This invention relates to a process for filling a silencer with fibrous material as well as a silencer filled with fibrous material.
U.S. Pat. No. 4,569,471 to Ingemansson et al. describes a process and apparatus for feeding lengths of a continuous glass fiber strand into a muffler outer shell. The apparatus includes a nozzle for expanding the fiber strand into a wool-like material before the material enters the outer shell. In a first embodiment, filling of an outer cylinder of the muffler shell occurs without an end-piece joined to the outer cylinder. After the filling operation is completed, the outer cylinder is moved to a separate station where the end piece is welded onto the outer cylinder. During movement of outer cylinder, a vacuum device may remain coupled to the outer cylinder or a cover is placed over the filled outer cylinder so as to prevent the wool-like material from coming out during transport, see column 4, lines 1-7. During the closure process, great care must be taken to ensure that glass fiber material does not extend into the joint area.
In a second embodiment, a perforated pipe/outer end piece assembly is positioned only part way into the muffler outer cylinder during the glass material filling operation. After the filling operation has been completed, the perforated pipe/end piece assembly is moved to its final position within the outer cylinder.
While the technology of Ingemansson et al. improved many aspects of muffler technology, it does have certain drawbacks. For example, the filling of the interior of the muffler, or sections of the interior of the muffler, is typically limited to certain geometries. Thus, for example, mufflers having odd shapes, such as clamshell mufflers, are difficult to fill using the current technology.
Further, the filling of the interior region must be done after the build-out of an entire muffler cavity, including the introduction and fixing of the internal mechanical parts (tubes and partitions) within the outer shell of the muffler. As stated above, this thus limits the filling of the sections of the interior of the muffler due to space constraints and other considerations.
This need is met by the present invention; wherein a process is provided for filling odd-shaped silencers without having to build an entire muffler cavity wherein the fibers should be placed in their final stage.
In accordance with the present invention, a process is provided for filling a muffler with fibrous material. The process comprises the steps of: providing a muffler insert that is placed in an appropriately designed shaped tool with at least one fill opening; feeding fibrous material into the within the cavity formed between the inserts and tool through the at least one fill opening; coupling an outer yarn thread onto the outer periphery of the fibrous volume to compress the wool to the muffler inserts; removing the tool while the outer yarn thread is being wound around the fibrous material; welding or otherwise affixing the yarn onto previously wound yarns if desired; retrieving the filled insert from the tool; and introducing the filled insert within the muffler body.
The feeding step may comprise the steps of: providing a nozzle; feeding continuous strand material and pressurized air into the nozzle such that a wool-type product emerges from the nozzle; and positioning the nozzle adjacent to or in the fill opening such that the wool-type product is fed through the fill opening and into cavity.
The continuous strand material comprises one more strands each comprising a plurality of glass filaments which may be selected from the group consisting of E-glass filaments and S-glass filaments. Preferably, the continuous strand material comprises an E-glass roving sold by Owens Coming under the trademark ADVANTEX® or an S-glass roving sold by Owens Coming under the trademark Zentron®.
The yarn winding material preferably comprises one or more strands of polymer based yarn materials and allows a precise positioning of the continuous strand material with respect to the metallic inserts. The behavior of the wound yarn against temperature is selected to provide optimal tensile strength at room temperature and lowest possible tensile strength at elevated temperatures. In this way, the first vehicle use will result in disintegration of the winding yarn.
Alternatively, the winding yarn may comprise a steel type of yarn, which maintains the fibrous material in a compressed state against the unfilled muffler insert. This creates a double layer acoustical effect of compressed glass fiber and air. This effective reduces costs of raw materials used for acoustical purposes.
In another alternative embodiment, the present invention may be used in applications requiring a fiber-encased blank coupled and consolidated with fibrous material, which expands after a first temperature peak. In this invention, the wool type product and wound yarn is introduced around a metal or plastic blank in a manner as described above. The fiber-encased blank may then be introduced into many applications.
Other features, benefits and advantages of the present invention will become apparent from the following description of the invention, when viewed in accordance with the attached drawings and appended claims.
