Automated teller machines (ATMs) are devices that provide banking services to a user. Typically, an ATM may be operated by the user first swiping or inserting a card into the ATM and entering a personal identification number. The card may include magnetic information and/or one or more electronic chips that may be used by the ATM to obtain account information. The ATM may then be used to provide one or more available services to the user. One service that ATMs commonly provide is dispensing cash (e.g., bills) to a user from an account of the user. Once the user selects that service and indicates an amount of cash to dispense, the ATM then dispenses the amount of cash to the user via a dispensing door or slot.
One existing method of cash theft from ATM users is to hide, block, or conceal the dispensing door or slot from the user using a cover over the dispensing door or slot connected to a container. When the user attempts to withdraw cash from the ATM, the cover blocks user access to the cash and places the cash into the container. The container is then later collected by thieves. What is needed is a technique to assure users and the ATM itself that the ATM cash dispenser is accessible to the user.
This disclosure relates generally to devices including a cash dispensing mechanism. More particularly, but not by way of limitation, aspects of the present disclosure relate to an electronic device, comprising one or more processors, a user interface, a bill dispensing mechanism in a dispensing area, the bill dispensing area having a first sensor, and a non-transitory program storage device comprising instructions stored thereon to cause the one or more processors to receive, from the user interface, a request to dispense a bill, receive, from the first sensor, a first signal indicating a first touch on the first sensor in the bill dispensing area, and dispense the bill based on the received first signal indicating the first touch.
Another aspect of the present disclosure relates to a system, comprising one or more processors, a user interface, a bill dispensing mechanism in a dispensing area, the bill dispensing mechanism including a dispensing area having a first sensor, and a non-transitory program storage device comprising instructions stored thereon to cause the one or more processors to receive, from the user interface, a request to dispense a bill, receive, from the first sensor, a first signal indicating a first touch on the first sensor in the bill dispensing area, and dispense the bill based on the received first signal indicating the first touch.
Another aspect of the present disclosure relates to a method, the method including receiving, from a user interface, a request to dispense a bill, receiving, from a first sensor disposed on a dispensing area, a first signal indicating a first touch on the first sensor in the dispensing area, and dispensing the bill based on the received first signal indicating the first touch.
It may be understood that while techniques herein are discussed in the context of a dedicated ATM device, nothing in this disclosure is meant to limit these techniques to such devices. Rather, the techniques discussed herein are readily applicable across a broad range of devices machines, including, but not limited to an unattended machine configured to provide banking services, including dispensing cash, devices that are not specifically designed as an ATM, but are capable of dispensing cash, and other such devices.
For a detailed description of various examples, reference will now be made to the accompanying drawings in which:
In addition, in certain embodiments, ATM 100 may be any type of device that dispenses any tangible item to a user. For example, ATM 100 may also encompass an automatic dispensing machine like an automated drug cabinet, a vending machine, a ticket dispenser, fluid dispenser, or any type of dispensing device that dispenses an item to a user. Additionally, keyboard 104 may be any input device that can receive information (e.g., text, touch, gestures, facial recognition) from the user. Likewise, card slot 108 may be any type of input device that can identify either the user (e.g., a biometric scanner) or receive an item (e.g., insurance card, driver's license, passport, etc.) to identify a property associated with the user (e.g., a card scanner, radio-frequency transceiver, infrared scanner, etc.) Moreover, cash dispenser door 112 may include any type of door, covering, shield, and/or guard that prevents or impedes access to an item that is being dispensed.
Increasingly, cash is being stolen from ATM users through the use of a cover or other blocker which hides or otherwise blocks access to an ATM cash dispenser. Generally; when the ATM user attempts to withdraw cash from an ATM with a covered cash dispenser, the cash is taken from the cash dispenser and placed into a container that a thief can access at a later time. These covers and blockers can be difficult to detect by users as the thieves have become increasingly skilled at disguising the covers and blockers. Detecting these covers and blockers reliably can be difficult using existing sensors typically found on ATMs, and new detection techniques can be costly to develop and implement. While discussed in the context of an ATM, it may be understood that aspects of the present disclosure may be desirable for other devices capable of dispensing items to a user, such as an automated drug cabinet, a vending machine, an automated locker, fluid dispenser, or other item dispenser.
