The present disclosure generally relates to ultrasonic surgical systems, electrosurgical systems, and combination electrosurgical/ultrasonic systems for performing surgical procedures such as coagulating, sealing, and/or cutting tissue. In particular, the present disclosure relates to circuit topologies for a combined generator configured to deliver a combined signal for radio frequency (RF) and ultrasonic outputs to a medical instrument. The present disclosure also generally relates to ultrasonic surgical systems, electrosurgical systems, and combination electrosurgical/ultrasonic systems for performing surgical procedures such as coagulating, sealing, and/or cutting tissue. In articular particular, the present disclosure relates to method and apparatus for selecting operations of a surgical instrument based on user intention.
The present disclosure is related generally to surgical instruments and associated surgical techniques. More particularly, the present disclosure is related to ultrasonic and electrosurgical systems that allow surgeons to perform cutting and coagulation and to adapt and customize such procedures based on the type of tissue being treated.
Ultrasonic surgical instruments are finding increasingly widespread applications in surgical procedures by virtue of the unique performance characteristics of such instruments. Depending upon specific instrument configurations and operational parameters, ultrasonic surgical instruments can provide substantially simultaneous cutting of tissue and hemostasis by coagulation, desirably minimizing patient trauma. The cutting action is typically realized by an-end effector, or blade tip, at the distal end of the instrument, which transmits ultrasonic energy to tissue brought into contact with the end effector. Ultrasonic instruments of this nature can be configured for open surgical use, laparoscopic, or endoscopic surgical procedures including robotic-assisted procedures.
Some surgical instruments utilize ultrasonic energy for both precise cutting and controlled coagulation. Ultrasonic energy cuts and coagulates by vibrating a blade in contact with tissue. Vibrating at high frequencies (e.g., 55,500 times per second), the ultrasonic blade denatures protein in the tissue to form a sticky coagulum. Pressure exerted on tissue with the blade surface collapses blood vessels and allows the coagulum to form a hemostatic seal. The precision of cutting and coagulation is controlled by the surgeon's technique and adjusting the power level, blade edge, tissue traction, and blade pressure.
Electrosurgical devices for applying electrical energy to tissue in order to treat and/or destroy the tissue are also finding increasingly widespread applications in surgical procedures. An electrosurgical device typically includes a hand piece, an instrument having a distally-mounted end effector (e.g., one or more electrodes). The end effector can be positioned against the tissue such that electrical current is introduced into the tissue. Electrosurgical devices can be configured for bipolar or monopolar operation. During bipolar operation, current is introduced into and returned from the tissue by active and return electrodes, respectively, of the end effector. During monopolar operation, current is introduced into the tissue by an active electrode of the end effector and returned through a return electrode (e.g., a grounding pad) separately located on a patient's body. Heat generated by the current flowing through the tissue may form hemostatic seals within the tissue and/or between tissues and thus may be particularly useful for sealing blood vessels, for example. The end effector of an electrosurgical device may also include a cutting member that is movable relative to the tissue and the electrodes to transect the tissue.
Electrical energy applied by an electrosurgical device can be transmitted to the instrument by a generator in communication with the hand piece. The electrical energy may be in the form of radio frequency (“RF”) energy. RF energy is a form of electrical energy that may be in the frequency range of 200 kilohertz (kHz) to 1 megahertz (MHz). In application, an electrosurgical device can transmit low frequency RF energy through tissue, which causes ionic agitation, or friction, in effect resistive heating, thereby increasing the temperature of the tissue. Because a sharp boundary is created between the affected tissue and the surrounding tissue, surgeons can operate with a high level of precision and control, without sacrificing un-targeted adjacent tissue. The low operating temperatures of RF energy are useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy works particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.
A challenge of using these medical devices is the inability to fully control and customize the functions of the surgical instruments. It would be desirable to provide a surgical instrument that overcomes some of the deficiencies of current instruments.
While several medical devices have been made and used, it is believed that no one prior to the inventors has made or used the subject matter described in the appended claims.
In one aspect, the present disclosure is directed to a mixed energy surgical instrument that utilizes both Ultrasonic and RF energy modalities. Multiple circuit topologies are disclosed which when one (or more) of these circuit topologies are included in a mixed energy surgical instrument, the circuit topology enables a generator to drive both RF and Ultrasonic energy into tissue either simultaneously or by switching between RF and Ultrasonic.
In some aspects, the circuit topology may include high frequency filters configured to filter a combined ultrasonic and RF frequency signal into signals having only ultrasonic frequency content and separately, RF frequency content. In some cases, one or more band-stop filters are used. In some cases, one or more resonators are used to accentuate the desired frequencies. In other cases, one or more pass-based filters are used. In some aspects, the circuit topology allows for simultaneous application of both RF energy and ultrasonic energy, both derived from the single combined signal.
In some aspects, the circuit topology may include more or more switches configured to switch between the RF frequency and the ultrasonic frequency within the same combined signal. In some cases, one or more pairs of solid state switches provide the switching functionality. In one aspect, metal oxide semiconductor (MOSFET) switches may be employed to provide the switching functionality. In some cases, a control circuit, which may be implemented as n application specific integrated circuit (ASIC), is also used to control the switching. One or more pulse transformers may be coupled to the control circuit and the pairs of MOSFET switches, in some cases. In other cases, switching may occur through inclusion of one or more electromechanical relays coupled to the control circuit.
In one aspect, a method for operating a surgical instrument is provided, the surgical instrument comprising a radio frequency (RF) energy output, an ultrasonic energy output, and a first jaw and a second jaw configured for pivotal movement between a closed position and an open position, the method comprising: receiving a first input indicating a user selection of one of a first option and a second option; receiving a second input indicating whether the first jaw and the second jaw are in the closed position or in the open position; receiving a third input indicating electrical impedance at the RF energy output; and selecting a mode of operation for treating a tissue from a plurality of modes of operation based at least in part on the first input, the second input and the third input, wherein the plurality of modes of operation comprises: a first mode wherein the RF energy output applies RF energy to the tissue; and a second mode wherein the ultrasonic energy output applies ultrasonic energy to the tissue.
