This invention relates generally to radio frequency communication and, more specifically, relates to antenna tracking of radio frequency (RF) signals.
Communications systems exist that can use directional antennas to track a transmit terminal transmitting a radio frequency (RF) signal as part of a data link between the transmit terminal and a receive terminal. A directional antenna can be adjusted about one or more axes. When a transmission terminal (e.g., a satellite or transmitting tower) is in a relatively fixed position and a directional antenna is also in a relatively fixed position, then open-loop pointing of the directional antenna may be used.
Open-loop antenna pointing techniques are extremely useful and cost effective if the subject antenna mounting position and mounting base are known precisely, thus not requiring an antenna tracking feedback system. These techniques are therefore useful if the cumulative pointing errors are much smaller than the antenna bandwidth, providing acceptable pointing losses.
There are times when an antenna is mounted on a mobile platform, such as when the transmission terminal is disposed in an aircraft or satellite. Open-loop antenna pointing techniques do not have feedback and therefore tend not to function well when one or more of the antenna or transmission terminal is moving. In this situation, closed-loop antenna pointing techniques are typically used to allow a directional antenna to track an opposing transmission or reception terminal.
With regard to closed-loop pointing techniques, most closed loop pointing systems rely on signal strength indication from automatic gain control (AGC) loops to provide closed-loop error feedback to an antenna servo control loop. The antenna servo control loop then controls the directional antenna to track the transmission terminal.
While closed-loop antenna pointing techniques are beneficial, these techniques can also be relatively expensive and may be limited in certain areas. Thus, it would be beneficial to provide improvements to antenna tracking using pointing techniques such as open-loop or closed-loop antenna pointing.
The foregoing and other problems are overcome, and other advantages are realized, in accordance with exemplary embodiments of these teachings. In particular, the present invention provides techniques for antenna tracking.
For instance, an exemplary technique comprises a method that estimates a signal to noise ratio (SNR) of a received direct sequence spread spectrum (DSSS) signal. Using the estimated SNR, at least one control signal is determined that is suitable for modifying a position of a directional antenna. The at least one control signal may be used to modify the position of the directional antenna.
In another exemplary technique, a method comprises determining a first estimated SNR of a received radio frequency (RF) signal. An output voltage of an AGC circuit coupled to the received RF signal is converted to a second estimated SNR. Using at least the first estimated SNR when the first estimated SNR is within a first range and using at least the second estimated SNR when the second estimated SNR is within a second range, an output SNR is determined. The output SNR is suitable to use to determine at least one control signal suitable to modify a position of a directional antenna. Consequently, the output SNR may be used to determine the at least one control signal, which may then be used to modify the position of the directional antenna.
In another exemplary embodiment, an apparatus is disclosed that comprises a circuit that determines a first estimated SNR of a radio frequency (RF) signal. The apparatus also comprises a circuit that converts an output voltage of an automatic gain control (AGC) circuit coupled to the RF signal to a second estimated SNR. The apparatus additionally comprises a circuit that determines an output SNR using at least the first estimated SNR when the first estimated SNR is within a first range and using at least the second estimated SNR when the second estimated SNR is within a second range, the output SNR suitable to use to determine at least one control signal suitable to modify a position of a directional antenna.
In another exemplary embodiment, an apparatus comprises means for determining a first estimated SNR of a received RF signal and means for converting an output voltage of an AGC circuit coupled to the received RF signal to a second estimated SNR. The apparatus also comprises means for determining an output SNR using at least the first estimated SNR when the first estimated SNR is within a first range and using at least the second estimated SNR when the second estimated SNR is within a second range.
The foregoing and other aspects of embodiments of this invention are made more evident in the following Detailed Description of Exemplary Embodiments, when read in conjunction with the attached Drawing Figures, wherein:
As described above, one technique used for antenna pointing is closed-loop pointing. Closed-loop pointing techniques include automatic gain control (AGC) loops to provide closed-loop error feedback to an antenna servo control loop. One problem with AGC loops is that an AGC does not produce very high output voltages for signals such as spread spectrum (SS) signals, and thus AGC loops tend to be of little or no use with SS signals. Another type of closed-loop antenna pointing that allows a directional antenna to track a transmit terminal comprises self-scan tracking techniques described by inventors L. Timothy, M. Ownby, and D. Bowen, in U.S. Pat. No. 6,433,736, assigned to L-3 Communications, and entitled “Method and Apparatus for an Improved Antenna Tracking System Mounted on an Unstable Platform,” the disclosure of which is hereby incorporated by reference. The techniques described in U.S. Pat. No. 6,433,736 are proven for satellite tracking applications, have been implemented to use automatic gain control (AGC) feedback, and are generally used for signals having positive signal-to-noise ratio (SNR) in the receive bandwidth in which the signal occupies. In the techniques described in U.S. Pat. No. 6,433,736, the AGC feedback is used as an error signal during tracking.