A user needs to be able to access the cash dispenser slot or door in order to be able to obtain cash from the case dispenser slot. One or more sensors may be placed in a cash dispensing area where the cash dispensing area includes the mechanism used to dispense the cash as well as the dispenser door or slot. In one example, the one or more sensors are located as close as practicable to the cash dispenser door or slot. For example, the one or more sensors may be within approximately two inches of a dispenser slot. In another example, the one or more sensors are located on the cash dispenser door or slot. The sensors help determine whether the user is able to access the cash dispenser. In certain cases, the sensor may attempt to characterize the environment directly around the cash dispenser. For example, a proximity sensor or optical light sensor may be placed on the door or slot. In other cases, the sensor may attempt to verify the user, such as using a fingerprint reader or iris scanner integrated into the cash dispenser door or slot.
In certain cases, a touch sensor may be used. A touch sensor falls in between an environment type sensor and an identity based sensor generally in terms of complexity and user involvement. Generally, if a user is able to touch the cash dispenser slot or door, then the user has access to the cash dispenser slot or door.
Having the user physically interact with the dispenser door 202 can assure the user that they can access cash dispensed by the ATM prior to actually dispensing the cash. Similarly, the touch sensitive area 204 on the cash dispenser door 202 allows the ATM to determine that the user has access to the cash dispensing area 200 and 210, including the cash dispenser door 202 and the cash dispenser slot beneath the cash dispenser door 202. The presence of a cover over the dispenser door 202 would impede the operation of the touch sensitive area 204 as the user cannot reach the touch sensitive area 204. If no touch is detected on the touch sensitive area 204, such as after a certain time period, the transaction may be cancelled. If the ATM detects a touch from the user, the ATM may then open the cash dispenser door 202 and dispense the requested cash via the cash dispenser slot.
In certain cases, it may be desirable to verify a particular person has access to the item dispenser. For example, an automated drug cabinet may include a sensor capable of verify an identity of a person attempting to access an item dispenser of the automated drug cabinet, such as by using a fingerprint reader, iris scanner, face scanner, or other biometric sensor positioned in an item dispensing area, such as on the item dispenser door or as close as practicable to the item dispenser door or slot. The item dispenser may then detect the presence of a user using the sensor, and after verifying that the user is an expected user, the item dispenser may open the item dispenser door and dispense the item.
In certain cases, the ATM may also partially move or vibrate the dispenser door 202. This movement may be in addition to or instead of the displayed UI or alternate UI. Movement of the dispenser door 202 may help draw user attention to the dispenser door 202. Movement of the dispenser door 202 responsive to the user's request to dispense cash may also indicate to the user that they can access the dispenser door 202, and that the dispenser door 202 is working as expected. In certain cases, the displayed UI or alternate UI may indicate to the user that the dispenser door 202 may partially move or vibrate. In certain cases, the dispenser door 202 may move to a position where the touch sensitive area 204 becomes accessible to the user. For example, the touch sensitive area 204 may be disposed on the dispenser door 202 in such a way that the touch sensitive area 204 is not visible or accessible by the user in the normal position of the dispenser door 202. When the user request to dispense cash is received by the ATM, the ATM may then move the dispenser door 202 to expose the touch sensitive area 204 to the user. In certain cases, exposing the touch sensitive area 204 may, or may not, make the cash dispensing slot directly accessible or visible to the user. For example, the dispenser door 202 may move into a partially open position that still blocks the cash dispenser slot. This movement may be performed along with the indications displayed in the UI or in the alternate UI.