In another aspect, a generator for delivering radio frequency (RF) energy and ultrasonic energy to a surgical instrument is provided, the surgical instrument comprising a first jaw and a second jaw configured for pivotal movement between a closed position and an open position, the generator being configured to: receive a first input indicating a user selection of one of a first option and a second option; receive a second input indicating whether the first jaw and the second jaw are in the closed position or in the open position; receive a third input indicating electrical impedance at a RF energy output of the surgical instrument; and select a mode of operation for treating a tissue from a plurality of modes of operation based at least in part on the first input, the second input and the third input, wherein the plurality of modes of operation comprises: a first mode wherein the generator delivers RF energy to the surgical instrument; and a second mode wherein the generator delivers ultrasonic energy to the surgical instrument.
In yet another aspect, a surgical instrument is provided comprising: a first jaw and a second jaw configured for pivotal movement between a closed position and an open position; a radio frequency (RF) energy output configured to apply RF energy to a tissue at least when a first mode of operation is selected; and an ultrasonic energy output configured to apply ultrasonic energy to the tissue at least when a second mode of operation is selected, wherein a mode of operation is selected from a plurality of modes of operation comprising the first mode and the second mode based at least in part on a first input, a second input and a third input, wherein: the first input indicates a user selection of one of a first option and a second option; the second input indicates whether the first jaw and the second jaw are in the closed position or in the open position; and the third input indicates electrical impedance at the RF energy output.
In addition to the foregoing, various other method and/or system and/or program product aspects are set forth and described in the teachings such as text (e.g., claims and/or detailed description) and/or drawings of the present disclosure.
The foregoing is a summary and thus may contain simplifications, generalizations, inclusions, and/or omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, features, and advantages of the devices and/or processes and/or other subject matter described herein will become apparent in the teachings set forth herein.
In one or more various aspects, related systems include but are not limited to circuitry and/or programming for effecting herein-referenced method aspects; the circuitry and/or programming can be virtually any combination of hardware, software, and/or firmware configured to affect the herein-referenced method aspects depending upon the design choices of the system. In addition to the foregoing, various other method and/or system aspects are set forth and described in the teachings such as text (e.g., claims and/or detailed description) and/or drawings of the present disclosure.
Further, it is understood that any one or more of the following-described forms, expressions of forms, examples, can be combined with any one or more of the other following-described forms, expressions of forms, and examples.
Various forms are directed to improved ultrasonic surgical instruments configured for effecting tissue dissecting, cutting, and/or coagulation during surgical procedures. In one form, an ultrasonic surgical instrument apparatus is configured for use in open surgical procedures, but has applications in other types of surgery, such as laparoscopic, endoscopic, and robotic-assisted procedures. Versatile use is facilitated by selective use of ultrasonic energy.
The various forms will be described in combination with an ultrasonic instrument as described herein. Such description is provided by way of example, and not limitation, and is not intended to limit the scope and applications thereof. For example, any one of the described forms is useful in combination with a multitude of ultrasonic instruments including those described in, for example, U.S. Pat. Nos. 5,938,633; 5,935,144; 5,944,737; 5,322,055; 5,630,420; and 5,449,370, each of which is herein incorporated by reference.
As will become apparent from the following description, it is contemplated that forms of the surgical instrument described herein may be used in association with an oscillator unit of a surgical system, whereby ultrasonic energy from the oscillator unit provides the desired ultrasonic actuation for the present surgical instrument. It is also contemplated that forms of the surgical instrument described herein may be used in association with a signal generator unit of a surgical system, whereby electrical energy in the form of radio frequencies (RF), for example, is used to provide feedback to the user regarding the surgical instrument. The ultrasonic oscillator and/or the signal generator unit may be non-detachably integrated with the surgical instrument or may be provided as separate components, which can be electrically attachable to the surgical instrument.
One form of the present surgical apparatus is particularly configured for disposable use by virtue of its straightforward construction. However, it is also contemplated that other forms of the present surgical instrument can be configured for non-disposable or multiple uses. Detachable connection of the present surgical instrument with an associated oscillator and signal generator unit is presently disclosed for single-patient use for illustrative purposes only. However, non-detachable integrated connection of the present surgical instrument with an associated oscillator and/or signal generator unit is also contemplated. Accordingly, various forms of the presently described surgical instruments may be configured for single use and/or multiple uses with either detachable and/or non-detachable integral oscillator and/or signal generator unit, without limitation, and all combinations of such configurations are contemplated to be within the scope of the present disclosure.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects and features described above, further aspects and features will become apparent by reference to the drawings and the following detailed description.
The novel features described herein are set forth with particularity in the appended claims. Various aspects, however, both as to organization and methods of operation may be better understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols and reference characters typically identify similar components throughout the several views, unless context dictates otherwise. The illustrative aspects described in the detailed description, drawings, and claims are not meant to be limiting. Other aspects may be utilized, and other changes may be made, without departing from the scope of the subject matter presented here.
Before explaining the various aspects of the present disclosure in detail, it should be noted that the various aspects disclosed herein are not limited in their application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. Rather, the disclosed aspects may be positioned or incorporated in other aspects, variations and modifications thereof, and may be practiced or carried out in various ways. Accordingly, aspects disclosed herein are illustrative in nature and are not meant to limit the scope or application thereof. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the aspects for the convenience of the reader and are not to limit the scope thereof. In addition, it should be understood that any one or more of the disclosed aspects, expressions of aspects, and/or examples thereof, can be combined with any one or more of the other disclosed aspects, expressions of aspects, and/or examples thereof, without limitation.