A process is provided for filling a muffler with fibrous material. Mufflers filled in accordance with the present invention are capable of being incorporated into vehicle exhaust systems and function as acoustic energy dissipaters (sound dampeners). Referring now to
During operation of a vehicle to which the muffler 15 is coupled, acoustic energy passes through and from the perforated pipes 18, 20 and 22 to the wool-type product 24a which functions to dissipate a portion of the acoustic energy. The product 24a may potentially function to thermally insulate the outer shell 12 from energy in the form of heat transferred from high temperature exhaust gases passing through the pipes 18, 20 and 22.
One preferred offline process for forming filled muffler insert 70 is shown below in
Referring now to
While the unfilled muffler insert 52 of
For example, as shown in
Referring back to
In alternative embodiments, one of which is shown in
In yet another preferred embodiment, as shown in
A sufficient quantity of fibrous material 24 is provided in one or more of the compartments 16a-16d so as to allow the muffler 15 to adequately perform its acoustic energy attenuation and thermal insulation functions. The compartments 16a-16d may be filled with fibrous material 24 having a density of from about 80 grams/liter to about 200 grams/liter and preferably about 100 grams/liter.
After the fibrous material 24 is added within the desired compartments 16a-d, the vacuum source 42 and its associated components are removed. The filled insert is then loaded onto a winding device (shown in
The wound yarn 26, in one preferred embodiment, is selected to provide sufficient tensile strength at room temperature such that the filled and wound insert 71 may be handled in subsequent processing steps, including but not limited to transporting the insert 71 or introducing the filled and wound insert 71 within a muffler shell 12 to form a muffler 15. Yarns 26 with sufficient tensile strength have a tensile strength of at least 550 megapascals (MPa) at room temperature. Further, the wound yarn 26 preferably has a very low tensile strength at elevated temperatures (i.e. in or around typical muffler operating temperatures) such that the first use of the muffler 15 within a vehicle will disintegrate the wrapping yarn 26. This disintegration of the wound yarn 26 will in turn lead to a literal explosion of wool product 24a within the selected compartment 16a-d. Tensile strengths of a maximum of at most about 50 MPa are desired at these elevated temperatures (between approximately 80 and 120 degrees Celsius).
Preferred wound yarns 26 that meet the tensile strength criteria desired above include polymer yarns having a fiber diameter of between about 0.2 and 1.0 millimeters. Two preferred polymer wound yarns having these diameters and meeting the tensile strength requirements polypropylene yarns and modified polyethylene yarns.
Alternatively, the wound yarn 26 may be formed from materials having sufficient tensile strength at room temperatures as described previously and also at elevated temperatures to maintain the fibrous wool type product 24a away from the muffler shell 12. This would allow for a double layer of acoustical protection, one of which is provided by the glass contained within the product 24a, and one within the air gap created between the product 24a and the muffler shell. As such, the wound yarn 26 does not disintegrate at elevated temperatures. One type of wound yarn 26 that meets these criteria is a steel-type wound yarn 26.
The shaped tool 50 may then be removed from the filled and wound insert 71. The filled and wound insert 71 is subsequently placed within a muffler cavity 12 to form the muffler 15 as described below in further detail in
The process and apparatus for wrapping the yarn 26 around the wool type product 24a and affixing the yarn 26 to form the filled and wound insert 71 from the filled insert 70 may be done in many different ways with many different apparatus. One preferred winding device is shown in
Referring now to
A bottom portion 107 of the frame 102 extends through a first slot 111 of a stationary base 112. The bottom portion 107 has a ring portion 109 having inner teeth (not shown) that are coupled around a tubular worm gear 108 of a rearward drive actuator 110 that is coupled to the vertical base 102. The stationary base 112 also has a pair of vertical side slots 113, 115 that receive a pair of respective back frame supports 117, 119 that extend rearward from the vertically moving frame 102 and are coupled to a drive actuator 110.
