisor may cooperate with the hyper-processes of the virtualization layer to protect the guest processes against attack by one or more exploits that may employ malware. To that end, the guest process protection technique enables the micro-hypervisor and/or hyper-processes of the virtualization layer to determine (i) when the guest operating system switches to a guest process for execution, (ii) an identity of the guest process, and (iii) a protection policy to be associated with the guest process identity.


In an embodiment, each guest process runs in its own guest address space and has one or more guest page tables in the form of a guest page table hierarchy associated with that address space. The guest operating system kernel employs the guest page table hierarchy to perform a first address space translation from a guest-virtual address to a guest-physical address. The virtualization layer performs a second address space translation nested (i.e., layered) with the first translation that employs one or more nested page tables in a form of a nested page table hierarchy to, e.g., perform the second translation from the guest-physical address to a host-physical address used to access main memory of the node (i.e., a view of main memory as seen by the virtual machine). The translation of guest-physical address to host-physical address may be flexible, i.e., such translation may be implemented on a per page basis to determine how each guest-physical address is translated to a host-physical address.


A root address for each page table hierarchy is stored in a control register of a central processing unit (CPU) of the node. As a hardware resource, the control register is virtualized by the virtualization layer as a virtual control register for use by the guest operating system kernel. When switching guest processes (and address spaces) for execution on the CPU during a context switch, the guest operating system kernel swaps a prior guest page table hierarchy (i.e., a prior address space) for the guest page table hierarchy of the guest process (i.e., a current address space) to be executed by loading the root address of the guest page table hierarchy into the virtual control register to activate the guest page table hierarchy (i.e., the current address space). According to the technique, switching among guest processes for execution on the CPU may be determined using the content of the virtual control register, which represents the root address of the guest page table hierarchy. Specifically, the virtualization layer may be configured to intercept write accesses to the virtual control register to determine switching of guest processes. That is, upon detecting a new root address (value) loaded into the virtual control register, the virtualization layer may determine that the guest operating system is switching from a prior guest process associated with the prior guest page table hierarchy to the (current) guest process associated with the guest page table hierarchy.


The virtualization layer may then determine the identity of the guest process associated with the guest page table hierarchy using various approaches. One such approach involves content analysis of the guest process, wherein one or more code pages of the process, as marked by the guest page table hierarchy, are hashed to identify the process. The virtualization layer may perform the content analysis by examining the guest page table hierarchy to select the one or more code pages (e.g., entries in the guest page table hierarchy that are marked executable) of the guest process and hashing those code pages to effectively hash the code section of the process. Accordingly, hashing any instance of the guest process code pages should produce a hash value that is identical to a pre-computed hash value for the process, as each instance of the guest process has an identical code section. As a result, if a hash function having a substantially low collision rate is used to hash the code section of a guest process to produce a hash value that is known (e.g., via a pre-computed hash value for the process), then the identity of the guest process can be determined from the known hash value.


Another approach for determining the identity of the guest process associated with the guest page table hierarchy involves an in-guest component (agent) that cooperates with the virtualization layer to inform about guest process creation and destruction. Illustratively, for each newly created guest process, the agent may inform the virtualization layer of the identity of the new guest process and of the corresponding value of the virtual control register that points to the guest page tables of that guest process. Upon destruction of the (new) guest process, the agent may inform the virtualization layer to no longer track the value of the virtual control register corresponding to the guest process, because that process has been destroyed.


Upon determining the identity of a guest process, the virtualization layer may associate a protection policy, embodied as a protection profile, to the guest process. According to the technique, the protection profile may (i) contain information about process events that may be intercepted by the virtualization layer, wherein the intercepted events may involve certain instructions or accesses, (ii) contain a reference to a nested page table hierarchy associated with the guest process, and (iii) specify restrictions (e.g., embodied as permissions of nested page tables of the nested page table hierarchy) to be applied when the process is active (e.g., run). For example, assume that the guest process may have known vulnerabilities, wherein exploits that target the process may exhibit similar behavior, such as overflowing a buffer on a process stack. As a result, the protection profile applied to the process by the virtualization layer may state that when the process is created or activated, permissions that render the stack non-executable are applied. More generally, the virtualization layer may apply the protection profile to override the permissions configured by the guest operating system kernel in the guest page tables (for the guest-virtual address to guest-physical address translations) with the permissions configured by the virtualization layer in the nested page tables (for the guest-physical address to host-physical address translations) on a per-page and per-process basis.


Advantageously, the guest process protection technique provides protection at the granularity of memory pages (or sub-pages) for a guest process running in a guest operating system. To that end, the virtualization layer (including the micro-hypervisor) may monitor the switching of the guest page table hierarchy in the guest operating system kernel to determine when the guest process executes and then identify the guest process through hashing of its code pages. The virtualization layer may thereafter utilize the nested page table hierarchy to apply protections for the process at the granularity of code pages, as opposed to protecting a general address space of the entire guest operating system kernel. In other words, the technique enables identification of a particular guest process and application of a protection profile to that process alone.


DESCRIPTION


FIG. 1 is a block diagram of a network environment 100 that may be advantageously used with one or more embodiments described herein. The network environment 100 illustratively includes a plurality of computer networks organized as a public network 120, such as the Internet, and a private network 130, such an organization or enterprise (e.g., customer) network. The networks 120, 130 illustratively include a plurality of network links and segments connected to a plurality of nodes 200. The network links and segments may include local area networks (LANs) 110 and wide area networks (WANs) 150, including wireless networks, interconnected by intermediate nodes 200I to form an internetwork of nodes, wherein the intermediate nodes 200I may include network switches, routers and/or one or more malware detection system (MDS) appliances (intermediate node 200M). As used herein, an appliance may be embodied as any type of general-purpose or special-purpose computer, including a dedicated computing device, adapted to implement a variety of software architectures relating to exploit and malware detection functionality. The term “appliance” should therefore be taken broadly to include such arrangements, in addition to any systems or subsystems configured to perform a management function for exploit and malware detection, and associated with other equipment or systems, such as a network computing device interconnecting the WANs and LANs. The LANs 110 may, in turn, interconnect end nodes 200E which, in the case of private network 130, may be illustratively embodied as endpoints.


In an embodiment, the endpoints may illustratively include, e.g., client/server desktop computers, laptop/notebook computers, process controllers, medical devices, data acquisition devices, mobile devices, such as smartphones and tablet computers, and/or any other intelligent, general-purpose or special-purpose electronic device having network connectivity and, particularly for some embodiments, that may be configured to implement a virtualization system. The nodes 200 illustratively communicate by exchanging packets or messages (i.e., network traffic) according to a predefined set of protocols, such as the Transmission Control Protocol/Internet Protocol (TCP/IP); however, it should be noted that additional protocols, such as the HyperText Transfer Protocol Secure (HTTPS), may be advantageously used with the embodiments herein. In the case of private network 130, the intermediate node 200I may include a firewall or other network device configured to limit or block certain network traffic in an attempt to protect the endpoints from unauthorized users. Unfortunately, such conventional attempts often fail to protect the endpoints, which may be compromised.



FIG. 2 is a block diagram of a node 200, e.g., end node 200E or MDS appliance 200M, that may be advantageously used with one or more embodiments described herein. The node 200 illustratively includes one or more central processing unit (CPUs) 210 each having one or more CPU cores (not shown), a main memory 220, one or more network interfaces 260 and one or more devices 270 connected by a system interconnect 250. The devices 270 may include various input/output (I/O) or peripheral devices, such as storage devices, e.g., disks. The disks may be solid state drives (SSDs) embodied as flash storage devices or other non-volatile, solid-state electronic devices (e.g., drives based on storage class memory components), although, in an embodiment, the disks may also be hard disk drives (HDDs). Each network interface 260 may include one or more network ports containing the mechanical, electrical and/or signaling circuitry needed to connect the node to the network 130 to thereby facilitate communication over the network. To that end, the network interface 260 may be configured to transmit and/or receive messages using a variety of communication protocols including, inter alia, TCP/IP and HTTPS.


The memory 220 may include a plurality of locations that are addressable by the CPU(s) 210 via a memory management unit (MMU 215), as well as the network interface(s) 260 and device(s) 270 via an I/O MMU (IOMMU 255). Note that accesses to/from memory 220 by the CPU(s) 210 may occur directly through the MMU 215 and over the system interconnect 250, whereas accesses to/from the memory by the network interface(s) 260 and device(s) 270 may occur directly through the IOMMU 255 of the system interconnect. That is, a first data path may occur directly from the CPU to the memory 220 via the system interconnect 250 and a second (independent) data path may occur directly from the I/O devices 270 to the memory 220 also via the system interconnect 270. The memory locations may be configured to store software program code (including application programs) and data structures associated with the embodiments described herein. The CPU 210 may include processing elements or logic adapted to execute the software program code, such as modules of a virtualization architecture 300, and manipulate the data structures, such as a process control block (PCB) 235 and a process table 245. Exemplary CPUs may include families of instruction set architectures based on the x86 CPU from Intel Corporation of Santa Clara, Calif., the x64 CPU from Advanced Micro Devices of Sunnyvale, Calif., and the ARM CPU from ARM Holdings, plc of the United Kingdom.


A (guest) operating system kernel 230, portions of which are typically resident in memory 220 and executed by the CPU, functionally organizes the node by, inter alia, invoking operations in support of the software program code and application programs executing on the node. A suitable guest operating system kernel 230 may include the Windows® series of operating systems from Microsoft Corp of Redmond, Wash., the MAC OS® and IOS® series of operating systems from Apple Inc. of Cupertino, Calif., the Linux operating system and versions of the Android™ operating system from Google, Inc. of Mountain View, Calif., among others. Suitable application programs may include Adobe Reader® from Adobe Systems Inc. of San Jose, Calif. and Microsoft Word from Microsoft Corp of Redmond, Wash. Illustratively, the software program code may be executed as guest processes 240 of the kernel 230. As used herein, a process (e.g., a guest process) is an instance of software program code (e.g., an application program) executing in the operating system that may be separated (decomposed) into one or more threads, wherein each thread is a sequence of execution within the process.


It will be apparent to those skilled in the art that other types of processing elements and memory, including various computer-readable media, may be used to store and execute program instructions pertaining to the embodiments described herein. Also, while the embodiments herein are described in terms of software program code, processes, and computer applications or programs stored in memory, alternative embodiments may also include the code, processes and programs being embodied as components, logic, and/or modules consisting of hardware, software, firmware, or combinations thereof.


Virtualization Architecture



FIG. 3 is a block diagram of a virtualization architecture 300 including a virtualization layer 310 that may be advantageously used with one or more embodiments described herein. The virtualization architecture 300 described herein is illustratively deployed in node 200 embodied as endpoint 200E although the architecture may be further extended for deployment in an appliance, such as MDS appliance 200M. The virtualization architecture 300 illustratively includes two privilege modes: guest mode and host mode. In an embodiment, a guest operating system (O/S) runs in the guest mode within a virtual machine, e.g., VM. The guest mode may employ a first set of four protection rings, e.g., guest mode rings 0-3, wherein one or more guest applications (guest processes 240) run in guest mode ring 3 at a lowest guest mode privilege level, and the guest operating system (guest operating system kernel 230) runs in guest mode ring 0 at a highest guest mode privilege level. The virtualization layer 310 operates in host mode of the virtualization architecture, which includes a second set of four protection rings, e.g., host mode rings 0-3. Illustratively, various user mode components embodied as hyper-processes 350 of the virtualization layer 310 run in host mode ring 3 at a lowest host mode privilege level, and a kernel portion (i.e., micro-hypervisor 320) of the virtualization layer runs in host mode ring 0 at a highest host mode privilege level.