In certain cases, the ATM may, prior to indicating to the user to touch the touch sensitive area 204 and 214, verify that a touch is not already being detected in the touch sensitive area, for example, by a user, or a cover. If a touch is detected prior to instructing the user, the ATM may instruct the user to stop touching the touch sensitive area 204 and 214. If the touch sensitive area 204 and 214 continue to register a touch, such as if a cover is present, then the ATM may cancel the transaction after a period of time. In certain cases, the ATM may also provide a UI element or interface where the user can indicate that they are not touching the touch sensitive area 204 and 214. In certain cases, if the touch sensitive area 204 is not in a user accessible location and a touch is detected, the ATM may cancel the transaction. If no touch is detected prior to instructing the user, then the ATM may proceed to instruct the user to touch the touch sensitive area 204 and 214.
The touch sensitive areas of
In certain cases, a through metal capacitive touch sensor may be used.
The metal plate 402 is of a thickness that allows a deflection due to a human touch. When the pressure of a human finger 410 is applied to the metal plate 402, the metal plate 402 deflects and a change in capacitance proportional to the change in the distance “d” can be detected. By application of a sensing voltage to the bottom plate of the capacitor, which is the sensor 406, a capacitance value can be obtained. By repeatedly scanning a plurality of sensors, a system can detect changes in capacitance and thereby detect a touch. The sensor 406 detects deflections in the metal plate 402 caused by a finger or stylus moving the metal plate 402 towards the sensor 406. The capacitive sensors 406 therefore form deflection sensors.
Software programs may be developed, encoded, and compiled in a variety of computing languages for a variety of software platforms and/or operating systems and subsequently loaded and executed by processor 605. In one embodiment, the compiling process of the software program may transform program code written in a programming language to another computer language such that the processor 605 is able to execute the programming code. For example, the compiling process of the software program may generate an executable program that provides encoded instructions (e.g., machine code instructions) for processor 605 to accomplish specific, non-generic, particular computing functions. As an example, the software program may include code for operating components specific to an ATM, such as card readers, cash dispenser doors, deposit slots, specific sensors, integration between those sensors and hardware, etc.
After the compiling process, the encoded instructions may then be loaded as computer executable instructions or process steps to processor 605 from storage 620, from memory 610, and/or embedded within processor 605 (e.g., via a cache or on-board ROM). Processor 605 may be configured to execute the stored instructions or process steps in order to perform instructions or process steps to transform the computing device into a non-generic, particular, specially programmed machine or apparatus. Stored data, e.g., data stored by a storage device 620, may be accessed by processor 605 during the execution of computer executable instructions or process steps to instruct one or more components within the ATM system 600. Storage 620 may be partitioned or split into multiple sections, that may be accessed by different software programs. For example, storage 620 may include a section designated for specific purposes, such as storing program instructions or data for updating software of the ATM system 600. In one embodiment, the software to be updated includes the ROM, or firmware, of the computing device. In certain cases, the ATM system 600 may include multiple operating systems. For example, the ATM system 600 may include a general-purpose operating system which is utilized for normal operations. The ATM system 600 may also include another operating system, such as a bootloader, for performing specific tasks, such as upgrading and recovering the general-purpose operating system, and allowing access to the ATM system 600 at a level generally not available through the general-purpose operating system. Both the general-purpose operating system and the another operating system may have access to the section of storage 620 designated for specific purposes.
A user interface (e.g., output devices 615 and input devices 630) can include a display, positional input device (such as a mouse, touchpad, touchscreen, or the like), keyboard, or other forms of user input and output devices. The input devices 630 may also include devices which do not accept user input directly, but inform the ATM system 600 as to certain conditions, such as light, tilt, direction, and other such sensors. The user interface components may be communicatively coupled to processor 605. When the output device is or includes a display, the display can be implemented in various ways, including by a liquid crystal display (LCD) or a cathode-ray tube (CRT) or light emitting diode (LED) display, such as an organic LED (OLED) display. Persons of ordinary skill in the art are aware that the ATM system 600 may comprise other components well known in the art, such as powers sources, and/or analog-to-digital converters, not explicitly shown in
In this description, the term “couple” or “couples” means either an indirect or direct wired or wireless connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections. The recitation “based on” means “based at least in part on.” Therefore, if X is based on Y, X may be a function of Y and any number of other factors.
Modifications are possible in the described embodiments, and other embodiments are possible, within the scope of the claims.