Also, in the following description, it is to be understood that terms such as front, back, inside, outside, top, bottom and the like are words of convenience and are not to be construed as limiting terms. Terminology used herein is not meant to be limiting insofar as devices described herein, or portions thereof, may be attached or utilized in other orientations. The various aspects will be described in more detail with reference to the drawings.
This application is related to the following commonly owned patent application filed on Sep. 14, 2016:
U.S. Patent application Ser. No. 15/265,279, titled TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS, by Wiener et al.
This application is related to the following commonly owned patent applications filed on Sep. 7, 2016:
U.S. patent application Ser. No. 15/258,570, titled CIRCUIT TOPOLOGIES FOR COMBINED GENERATOR, by Wiener et al.;
U.S. patent application Ser. No. 15/258,578, titled CIRCUITS FOR SUPPLYING ISOLATED DIRECT CURRENT (DC) VOLTAGE TO SURGICAL INSTRUMENTS, by Wiener et al.;
U.S. patent application Ser. No. 15/258,586, titled FREQUENCY AGILE GENERATOR FOR A SURGICAL INSTRUMENT, by Yates et al.;
U.S. patent application Ser. No. 15/258,598, titled METHOD AND APPARATUS FOR SELECTING OPERATIONS OF A SURGICAL INSTRUMENT BASED ON USER INTENTION, by Asher et al.;
U.S. patent application Ser. No. 15/258,569, titled GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS FOR ELECTROSURGICAL AND ULTRASONIC SURGICAL INSTRUMENTS, by Wiener et al.;
U.S. patent application Ser. No. 15/258,611, titled GENERATOR FOR DIGITALLY GENERATING COMBINED ELECTRICAL SIGNAL WAVEFORMS FOR ULTRASONIC SURGICAL INSTRUMENTS, by Wiener et al.;
U.S. patent application Ser. No. 15/258,650, titled PROTECTION TECHNIQUES FOR GENERATOR FOR DIGITALLY GENERATING ELECTROSURGICAL AND ULTRASONIC DIGITAL ELECTRICAL SIGNAL WAVEFORMS, by Yates et al.;
each of which is incorporated herein by reference in its entirety.
This application also is related to the following commonly owned patent applications filed on Jun. 9, 2016:
U.S. patent application Ser. No. 15/177,430, titled SURGICAL INSTRUMENT WITH USER ADAPTABLE TECHNIQUES;
U.S. patent application Ser. No. 15/177,439, titled SURGICAL INSTRUMENT WITH USER ADAPTABLE TECHNIQUES BASED ON TISSUE TYPE;
U.S. patent application Ser. No. 15/177,449, titled SURGICAL SYSTEM WITH USER ADAPTABLE TECHNIQUES EMPLOYING MULTIPLE ENERGY MODALITIES BASED ON TISSUE;
U.S. patent application Ser. No. 15/177,456, titled SURGICAL SYSTEM WITH USER ADAPTABLE TECHNIQUES BASED ON TISSUE IMPEDANCE;
U.S. patent application Ser. No. 15/177,466, titled SURGICAL SYSTEM WITH USER ADAPTABLE TECHNIQUES EMPLOYING SIMULTANEOUS ENERGY MODALITIES BASED ON TISSUE PARAMETERS;
each of which is incorporated herein by reference in its entirety.
With reference to
According to various forms, the generator 100 may be configurable for use with different surgical instruments of different types including, for example, ultrasonic surgical instruments 104, RF electrosurgical instruments 106, and multifunction surgical instruments 108 that integrate RF and ultrasonic energies delivered simultaneously from the generator 100. Although in the form of
Still with reference to
Still with reference to
With reference to both
With reference now to
Still with reference to
In certain forms, a two-position switch may be provided as an alternative to a toggle button 137c. For example, the multifunction surgical instrument 108 may include a toggle button 137a for producing a continuous output at a maximum power level and a two-position toggle button 137b. In a first detented position, toggle button 137b may produce a continuous output at a less than maximum power level, and in a second detented position the toggle button 137b may produce a pulsed output (e.g., at either a maximum or less than maximum power level, depending upon the EEPROM settings). Any one of the buttons 137a, 137b, 137c may be configured to activate RF energy and apply the RF energy to the end effector 125.
Still with reference to
In other forms, the electrical outputs of the ultrasonic drive circuit 114 and the electrosurgery/RF drive circuit 116 may be combined into a single electrical signal capable of driving the multifunction surgical instrument 108 simultaneously with electrosurgical RF and ultrasonic energies. This single electrical drive signal may be produced by the combination drive circuit 118. The multifunction surgical instrument 108 comprises an ultrasonic transducer 120 coupled to an ultrasonic blade and one or more electrodes in the end effector 125 to receive ultrasonic and electrosurgical RF energy. The multifunction surgical instrument 108 comprises signal processing components to split the combined RF/ultrasonic energy signal such that the RF signal can be delivered to the electrodes in the end effector 125 and the ultrasonic signal can be delivered to the ultrasonic transducer 120.
In accordance with the described forms, the ultrasonic drive circuit 114 may produce a drive signal or signals of particular voltages, currents, and frequencies, e.g., 55,500 cycles per second (Hz). The drive signal or signals may be provided to the ultrasonic surgical instrument 104, and specifically to the ultrasonic transducer 120, which may operate, for example, as described above. The ultrasonic transducer 120 and a waveguide extending through the shaft 126 (waveguide not shown) may collectively form an ultrasonic drive system driving an ultrasonic blade 128 of an end effector 122. In one form, the generator 100 may be configured to produce a drive signal of a particular voltage, current, and/or frequency output signal that can be stepped or otherwise modified with high resolution, accuracy, and repeatability.