The winding machine 100 also has a belt drive actuator 120 having a pulley 125 mounted on its top surface. A belt 121 is coupled to the pulley 125 and to a second pulley 123 contained on top of the middle support stage 106. The actuation of the belt drive actuator 120 rotates the pulley 125, which in turn causes the belt 121 to turn to rotate the second pulley 123. The second pulley 123 is hollow and rotates around a center axis 132 defined by the cylinder 157.
Also attached to the pulley 123 is a yarn-guiding frame 140, which similarly rotate in response to the rotation of the pulley 123. A pair of yarn grippers 142 closely associated with the yarn-guiding frame 140 are coupled to a respective arm 150 that are coupled to the stationary base 112.
Also shown is a pair of yarn bobbins 144 having tensioning devices 146 that are coupled to the opposite side of the second pulley 123 from the yarn-guiding frame 140. Yarn thread 26 stored on each bobbin 144 is thus continuously fed from each of the pair of yarn bobbins 144 through the respective tensioning device 146 and yarn-guiding frame 140 to the yarn gripper 142. As one of ordinary skill appreciates, the number of bobbins 144, shown in
Coupled beneath the lower stage 124 is an actuator 122. The actuator 122 is supported to the rearward mounting structure 110 by supports 126, 128. A lower cylinder 130 is coupled to the actuator 122 and extends upwardly through the lower stage 124. The lower cylinder 130 is capable of extending upward or downward along a center axis 132 defined along the length of the cylinder 130 and cylinder 157 when actuated by the actuator 122.
The process for coupling the yarn 26 around the wool type product 24a of the filled insert 70 is accomplished by first activating the actuator 110 to rotate the worm gear 108. The movement of the worm gear 108 in turn causes the ring portion 109 to move the slightly upwardly in response. The upward movement of the ring portion 109 in turn moves the coupled components of the vertically moving frame 102, including the yarn-guiding frame 140, upwardly in response. This creates a gap between the cylinder 157 and cylinder 130 that allows introduction of the shaped insert 50 onto the winding device 100. The shaped insert 50 is then placed onto a circular stage 131 located on the top surface of the lower stage 124, such that the circular stage 131 is either coupled to the bottom of the bottom section 50b of the shaped tool 50 or to one of the pipes (here shown as pipe 18). The upper section 50a is then coupled to the cylinder 157.
The actuator 110 is then reactivated to move the coupled components of the vertical frame 102 downwardly. As this occurs, the upper section 50a of the shaped tool 50 moves downwards until its lower surface remains at a distance of approximately 5 to 20 millimeters above the upper section of the lower section 50b. This distance defines a circular gap 175 exposing a portion of the filled insert 70. Yarn 26 is then wrapped around the wool section 24a of the filled insert 70 exposed within the gap 175 as described further below.
To begin the winding process, a first end of the yarn 26 from each of the bobbins 144 through the tensioning devices 146 and coupled to the yarn grippers 142. Next, the belt actuator 120 is activated, causing the rotation of the pulley 123, bobbins 144, tensioning devices 146, and yarn guiding frame 140 around the center axis 132. Yarn 26 is then applied around the exposed portion of the filled insert 70. During the application of the yarn 26 the yarn grippers 142 are tilted slightly downward by means of pneumatic or electrical actuators on the arms 150. The grippers 142 then release the yarn 26 for the rest of the application process. Actuator 122 is then activated to move the tube member 130 further upwardly to further wrap yarn around new exposed portions of the wool product 24a contained within the gap 175. The combination of both the translation of the filled insert 70 and the rotation of the yarn with the help of the yarn-guide 140 builds a helicoidal path. The step of this path should be defined to avoid the fibrous material having the ability to spring out of its confined volume (minimum: 5 millimeters; maximum: 30 millimeters). The process is continued until the entire wool product 24a, or a desired portion of the wool product 24a, is sufficiently wrapped in yarn 26. The belt actuator device 110 is then deactivated.
Next, the yarn thread 26 located between the wool product 24a and the yarn gripper 142 is cut.
Next, in one preferred method, the end of the yarn 26 created by this cut is then fused to another portion of the yarn 26 wrapped around the wool product 24a. Alternatively, the ends from each thread 26 of yarn may be tied together or tied to portions of yarn thread 26 already wrapped around the fiber insert. This forms the filled and wound insert 71.
