1. Field of the Invention
The present invention relates generally to techniques and devices for low-loss modefield-matching coupling to a multicore fiber.
2. Background Art
Because of the ever-expanding need for large-capacity optical networks, there is increasing interest in the design and fabrication of systems employing multicore fibers (MCFs) as a means for expanding network capacity. Additionally, low-cost, high-fiber-count, high-density cables are necessary to construct practical optical subscriber feeder lines. Likewise, MCFs are being explored as a way to overcome the limitations imposed by cable diameter and/or length.
One issue that appears likely to have a significant impact on the performance and ultimately the practicality of MCF-based systems is the ability of these systems to multiplex and demultiplex individual signals propagating in the MCF cores. Several methods have been proposed, but these methods are complex and require multiple components.
Additionally, generally speaking, it is advantageous for an MCF to have an outer diameter that is comparable to that of conventional single-core fibers, which typically have an outer diameter on the order of 125 μm. In a typical MCF, to achieve a suitable outer diameter, the core-to-core spacing is on the order of 40 μm. Coupling a plurality of single-core fibers to the cores of a single MCF of comparable outer diameter and achieving proper core alignment requires a reduction of the outer diameters of the lead ends of the single-core fibers. Reduction techniques may include, for example, mechanical approaches (e.g., grinding) and chemical approaches (e.g., etching).
A technique has been suggested for coupling a pair of single-core fibers to a twin-core MCF. The two single-core fibers are inserted into a twin-hole capillary to form an assembly that is then tapered to match the core spacing of the twin-core MCF. However, the full exploitation of the potential of MCFs requires the use of MCFs with a large number of cores, e.g., 7 or more. The cores may be single-moded or they may have few or many modes. The described technique is not suitable for use with these MCFs, because of the required tapering ratio and the fact that optical characteristics that are important to high capacity signal transport, such an optical crosstalk, were not considered. It is well known that in certain design regimes tapering a step-index fiber increases the modefield diameter, which will result in increased coupling losses.
Tapered fiber bundles (TFBs), such as that shown in U.S. Pat. No. 5,864,644, have been used to provide a transition for the LP01, signal mode between amplifier stages, as well as for coupling pump light. This technique has not been satisfactorily extended to the coupling of multiple signal cores to an MCF. One reason is that surface tension during bundle tapering tends to smooth out the outer surface of the bundle into an approximately circular shape. Therefore, while the modefield diameters of the tapered cores may match the modefield diameters of the corresponding MCF cores, the surface tension effects introduce significant deformations into the outer cores in the bundle. These deformations alter the core and modefield shape, resulting in excessive coupling losses and potentially becoming a source of crosstalk between neighboring cores.
Aspects of the invention are directed to devices and techniques for connecting each of a plurality of terminals to respective individual cores of a multicore fiber. There is provided for each of the plurality of terminals a respective length of a single-core fiber, wherein the single-core fiber is configured to maintain constant modal characteristics, such as modefield diameter and mode content, within a tolerance range, as the single-core fiber is tapered. There is further provided a coupler having a body with a rear end, a front end, and a plurality of holes extending therebetween, wherein each hole is dimensioned at the rear end of the coupler body to closely receive a respective length of the single-core fiber, and wherein the plurality of holes has a configuration that matches the configuration of the cores of the multicore fiber. A lead end of each of the lengths of single-core fiber is inserted into a respective hole at the rear end of the coupler body, and the coupler body is collapsed around the inserted lengths of single-core fiber to form an assembly. The front end of the assembly is tapered, and a front endface is formed in which the single-core fiber cores are arranged in a configuration matching that of the cores of the multicore fiber. A tail end of each of the lengths of single-core fiber is connected to a respective terminal, and the assembly front endface is connected to an endface of the multicore fiber, such that the respective cores of the single-core fibers are aligned with the individual cores of the multicore fiber.
An aspect of the invention is directed to structures and techniques for coupling a plurality of single-core fibers (SCF) to a multicore fiber (MCF), wherein each SCF core is coupled to a respective individual MCF core.
Exemplary practices of the invention are described below in the context of providing coupling to the individual cores of a 7-core MCF design, of the type described in U.S. Provisional Patent Application Ser. No. 61/314,184, filed on Mar. 16, 2010, owned by the assignee of the present application and incorporated herein by reference in its entirety. However, it will be appreciated that the described techniques are applicable in other contexts, with other types of multicore fibers having different numbers of cores, different core and cladding structures, different core configurations, and the like.