The generator 100 may be activated to provide the drive signal to the ultrasonic transducer 120 in any suitable manner. For example, the generator 100 may comprise a foot switch 130 coupled to the generator 100 via a foot switch cable 132. A clinician may activate the ultrasonic transducer 120 by depressing the foot switch 130. In addition, or instead of the foot switch 130 some forms of the ultrasonic surgical instrument 104 may utilize one or more switches positioned on the handpiece that, when activated, may cause the generator 100 to activate the ultrasonic transducer 120. In one form, for example, the one or more switches may comprise a pair of toggle buttons 137a, 137b (
Additionally or alternatively, the one or more switches may comprise a toggle button 137c that, when depressed, causes the generator 100 to provide a pulsed output. The pulses may be provided at any suitable frequency and grouping, for example. In certain forms, the power level of the pulses may be the power levels associated with toggle buttons 137a, 137b (maximum, less than maximum), for example.
It will be appreciated that the ultrasonic surgical instrument 104 and/or the multifunction surgical instrument 108 may comprise any combination of the toggle buttons 137a, 137b, 137c. For example, the multifunction surgical instrument 108 could be configured to have only two toggle buttons: a toggle button 137a for producing maximum ultrasonic energy output and a toggle button 137c for producing a pulsed output at either the maximum or less than maximum power level. In this way, the drive signal output configuration of the generator 100 could be 5 continuous signals and 5 or 4 or 3 or 2 or 1 pulsed signals. In certain forms, the specific drive signal configuration may be controlled based upon, for example, EEPROM settings in the generator 100 and/or user power level selection(s).
In certain forms, a two-position switch may be provided as an alternative to a toggle button 137c. For example, the ultrasonic surgical instrument 104 may include a toggle button 137a for producing a continuous output at a maximum power level and a two-position toggle button 137b. In a first detented position, toggle button 137b may produce a continuous output at a less than maximum power level, and in a second detented position the toggle button 137b may produce a pulsed output (e.g., at either a maximum or less than maximum power level, depending upon the EEPROM settings).
In accordance with the described forms, the electrosurgery/RF drive circuit 116 may generate a drive signal or signals with output power sufficient to perform bipolar electrosurgery using RF energy. In bipolar electrosurgery applications, the drive signal may be provided, for example, to electrodes located in the end effector 124 of the RF electrosurgical instrument 106, for example. Accordingly, the generator 100 may be configured for therapeutic purposes by applying electrical energy to the tissue sufficient for treating the tissue (e.g., coagulation, cauterization, tissue welding). The generator 100 may be configured for sub-therapeutic purposes by applying electrical energy to the tissue for monitoring parameters of the tissue during a procedure.
As previously discussed, the combination drive circuit 118 may be configured to drive both ultrasonic and RF electrosurgical energies. The ultrasonic and RF electrosurgical energies may be delivered though separate output ports of the generator 100 as separate signals or though a single port of the generator 100 as a single signal that is a combination of the ultrasonic and RF electrosurgical energies. In the latter case, the single signal can be separated by circuits located in the surgical instruments 104, 106, 108.
The surgical instruments 104, 106, 108 additionally or alternatively may comprise a switch to indicate a position of a jaw closure trigger for operating jaws of the end effector 122, 124, 125. Also, in some forms, the generator 100 may be activated based on the position of the jaw closure trigger, (e.g., as the clinician depresses the jaw closure trigger to close the jaws, ultrasonic energy may be applied).
The generator 100 may comprise an input device 110 (
The generator 100 also may comprise an output device 112 (
Although certain modules and/or blocks of the generator 100 may be described by way of example, it can be appreciated that a greater or lesser number of modules and/or blocks may be used and still fall within the scope of the forms. Further, although various forms may be described in terms of modules and/or blocks to facilitate description, such modules and/or blocks may be implemented by one or more hardware components, e.g., processors, Digital Signal Processors (DSPs), Programmable Logic Devices (PLDs), Application Specific Integrated Circuits (ASICs), circuits, registers and/or software components, e.g., programs, subroutines, logic and/or combinations of hardware and software components. Also, in some forms, the various modules described herein may be implemented utilizing similar hardware positioned within the surgical instruments 104, 106, 108 (i.e., the external generator 100 may be omitted).
In one form, the ultrasonic drive circuit 114, electrosurgery/RF drive circuit 116, and/or the combination drive circuit 118 may comprise one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. The drive circuits 114, 116, 118 may comprise various executable modules such as software, programs, data, drivers, application program interfaces (APIs), and so forth. The firmware may be stored in nonvolatile memory (NVM), such as in bit masked read-only memory (ROM) or flash memory. In various implementations, storing the firmware in ROM may preserve flash memory. The NVM may comprise other types of memory including, for example, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), or battery backed random-access memory (RAM) such as dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), and/or synchronous DRAM (SDRAM).
In one form, the drive circuits 114, 116, 118 comprise a hardware component implemented as a processor for executing program instructions for monitoring various measurable characteristics of the surgical instruments 104, 106, 108 and generating a corresponding output control signals for operating the surgical instruments 104, 106, 108. In forms in which the generator 100 is used in conjunction with the multifunction surgical instrument 108, the output control signal may drive the ultrasonic transducer 120 in cutting and/or coagulation operating modes. Electrical characteristics of the multifunction surgical instrument 108 and/or tissue may be measured and used to control operational aspects of the generator 100 and/or provided as feedback to the user. In forms in which the generator 100 is used in conjunction with the multifunction surgical instrument 108, the output control signal may supply electrical energy (e.g., RF energy) to the end effector 125 in cutting, coagulation and/or desiccation modes. Electrical characteristics of the multifunction surgical instrument 108 and/or tissue may be measured and used to control operational aspects of the generator 100 and/or provide feedback to the user. In various forms, as previously discussed, the hardware component may be implemented as a DSP, PLD, ASIC, circuits, and/or registers. In one form, the processor may be configured to store and execute computer software program instructions to generate the output signals for driving various components of the surgical instruments 104, 106, 108, such as the ultrasonic transducer 120 and the end effectors 122, 124, 125.