While the techniques in U.S. Pat. No. 6,433,736 have been proven to be beneficial, it is desirable to improve further on these techniques. Aspects of the present invention improve on the techniques in U.S. Pat. No. 6,433,736 by providing, in an exemplary embodiment, methods and systems for performing antenna tracking with a direct sequence spread spectrum (DSSS) signals. In the case of DSSS, due to the wideband nature of this signaling technique, the signal level of the received DSSS signal is generally well below a thermal noise floor of a receiver, thus making self-scan tracking techniques such as those disclosed in U.S. Pat. No. 6,433,736 that use AGC error signals generally unsuitable.
In certain embodiments herein, the applicability of the self-scan tracking techniques in U.S. Pat. No. 6,433,736 is modified to operate with DSSS signals that have negative SNRs in the receive bandwidth. One exemplary way of modifying the self-scan tracking techniques is to apply methods for estimating an SNR in de-spread DSSS signals, as described in U.S. Pat. No. 6,061,339, by inventors L. Nieczyporowicz, T. Giallorenzi, P. Stephenson, and R. Sylvester, assigned to L-3 Communications Corporation, and entitled “Fixed Wireless Loop System Having Adaptive System Capacity Based on Estimated Signal to Noise Ratio,” the disclosure of which is hereby incorporated by reference. The methods in U.S. Pat. No. 6,061,339 may be used to determine an estimated SNR following de-spreading (e.g., DSSS correlation performed by a correlation receiver) of the DSSS signal and using techniques provided herein to supply an error signal (e.g., estimated SNRd signal 245) used for antenna tracking.
Certain embodiments of the present invention may be applied through software without the need of any additional hardware other than the hardware already necessary to perform antenna pointing and tracking. Additionally, certain exemplary tracking methods described herein apply to surface and airborne antenna systems, where precise pointing direction of the antenna cannot be controlled due to uncertainties in the terminal location, uncertainties in the antenna mounting reference on the platform or surface of the Earth, or both. Additional exemplary embodiments can apply to a portable (e.g., mobile) surface antenna that is automatically geo-located using either a survey or global positioning satellite (GPS) system. Other uncertainties in these types of applications are inclinometer (e.g., antenna-based leveling) inaccuracies, magnetic compass (e.g., antenna azimuth orientation) inaccuracies, or both, which require an antenna tracking system to resolve these uncertainties. Certain embodiments of the present invention may also deal with inclinometer and magnetic compass inaccuracies.
Turning now to
Since the bandwidth received by the directional antenna 130 decreases with increased antenna gain, the receive terminal 150 performs a spatial search to locate the transmit terminal 110 and to receive the RF signal 120 (e.g., within a main beam received by the directional antenna 130). Once the RF signal 120 is acquired, the receive terminal 150 automatically (e.g., using the antenna controller 155 and antenna pointing control 160) points the directional antenna 130 at the transmit terminal 110 location either by pointing the directional antenna 130 at coordinates (e.g., latitude, longitude, and altitude) of the transmit terminal 110 or by using an antenna tracking scheme that automatically positions the directional antenna 130 at the highest signal strength in the received RF signal 140. If the automatic tracking method is used, the information required to point (e.g., using the antenna pointing control 160) the directional antenna 130 at the position of the transmit terminal 110 should be extracted from demodulated data (not shown in
For an exemplary embodiment herein, the RF signal 120 from the transmit terminal 110 is formed using DSSS techniques. The transmitted signal strength may be near a threshold for receive terminals 150 that are located far from the transmit terminal 110, or may be low due to jamming (hostile or inadvertent) in the received DSSS frequency band. Thus, the tracking system operated by the antenna control 155 should and does, in an exemplary embodiment, function for the case of low SNR and high SNR in the receive bandwidth.