For the purposes of the present discussion, the individual cores of MCF1 have been arbitrarily assigned identifying letters A-G, as shown in inset 51a, which are to be connected, respectively, to terminals T1-T7. Single-core fibers SCF1-SCF7, shown in cross section, are provided as pigtail connectors. Each of pigtail fibers SCF1-SCF7 has a tail end for connecting to terminals T1-T7, and a lead end for connection to multicore fiber MCF1. In the present example, it is assumed that single-core fibers SCF1-SCF7 and multicore fiber MCF1 have substantially equal outer diameters. However, it would also be possible to practice aspects of the invention, suitably modified as needed, in an application in which one or more of the single-core fibers have an outer diameter that is different than that of the multicore fiber. It would further be possible to practice aspects of the invention, suitably modified as needed, in an application in which the respective lengths of single-core fibers SCF1-SCF7 is zero, or near zero. (Thus, as used herein, the term “respective length” of a single-core fiber includes a zero, or near-zero, length of a single-core fiber.)
For purposes of illustration,
It should be noted that, in the present example, the individual cores of the MCF have the same characteristics. However, it will be appreciated that the described structures and techniques may be practiced, with suitable modification as necessary, using an MCF in which one or more individual cores have characteristics different from those of the other cores. In such a case, it may be necessary to modify the corresponding SCFs in order to provide suitable matching with individual cores having different characteristics.
In order to achieve acceptably low splice loss and undisturbed modal characteristics as signals transit the coupler, such as little or no induced crosstalk (if desired) or little or no alteration of mode content at the connection for each SCF core to a respective MCF core, it is essential to meet the following criteria: modefield matching, precise individual core alignment, and a precisely configured core geometry. As described below, these criteria and others are addressed by aspects of the invention, which include: (1) a coupling device, referred to herein as a multi-hole fiber coupler (MHFC); (2) an SCF that is designed to maintain selected mode properties, within a tolerance range, over a given taper ratio; and (3) a coupling technique employing the described MHFC and modefield-maintaining fiber.
The present discussion is organized as follows:
An aspect of the invention is directed to a mode-maintaining, tapered multiple-hole fiber coupler (MHFC) that provides matching of mode content, mode shape and modefield diameter, as well as core-to-core alignment, in the described coupling technique.
As discussed below, the lead ends of the pigtail SCFs are loaded into MHFC 60 by inserting them into holes 64a-g at the rear endface of MHFC 60. Thus, holes 62 are dimensioned to have a diameter that is slightly larger than that of the pigtail SCFs. In the present example, the SCFs each have a diameter of 125 μm, and each hole has a diameter of 150 μm. It should be noted that it would also be possible, depending upon the particular application, to use one or more fibers having different diameters. The diameter of the corresponding holes would be modified accordingly. Furthermore, the spacing between cores can be relatively constant and regular, or can vary. Variable hole spacing could be used to control crosstalk among cores, for example, but obviously must match the geometry of the cores in the MCF.
As further discussed below, the MHFC body is collapsed around SCFs inserted into holes 64 to form an assembly, which is then tapered and spliced to a multicore fiber. The material used to fabricate the MHFC is selected accordingly. In the present example, the MHFC is fabricated from undoped silica (SiO2), which is the same material used to fabricate the cladding regions of the SCFs, described below. It would also be possible, depending upon a given context, to modify the material used to fabricate the MHFC, or to use a different material or combination of materials. Such other materials include, for example, non-oxide glasses, such as chalcogenide glasses; doped and undoped silica fibers; and the like.
The configuration of the holes 64a-g is dictated by the configuration of the individual cores in the MCF to which the SCFs are to be coupled. In particular, a hole configuration is chosen that is homothetic to the configuration of the MCF cores. Thus, when the SCF-MHFC assembly is tapered and cleaved for splicing to the MCF, the orientation of the SCF cores at the front endface of the assembly matches that of the MCF.
The MHFC 60 shown in
According to the aspect of the invention illustrated in
There are a number of reasons for pre-tapering the MHFC. Pre-tapering allows a precise indexing of the SMT fibers in the MHFC. In addition, it helps maintain good concentricity for all the fibers within the MHFC.