The micro-hypervisor 320 (i.e., a type of hypervisor operating at a highest privilege level of a physical processor of the node) may be embodied as a light-weight module configured to facilitate run-time security analysis, including exploit and malware detection and threat intelligence, of the guest processes 240 executing on the node 200. As described herein, the micro-hypervisor 320 may cooperate with corresponding hyper-processes 350 of the virtualization layer 310 to virtualize the hardware and control privileges (i.e., access control permissions) to hardware resources of the node that are typically controlled by the guest operating system kernel. Illustratively, the hardware resources may include (physical) CPU(s) 210, memory 220, network interface(s) 260, and devices 270. The micro-hypervisor 320 may be configured to control access to one or more of the resources in response to a request by a guest process 240 to access the resource.


A user mode portion of the virtualization layer 310 includes the hyper-processes 350, examples of which include, inter alia, a guest monitor 352, a threat protection component 354, and a policy manager 356. The guest monitor 352 is illustratively a unique virtual machine monitor (VMM), i.e., a type 0 VMM, which includes virtualization functionality that cooperates with the micro-hypervisor 320 to virtualize the guest operating system within the VM and run one or more micro-virtual machines (micro-VMs), such as, in some embodiments, a memory view (as described below). Accordingly, the guest monitor 352 may include computer executable instructions executed by the CPU 210 to perform operations that spawn, configure, and control/implement the VM or any of a plurality of micro-VMs. The guest monitor 352 may further include virtualization functionality that emulates privileged instructions (i.e., an instruction emulator) and devices (i.e., a virtual device emulator) that act as software substitutes for hardware devices not directly assigned to the guest operating system. As such, a set of hardware resources may be virtualized among a plurality of micro-VMs that may access those resources. That is, the guest monitor 352 may create virtual devices (e.g., software state machines) of the hardware resources for use by the micro-VMs that, from the perspective of the guest operating system, appear as physical resources.


As used herein, the term “micro” VM denotes a virtual machine serving as a container that may be restricted to a single guest process (as opposed to the VM which is spawned as a container for the entire guest operating system having many guest processes). In one embodiment, the micro-VMx may be implemented outside of the VM, (i.e., in a separate protection domain) using, e.g., copy-on-write semantics. In another embodiment, the micro-VMi may be implemented inside the VM (i.e., inside a same protection domain as the VM) using, e.g., one or more memory views as described further herein. However, whereas a micro-VM may be restricted to a single guest process, the hardware resources used by that micro-VM, such as memory, may be accessed by a plurality of micro-VMs (and their respective guest processes). As noted, there is only one virtual machine (e.g., the VM) per guest operating system on the endpoint. Typically, the guest operating system running in the VM has one “view” of the memory 220, i.e., “guest-physical” memory, corresponding to one nested page table. Accordingly, as described herein, a same nested page table (i.e., memory view) may be used by a plurality of guest processes, each contained in a separate corresponding micro-VM that uses a same nested page table. However, additional views of memory may be created for each guest process, such as where every view corresponds to a different (i.e., separate) nested page table. Thus, different guest processes may view the guest-physical memory differently (e.g., with different translations or different permissions to the host-physical memory).


In an embodiment, the micro-VM may be implemented as such a view (i.e., a guest-physical memory view) of the memory 220, i.e., controlling the host-physical memory (hardware resource) underlying the guest-physical view of memory. Notably, different guest processes 240 may run in different micro-VMs, each of which is controlled by the (same) guest monitor 352 (also controlling the VM) to thereby enable a global view of execution activity in the guest operating system. The micro-VM thus has properties similar to the typical VM, but with less overhead, i.e., no additional guest monitors. In terms of execution, operation of the guest process is controlled and synchronized by the guest operating system kernel 230; however, in terms of access to hardware resources (managed in host mode), operation of the process is controlled by the guest monitor 352. Access to hardware resources may be synchronized among the micro-VMs and the VM by the guest monitor 352 rather than virtually shared. Notably, certain types of hardware resources, such as memory, may not need express synchronization among micro-VMs. For example, each CPU core may have a single memory view (i.e., set of nested page tables) active at a time, so that express synchronization among memory views is unnecessary. As such, memory views may be assigned to multiple micro-VMs with implicit synchronization.


In an embodiment, the privileged interfaces 305 and 315 may be embodied as a set of defined hyper-calls, each of which is an operation that explicitly calls (explicit transition) into the micro-hypervisor. The hyper-calls may originate from one or more hyper-processes 350 of the virtualization layer 310 and are directed to the micro-hypervisor 320 over the privileged interface 315; alternatively, bi-directional communications may originate from a protected component (e.g., an agent) in the guest operating system directed to the micro-hypervisor (virtualization layer) over the privileged interface 305. A transition from the guest operating system to the virtualization layer 310 is called a VM exit. Such a transition may be implicit, e.g., an intercepted operation or page-protection violation, or explicit, such as a VMCALL instruction from guest mode to host mode. Further, as used herein, an inter-process communication (IPC) message between two hyper-processes requires two hyper-calls (i.e., one for each process) for bi-directional communication.


The policy manager 356 may contain computer executable instructions executed by the CPU 210 to perform operations that associate a protection policy with each guest process 240, as described further herein. The threat protection component 354 may include instrumentation logic implemented as heuristics configured to determine the presence of an exploit or malware in any suspicious guest operating system process (kernel or user mode). To that end, the threat protection component 354 may include software program code (e.g., executable machine code) in the form of instrumentation logic (including decision logic) configured to analyze one or more interception points originated by one or more guest processes 240 to invoke the services, e.g., accesses to the hardware resources, of the guest operating system kernel 230. Illustratively, the threat protection component 354 may contain computer executable instructions executed by the CPU 210 to perform operations that initialize and implement the instrumentation logic.


As used herein, an interception point is a point in an instruction stream where control passes to (e.g., is intercepted by) the virtualization layer 310, e.g., the micro-hypervisor 320. Illustratively, the micro-hypervisor can intercept execution inside the guest operating system at arbitrary points such as (i) inside any guest process, (ii) inside the guest operating system kernel, and/or (iii) on transitions between guest processes and the guest operating system kernel. Malicious behavior may then be analyzed by the virtualization layer (e.g., the threat protection component 354), wherein the behavior may occur anywhere in the guest operating system, including in any guest process or in the guest operating system kernel. The virtualization layer 310 may, thus, place interception points at appropriate instruction stream points, whether in a process or in the kernel.


The guest operating system kernel 230 may be configured to include an operating system (OS) specific extension or agent 360 adapted to communicate with the threat protection component 354. The agent 360 illustratively contains executable machine code in the form of logic configured to provide an interface to the threat protection component 354 that allows introspection (examination and/or interception) of contents of internal structures of the guest operating system kernel 230, as well as semantic context associated with such contents, as described herein. Such virtual machine introspection (VMI) may involve examination of data structures of the guest operating system kernel 230 in a manner that obviates duplication of (i.e., without copying) those structures between the guest and host modes of the virtualization architecture. To that end, the agent 360 may run in host mode ring 3 or guest mode ring 0; however, in an embodiment described herein, the agent 360 illustratively runs in guest mode ring 3. Accordingly, the agent 360 may contain computer executable instructions executed by the CPU 210 to perform operations that implement communication with, and introspection by, the threat protection component 354. For example, identification (ID) of each guest process 240 running in the guest operating system may be obtained from process IDs stored in a data structure, e.g., the process table 245, of the guest operating system. Instead of having to probe that data structure and with knowledge to extract its contents, the threat protection component 354 can instruct the agent to examine the process table 245 and provide the ID of the guest process 240. That is, the agent 360 operating in the guest mode may act on behalf callers (e.g., guest monitor 352) operating in the host mode to access (i.e., probe) data structures in the guest mode with knowledge to extract its contents. Accordingly, the agent may be configured with knowledge of the guest O/S data structures. Alternatively, the threat protection component may examine directly the memory used by the guest O/S (i.e., virtual machine introspection) to determine locations (and layout) of the process table 245 so as to determine the ID of the guest process 240. Illustratively, threat protection component 354 may communicate with the guest operating system (i.e., the agent 360) over a defined application programming interface (API) 365.


As a light-weight module, the micro-hypervisor 320 may provide a virtualization layer having less functionality than a typical hypervisor. Therefore, as used herein, the micro-hypervisor 320 is a module that is disposed or layered beneath (underlying, i.e., directly on native hardware and operating at a highest privilege level of that native hardware) the guest operating system kernel 230 and includes the functionality of a micro-kernel (e.g., protection domains, execution contexts, capabilities and scheduling), as well as a subset of the functionality of a hypervisor (e.g., management of virtual CPUs and their states, management of the MMU, IOMMU and other security-critical devices, as well as hyper-calls to implement a virtual machine monitor). Accordingly, the micro-hypervisor 320 may cooperate with the guest monitor 352 to provide additional virtualization functionality in an operationally and resource efficient manner. Unlike a type 1 or type 2 VMM (hypervisor), the guest monitor 352 is illustratively a type 0 VMM (VMM 0) that does not fully virtualize the hardware resources of the node 200, while supporting execution of one entire operating system/instance inside one virtual machine, i.e., the VM. The guest monitor 352 may thus instantiate the VM as a container for the guest processes 240, as well as the guest operating system kernel 230 and its hardware resources. Illustratively, the guest monitor 352 is a pass-through module configured to expose the hardware resources of the node (as controlled by micro-hypervisor) to the guest operating system kernel 230. Yet, virtualization processing in response to a VM exit (and a resulting transition of control flow from the guest operating system to the micro-hypervisor) may be performed by the guest monitor. To that end, the micro-hypervisor 320 may enable communication between the guest operating system (i.e., the VM) and the guest monitor over privileged interfaces 305 and 315.


In an embodiment, the micro-hypervisor 320 may include a plurality of data structures, such as objects 330 and capabilities 342, configured to provide security and isolation features associated with the virtualization architecture 300. Illustratively, the objects 330 include one or more protection domains 332, execution contexts 334 and scheduling contexts 336. As used herein, a protection domain 332 is a kernel mode object that implements spatial isolation among the hyper-processes of the virtualization layer and includes a representation of a security privilege associated with each hyper-process 350 that is enforced by the micro-hypervisor 320. Illustratively, each hyper-process 350 in the virtualization layer 310 runs in a separate protection domain 332. An execution context 334 is illustratively a representation of a thread associated with the hyper-process 350 and, to that end, defines a state of the thread for execution on the CPU 210. In an embodiment, the execution context 334 may include inter alia (i) contents of CPU registers, (ii) pointers/values on a stack, (iii) a program counter, and/or (iv) allocation of memory via, e.g., memory pages. The execution context 334 is thus a static view of the state of thread and, therefore, its associated hyper-process 350. For the thread to execute on a CPU, its execution context is tightly linked to a scheduling context 336, which may be configured to provide information for scheduling the execution context 334 for execution on the CPU 210. Illustratively, the scheduling context information may include a priority and a quantum time for execution of its linked execution context on CPU 210.


The micro-hypervisor 320 also includes a per-protection domain (PD) capability space 340 that contains capabilities 342A-N, wherein each capability 342 is a pointer to an object 330 having associated permissions (i.e., privileges). Hyper-processes 350 of the virtualization layer 310 do not have the ability to work with the capabilities 342 directly, i.e., they cannot read the pointer or privileges directly and can only refer to those capabilities using a capability selector 345, e.g., an integral number. To invoke a specific capability, a hyper-process 350, such as the guest monitor 352, may issue a hyper-call request (e.g., over interface 315) to the micro-hypervisor 320, wherein the request includes an action (e.g., “send a message” or “delegate a capability”) along with a corresponding capability selector, i.e., an index such as N, that identifies (names) the object 330 involved in the hyper-call. Illustratively, the capabilities 342 are used to name the object on which the hyper-call operates and, at the same time, convey the access permissions of the calling hyper-process on that object. In response to the request, the micro-hypervisor may access the per-PD capability space 340 to select the requested capability 342N, which names (e.g., points to) the object (e.g., scheduling context 336) on which the action is performed.