Referring now to
The signal S 206 is next downconverted to an intermediate frequency (IF) by using the downconverter mixer 218 and local oscillator 219. The signal S 206 is filtered using filter 220 (with RF bandwidth of W3) and then conditioned using an automatic gain control (AGC) circuit 255 with associated amplifiers 230 and attenuators 225 to provide a constant signal plus noise (S plus N) power at the input to the digital demodulator 235. For an exemplary application where the signal S 206 is DSSS, the RF bandwidth W3 (also called the receive RF bandwidth W3 herein) of the filter 220 should be sufficiently wide to pass the received DSSS signal. As a result, the SNR at point 231 (e.g., the SNR in the receive RF bandwidth W3), prior to the digital demodulator 235, is generally negative for DSSS signals, although the SNR at point 231 may be large when the transmit terminal (e.g., transmit terminal 110 shown in
In an exemplary embodiment, the antenna controller 290 comprises an AGC to SNRa conversion module 270 and an enhanced search and self-scan tracking algorithm module 285. The measured inputs to the enhanced search and self-scan tracking algorithm module 285 are an estimated SNRa signal 280 and an estimated SNRd signal 245. The enhanced search and self-scan tracking algorithm module 285 produces an antenna search and self-scan control signal(s) 207 suitable for modifying the position of the antenna 205. The antenna search and self-scan control signal(s) 207 can comprise any information suitable for modifying the position of the antenna 205. For instance, the antenna search and self-scan control signal(s) 207 could comprise one or more signals, such as voltages or commands, used to modify, e.g., the elevation and azimuth gimbals 208 of the antenna 205. The estimated SNRa signal 280 comprises an SNR measurement metric derived from the measured AGC output voltage 260, as will be explained later.
The estimated SNRd signal 245 comprises an SNR measurement metric derived from the signal S 206 after de-spreading has been performed (e.g., where the SNR measurement is estimated after a correlation receiver 236 of the digital demodulator 235 has de-spread the signal S 206 to create the de-spread signal 237). One way of determining the estimated SNRd signal 245 is to use the techniques described in U.S. Pat. No. 6,061,339, already incorporated by reference above. It should be noted that the estimated SNRd signal 245 has measurement limitations when the signal strength of signal S 206 is very large, thus resulting in a very high value for estimated SNRd signal 245. For instance, it is typically impractical to measure SNRs for the estimated SNRd signal 245 larger than on the order of 20-25 dB using digital sampling and measuring techniques that rely on analog-to-digital converters having usually 8-bits of resolution. Also, the measurement of the estimated SNRd signal 245 includes SNR degradation due to signal imperfections including untracked carrier phase noise. As a result, for signals S 206 having very large SNRs (e.g., particularly in the receive RF bandwidth W3), it is also desirable during antenna tracking to use the estimated SNRa signal 280, derived from the measured AGC output voltage 260, which is useful for very high received SNRs.
In an exemplary embodiment, the estimated SNRd signal 245 is most useful for tracking low level received signals S 206 (e.g., signals S 206 having SNRs in the receive RF bandwidth W3 below a certain threshold SNR in the receive bandwidth W3, typically an SNR near zero or a negative SNR) where the estimated SNRa signal 280 is less useful or not useful. Likewise, the estimated SNRa signal 280 is useful for higher level received signals (e.g., signals S 206 having SNRs above the certain threshold SNR) where the estimated SNRd signal 245 is generally not useful due to aforementioned difficulties of accurately measuring high SNRs in the receive RF bandwidth W3.