In the example shown in
The second element of the device comprises a specially designed single-core fiber that is capable of maintaining substantially the same modefield diameter (MFD) at least at the tapered and untapered ends, within a tolerance range, over a large taper ratio, and that displays little or no induced crosstalk.
As shown in
The
From
As discussed below, single core fibers are inserted into the MHFC, which is then collapsed around the single core fibers to form an assembly. The assembly is then tapered to match the diameter of the endface of the multicore fiber. Thus, the
The pedestal region 140 preserves the fiber's modefield diameter as the fiber is tapered. As the first waveguide 103/123 is tapered to a diameter below 8 μm, the signal is guided less strongly by first waveguide 103/123, thereby tending to increase the modefield diameter. However, the diameter of the second waveguide 105/125 is also decreasing. Initially, the diameter of the second waveguide 105/125 is approximately 32 μm, and is thus too large to have a significant effect on modefield diameter. As the outer waveguide is tapered to a diameter approaching 8 μm it increasingly influences the modefield properties. The net result is that the fiber modefield remains substantially the same, within a tolerance range, between the front end and rear end over a selected taper ratio. Thus, the modefield diameter of the fiber, tapered to a 4:1 ratio, is approximately 9.84 μm.
If a particular application requires a smaller tolerance range, the configuration of the fiber may be modified accordingly. For example, a second pedestal may be added.
A further aspect of the invention is directed to the issue of crosstalk. In some designs, crosstalk in MCF is one of the potential degrading factors in performance. Consequently, these designs need to minimize any leakage from one core to its neighbors during tapering of the MHFC. Thus, an outer cladding region 108/128 is provided that is fabricated from a low-index material such as fluorine-doped doped silica. As shown in the
Other techniques and materials may be used to construct the down-doped outer cladding region 108/128. For example, it is possible to achieve a comparable result with a ring of air holes or bubbles, or other suitable low-index structure. Regions which include holes or voids offer the additional advantage of scattering any light which happens to penetrate beyond the pedestal, further reducing crosstalk.
Since the cores of the MCF may support multiple modes, the cores of the single-core fiber and of the MHFC should also support multiple modes. For cases in which each mode carries a distinct optical signal, the modal content of the single-core and multicore fibers should be identical. In some cases, the crosstalk among modes within a given core should be minimized, but in other cases this may not be critical. To achieve comparable modal content before and after tapering, well-known methods of matching the “modal volume” may be used, where modal volume is a measure of the product of the refractive index and diameter of the core waveguide. Just as the modefield diameter can be maintained relatively constant despite physical tapering of the fiber diameter by using a pedestal concept, so too can the modal volume be maintained.
Step 201: Provide multi-hole fiber coupler (MHFC), such as the MHFC shown in
Step 202: Pre-taper front end of MHFC.
Step 203: Insert lead end of each single-core fiber into respective hole at rear of MHFC.
Step 204: Collapse MHFC around loaded fibers to form assembly.
Step 205: Taper assembly to create endface having a diameter and core configuration matching that of multicore fiber endface.
Step 206: Connect tail end of each single-core fiber to respective terminal; connect endface of tapered assembly to multicore fiber endface.
Exemplary practices of each of these steps is illustrated in
In Step 201, illustrated in
In Step 202, illustrated in
One way to accomplish the described pre-tapering is by heating the front end of the taper and stretching it to the desired taper ratio. In addition, the front end of the MHFC may be trimmed to achieve a desired overall length and endface diameter.
As noted above, in certain applications, it may be possible to practice the described technique without pre-tapering.
In step 203, illustrated in
In step 204, illustrated in
In step 205, illustrated in
In step 206, illustrated in
While the foregoing description includes details which will enable those skilled in the art to practice the invention, it should be recognized that the description is illustrative in nature and that many modifications and variations thereof will be apparent to those skilled in the art having the benefit of these teachings. It is accordingly intended that the invention herein be defined solely by the claims appended hereto and that the claims be interpreted as broadly as permitted by the prior art.
The present application claims the priority benefit of the following United States provisional patent application, which is owned by the assignee of the present application, and which is incorporated herein by reference in its entirety: U.S. Provisional Patent Application Ser. No. 61/314,182, filed on Mar. 16, 2010, entitled “Low Loss, Mode Field Matched, Multicore Fiber Couplers.”
Number | Date | Country | |
---|---|---|---|
61314182 | Mar 2010 | US |