Illustratively, a capability 342 is a concept that is only known in the virtualization layer 310, i.e., the guest operating system is unaware of the capability. The capability 342 is essentially a mechanism to enforce security privileges among the hyper-processes 350 of the virtualization layer 310. Notably, each hyper-process 350 is provided only a minimal set of capabilities 342 necessary for that component to perform its assigned function. For example, the guest monitor 352 may have the capability to access the VM, while only the threat protection component 354 may have the capability to communicate with the guest monitor 352 and policy manager 356. Thus, an attacker that is able to compromise a hyper-process (protection domain 332) would only be able to inflict damage associated with the capabilities 342 held by that protection domain 332.


As described herein, certain events or activities, e.g., attempted access to hardware resources, of a guest process 240 may be treated as interception points that allow the virtualization layer 310 to further monitor or instrument the process using a spawned micro-VM. A system call is an example of an interception point at which a change in privilege modes or levels occurs in the guest operating system, i.e., from guest mode ring 3 (a lowest level of guest mode privilege) of the guest process 240 to guest mode ring 0 (a highest mode of guest mode privilege) of the guest operating system kernel 230. The guest monitor 352 may intercept the system call and examine a state of the process issuing (sending) the call. The instrumentation logic of threat protection component 354 may analyze the system call to determine whether the call is suspicious and, if so, instruct the guest monitor 352 to instantiate (spawn) one or more micro-VMs, managed by the guest monitor in cooperation with the threat protection component, to detect anomalous behavior which may be used in determining an exploit or malware.


As used herein, an exploit may be construed as information (e.g., executable code, data, one or more commands provided by a user or attacker) that attempts to take advantage of a computer program or system vulnerability, often employing malware. Typically, a vulnerability may be a coding error or artifact of a computer program that allows an attacker to alter legitimate control flow during processing of the computer program by an electronic device and, thus, causes the electronic device to experience undesirable or unexpected behaviors. The undesired or unexpected behaviors may include a communication-based or execution-based anomaly which, for example, could (1) alter the functionality of the electronic device executing application software in a malicious manner; (2) alter the functionality of the electronic device executing the application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. To illustrate, a computer program may be considered a state machine where all valid states (and transitions between states) are managed and defined by the program, in which case an exploit may be viewed as seeking to alter one or more of the states (or transitions) from those defined by the program. Malware may be construed as computer code that is executed by an exploit to harm or co-opt operation of an electronic device or misappropriate, modify or delete data. Conventionally, malware may often be designed with malicious intent, and may be used to facilitate an exploit. For convenience, the term “malware” may be used herein to describe a malicious attack, and encompass both malicious code and exploits detectable in accordance with the disclosure herein.


Memory Virtualization



FIG. 4 is a block diagram illustrating memory virtualization 400 that may be advantageously used with one or more embodiments described herein. The guest operating system kernel 230 may create one or more sets of guest page tables (GPT) 410, wherein there is typically one set of guest page tables per guest process 240 that perform a first translation from a guest virtual (linear) address 415 to a guest-physical address 425. Each guest process 240 typically runs in its own address space of guest-virtual addresses; to that end, the guest operating system kernel 230 creates one or more guest page tables 410, e.g., in the form of a guest page table hierarchy, associated with the address space of the guest process 240. When switching guest processes for execution on the CPU 210 during a context switch, the guest operating system kernel 230 swaps a prior guest page table hierarchy (of a prior process) for the guest page table hierarchy of the (current) process to be executed.


Virtualization provides one or more additional page tables, i.e., nested page tables (NPT) 430, layered underneath (i.e., nested with) the GPT 410. The nested page tables 430 may be utilized to perform a second translation from the guest-physical address 425 to a host-physical address 435, wherein the host-physical address 435 is an address used to access (physical) main memory 220. The translation of guest-physical address 425 to host-physical address 435 may be flexible, i.e., such translation may be implemented on a per page basis to determine how each guest-physical address 425 is translated to a host-physical address 435. Illustratively, translation from guest-physical addresses to host-physical addresses is controlled by the virtualization layer 310 to establish a mapping from the guest-physical addresses used in a VM (e.g., the VM) to a host-physical address in main memory 220.


In an embodiment, guest page tables 410 are part of a guest page table hierarchy that is controlled by the guest operating system kernel 230, and the nested page tables 430 are part of a nested page table hierarchy that is controlled by the virtualization layer 310, e.g., managed by the micro-hypervisor 320 in cooperation with the guest monitor 352. In one arrangement where the MMU hardware supports nested paging, the page table hierarchies may be organized as a two-stage (i.e., layered) translation arrangement of the (physical) MMU 215 (supporting a virtualized MMU via two-level page table hierarchies), where the page tables define the translation of a guest-virtual address 415 to a guest-physical address 425 (a first stage defined by the GPT) and, ultimately, to a host-physical address 435 (a second stage defined by the NPT). There, the guest operating system kernel 230 manages the guest page tables 410, the virtualization layer 310 manages the nested page tables 430, and the nested page tables are consulted by the MMU after the guest page tables. Hence, the nested page tables may be used to override permissions.


In an alternative arrangement where the MMU hardware does not support nested paging (e.g., it can only perform one-level translation), the guest page tables may be organized as a shadow page table arrangement synchronized with the nested page table hierarchy such that the shadow page tables provide guest-virtual address to host-physical address translations that are updated with changes to the guest page table hierarchy or nested page table hierarchy. The virtualization layer 310 is responsible for folding the guest page tables 410 (managed by the guest operating system kernel 230) and the nested page tables 430 (managed by the virtualization layer) together to create the shadow page tables so as to perform end-to-end translation from guest-virtual addresses to host-physical addresses. The MMU 215 then uses the shadow page tables for translating guest-virtual addresses to host-physical addresses as a single level translation. Accordingly, the shadow page tables are updated when the guest page tables or nested page tables change. It should be noted that either arrangement may provide additional functionality, wherein each translation stage may define access permissions on a page granularity. That is, for each page referenced by a page table, access permissions may be specified as to whether the page is readable (r) writeable (w), or executable (x). Note that sub-page protection may implemented when the MMU only provides page-granularity by write protecting a page having the sub-page to be protected and for any write violations that occur to non-protected portions of the page (i.e., outside the sub-page being protected), perform the write operation to that portion of the page on behalf of the guest O/S.


In an embodiment, the “ultra” (ultimate) translation to physical memory of the two-stage arrangement, i.e., the translation from guest-physical address 425 to host-physical address 435, may be employed to overwrite any page permissions that the guest operating system kernel 230 has defined. For example, assume the guest operating system kernel 230 has defined, using the GPT, a certain read (r), write (w), execute (x) mapping for a guest-virtual address 415 to guest-physical address 425 of a page accessible by a guest process 240, so that the guest process 240 may expect that it can actually read, write and execute that page. Yet, using the nested page tables 430 (i.e., layered beneath the GPT), the virtualization layer 310 may alter or change those permissions to be write protected, i.e., read-only (r) and execute (x) with no write permission, for the actual (host) physical page that the guest operating system kernel 230 (and guest process 240) may attempt to access. Therefore, any time that the guest process 240 attempts a write access to the page, an access violation of the nested page tables occurs, resulting in a VM exit (e.g., a transition) that returns control to the virtualization layer 310. Note that for the shadow page table arrangement, the violation occurs for a shadow page acting as a condensed two-stage address translation. In response to determining that the attempted write access is to a physical page that is write protected, the virtualization layer 310 may take action, such as emulating the access, making the page writeable, shadow copying the write, or completely nullifying the effects of that access. As another example, assume the guest operating system kernel 230 has marked the page as non-executable. The virtualization layer 310 may render the page executable or emulate the instruction that would have been executed if the page had been executed.


Memory Views


As noted, the micro-VM may be implemented as a view of the memory 220 (memory view) embodied as nested page table address mappings that control the host-physical memory underlying the guest-physical view of memory. Accordingly, the memory view is a hardware resource (i.e., a set of NPT tables) used by the micro-VM as a container (i.e., constraining access to memory) for one or more guest processes. The address space of each guest process 240 may be represented by the combination of the GPT and a memory view (e.g., NPT address mappings). Different guest processes 240 may run in different memory views, each of which is controlled by the guest monitor 352 associated with the VM to thereby enable a global view of execution activity in the guest operating system. In an embodiment, each memory view may have its own nested page table hierarchy that describes the guest-physical memory layout of the view (i.e., micro-VM); accordingly, the VM may implement one or more micro-VMs as memory views through different NPTs 430 of the nested page table hierarchies. A protection profile of each guest process, as described further herein, defines in which memory view (micro-VM) that guest process runs. The guest operating system kernel 230 and hardware resources may then be mapped into the memory views to ensure synchronization when accessing the guest operating system kernel and resources.



FIG. 5 is a block diagram illustrating one or more memory views that may be advantageously used with one or more embodiments described herein. In an embodiment, each guest process 240 runs in a micro-VM that encompasses an address space associated with a set of GPTs 410 of a guest page table hierarchy as controlled by the guest operating system kernel 230. For example, guest processes 240a,b,c run in micro-VM 0, wherein each guest process 240a,b,c has an address space associated with GPTs 410a,b,c, respectively. Similarly, guest processes 240d,e run in micro-VM 1, wherein each guest process 240d,e has an address space associated with GPTs 410d,e, respectively, and agent 360 runs in a micro-VM 2 having an address space associated with GPTs 410x. Moreover, each micro-VM may be implemented in the micro-hypervisor as a memory view 510 having an associated nested page table hierarchy.


Illustratively, each memory view 510 has its own set of NPTs 430 of a nested page table hierarchy associated with a micro-VM that describes the guest-physical memory layout of that view as controlled by the virtualization layer 310, e.g., managed by micro-hypervisor 320 in cooperation with the guest monitor 352. For example, memory view 510a has NPTs 430a associated with micro-VM 0, memory view 510b has NPTs 430b associated with micro-VM 1, and memory view 510c has NPTs 430c associated with micro-VM 2. As such, the VM may include one or more micro-VMs each having different nested page table hierarchies. Accordingly, one or more guest processes 240 along with the guest operating system kernel 230 run in a micro-VM, i.e., guest processes 240a,b,c and guest O/S kernel 230 run in micro-VM 0, guest processes 240d,e and guest O/S kernel 230 run in micro-VM 1, and agent 360 and guest O/S kernel 230 run in micro-VM 2.


When the guest operating system kernel 230 switches from one guest process 240 to another, the guest monitor 352 (VMM) observes the guest process switch and, in response, instructs the micro-hypervisor to swap (switch) to the NPT 430 that implements the memory view to which the switched process is assigned. Thus, if the guest monitor 352 observes a guest process switch from guest process 240a to guest process 240c (or from guest process 240d to guest process 240e), no NPT switching occurs and the memory view remains unchanged. However, in response to observing a guest process switch from guest process 240c to guest process 240e, the guest monitor 352 (in cooperation with the micro-hypervisor) switches from NPT 430a to NPT 430b. Likewise, in response to observing a switch from guest process 240d to the agent 360, the guest monitor switches from NPT 430b to NPT 430c. Because the guest operating system kernel 230 is mapped in all nested page table hierarchies, a change from one memory view (micro-VM) to another does not change the state of the guest operating system kernel, i.e., it appears as if the guest operating system kernel 230 “moves” from one memory view to another.


Advantageously, the assignment of guest processes to memory views (micro-VMs) is flexible and efficient. For example, guest processes that belong to a particular (default) protection profile may run in memory view 510a where the entire memory is visible, e.g., in guest mode, and no permissions have been overridden. Certain other guest processes may require a higher degree of protection/monitoring and may be assigned to memory view 510b where the guest monitor 352 may tighten (i.e., restrict) permission to certain memory pages. Likewise, certain trusted processes, such as agent 360, may be assigned to memory view 510c where certain memory pages are visible (i.e., accessible) that are not visible in the other memory views. In sum, one or more guest processes may be assigned to each memory view and a guest process may also be reassigned from one memory view to another.