Forms of the generator 100 do not rely on a tuning inductor Lt to monitor the motional branch current Im. Instead, the generator 100 may use the measured value of the static capacitance Co in between applications of power for a specific ultrasonic surgical instrument 104 (along with drive signal voltage and current feedback data) to determine values of the motional branch current Im on a dynamic and ongoing basis (e.g., in real-time). Such forms of the generator 100 are therefore able to provide virtual tuning to simulate a system that is tuned or resonant with any value of static capacitance Co at any frequency, and not just at single resonant frequency dictated by a nominal value of the static capacitance Co.
In certain forms, the ultrasonic and electrosurgical drive signals may be provided simultaneously to distinct surgical instruments and/or to a single surgical instrument having the capability to deliver both ultrasonic and electrosurgical energy to tissue, such as the multifunction surgical instrument 108 (
The non-isolated stage 204 may comprise a power amplifier 212 having an output connected to a primary winding 214 of the power transformer 206. In certain forms the power amplifier 212 may be comprise a push-pull amplifier. For example, the non-isolated stage 204 may further comprise a logic device 216 for supplying a digital output to a digital-to-analog converter (DAC) circuit 218, which in turn supplies a corresponding analog signal to an input of the power amplifier 212. In certain forms the logic device 216 may comprise a programmable gate array (PGA), a field programmable gate array (FPGA), programmable logic device (PLD), among other logic circuits, for example. The logic device 216, by virtue of controlling the input of the power amplifier 212 via the DAC circuit 218, may therefore control any of a number of parameters (e.g., frequency, waveform shape, waveform amplitude) of drive signals appearing at the drive signal outputs 210a, 210b, 210c. In certain forms and as discussed below, the logic device 216, in conjunction with a processor (e.g., a digital signal processor discussed below), may implement a number of digital signal processing (DSP)-based and/or other control algorithms to control parameters of the drive signals output by the generator 200.
Power may be supplied to a power rail of the power amplifier 212 by a switch-mode regulator 220, e.g., power converter. In certain forms the switch-mode regulator 220 may comprise an adjustable buck regulator, for example. The non-isolated stage 204 may further comprise a first processor 222, which in one form may comprise a DSP processor such as an Analog Devices ADSP-21469 SHARC DSP, available from Analog Devices, Norwood, Mass., for example, although in various forms any suitable processor may be employed. In certain forms the DSP processor 222 may control operation of the switch-mode regulator 220 responsive to voltage feedback data received from the power amplifier 212 by the DSP processor 222 via an analog-to-digital converter (ADC) circuit 224. In one form, for example, the DSP processor 222 may receive as input, via the ADC circuit 224, the waveform envelope of a signal (e.g., an RF signal) being amplified by the power amplifier 212. The DSP processor 222 may then control the switch-mode regulator 220 (e.g., via a pulse-width modulated (PWM) output) such that the rail voltage supplied to the power amplifier 212 tracks the waveform envelope of the amplified signal. By dynamically modulating the rail voltage of the power amplifier 212 based on the waveform envelope, the efficiency of the power amplifier 212 may be significantly improved relative to a fixed rail voltage amplifier schemes.
In certain forms, the logic device 216, in conjunction with the DSP processor 222, may implement a digital synthesis circuit such as a DDS (see e.g.,
The non-isolated stage 204 may further comprise a first ADC circuit 226 and a second ADC circuit 228 coupled to the output of the power transformer 206 via respective isolation transformers 230, 232 for respectively sampling the voltage and current of drive signals output by the generator 200. In certain forms, the ADC circuits 226, 228 may be configured to sample at high speeds (e.g., 80 mega samples per second [MSPS]) to enable oversampling of the drive signals. In one form, for example, the sampling speed of the ADC circuits 226, 228 may enable approximately 200× (depending on frequency) oversampling of the drive signals. In certain forms, the sampling operations of the ADC circuit 226, 228 may be performed by a single ADC circuit receiving input voltage and current signals via a two-way multiplexer. The use of high-speed sampling in forms of the generator 200 may enable, among other things, calculation of the complex current flowing through the motional branch (which may be used in certain forms to implement direct digital synthesis (DDS) based waveform shape control described above), accurate digital filtering of the sampled signals, and calculation of real power consumption with a high degree of precision. Voltage and current feedback data output by the ADC circuits 226, 228 may be received and processed (e.g., first-in-first-out [FIFO] buffer, multiplexer, etc.) by the logic device 216 and stored in data memory for subsequent retrieval by, for example, the DSP processor 222. As noted above, voltage and current feedback data may be used as input to an algorithm for pre-distorting or modifying LUT waveform samples on a dynamic and ongoing basis. In certain forms, this may require each stored voltage and current feedback data pair to be indexed based on, or otherwise associated with, a corresponding LUT sample that was output by the logic device 216 when the voltage and current feedback data pair was acquired. Synchronization of the LUT samples and the voltage and current feedback data in this manner contributes to the correct timing and stability of the pre-distortion algorithm.
In certain forms, the voltage and current feedback data may be used to control the frequency and/or amplitude (e.g., current amplitude) of the drive signals. In one form, for example, voltage and current feedback data may be used to determine impedance phase. The frequency of the drive signal may then be controlled to minimize or reduce the difference between the determined impedance phase and an impedance phase setpoint (e.g., 0°), thereby minimizing or reducing the effects of ultrasonic distortion and correspondingly enhancing impedance phase measurement accuracy. The determination of phase impedance and a frequency control signal may be implemented in the DSP processor 222, for example, with the frequency control signal being supplied as input to a DDS control algorithm implemented by the logic device 216.