The fusion step described above is dependent upon the type of yarn thread 26 utilized. For a polymer yarn thread, the end of the yarn preferably is made molten using an ultrasonic welding or hot welding process and stuck to another portion of the thread 26. For a metal yarn, a spot welding process may be utilized.
Alternatively, the yarn thread 26 may be otherwise be affixed around the wool product 24a volume by coupling the end portion of the yarn thread 26 within a portion of wool type product 24a.
Also, the yarn thread 26 may simply be maintained in place around the wool type product 24a without the need to affix the end of the yarn thread 26 to itself or to the wool type product 24a. In other words, the yarn thread is self-locking simply by the wrapping mechanism itself without the need to couple the end of the yarn thread 26 to prevent unraveling.
In another alternative embodiment, pins (not shown) may be introduced within the wool type product 24a. The yarn thread 26 is then wrapped in one direction (clockwise around center line 132, for example), around the wool type product 24 until encountering the pin. At this time, the yarn thread wraps around the pin and is then wound in the opposite direction (counterclockwise), therein maintaining the yarn thread 26 in place without the need for affixing the yarn thread 26 to itself or to the wool type product 24a.
After the filled and wound insert 71 is formed, the actuator 122 and 110 are then deactivated. The shaped tool 50 and filled and wound insert 71 are then removed from the winding device 100 by reactivating the actuator 110 to move upward such that the cylinders 157 and 130 are separated. The shaped tool pieces 50a, 50b are then separated from the filled and wound muffler insert 71 and discarded.
As one of ordinary skill can appreciate, the winding device 100 shown in
In addition, while the process of introducing the fibrous material 24 to the unfilled insert 50 is shown as an offline process in
By forming the filled insert on the winding machine 100 as in
The filled and wound muffler insert 71 formed in accordance with
Referring now to
Alternatively, as shown in
The present invention offers many advantages over prior art silencer systems used in mufflers.
For example, the present invention maybe utilized to form mufflers in a wide variety of shapes and sizes not previously attainable in prior art systems. This is important for two reasons. First, while the filling of prior art mufflers with fibrous material was limited to certain geometries, the present invention allows filling of the interior of the mufflers with fibrous material in virtually any geometry. For example, odd shapes such as clam shaped muffler interiors may be easily filled with fibrous material.
Second, the filling of the interior region can be done prior to the build-out of an entire muffler cavity, including the introduction and fixing of internal mechanical parts (pipes and partitions) within the outer shell of the muffler. As stated above, this allows mufflers to be formed in a wide variety of odd shapes and sizes not previously attainable due to space constraints and other considerations. Further, by forming a filled and wound insert, as compared with a filled insert as found in the prior art, damage to the muffler shell during the introduction process is minimized. Also, because the filling process can be done on the winding machine itself, manufacturing cost savings in terms of equipment space, storage, and transportation of filled inserts may be realized.
Further, the behavior of the polymer yarn thread 26 in preferred embodiments of the present invention against temperature are selected to provide optimal tensile strength at room temperature and the lowest possible tensile strength at higher temperatures. Thus, the polymer yarn 26 will disintegrate in the first vehicle use, allowing the wool product 24a to expand and fill the compartment in which it is contained, which improves acoustical properties of the muffler 15.
Also, because the polymer yarn 26 is located at a position nearer to the muffler shell and away from the pipes, odor associated with the disintegration of the polymer yarn 26 during first start conditions occurs after the muffler has sufficiently warmed up, thus lessening smoke and odor near the car assembly line.
Also, additional acoustical advantages may be provided in alternative preferred embodiments utilizing steel yarn as the winding. In these systems, the steel yarn compresses the fibrous material against the unfilled insert, therein creating a “double layer” of acoustical properties within the muffler shell contributed by the fibrous material and air gap. This also may enable savings in raw material costs.
In another alternative embodiment, as shown in
While the invention has been described in terms of preferred embodiments, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.