Guest Process Protection


The embodiments described herein provide a technique for protecting guest processes 240 of guest operating system kernel 230 on a virtual machine (e.g., the VM) using the virtualization layer 310. As noted, the virtualization layer 310 may include a user mode portion having hyper-processes 350 and a kernel portion having the micro-hypervisor 320. Illustratively, the micro-hypervisor may cooperate with the hyper-processes of the virtualization layer 310 to protect the guest processes 240 against attack by one or more exploits that may employ malware. To that end, the guest process protection technique enables the micro-hypervisor and/or hyper-processes of the virtualization layer to determine (i) when the guest operating system switches to a guest process for execution, (ii) an identity of the guest process, and (iii) a protection policy to be associated with the guest process identity.


Switching to a guest process 240 for execution on CPU 210 may be determined using a control register of the CPU that is associated with a guest page table hierarchy. FIG. 6 is a block diagram of the guest page table hierarchy 600 including the control register that may be advantageously used with one or more embodiments described herein. As a hardware resource, the control register is virtualized by the virtualization layer 310 (i.e., the guest monitor 352) to create a virtual instance of the register in the VM; that is, the (physical) control register is virtualized as a virtual control register 610 for use by the guest operating system kernel. The two-stage translation arrangement may employ one guest page table hierarchy 600 per guest process 240; illustratively, a root (base) address for the guest page table hierarchy 600 is stored in the virtual control register 610 as defined by the CPU (processor) architecture. As noted, the processor architecture described herein is illustratively based on the x86 CPU and, accordingly, the virtual control register 610 may be embodied as CR3, which stores the base address of a page directory 620 associated with the guest page table hierarchy 600. Therefore, the content (value) of virtual control register (CR3) may be interpreted to represent the guest page table hierarchy 600 of the currently executing guest process 240 on a processor core of the VM.


In an embodiment, each processor core of CPU 210 has its own virtualized control register to enable access to the guest address space of the guest process 240. Thus, each value of the virtual control register (CR3) may reference (point to) a hierarchy of guest page tables, which list or enumerate all memory pages 660 in the guest virtual (linear) address space of the process 240. For example, the virtual control register 610 points to the base address of the page directory 620 of the hierarchy 600 and a first field 415A (e.g., predetermined high-order bits) of a guest-virtual address 415 points to a page directory entry of the page directory 620. The page directory entry 622 then points to the base address of a page table 640, while a second field 415B of the guest-virtual address 415 points to a page table entry 642 of the page table 640. The page table entry 642, in turn, points to the base address of a memory page 660 and a third field 415C (e.g., predetermined low-order bits) of the guest-virtual address 415 points to the guest-physical address 425 (offset) within the page 660. A similar hierarchy may be provided for the nested page tables 430 to translate the guest-physical address 425 to a host-physical address 435. In addition, the x86 CPU may support virtualized MMUs via a two-level page table hierarchy that provides layering (i.e., nesting) such that the virtual control register (CR3) provides a root for a first level of page tables (i.e., guest page table hierarchy) and a nested page table control register (EPT/NPT pointer) provides a root for a second level of page tables (i.e., nested page table hierarchy). Illustratively, the nested page tables are extended page tables (EPT) in x86 CPU from Intel and the NPT control register is an EPT base pointer register in the x86 CPU. As such, the EPT pointer may be accessible (i.e., visible) only to the virtualization layer, i.e., the root pointer of the second level of page tables (NPT) is not virtualized in the VM, so that the NPT control register (e.g., EPT base pointer) is invisible in the guest mode. Note that other CPU architectures, such as the x64 CPU from Advanced Micro Devices and the ARM CPU from ARM Holdings, may provide a similar two-level page table hierarchy with separate root pointer registers for each level.


In accordance with the guest process protection technique, the virtualization layer 310 (micro-hypervisor 320) is configured to intercept write accesses by the guest operating system kernel 230 to the virtual control register 610 to record changes to the content (value) of the register. That is, the virtual control register 610 is used to detect, e.g., at the virtualization layer 310, switching of guest processes 240 in the guest operating system. Specifically, the guest process protection technique is directed to use of a virtualized hardware resource, i.e., control register 610 whose content is changed (altered) on every guest process context switch in a VM (e.g., the VM), wherein a VM exit to the virtualization layer 310 is triggered when the content of that register changes. Illustratively, the control register is CR3 of x86 CPUs, although the technique may apply similarly to other CPU architectures (e.g., the x64 CPU from Advanced Micro Devices), because operating systems generally run each guest process in a separate virtual address space and the virtual-to-physical address space translation uses page tables hierarchies.


Switching from one process to another therefore requires switching page tables, which are rooted in the virtual control register 610. In an embodiment, intercepting access to that register enables determination of a switch from one guest page table hierarchy to another, which can be interpreted as a guest process switch. That is, upon detecting the guest operating system loading a new root address (value) into the virtual control register CR3, the virtualization layer 310 may determine that the guest operating system is activating a new set of guest page tables 410 and, thus, switching from a prior guest process associated with the prior guest page table hierarchy to the (new) guest process associated with the (new) guest page table hierarchy. The virtualization layer 310 may then determine the identity of the guest process associated with the guest page table hierarchy to enable a decision of whether to, e.g., protect or monitor the process.


Determination of the identity of the guest process requires, inter alia, distinguishing among other guest processes executing in the guest operating system. The virtualization layer 310 typically cannot determine the memory pages used by the guest processes 240, so as to distinguish among those processes by, e.g., determining their type or associated data structures, because the memory pages used for each guest process are stored in data structures known only to the guest operating system. However, the virtualization layer may obtain semantic context, such as read or write information, about a memory page 660 when accessed by a guest process 240 so as to determine the identity of that guest process. As such, in one or more embodiments, the guest process protection technique described herein may employ various approaches to determining the identity of the guest process using such semantic context.


A first approach involves the use of the agent 360 (i.e., an in-guest operating system component) to probe the guest processes 240 and communicate with the virtualization layer 310 (i.e., the threat protection component 354) regarding location and semantics of certain guest operating system data structures. As noted, the agent 360 is an operating system extension module that cooperates with the virtualization layer 310 to provide certain information, such as process creation and destruction. For example, when a new guest process is created in the guest operating system, the agent 360 may identify the process to the virtualization layer via activation of a guest page table hierarchy 600. That is, the agent may examine the process table 245 to acquire the identity of the new guest process 240 and then inform the virtualization layer 310 that the corresponding value of the virtual control register that points to the guest page table hierarchy 600 belongs to the new guest process 240. Upon destruction of the process, the agent may inform the virtualization layer to no longer track the value of the virtual control register because the corresponding process has been destroyed. Note that any process (including the agent) running at the guest mode privilege level operates at a same privilege level of the virtualization architecture 300 as an attacker and, thus, may be compromised (e.g., infiltrated) by the attacker. However, as described herein, the guest process protection technique may protect the agent 360 when operating in the guest mode privilege level.


A second approach to determining a guest process involves implementation of guest operating system specific knowledge in the virtualization layer. Illustratively, this approach may involve the use of virtual machine introspection (VMI) by the virtualization layer 310 to probe the memory of a VM for purposes of examining (i.e., parsing) guest operating system specific data structures to determine their layouts and linkages (i.e., memory forensics). For example, assume the virtualization layer 310 probes the VM memory (i.e., memory allocated to the VM) to parse guest operating system internal data structures, such as the PCB 235. Parsing of the PCB 235 for a guest address space may reveal a field having a path that includes a name for a guest process 240. The virtualization layer 310 may then deduce the identity of the guest process from the process name. Such sematic parsing may be implemented in the threat protection component 354 of the virtualization layer 310, which operates in host mode privilege level of the virtualization architecture 300 and, thus, beyond the privilege level of an attacker, which is typically at the privilege level of guest operating system. However, this approach is also operating system specific and, therefore, may be unreliable because a guest operating system upgrade or patch that changes the layouts of the data structures may result in misinterpretation of their content.


A third approach involves content analysis of the guest process 240, wherein one or more code pages of the process as marked by the guest page table hierarchy 600 are hashed to identify the process, i.e., the one or more code pages may be “fingerprinted” (hashed) so as to identify the process. FIG. 7 is a block diagram of the content analysis approach 700 of the guest process protection technique that may be advantageously used with one or more embodiments described herein. The virtualization layer 310 (i.e., the threat protection component 354) may perform the content analysis by examining the guest page table hierarchy 600 (rooted by register 610) to select all code pages 710 of the guest process 240 that are marked executable and hashing those pages (e.g., in accordance with hash function 720) to effectively hash (i.e., fingerprint) the code section 740 of the process. Accordingly, hashing of any instances of the guest process should produce a hash value 730 that is identical to a pre-computed hash value for the process taken into account any memory relocation of the process, as each instance of the guest process has an identical code section. As a result, if a hash function 720 having a substantially low collision rate is used to hash the code section 740 of a guest process 240 to produce a hash value 730 that is known (e.g., via a pre-computed hash value for the process), then the identity of the guest process can be determined from the known hash value. Monitoring and hashing of code pages 710 of guest processes 240 may also be performed to compare the resulting hashes or “signatures” against a database containing versions of known guest processes that have been accumulated over time so as to rapidly identify the processes and to perform a more thorough analysis, e.g., heuristic malware analysis.


It should be noted that the content analysis approach may be difficult to implement because hashing often cannot be performed on the entire guest process. As noted, the guest operating system has the ability to page the guest process 240; accordingly, a portion (not all) of the code pages 710 for the process may reside in main memory 220. For example, when the virtualization layer 310 first detects switching of the process into memory, the guest operating system may have only loaded one page from disk, i.e., the entire guest process image may not be present in memory 220. Nevertheless, during a VM exit or transition (switch) in privilege levels from guest mode to host mode, the virtualization layer 310 may use a current instruction pointer (e.g., via a program counter in a processor core of the VM) in the guest mode to determine from which code page 710 the process is executing. A hash value 730 may then be computed on a per page basis, wherein the hash values 730 of code pages 710 at particular guest (virtual) addresses are compared with hash values of codes pages at similar addresses of other guest processes to substantially reduce a number of candidate guest process identities, i.e., multiple candidate identities of a process from differing portions of the codes pages for that process.


Although the content analysis approach may include comparison of code page hashes with corresponding hashes of known (benign) guest processes to determine the identity of a guest process, the approach may be extended to determine when the guest process has been (suspiciously) modified. Such modification may trigger a raising of a suspiciousness level of the virtualization layer 310 if the comparison with known hashes does not match and, consequently, possible initiation of further instrumentation of the suspiciously modified process. For example, assume an attacker copies a code page 710 that was previously identified as a code page of a guest page table 410 for a guest process 240 and makes a minor change to the new (copied) page, as well as alters the page table to point to the new code page, i.e., effectively swapping the code page with the new modified code page. Since the technique described herein hashes pages and not page tables, the content of the different page that the altered page table references may be hashed to identify the process assuming, e.g., that the new code page is recently loaded from disk and, thus, is authentically part of the process. However, if the modified content of the code page includes the same code as the original code of the original page, the resulting hash value 730 may be the same. Moreover, the behavior of the guest process 240 is the same because the original code was replaced with a copy of that code, albeit on a separate memory page, i.e., the process still behaves in an expected way. Yet, if the attacker sufficiently modifies content of the guest process, e.g., changes a jump target to another address location, the modification may be reflected in the code page 710 and as a change in the resulting hash value 730. Although the changed hash value may not be known and may be assumed to be a recently loaded authentic code page, the virtualization layer 310 may monitor (instrument) multiple different pages to compute a likelihood of a particular identity of the guest process, e.g., where a substantial number (99%) of the pages appear to resemble the guest process. As such, when one or more pages (i.e., a threshold of pages) appear odd (i.e., do no match an existing hash for a code page of the process), the virtualization layer 310 may surmise (i.e., determine) that the guest process 240 is being attacked.