In another form, for example, the current feedback data may be monitored in order to maintain the current amplitude of the drive signal at a current amplitude setpoint. The current amplitude setpoint may be specified directly or determined indirectly based on specified voltage amplitude and power setpoints. In certain forms, control of the current amplitude may be implemented by control algorithm, such as, for example, a proportional-integral-derivative (PID) control algorithm, in the DSP processor 222. Variables controlled by the control algorithm to suitably control the current amplitude of the drive signal may include, for example, the scaling of the LUT waveform samples stored in the logic device 216 and/or the full-scale output voltage of the DAC circuit 218 (which supplies the input to the power amplifier 212) via a DAC circuit 234.
The non-isolated stage 204 may further comprise a second processor 236 for providing, among other things user interface (UI) functionality. In one form, the UI processor 236 may comprise an Atmel AT91SAM9263 processor having an ARM926EJ-S core, available from Atmel Corporation, San Jose, Calif., for example. Examples of UI functionality supported by the UI processor 236 may include audible and visual user feedback, communication with peripheral devices (e.g., via a Universal Serial Bus [USB] interface), communication with the foot switch 130, communication with an input device 110 (e.g., a touch screen display) and communication with an output device 112 (e.g., a speaker), as shown in
In certain forms, both the DSP processor 222 and the UI processor 236, for example, may determine and monitor the operating state of the generator 200. For the DSP processor 222, the operating state of the generator 200 may dictate, for example, which control and/or diagnostic processes are implemented by the DSP processor 222. For the UI processor 236, the operating state of the generator 200 may dictate, for example, which elements of a user interface (e.g., display screens, sounds) are presented to a user. The respective DSP and UI processors 222, 236 may independently maintain the current operating state of the generator 200 and recognize and evaluate possible transitions out of the current operating state. The DSP processor 222 may function as the master in this relationship and determine when transitions between operating states are to occur. The UI processor 236 may be aware of valid transitions between operating states and may confirm if a particular transition is appropriate. For example, when the DSP processor 222 instructs the UI processor 236 to transition to a specific state, the UI processor 236 may verify that requested transition is valid. In the event that a requested transition between states is determined to be invalid by the UI processor 236, the UI processor 236 may cause the generator 200 to enter a failure mode.
The non-isolated stage 204 may further comprise a controller 238 for monitoring input devices 110 (e.g., a capacitive touch sensor used for turning the generator 200 on and off, a capacitive touch screen). In certain forms, the controller 238 may comprise at least one processor and/or other controller device in communication with the UI processor 236. In one form, for example, the controller 238 may comprise a processor (e.g., a Mega168 8-bit controller available from Atmel) configured to monitor user input provided via one or more capacitive touch sensors. In one form, the controller 238 may comprise a touch screen controller (e.g., a QT5480 touch screen controller available from Atmel) to control and manage the acquisition of touch data from a capacitive touch screen.
In certain forms, when the generator 200 is in a “power off” state, the controller 238 may continue to receive operating power (e.g., via a line from a power supply of the generator 200, such as the power supply 254 discussed below). In this way, the controller 196 may continue to monitor an input device 110 (e.g., a capacitive touch sensor located on a front panel of the generator 200) for turning the generator 200 on and off. When the generator 200 is in the power off state, the controller 238 may wake the power supply (e.g., enable operation of one or more DC/DC voltage converters 256 of the power supply 254) if activation of the “on/off” input device 110 by a user is detected. The controller 238 may therefore initiate a sequence for transitioning the generator 200 to a “power on” state. Conversely, the controller 238 may initiate a sequence for transitioning the generator 200 to the power off state if activation of the “on/off” input device 110 is detected when the generator 200 is in the power on state. In certain forms, for example, the controller 238 may report activation of the “on/off” input device 110 to the UI processor 236, which in turn implements the necessary process sequence for transitioning the generator 200 to the power off state. In such forms, the controller 196 may have no independent ability for causing the removal of power from the generator 200 after its power on state has been established.
In certain forms, the controller 238 may cause the generator 200 to provide audible or other sensory feedback for alerting the user that a power on or power off sequence has been initiated. Such an alert may be provided at the beginning of a power on or power off sequence and prior to the commencement of other processes associated with the sequence.
In certain forms, the isolated stage 202 may comprise an instrument interface circuit 240 to, for example, provide a communication interface between a control circuit of a surgical instrument (e.g., a control circuit comprising handpiece switches) and components of the non-isolated stage 204, such as, for example, the logic device 216, the DSP processor 222 and/or the UI processor 236. The instrument interface circuit 240 may exchange information with components of the non-isolated stage 204 via a communication link that maintains a suitable degree of electrical isolation between the isolated and non-isolated stages 202, 204, such as, for example, an infrared (IR)-based communication link. Power may be supplied to the instrument interface circuit 240 using, for example, a low-dropout voltage regulator powered by an isolation transformer driven from the non-isolated stage 204.
In one form, the instrument interface circuit 240 may comprise a logic circuit 242 (e.g., logic circuit, programmable logic circuit, PGA, FPGA, PLD) in communication with a signal conditioning circuit 244. The signal conditioning circuit 244 may be configured to receive a periodic signal from the logic circuit 242 (e.g., a 2 kHz square wave) to generate a bipolar interrogation signal having an identical frequency. The interrogation signal may be generated, for example, using a bipolar current source fed by a differential amplifier. The interrogation signal may be communicated to a surgical instrument control circuit (e.g., by using a conductive pair in a cable that connects the generator 200 to the surgical instrument) and monitored to determine a state or configuration of the control circuit. The control circuit may comprise a number of switches, resistors and/or diodes to modify one or more characteristics (e.g., amplitude, rectification) of the interrogation signal such that a state or configuration of the control circuit is uniquely discernable based on the one or more characteristics. In one form, for example, the signal conditioning circuit 244 may comprise an ADC circuit for generating samples of a voltage signal appearing across inputs of the control circuit resulting from passage of interrogation signal therethrough. The logic circuit 242 (or a component of the non-isolated stage 204) may then determine the state or configuration of the control circuit based on the ADC circuit samples.