The self-scan tracking algorithm that performs the antenna point calculations to position the antenna azimuth and elevation gimbals 208 for directional antenna 205 to optimally point the directional antenna 205 at the target terminal (e.g., target terminal 110 of
In the example of
The receive terminal 200 may be implemented in a number of ways. For instance, the digital demodulator 235 could be implemented as a circuit comprising a field programmable gate array (FPGA), while the antenna controller 290 could be implemented as a circuit comprising a digital signal processor (DSP) and appropriate software. As another example, the digital demodulator 235 and the antenna controller 290 could be combined into a single circuit. The blocks in
Referring now to
As the received signal A 206 level increases in SNR in the receive RF bandwidth W3, the AGC will begin to detect the signal S 206 (e.g., such as a DSSS signal) and will begin to increase AGC output voltage 260 as the AGC controls the output of the IF amplifier 230. The break point between Region I and Region II on the diagram of
For purposes of the present invention, it is immaterial if the AGC output voltage 260 is positive or negative, or whether the AGC output voltage 260 shown in
Refer to
Generally, in all applications (DSSS signal or non-spread signals), the estimated SNRd signal 245 is the primary signal strength measurement metric for the enhanced self-scan tracking algorithm in the enhanced search and self-scan tracking algorithm module 285. For signals S 206 having large input SNRs in the receive RF bandwidth W3 where the estimated SNRd signal 245 is in the Region III of
It should be noted that the Limit I in
Typically, both the estimated SNRa signal 525 and estimated SNRd signal 515 will be used (e.g., summed) all of the time, although this is not necessary. Even non-spread signals with forward error correction coding operate at very low SNRs in the receive RF bandwidth W3, albeit typically not negative SNRs. If the estimated SNRd signal 515 term becomes large (e.g., 20-25 dB or so), then the contribution to the combined SNR 530 by the estimated SNRa signal 525 will be non-negligible. If the SNR in receive RF bandwidth W3 is small, the estimated SNRa signal 525 will not tend to vary significantly and the estimated SNRd signal 515 will predominate. By summing (e.g., by the enhanced search and self-scan tracking algorithm module 285) the estimated SNRa signal 525 and the estimated SNRd signal 515, the combined estimate SNR 530 is obtained that covers all Region I, II, and III conditions for
In
Typically, AGC output voltages 260 below a predetermined threshold are assigned a value for the estimated SNRa signal 280 of zero. Values for the combined estimate SNR 530 are used in a self-scan tracking algorithm, as described in
Turning now to
Method 700 thus allows values to be used in a self-scan tracking algorithm without determining a combined SNR. This might be useful, for instance, if a combined SNR would have some overlap between the estimated SNRd signal 245 (e.g., see 515 in
It should be noted that the various blocks of the flow diagrams of
Thus, what has been shown are techniques to extend the tracking range of an existing self-scan tracking algorithm to include, for instance, DSSS signaling, where the received signal level is below the thermal noise level of the receiver. The extension range is on the order of the process gain of the DSSS signal (e.g., chipping rate divided by data rate). These techniques can provide significant cost benefits over present existing implementations that are hardware intensive since the mathematical calculations may be performed in software and/or in hardware such as inexpensive field programmable gate arrays (FGPAs) in a digital demodulator 235 and associated antenna controller 290. The techniques utilize the same antenna gimbals and control electronics that are already required to control and point the directional antenna.
The foregoing description has provided by way of exemplary and non-limiting examples a full and informative description of the best method and apparatus presently contemplated by the inventors for carrying out the invention. However, various modifications and adaptations may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings and the appended claims. Nonetheless, all such and similar modifications of the teachings of this invention will still fall within the scope of this invention. For instance, although a monotonic combined SNR 530 is beneficial, the techniques of the present invention may be implemented with a non-monotonic combined SNR 530, depending on the design of the enhanced search and self-scan tracking algorithm module 285.
Furthermore, some of the features of the exemplary embodiments of this invention could be used to advantage without the corresponding use of other features. As such, the foregoing description should be considered as merely illustrative of the principles of the present invention, and not in limitation thereof.
Number | Name | Date | Kind |
---|---|---|---|
5859842 | Scott | Jan 1999 | A |
6033462 | Dekker et al. | Mar 2000 | A |
6061339 | Nieczyporowicz et al. | May 2000 | A |
6108561 | Mallinckrodt | Aug 2000 | A |
6337658 | Tong et al. | Jan 2002 | B1 |
6433736 | Timothy et al. | Aug 2002 | B1 |
6459410 | Pulsipher et al. | Oct 2002 | B1 |
7103386 | Hoffmann et al. | Sep 2006 | B2 |
20030152086 | El Batt | Aug 2003 | A1 |
20040009794 | Proctor et al. | Jan 2004 | A1 |
20060012521 | Small | Jan 2006 | A1 |