Once the identity of one or more guest processes are determined, mappings may be established and maintained in the virtualization layer 310 that associate particular instances of the processes with particular values of the virtual control register (CR3) 610. Such mappings enable the virtualization layer to name the different guest process instances solely by their virtual control register (CR3) values and, thus, distinguish the processes. The mapping may be established using any of the approaches described herein upon detecting (for the first time) the guest operating system switching to a virtual control register value that is unknown to the virtualization layer. For example, upon detecting creation of a new guest process, the agent 360 may inform the virtualization layer 310 as to the value of the virtual control register for the process 240. Since the guest process is unknown, the virtualization layer may perform an analysis on the guest page tables 410 or data structures to determine the identity of the process and then map the process to the virtual control register value.


Upon determining an identity of a guest process, the virtualization layer 310 may associate a protection policy with the guest process identity. FIG. 8 is a flow diagram illustrating application of the protection policy when switching to the guest process. In an embodiment, the policy manager 356 of the virtualization layer may be configured to associate a protection policy with each process identity. In one or more other embodiments, the guest monitor 352 and the threat protection component 354, as well as the policy manager 356 may cooperate to define the protection policy, which may be embodied as a protection profile 830 for the guest process. According to the technique, the protection profile 830 may (i) contain information about events that are intercepted by the virtualization layer, wherein the intercepted events may involve certain instructions or accesses, (ii) contain a reference to a nested page table hierarchy associated with the guest process, i.e., define the memory view in which the guest process runs (and to which the guest process is bound), and (iii) specify restrictions (e.g., embodied as permissions of nested page tables of the nested page table hierarchy) to be applied when the process is active. For example, assume that a guest process 240 may have known vulnerabilities, wherein exploits that target the process may exhibit similar behavior, such as overflowing a stack of the process. As a result, the protection profile applied to the process by the virtualization layer 310 may state that when the process is created or activated, apply permissions that render the stack non-executable.


More generally, the virtualization layer 310 may apply the protection profile 830a to override permissions 815aa of a page 710aa as defined by the guest page table (GPT) hierarchy 410a using higher priority permissions 825aa enforced by the nested page table (NPT) hierarchy 430a for that page on a per process (e.g., 240a,b) basis. For example, even though the guest operating system kernel 230 may mark the stack executable (i.e., pages of the stack have permissions in the GPT allowing execution) for a particular guest process 240, the virtualization layer 310 may render the stack non-executable (i.e., the pages of the stack have permissions in the NPT preventing execution) in host mode for that process. Alternatively, if the guest operating system kernel marks certain code pages 710aa of the process as writeable (e.g., permissions 815aa), the virtualization layer 310 may write protect those pages (i.e., mark the pages non-writable in permissions 825aa) in host mode. Although the protection profile 830a,b may apply different permissions (restrictions) for different instances of the guest process 240a,b, it is possible to apply similar restrictions for all instances of the process (e.g., a same protection profile enforcing identical permissions 825 of NPT 430). Note that whereas GPT permissions 815aa,ba may be associated with the GPT 410a,b for each guest process 240a,b along with a virtual control register value (i.e., root pointer to the respective GPT), the NPT 430a may be associated with a memory view (micro-VM) of the virtual machine (e.g., the VM) running the guest operating system so that the NPT permissions 725aa,ba may be applied to the NPT 430a of a nested page table hierarchy.


As noted, certain events or activities, e.g., attempted access to kernel resources, of a guest process 240 may be treated as interception points that allow the virtualization layer 310 to further monitor or instrument the process using a spawned micro-VM. In an embodiment, a hyper-breakpoint may be employed in connection with the protection profile to trigger an interception point. For example, upon activation of the guest process in the guest operating system, a hyper-breakpoint may be inserted in a code page 710 at an entry location (address) of a certain function, e.g., to check if the stack is intact or if a function is being called correctly from the proper address. If insertion of the breakpoint in the code page is detected, an attacker may refrain from any malicious activity, which is desirable as it deters that activity. However, if the hyper-breakpoint is not detected, the guest process protection technique described herein may employ the protection profile for the guest process to specify restrictions to be applied to the nested page table 430 when the process is active. For example, the virtualization layer 310 may modify the nested page table 430 to render the code page 710 execute-only, but not readable nor writeable, and insert a hyper-breakpoint in the page. When accessing the page, the guest process (or a version thereof that is compromised by an attacker) may traverse the hyper-breakpoint, which triggers an exit or switch to the virtualization layer. In particular, when the compromised process attempts to read the page, e.g., to detect whether it has been modified or instrumented, an interception point, such as a trap (e.g., NPT violation), may be invoked into the virtualization layer 310.


Upon trapping, the virtualization layer 310 may proceed in accordance with one or more options. One option may be to undo the breakpoint, restore the original content of the code page 710 and allow the compromised guest process to read the original content. The attacker may then determine that the content of the page is as expected and proceed accordingly. A second option may be to leave the page execute-only and emulate the effects of the read access (instruction) using, e.g., the instruction emulator of the guest monitor 352 for device accesses. Software emulation of the read instruction may obviate native execution of the instruction on the CPU 210, but may also allow the virtualization layer 310 to simulate the original content of the code location (i.e., return the original content as a result for the read of the location), thereby masking the hyper-breakpoint from the guest mode. For both options, the attacker may observe the expected value, while the hyper-breakpoint remains invisible to the guest process (or other processes) within the guest operating system (i.e., in guest mode).


In another embodiment, the hyper-breakpoint may be used in a situation where certain processes are activated. Here, the breakpoint may be applied not only in a user-space code section of the process (i.e., guest mode ring 3) but also in kernel-space (i.e., guest mode ring 0) to determine whether a guest process is calling certain APIs. For example, assume that the guest process 240 is not expected to access the network, e.g., via network interface 260. The virtualization layer 310 may insert a hyper-breakpoint on all systems calls to the guest operating system kernel 230 that have network-related functionality. If the process exhibits deviant (i.e., anomalous or malicious) behavior and attempts to access the network interface 260, the virtualization layer 310 may observe the process 240 issuing a system call related to the network and may classify this access as suspicious and, thus, respond accordingly.


The protection profile may also be used to protect certain properties of a guest process. Assume the in-guest component, i.e., the agent 360, is configured to call into and inform the virtualization layer 310 when a suspicious guest process 240 is activated (switched) in the guest operating system so that the virtualization layer can monitor the process. The agent 360 may also be configured to notify the virtualization layer when the guest process 240 is terminated or destroyed so that the virtualization layer can stop monitoring the process. However, an attacker could compromise the agent 360 and replace the call to the virtualization layer with other code that avoids announcing the process as suspicious, thereby evading detection. In other words, the attacker could modify the agent code in such a way that a process created by the attacker is not announced to the virtualization layer 310. However, such evasion may be innocuous because once the process is created and activated, a resulting change to the virtual control register (CR3) value may be detected by the virtualization layer. Nevertheless the attacker could further modify the agent code to inform the virtualization layer that the guest process associated with a particular CR3 value is benign so that the virtualization layer would only apply minimal protection and monitoring of the process. Thus, there is need to protect the agent against tampering, illustratively through use of the protection profile 830.


In an embodiment, the agent 360 may identify itself, e.g., upon initialization or startup in the guest operating system by issuing a call into the virtualization layer 310. In response, the virtualization layer may confirm the identity of the agent by comparing a hash value 730 of the entire code section 740 (executable code pages 710) of the agent with an expected hash value of that code section (i.e., a hash of all code pages of the agent). Once the identity of the agent is confirmed (thus indicating that the code is authentic and unmodified), the virtualization layer 310 may apply a protection profile 830 to the agent code that protects all of the code pages 710 of the agent 360 against modification by, e.g., rendering the pages execute-only. As a result, an attacker in the guest operating system is unable to write to those code pages, even though the guest page tables 410 may grant the pages write permission or the attacker may elevate the permissions to grant such write permission in the guest operating system. In other words, the nested page tables 430 would still enforce the protection profile that renders the pages write-protected, thus obviating the ability of the attacker to modify the agent code. Note that even if an attacker made a copy of the agent, e.g., prior to confirming the agent, that copy would include the same code with the same hash value and exhibit the same expected behavior, so the identity of the agent can be equally confirmed.


In another embodiment, the protection profile may be used to render a guest process (e.g., the agent process) visible when active, but invisible when inactive. Illustratively, in response to detecting a context switch to the agent process, the virtualization layer 310 marks the nested page table 430 to render the agent code pages readable and certain agent data structures writeable. Moreover, in response to detecting a context switch away from the agent, the nested page table 430 may be marked to render all of the agent code pages completely invisible, i.e., remove read, write and execute permissions in the NPT for those code pages. Thus, when inactive on a processor core, the agent's code pages appear “unplugged” from a main memory perspective, i.e., the pages seem to be not resident in memory 220. When the guest operating system switches back to the agent, the code pages may be made to reappear by again altering permissions (now allowing access) for those code pages in the NPT. Note that permissions for the code pages in the GPT, which is subject to attack in the guest mode, need not be altered other than pages used to translate access to the code pages themselves (i.e., pages storing portions of the GPT translating addresses of the code pages).


It should be noted that the agent 360 is an example of a unique guest process running in the guest operating system that cooperates with and is controlled by the virtualization layer 310. The unique guest process may be protected by altering the permissions of its pages (i.e., in the NPT) at the virtualization layer (micro-hypervisor) level between the time when the process is swapped into memory for execution (e.g., the pages are marked writeable and executable) and when the process is swapped out of memory (e.g., the pages are marked read-only or even rendered invisible by preventing all access) in order to protect the guest process against nefarious behavior in the guest operating system. Also the type of protection specified (and applied) by the protection profile 830 may vary depending on a desired level of security. That is, to protect the integrity of the unique guest process, it would be sufficient to render the pages write protected, which may allow an attacker to read the content of the pages. However, to also protect the confidentiality of the guest process, the pages would be rendered invisible to protect against reading of their content by the attacker.


Yet, the guest process protection technique described herein may be extended to apply the protection profile 830 to an arbitrary guest process 240 executing in the guest operating system. For example, the virtualization layer 310 may apply a protection profile to such a guest process wherein its code pages 710 are always render non-writable. Thus, if an attacker wants to modify code and the pages are not writable, the attacker cannot alter the code. In addition, the guest operating system may load a guest process into memory, at which point its memory pages 660 may be writeable. Once loaded into the memory pages, the virtualization layer 310 may employ the nested page table 430 to render the code pages 710 executable but without write permission, i.e., the pages are executable but the code in those pages are not alterable. Assume now that an attacker wants to modify the code of the guest process. Since the code is protected against writes, the attacker cannot modify the code because any writes attempted to those code pages 710 will result in a (NPT) page fault. Assume further that the attacker has guest mode kernel privileges in the guest operating system and, as such, adds write permission to the guest page table 410 for the code pages 710 of that guest process 240 to thereby allow the attacker to write to those code pages. Even in this scenario, the virtualization layer 310 may override the write permission in the GPT for those pages using the layered permissions in the nested page table 430. In another scenario, assume the attacker adds new code or data pages (as opposed to modifying existing permissions to the guest page table for the code pages). In this other scenario, the virtualization layer may detect additions to the GPT and again override any write permission in the GPT for those pages using the layered permissions in the nested page table. As such, the guest process protection technique may protect against: (i) pages being removed, (ii) pages being added; (iii) page permissions being modified; and (iv) translations (i.e., GPT address translations) being modified. Note that the technique may also be extended to protect equally guest operating system data structures in guest-physical memory.