In one form, the instrument interface circuit 240 may comprise a first data circuit interface 246 to enable information exchange between the logic circuit 242 (or other element of the instrument interface circuit 240) and a first data circuit disposed in or otherwise associated with a surgical instrument. In certain forms, for example, a first data circuit 136 (
In certain forms, the first data circuit 136 *
As discussed previously, a surgical instrument may be detachable from a handpiece (e.g., the multifunction surgical instrument 108 may be detachable from the handpiece 109) to promote instrument interchangeability and/or disposability. In such cases, conventional generators may be limited in their ability to recognize particular instrument configurations being used and to optimize control and diagnostic processes accordingly. The addition of readable data circuits to surgical instruments to address this issue is problematic from a compatibility standpoint, however. For example, designing a surgical instrument to remain backwardly compatible with generators that lack the requisite data reading functionality may be impractical due to, for example, differing signal schemes, configuration complexity, and cost. Forms of instruments discussed herein address these concerns by using data circuits that may be implemented in existing surgical instruments economically and with minimal configuration changes to preserve compatibility of the surgical instruments with current generator platforms.
Additionally, forms of the generator 200 may enable communication with instrument-based data circuits. For example, the generator 200 may be configured to communicate with a second data circuit 138 (
In some forms, the second data circuit 138 (
In certain forms, the second data circuit and the second data circuit interface 248 may be configured such that communication between the logic circuit 242 and the second data circuit can be effected without the need to provide additional conductors for this purpose (e.g., dedicated conductors of a cable connecting a handpiece to the generator 200). In one form, for example, information may be communicated to and from the second data circuit using a 1-wire bus communication scheme implemented on existing cabling, such as one of the conductors used transmit interrogation signals from the signal conditioning circuit 244 to a control circuit in a handpiece. In this way, configuration changes or modifications to the surgical instrument that might otherwise be necessary are minimized or reduced. Moreover, because different types of communications implemented over a common physical channel can be frequency-band separated, the presence of a second data circuit may be “invisible” to generators that do not have the requisite data reading functionality, thus enabling backward compatibility of the surgical instrument.
In certain forms, the isolated stage 202 may comprise at least one blocking capacitor 250-1 connected to the drive signal output 210b to prevent passage of DC current to a patient. A single blocking capacitor may be required to comply with medical regulations or standards, for example. While failure in single-capacitor configurations is relatively uncommon, such failure may nonetheless have negative consequences. In one form, a second blocking capacitor 250-2 may be provided in series with the blocking capacitor 250-1, with current leakage from a point between the blocking capacitors 250-1, 250-2 being monitored by, for example, an ADC circuit 252 for sampling a voltage induced by leakage current. The samples may be received by the logic circuit 242, for example. Based changes in the leakage current (as indicated by the voltage samples in the form of
In certain forms, the non-isolated stage 204 may comprise a power supply 254 for delivering DC power at a suitable voltage and current. The power supply may comprise, for example, a 400 W power supply for delivering a 48 VDC system voltage. The power supply 254 may further comprise one or more DC/DC voltage converters 256 for receiving the output of the power supply to generate DC outputs at the voltages and currents required by the various components of the generator 200. As discussed above in connection with the controller 238, one or more of the DC/DC voltage converters 256 may receive an input from the controller 238 when activation of the “on/off” input device 110 by a user is detected by the controller 238 to enable operation of, or wake, the DC/DC voltage converters 256.
In one form, the generator 300 drive system 302 may comprise one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. The generator 300 drive system 302 may comprise various executable modules such as software, programs, data, drivers, application program interfaces (APIs), and so forth. The firmware may be stored in nonvolatile memory (NVM), such as in bit-masked read-only memory (ROM) or flash memory. In various implementations, storing the firmware in ROM may preserve flash memory. The NVM may comprise other types of memory including, for example, programmable ROM (PROM), erasable programmable ROM (EPROM), EEPROM, or battery backed random-access memory (RAM) such as dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), and/or synchronous DRAM (SDRAM).
In one form, the generator 300 drive system 302 comprises a hardware component implemented as a processor 308 for executing program instructions for monitoring various measurable characteristics of the ultrasonic surgical instrument 104 (
In one form, under control of one or more software program routines, the processor 308 executes the methods in accordance with the described forms to generate an electrical signal output waveform comprising current (I), voltage (V), and/or frequency (f) for various time intervals or periods (T). The stepwise waveforms of the drive signals may be generated by forming a piecewise linear combination of constant functions over a plurality of time intervals created by stepping the generator 300 drive signals, e.g., output drive current (I), voltage (V), and/or frequency (f). The time intervals or periods (T) may be predetermined (e.g., fixed and/or programmed by the user) or may be variable. Variable time intervals may be defined by setting the drive signal to a first value and maintaining the drive signal at that value until a change is detected in a monitored characteristic. Examples of monitored characteristics may comprise, for example, transducer impedance, tissue impedance, tissue heating, tissue transection, tissue coagulation, and the like. The ultrasonic drive signals generated by the generator 300 include, without limitation, ultrasonic drive signals capable of exciting the ultrasonic transducer 306 in various vibratory modes such as, for example, the primary longitudinal mode and ultrasonics thereof as well flexural and torsional vibratory modes.