In an embodiment, the protection profile 830 may apply to a guest process that is performance critical, wherein interception of any events for that process is not allowed. Accordingly, when the guest operating system kernel 230 switches to that guest process, the protection profile may specify that the virtualization layer 310 disable all intercepts and not apply any additional protection. Such a protection profile 830 may be part of a platform policy that extends from the appliance 200M to the endpoint 200E, similar to virus signatures that define policy which specifies actions for specific processes. Note that the policy (and protection profile) could change at run-time. For example, if many false positives are generated for a particular guest process 240 because the protection profile is sub-optimal, that protection profile could be updated (refined) and the updated profile distributed to all endpoints 200E to reduce the occurrence of false positives. Distribution of protection profiles may be further extended to updated policies defined for particular guest processes 240 that may be attacked by, e.g., a newly discovered exploit. The policy updates pushed to the endpoints 200E may specify that, for a particular application created as a guest process at the endpoints, a particular memory location targeted by the new exploit should be protected and, in response to a write request to that location, a specified action should be performed.


The guest process protection technique described herein generally requires precision in the protection profiles 830 applied to memory pages 660 because over-protection of a guest process 240 in the guest operating system may cause a plurality of traps to the virtualization layer 310, many of which may be false positives. For example, if a data page (rather than a code page) of a guest process is write-protected, then any legitimate writing of data in the process will trap to the virtualization layer, forcing the micro-hypervisor 320 to determine whether the access is allowable (a legitimate write) or not (a malicious write). However, such determinations are generally not performed efficiently. It is thus desirable to distinguish between data pages and code pages, and protect only the code pages 710 against writing (because writing to the data pages may be legitimate). Yet, the guest process protection technique is sufficiently flexible to render data pages write-protected for a particular guest process 240 and not for another, thus allowing the virtualization layer 310 on a per-process basis to sort data page writes and determine which of them are legitimate and which are malicious.


In order to make the protection of a guest process effective and complete, it may not be sufficient to just protect certain memory pages 660 via the CPU 210 (i.e., MMU 215) against modification by an attacker; other hardware may independently access and modify the memory (e.g., device 270 via I/O transactions to main memory 220). In an embodiment, upon making one or more memory pages write-protected at the nested page tables 430 of the MMU 215, the virtualization layer 310 may also render the pages write-protected at the IOMMU 255 so that an attacker is also unable to write to the page via a direct memory access (DMA) transaction. In general, the IOMMU 255 only allows read and write permissions for a device 270; thus the attacker cannot execute code from the device, although it can read and write a page in main memory 220. Assume the nested page table 430 is modified to mark a code page 710 with read and execute permissions (i.e., but not write permission), such that the attacker can execute the code page on the CPU 210, but cannot write to the code page 710 from the CPU. However, the attacker could configure the device 270 (or a system DMA controller) to issue a DMA transaction to write to the page 710 from the device 270 whose control it may have co-opted. Marking the code page 710 read-only in the IOMMU 255 would close such an attack avenue. Similarly, the page 710 may be marked non-readable in the IOMMU 255 to protect the page against reads for confidentiality purposes, i.e., to prevent the attacker from reading that page via a DMA transaction.


Advantageously, the guest process protection technique provides protection at the granularity of code pages (or sub-pages) for a guest process running in a guest operating system. To that end, the virtualization layer (including the micro-hypervisor) may monitor the switching of the guest page table hierarchy in the guest operating system kernel to determine when the guest process executes and then may identify the guest process through hashing of its code pages. The virtualization layer may thereafter utilize the nested page table hierarchy to apply protections for the process at the granularity of code pages (or sub-pages), as opposed to protecting a general address space of the entire guest operating system kernel. In other words, the technique enables identification of a particular process and application of a protection profile to that process alone.


While there have been shown and described illustrative embodiments for protecting a guest process of a guest operating system using a virtualization layer executing on a node of a network environment, it is to be understood that various other adaptations and modifications may be made within the spirit and scope of the embodiments herein. For example, embodiments have been shown and described herein with relation to deployment of the virtualization architecture 300 in endpoint 200E of network 130. However, the embodiments in their broader sense are not so limited, and may, in fact, provide for deployment of the virtualization architecture 300 in an appliance, such as MDS appliance 200M, of the network. In such a deployment, the virtualization layer 310 of the architecture may include the micro-hypervisor 320 and hyper-processes 350 described herein. However, instead of one or more micro-VMs, the virtualization architecture may employ one or more full VMs, wherein each VM may run a guest operating system (kernel and guest processes) associated with a guest monitor 352 and thread protection component 354. The use of a separate guest monitor 352 per VM isolates any error in the virtualization functionality that could be exploited by malware (triggered by an attacker) running in the VM to only the protection domain of the guest monitor, thereby preventing spread of the malware and obviating any performance impact on the other VMs. In addition, use of a separate threat protection component 354 for each VM facilitates use of different guest operating systems having different structures and organizations.


Moreover, the embodiments described herein may extend the guest process protection technique to allow protection of certain kernel data structures. For example, assume the virtualization layer is aware of the location of a run queue data structure of the guest operating system. The virtualization layer may write-protect that data structure to observe when changes occur to the run queue, such as writes that add a process or delete a process. However, there may again be a need to distinguish between legitimate and malicious writes. Furthermore, the virtualization layer 310 may protect a memory page containing the PCB 235 for a guest process 240 to observe an attempt to elevate privileges by modifying, e.g., user credentials. By protecting the page, the virtualization layer can observe accesses to the page and emulate any legitimate (permitted) accesses.


The foregoing description has been directed to specific embodiments. It will be apparent, however, that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. For instance, it is expressly contemplated that the components and/or elements described herein can be implemented as software encoded on a tangible (non-transitory) computer-readable medium (e.g., disks, electronic memory, and/or CDs) having program instructions executing on a computer, hardware, firmware, or a combination thereof. Moreover, the embodiments or aspects thereof can be implemented in hardware, firmware, software, or a combination thereof. In the foregoing description, for example, in certain situations, terms such as “engine,” “component” and “logic” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, engine (or component/logic) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but is not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, semiconductor memory, or combinatorial logic. Accordingly this description is to be taken only by way of example and not to otherwise limit the scope of the embodiments herein. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the embodiments herein.

Claims
  • 1. A system comprising: a memory configured to store a guest process, a guest operating system kernel and a virtualization layer;a memory management unit (MMU) coupled to and separate from the memory, the MMU including a guest page table hierarchy associated with the guest process; anda central processing unit (CPU) coupled to the MMU and adapted to execute the guest process, the guest operating system kernel and the virtualization layer, the CPU including a control register represented by a virtual control register within the virtualization layer, the virtualization layer, when executed, being operable to: determine that the guest operating system kernel is switching from a prior guest process to the guest process for execution on the CPU when an address for the guest page table hierarchy associated with the guest process is loaded into the virtual control register;determine an identity of the guest process associated with the guest page table hierarchy using at least one of an agent of the guest operating system, guest operating system specific knowledge, or content analysis of the guest process; andapply a protection profile associated with the identified guest process to override permissions of one or more memory pages of the guest process as defined by the guest page table hierarchy.
  • 2. The system of claim 1 wherein the guest process runs in an address space of guest-virtual addresses and has one or more guest page tables of the guest page table hierarchy associated with the address space.
  • 3. The system of claim 2 wherein, during a context switch when the guest operating system kernel switches from the prior guest process to the guest process, the guest operating system kernel changes a prior guest page table hierarchy associated with the prior guest process to the guest page table hierarchy of the guest process by loading the address of the guest page table hierarchy into the virtual control register.
  • 4. The system of claim 1 wherein each of the prior guest process and the guest process runs in a separate guest address space and one or more guest page tables form the guest page table hierarchy.
  • 5. The system of claim 1 wherein the virtualization layer when executed is further operable to communicate with the agent of the guest operating system to acquire the identity of the guest process from a guest operating system data structure.
  • 6. The system of claim 1 wherein the virtualization layer when executed is further operable to use the guest operating system specific knowledge to parse a guest operating system data structure to reveal a field having a path that includes a name for the guest process and to deduce the identity of the guest process from the process name.
  • 7. The system of claim 1 wherein the virtualization layer when executed is further operable to perform the content analysis of the guest process by hashing one or more code pages of the guest process marked by the guest page table hierarchy to identify the guest process.
  • 8. The system of claim 1 wherein the guest page table hierarchy is controlled by the guest operating system kernel to translate a guest-virtual address to a guest-physical address.
  • 9. The system of claim 8 wherein the MMU includes a nested page table hierarchy that is controlled by the virtualization layer to translate the guest-physical address to a host-physical address used to access the memory.
  • 10. The system of claim 9 wherein the virtualization layer when executed is further operable to override the permissions of the one or more memory pages of the guest process as defined by the guest page table hierarchy using the guest-physical address to host-physical address translation performed at the nested page table hierarchy on a per process basis.
  • 11. The system of claim 1 wherein the protection profile contains information about process events to be intercepted and specifies restrictions to be applied when the guest process is active.
  • 12. The system of claim 11 wherein the protection profile applies different restrictions for different instances of the guest process.
  • 13. The system of claim 11 wherein the protection profile applies similar restrictions for a plurality of instances of the guest process.
  • 14. The system of claim 1 wherein the virtualization layer including a user mode portion including one or more hyper-processes and a kernel portion including at least a micro-hypervisor that cooperate to virtualize the guest operating system kernel within the virtual machine and to make hardware resources of the system available for use by the guest operating system kernel.
  • 15. The system of claim 1, wherein the agent of the guest operating system is a protected component within the guest operating system communicatively coupled to a kernel portion of the virtualization layer over an interface.
  • 16. The method of claim 15 wherein the interface is a privileged interface embodied as a set of defined hyper-calls, each of the hyper-calls to communicate with a micro-hypervisor deployed within the kernel portion of the virtualization layer.
  • 17. A method comprising: storing one or more guest page tables of a guest page table hierarchy and one or more nested page tables of a nested page table hierarchy;storing an address for the guest page hierarchy in a virtual control register being part of a virtualization layer and corresponding to a control register of a central processing unit (CPU) of a node, the CPU being adapted to execute a guest process, a guest operating system kernel and the virtualization layer resident in a memory of the node;determining that the guest operating system kernel switches from a prior guest process to the guest process for execution on the CPU when the address for the guest page table hierarchy associated with the guest process is loaded into the virtual control register;determining an identity of the guest process associated with the guest page table hierarchy at the virtualization layer using at least one of an agent of the guest operating system, guest operating system specific knowledge, or content analysis or the guest process; andapplying a protection profile associated with the identified guest process at the virtualization layer to override permissions of one or more code pages of the guest process as defined by the guest page table hierarchy.
  • 18. The method of claim 17, wherein the determining that the guest operating system kernel switches from the prior guest process associated with the prior guest page table hierarchy to the guest process associated with the guest page table hierarchy includes intercepting a write access from the guest operating system kernel to the virtual control register.
  • 19. The method of claim 17 wherein using the agent of the guest operating system to determine the identity of the guest process associated with the guest page table hierarchy at the virtualization layer comprises communicating with the agent to acquire the identity of the guest process from a guest operating system data structure when the guest process is created.
  • 20. The method of claim 17 wherein wherein using the guest operating system specific knowledge to determine the identity of the guest process associated with the guest page table hierarchy at the virtualization layer comprises parsing a guest operating system data structure to reveal a field having a path that includes a name for the guest process and deducing the identity of the guest process from the process name.
  • 21. The method of claim 17 wherein using the content analysis of the guest process to determine the identity of the guest process associated with the guest page table hierarchy at the virtualization layer comprises hashing the code pages of the guest process marker by the guest page table hierarchy to identify the guest process.
  • 22. The method of claim 14 wherein the determining of the identity of the guest process associated with the guest page table hierarchy at the virtualization layer is conducted using one of an agent of the guest operating system, guest operating system specific knowledge, and content analysis of the guest process.
  • 23. The method of claim 17 wherein the virtualization layer including a user mode portion including one or more hyper-processes and a kernel portion including at least a micro-hypervisor that cooperate to virtualize the guest operating system kernel within the virtual machine and to make hardware resources of the system available for use by the guest operating system kernel.
  • 24. The method of claim 17, wherein the agent of the guest operating system is a protected component within the guest operating system communicatively coupled to a kernel portion of the virtualization layer over an interface.
  • 25. The method of claim 24, wherein the interface is a privileged interface embodied as a set of defined hyper-calls, each of the hyper-calls to communicate with a micro-hypervisor deployed within the kernel portion of the virtualization layer.
  • 26. A non-transitory computer readable media containing instructions for execution on a central processing unit (CPU) of a node that performs operations comprising: storing one or more guest page tables of a guest page table hierarchy and one or more nested page tables of a nested page table hierarchy;storing an address for the guest page table hierarchy in a virtual control register associated with the CPU, the CPU being adapted to execute a guest process, a guest operating system kernel and a virtualization layer resident in a memory of the node;determining that the guest operating system kernel switches from a prior guest process to the guest process for execution on the CPU when the address for the guest page table hierarchy associated with the guest process is loaded into the virtual control register;determining an identity of the guest process associated with the guest page table hierarchy at the virtualization layer using at least one of an agent of the guest operating system, guest operating system specific knowledge, or content analysis of the guest process; andapplying a protection profile associated with the identified guest process at the virtualization layer to override permissions of one or more memory pages of the guest process as defined by the guest page table hierarchy.
  • 27. The non-transitory computer readable media of claim 26 wherein the virtualization layer includes a user mode portion including one or more hyper-processes and a kernel portion including at least a micro-hypervisor that cooperate to virtualize the guest operating system kernel within the virtual machine and to make hardware resources of the node available for use by the guest operating system.
  • 28. The non-transitory computer readable media of claim 26 wherein the using of the agent of the guest operating system to determine the identity of the guest process associated with the guest page table hierarchy at the virtualization layer comprises communication with the agent to acquire the identity of the guest process from a guest operating system data structure when the guest process is created.
  • 29. The non-transitory computer readable media of claim 26 wherein the using of the guest operating system specific knowledge to determine the identity of the guest process associated with the guest page table hierarchy at the virtualization layer comprises parsing a guest operating system data structure to reveal a field having a path that includes a name for the guest process and deducing the identity of the guest process from the process name.
  • 30. The non-transitory computer readable media of claim 26 wherein the using of the content analysis of the guest process to determine the identity of the guest process associated with the guest page table hierarchy at the virtualization layer comprises hashing the code pages of the guest process marked by the guest page table hierarchy to identify the guest process.
  • 31. The non-transitory computer readable media of claim 26 wherein the applying of the protection profile associated with the identified guest process at the virtualization layer comprises overriding the permissions of the one or more code pages using a guest-physical address to host-physical address translation performed at the nest page table hierarchy.
  • 32. The non-transitory computer readable media of claim 26, wherein the instructions for execution performs the operation of determining that the guest operating system kernel switches from the prior guest process to the guest process comprises intercepting a write access from the guest operating system kernel to the virtual control register.
RELATED APPLICATION

The present application claims priority from commonly owned Provisional Patent Application No. 62/265,751, entitled TECHNIQUE FOR PROTECTING GUEST PROCESSES USING A LAYERED VIRTUALIZATION ARCHITECTURE, filed on Dec. 10, 2015, the contents of which are incorporated herein by reference.

US Referenced Citations (798)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5319776 Hile et al. Jun 1994 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5802277 Cowlard Sep 1998 A
5842002 Schnurer et al. Nov 1998 A
5960170 Chen et al. Sep 1999 A
5978917 Chi Nov 1999 A
5983348 Ji Nov 1999 A
6088803 Tso et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6154844 Touboul et al. Nov 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 Sorhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7058822 Edery et al. Jun 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7546638 Anderson et al. Jun 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937387 Frazier et al. May 2011 B2
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8104034 Drepper Jan 2012 B2
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225317 Chiueh et al. Jul 2012 B1
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8271978 Bennett et al. Sep 2012 B2
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8387046 Montague Feb 2013 B1
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479286 Dalcher et al. Jul 2013 B2
8479291 Bodke Jul 2013 B1
8479292 Li et al. Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522236 Zimmer et al. Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566476 Shifter et al. Oct 2013 B2
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8656482 Tosa et al. Feb 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8775715 Tsirkin et al. Jul 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793278 Frazier et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832352 Tsirkin et al. Sep 2014 B2
8832829 Manni et al. Sep 2014 B2
8839245 Khajuria et al. Sep 2014 B1
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881271 Butler, II Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8949257 Shiffer et al. Feb 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9003402 Carbone et al. Apr 2015 B1
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9092625 Kashyap Jul 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106630 Frazier et al. Aug 2015 B2
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9268936 Butler Feb 2016 B2
9275229 LeMasters Mar 2016 B2
9282109 Aziz et al. Mar 2016 B1
9292686 Ismael et al. Mar 2016 B2
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9355247 Thioux et al. May 2016 B1
9356944 Aziz May 2016 B1
9363280 Rivlin et al. Jun 2016 B1
9367681 Ismael et al. Jun 2016 B1
9398028 Karandikar et al. Jul 2016 B1
9413781 Cunningham et al. Aug 2016 B2
9426071 Caldejon et al. Aug 2016 B1
9430646 Mushtaq et al. Aug 2016 B1
9432389 Khalid et al. Aug 2016 B1
9436619 Woolley Sep 2016 B2
9438613 Paithane et al. Sep 2016 B1
9438622 Staniford et al. Sep 2016 B1
9438623 Thioux et al. Sep 2016 B1
9459901 Jung et al. Oct 2016 B2
9459912 Durniak et al. Oct 2016 B1
9467460 Otvagin et al. Oct 2016 B1
9483644 Paithane et al. Nov 2016 B1
9495180 Ismael Nov 2016 B2
9497213 Thompson et al. Nov 2016 B2
9507935 Ismael et al. Nov 2016 B2
9516057 Aziz Dec 2016 B2
9519782 Aziz et al. Dec 2016 B2
9536091 Paithane et al. Jan 2017 B2
9537972 Edwards et al. Jan 2017 B1
9560059 Islam Jan 2017 B1
9565202 Kindlund et al. Feb 2017 B1
9591015 Amin et al. Mar 2017 B1
9591020 Aziz Mar 2017 B1
9594904 Jain et al. Mar 2017 B1
9594905 Ismael et al. Mar 2017 B1
9594912 Thioux et al. Mar 2017 B1
9609007 Rivlin et al. Mar 2017 B1
9626509 Khalid et al. Apr 2017 B1
9628498 Aziz et al. Apr 2017 B1
9628507 Haq et al. Apr 2017 B2
9633134 Ross Apr 2017 B2
9635039 Islam et al. Apr 2017 B1
9641546 Manni et al. May 2017 B1
9654485 Neumann May 2017 B1
9661009 Karandikar et al. May 2017 B1
9661018 Aziz May 2017 B1
9674298 Edwards et al. Jun 2017 B1
9680862 Ismael et al. Jun 2017 B2
9690606 Ha et al. Jun 2017 B1
9690933 Singh et al. Jun 2017 B1
9690935 Shiffer et al. Jun 2017 B2
9690936 Malik et al. Jun 2017 B1
9736179 Ismael Aug 2017 B2
9740857 Ismael et al. Aug 2017 B2
9747446 Pidathala et al. Aug 2017 B1
9756074 Aziz et al. Sep 2017 B2
9773112 Rathor et al. Sep 2017 B1
9781144 Otvagin et al. Oct 2017 B1
9787700 Amin et al. Oct 2017 B1
9787706 Otvagin et al. Oct 2017 B1
9792196 Ismael et al. Oct 2017 B1
9824209 Ismael et al. Nov 2017 B1
9824211 Wilson Nov 2017 B2
9824216 Khalid et al. Nov 2017 B1
9825976 Gomez et al. Nov 2017 B1
9825989 Mehra et al. Nov 2017 B1
9838408 Karandikar et al. Dec 2017 B1
9838411 Aziz Dec 2017 B1
9838416 Aziz Dec 2017 B1
9838417 Khalid et al. Dec 2017 B1
9846592 Sarangdhar et al. Dec 2017 B2
9846776 Paithane et al. Dec 2017 B1
9876701 Caldejon et al. Jan 2018 B1
9888016 Amin et al. Feb 2018 B1
9888019 Pidathala et al. Feb 2018 B1
9910988 Vincent et al. Mar 2018 B1
9912644 Cunningham Mar 2018 B2
9912681 Ismael Mar 2018 B1
9912684 Aziz et al. Mar 2018 B1
9912691 Mesdaq et al. Mar 2018 B2
9912698 Thioux et al. Mar 2018 B1
9916440 Paithane et al. Mar 2018 B1
9921978 Chan et al. Mar 2018 B1
9934376 Ismael Apr 2018 B1
9934381 Kindlund et al. Apr 2018 B1
9946568 Ismael et al. Apr 2018 B1
9954890 Staniford et al. Apr 2018 B1
9973531 Thioux May 2018 B1
10002252 Ismael et al. Jun 2018 B2
10019338 Goradia et al. Jul 2018 B1
10019573 Silberman et al. Jul 2018 B2
10025691 Ismael et al. Jul 2018 B1
10025927 Khalid et al. Jul 2018 B1
10027689 Rathor et al. Jul 2018 B1
10027690 Aziz et al. Jul 2018 B2
10027696 Rivlin et al. Jul 2018 B1
10033747 Paithane et al. Jul 2018 B1
10033748 Cunningham et al. Jul 2018 B1
10033753 Islam et al. Jul 2018 B1
10033759 Kabra et al. Jul 2018 B1
10050998 Singh Aug 2018 B1
10068091 Aziz et al. Sep 2018 B1
10075455 Zafar et al. Sep 2018 B2
10083302 Paithane et al. Sep 2018 B1
10084813 Eyada Sep 2018 B2
10089461 Ha et al. Oct 2018 B1
10097573 Aziz Oct 2018 B1
10104102 Neumann Oct 2018 B1
10108446 Steinberg et al. Oct 2018 B1
10121000 Rivlin et al. Nov 2018 B1
10122746 Manni et al. Nov 2018 B1
10133863 Bu et al. Nov 2018 B2
10133866 Kumar et al. Nov 2018 B1
10146810 Shiffer et al. Dec 2018 B2
10148693 Singh et al. Dec 2018 B2
10165000 Aziz et al. Dec 2018 B1
10169585 Pilipenko et al. Jan 2019 B1
10176321 Abbasi et al. Jan 2019 B2
10181029 Ismael et al. Jan 2019 B1
10191861 Steinberg et al. Jan 2019 B1
10192052 Singh et al. Jan 2019 B1
10198574 Thioux et al. Feb 2019 B1
10200384 Mushtaq et al. Feb 2019 B1
10210329 Malik et al. Feb 2019 B1
10216927 Steinberg Feb 2019 B1
10218740 Mesdaq et al. Feb 2019 B1
10242185 Goradia Mar 2019 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030021728 Sharpe et al. Jan 2003 A1
20030037089 Cota-Robles et al. Feb 2003 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030120856 Neiger et al. Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040006473 Mills et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050216759 Rothman et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060130060 Anderson et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Glide et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248528 Oney et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006227 Kinney et al. Jan 2007 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070019286 Kikuchi Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070180454 Fujimoto et al. Aug 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20070300227 Mall et al. Dec 2007 A1
20080005782 Aziz Jan 2008 A1
20080018122 Zierler et al. Jan 2008 A1
20080028124 Tago Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080065854 Schoenberg et al. Mar 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080244206 Heo et al. Oct 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080294808 Mahalingam et al. Nov 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013149 Uhlig et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090106754 Liu et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144510 Wibling et al. Jun 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172661 Zimmer et al. Jul 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shiffer et al. Aug 2009 A1
20090198670 Shiffer et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100023810 Stolfo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100031360 Seshadri Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100254622 Kamay et al. Oct 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299665 Adams Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110004935 Moffie et al. Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047542 Dang et al. Feb 2011 A1
20110047544 Yehuda et al. Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110153909 Dong Jun 2011 A1
20110167422 Eom et al. Jul 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110296412 Banga et al. Dec 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20110320556 Reuther Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120047580 Smith et al. Feb 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084517 Post et al. Apr 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120093160 Tonsing et al. Apr 2012 A1
20120096553 Srivastava et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120254995 Sallam Oct 2012 A1
20120255002 Sallam Oct 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255016 Sallam Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120255021 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120272241 Nonaka et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120311708 Agarwal et al. Dec 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130031374 Thom et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130055256 Banga et al. Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130125115 Tsirkin et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130145055 Kegel et al. Jun 2013 A1
20130145471 Richard et al. Jun 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130191924 Tedesco et al. Jun 2013 A1
20130174147 Sahita Jul 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191824 Muff Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227680 Pavlyushchik Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130282776 Durrant et al. Oct 2013 A1
20130283370 Vipat Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130305006 Altman et al. Nov 2013 A1
20130312099 Edwards Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20130332926 Jakoljevic et al. Dec 2013 A1
20130333033 Khesin Dec 2013 A1
20130346966 Natu et al. Dec 2013 A1
20130347131 Mooring et al. Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140115652 Kapoor Apr 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shiffer et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140280245 Wilson Sep 2014 A1
20140281560 Ignatchenko et al. Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham et al. Nov 2014 A1
20140351810 Pratt Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380009 Lemay Dec 2014 A1
20140380308 Hassine et al. Dec 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150085665 Kompella et al. Mar 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq et al. Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150199513 Ismael et al. Jul 2015 A1
20150199514 Tosa Jul 2015 A1
20150199531 Ismael et al. Jul 2015 A1
20150199532 Ismael Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150242227 Nair Aug 2015 A1
20150269004 Gainey, Jr. Sep 2015 A1
20150355919 Gatherer et al. Dec 2015 A1
20150372980 Eyada Dec 2015 A1
20160004869 Ismael et al. Jan 2016 A1
20160006756 Ismael et al. Jan 2016 A1
20160044000 Cunningham Feb 2016 A1
20160048464 Nakajima et al. Feb 2016 A1
20160055017 Beveridge et al. Feb 2016 A1
20160110291 Gordon et al. Apr 2016 A1
20160127393 Aziz et al. May 2016 A1
20160132351 Kashyap et al. May 2016 A1
20160147993 Xu May 2016 A1
20160191547 Zafar et al. Jun 2016 A1
20160191550 Ismael et al. Jun 2016 A1
20160246730 Gandhi et al. Aug 2016 A1
20160261612 Mesdaq et al. Sep 2016 A1
20160285914 Singh et al. Sep 2016 A1
20160299851 Mattson, Jr. Oct 2016 A1
20160301703 Aziz Oct 2016 A1
20160306749 Tsirkin Oct 2016 A1
20160335110 Paithane et al. Nov 2016 A1
20170083703 Abbasi et al. Mar 2017 A1
20170262306 Wang et al. Sep 2017 A1
20180013770 Ismael Jan 2018 A1
20180048660 Paithane et al. Feb 2018 A1
20180121316 Ismael et al. May 2018 A1
20180288077 Siddiqui et al. Oct 2018 A1
Foreign Referenced Citations (21)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
02006928 Jan 2002 WO
0223805 Mar 2002 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012135192 Oct 2012 WO
2012145066 Oct 2012 WO
WO2012135192 Oct 2012 WO
2012154664 Nov 2012 WO
WO2012154664 Nov 2012 WO
2012177464 Dec 2012 WO
WO-2012177464 Dec 2012 WO
2013067505 May 2013 WO
2013091221 Jun 2013 WO
WO-2013091221 Jun 2013 WO
2014004747 Jan 2014 WO
WO-2014004747 Jan 2014 WO
Non-Patent Literature Citations (102)
Entry
Amiri Sani, Ardalan, et al. “I/O paravirtualization at the device file boundary.” ACM SIGPLAN Notices 49.4 (2014), pp. 319-332.
“Bromium vSentry—Defeat the Unknown Attack,” Oct. 10, 2013, 11 pages.
Bromium Corp, “Bromium vSentry, Defeat of the Unknown Attack,” downloaded from http://www.bromium.com/sites/default/files/Bromium-Whitepaper-vSentry_2.pdf on Dec. 1, 2013.
Bromium Corp, “Live Attack Visualization and Analysis, What does a Malware attack look like?” http://www.bromium.com/sites/default/files/Bromium%20LAVA%20WP_2.pdf on Dec. 1, 2013.
Chen, Peter M., and Brian D. Noble. “When virtual is better than real [operating system relocation to virtual machines].” Hot Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop on. IEEE, 2001.
Gao, Debin, Michael K. Reiter, and Dawn Xiaodong Song. “On Gray-Box Program Tracking for Anomaly Detection.” USENIX security symposium. 2004.
Garfinkel, Tal, and Mendel Rosenblum. “A Virtual Machine Introspection Based Architecture for Intrusion Detection.” NDSS. 2003.
Gerzon, Gideon—“Intel® Virtualization Technology Processor Virtualization Extensions and Intel® Trusted execution Technology.” (2007), 53 pages.
Heiser, Gernot, and Ben Leslie. “The OKL4 Microvisor: Convergence point of microkernels and hypervisors.” Proceedings of the first ACM asia-pacific workshop on Workshop on systems. ACM, 2010.
Hofmeyr, Steven A., Stephanie Forrest, and Anil Somayaji. “Intrusion detection using sequences of system calls.” Journal of computer security 6.3 (1998): 151-180.
Huang, Yih, et al. “Efficiently tracking application interactions using lightweight virtualization.” Proceedings of the 1st ACM workshop on Virtual machine security. ACM, 2008.
Intel—“Intel 64 and IA-32 Architectures Software Developer's Manual, vol. 3B: System Programming Guide.” Part 2, 2011, (Section 2.83, pp. 51-59), 1026 pages.
Iqbal, Asif, Nayeema Sadeque, and Rafika Ida Mutia. “An overview of microkernel, hypervisor and microvisor virtualization approaches for embedded systems.” Report, Department of Electrical and Information Technology, Lund University, Sweden 2110 (2009), 15 Pages.
Iqbal, et al.,—“An Overview of Microkernel, Hypervisor and Microvisor Virtualization Approaches for Embedded Systems,” Department of Electrical and Information Technology, Lund University, Sweden, Aug. 26, 2013, 15 pages.
Jiang, Xuxian, Xinyuan Wang, and Dongyan Xu. “Stealthy malware detection through vmm-based out-of-the-box semantic view reconstruction.” Proceedings of the 14th ACM conference on Computer and communications security. ACM, 2007.
Jones, Stephen T., Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. “Antfarm: Tracking Processes in a Virtual Machine Environment.” USENIX Annual Technical Conference, General Track. 2006.
Kapravelos, Alexandros, et al. “Revolver: An Automated Approach to the Detection of Evasive Web-based Malware.” USENIX Security Symposium. 2013.
King, Samuel T., and Peter M. Chen. “SubVirt: Implementing malware with virtual machines.” Security and Privacy, 2006 IEEE Symposium on. IEEE, 2006, 14 Pages.
Kivity et al. “kvm: the Linux virtual machine monitor.” Proceedings of the Linux symposium. vol. 1. 2007, 8 pages.
Kosoresow, Andrew P., and Steven A. Hofmeyr. “Intrusion detection via system call traces.” IEEE software 14.5 (1997): 35-42.
Laureano, Marcos, Carlos Maziero, and Edgard Jamhour. “Intrusion detection in virtual machine environments.” Euromicro Conference, 2004. Proceedings. 30th. IEEE, 2004.
Levin, Thomas E., Cynthia E. Irvine, and Thuy D. Nguyen. Least privilege in separation kernels. Naval Postgraduate School Monterey CA Dept of Computer Science, 2006.
Nguyen, Anh M., et al. “Mavmm: Lightweight and purpose built vmm for malware analysis.” Computer Security Applications Conference, 2009. ACSAC'09. Annual. IEEE, 2009.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, International Searching Authority, International Application No. PCT/US2014/071847, dated Mar. 26, 2015, 16 pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, International Searching Authority, International Application No. PCT/US2014/071879, dated Apr. 28, 2015, 12 pages.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, International Searching Authority, International Application No. PCT/US2014/071923, dated Mar. 26, 2015, 13 pages.
Shah et al “Hardware-assisted Virtualization,” 15-612 Operating System Practicum Carnegie Mellon University, Sep. 8, 2013, 28 pages.
Steinberg, Udo, and Bernhard Kauer. “NOVA: a microhypervisor-based secure virtualization architecture.” Proceedings of the 5th European conference on Computer systems. ACM, 2010, 14 Pages.
Stumpf, Frederic, et al. “An approach to a trustworthy system architecture using virtualization.” Autonomic and trusted computing. Springer Berlin Heidelberg, 2007. 191-202.
Sun, Kun, et al. “SecureSwitch: BIOS-Assisted Isolation and Switch between Trusted and Untrusted Commodity OSes.” George Mason Feb. 26, 2013, 15 pages.
Wafaa, Andrew—“Introducing the 64-bit ARMv8 Architecture” Open Source Arm Ltd. EuroBSDCon conference, Malta, Sep. 28-29, 2013, 20 pages.
Wojtczuk, Rafal. “Subverting the Xen hypervisor.” Black Hat USA 2008 (2008), pages.
Yan, Lok Kwong, et al. “Transparent and Extensible Malware Analysis by Combining Hardware Virtualization and Software Emulation.” Internet Society, 2010. Downloaded from https://www.internetsociety.org/sites/defaut/files/05_1.pdf, 1 page.
U.S. Appl. No. 15/229,770, filed Aug. 5, 2016 Non-Final Office Action dated Nov. 2, 2017.
U.S. Appl. No. 15/229,770, filed Aug. 5, 2016 Notice of Allowance dated May 18, 2018.
U.S. Appl. No. 15/237,377, filed Aug. 15, 2016 Advisory Action dated Oct. 19, 2018.
U.S. Appl. No. 15/237,377, filed Aug. 15, 2016 Final Rejection dated Jul. 10, 2018.
U.S. Appl. No. 15/237,377, filed Aug. 15, 2016 Non-Final Rejection dated Feb. 6, 2019.
U.S. Appl. No. 15/237,377, filed Aug. 15, 2016 Non-Final Rejection dated Jan. 18, 2018.
U.S. Appl. No. 15/257,704, filed Sep. 6, 2016 Non-Final Office Action dated Mar. 12, 2018.
U.S. Appl. No. 15/257,704, filed Sep. 6, 2016 Notice of Allowance dated Sep. 19, 2018.
U.S. Appl. No. 15/199,871, filed Jun. 30, 2016.
U.S. Appl. No. 15/199,873, filed Jun. 30, 2016.
U.S. Appl. No. 15/199,876, filed Jun. 30, 2016.
U.S. Appl. No. 15/199,882, filed Jun. 30, 2016.
Venezia, Paul, “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.sp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo, et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris, “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C., et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001).
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cohen, M.I., “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M., et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14.
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W., et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-d/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013).
Kim, H., et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003).
Kreibich, C., et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J., “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th Intemational Conference on Parallel and Distributed Systems, pp. 706-711.
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Moore, D., et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt, “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J., et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Nojiri, D., et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S., et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Thomas H. Ptacek, and Timothy N. Newsham, “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
Provisional Applications (1)
Number Date Country
62265751 Dec 2015 US