In one form, the executable modules comprise one or more algorithm(s) 310 stored in memory that when executed causes the processor 308 to generate an electrical signal output waveform comprising current (I), voltage (V), and/or frequency (f) for various time intervals or periods (T). The stepwise waveforms of the drive signals may be generated by forming a piecewise linear combination of constant functions over two or more time intervals created by stepping the output drive current (I), voltage (V), and/or frequency (f) of the generator 300. The drive signals may be generated either for predetermined fixed time intervals or periods (T) of time or variable time intervals or periods of time in accordance with the one or more algorithm(s) 310. Under control of the processor 308, the generator 100 outputs (e.g., increases or decreases) the current (I), voltage (V), and/or frequency (f) up or down at a particular resolution for a predetermined period (T) or until a predetermined condition is detected, such as a change in a monitored characteristic (e.g., transducer impedance, tissue impedance). The steps can change in programmed increments or decrements. If other steps are desired, the generator 300 can increase or decrease the step adaptively based on measured system characteristics.
In operation, the user can program the operation of the generator 300 using the input device 312 located on the front panel of the generator 300 console. The input device 312 may comprise any suitable device that generates signals 314 that can be applied to the processor 308 to control the operation of the generator 300. In various forms, the input device 312 includes buttons, switches, thumbwheels, keyboard, keypad, touch screen monitor, pointing device, remote connection to a general purpose or dedicated computer. In other forms, the input device 312 may comprise a suitable user interface. Accordingly, by way of the input device 312, the user can set or program the current (I), voltage (V), frequency (f), and/or period (T) for programming the output of the generator 300. The processor 308 then displays the selected power level by sending a signal on line 316 to an output indicator 318.
In various forms, the output indicator 318 may provide visual, audible, and/or tactile feedback to the surgeon to indicate the status of a surgical procedure, such as, for example, when tissue cutting and coagulating is complete based on a measured characteristic of the ultrasonic surgical instrument 104, e.g., transducer impedance, tissue impedance, or other measurements as subsequently described. By way of example, and not limitation, visual feedback comprises any type of visual indication device including incandescent lamps or LEDs, graphical user interface, display, analog indicator, digital indicator, bar graph display, digital alphanumeric display. By way of example, and not limitation, audible feedback comprises any type of buzzer, computer generated tone, computerized speech, voice user interface (VUI) to interact with computers through a voice/speech platform. By way of example, and not limitation, tactile feedback comprises any type of vibratory feedback provided through an instrument housing handle assembly.
In one form, the processor 308 may be configured or programmed to generate a digital current signal 320 and a digital frequency signal 322. These digital signals 320, 322 are applied to a digital synthesis circuit such as the DDS circuit 324 (see e.g.,
In one form, the generator 300 comprises one or more measurement modules or components that may be configured to monitor measurable characteristics of the ultrasonic instrument 104 (
The generator 400 comprises a tissue impedance module 442. The drive system 402 is configured to generate electrical drive signal 404 to drive the ultrasonic transducer 406. In one aspect, the tissue impedance module 442 may be configured to measure the impedance Zt of tissue grasped between the blade 440 and the clamp arm assembly 444. The tissue impedance module 442 comprises an RF oscillator 446, an RF voltage sensing circuit 448, and an RF current sensing circuit 450. The RF voltage and RF current sensing circuits 448, 450 respond to the RF voltage Vrf applied to the blade 440 electrode and the RF current irf flowing through the blade 440 electrode, the tissue, and the conductive portion of the clamp arm assembly 444. The sensed voltage Vrf and current lrf are converted to digital form by the ADC circuit 436 via the analog multiplexer 434. The processor 408 receives the digital output 438 of the ADC circuit 436 and determines the tissue impedance Zt by calculating the ratio of the RF voltage Vrf to current lrf measured by the RF voltage sense circuit 448 and the RF current sense circuit 450. In one aspect, the transection of the inner muscle layer and the tissue may be detected by sensing the tissue impedance Zt. Accordingly, detection of the tissue impedance Zt may be integrated with an automated process for separating the inner muscle layer from the outer adventitia layer prior to transecting the tissue without causing a significant amount of heating, which normally occurs at resonance.
In one form, the RF voltage Vrf applied to the blade 440 electrode and the RF current lrf flowing through the blade 440 electrode, the tissue, and the conductive portion of the clamp arm assembly 451 are suitable for vessel sealing and//or dissecting. Thus, the RF power output of the generator 400 can be selected for non-therapeutic functions such as tissue impedance measurements as well as therapeutic functions such as vessel sealing and/or dissection. It will be appreciated, that in the context of the present disclosure, the ultrasonic and the RF electrosurgical energies can be supplied by the generator either individually or simultaneously.
In various forms, feedback is provided by the output indicator 418 shown in
In one form, the processor 408 may be configured or programmed to generate a digital current signal 420 and a digital frequency signal 422. These digital signals 420, 422 are applied to a digital synthesis circuit such as the DDS circuit 424 (see e.g.,
In one form, the generator 400 comprises one or more measurement modules or components that may be configured to monitor measurable characteristics of the ultrasonic instrument 104 (
With reference to
A first voltage sensing circuit 512 is coupled across the terminals labeled ENERGY1 and the RETURN path to measure the output voltage therebetween. A second voltage sensing circuit 524 is coupled across the terminals labeled ENERGY2 and the RETURN path to measure the output voltage therebetween. A current sensing circuit 514 is disposed in series with the RETURN leg of the secondary side of the power transformer 508 as shown to measure the output current for either energy modality. If different return paths are provided for each energy modality, then a separate current sensing circuit should be provided in each return leg. The outputs of the first and second voltage sensing circuits 512, 524 are provided to respective isolation transformers 516, 522 and the output of the current sensing circuit 514 is provided to another isolation transformer 518. The outputs of the isolation transformers 516, 518, 522 in the on the primary side of the power transformer 508 (non-patient-isolated side) are provided to a one or more ADC circuit 526. The digitized output of the ADC circuit 526 is provided to the processor 502 for further processing and computation. The output voltages and output current feedback information can be employed to adjust the output voltage and current provided to the surgical instrument and to compute output impedance, among other parameters. Input/output communications between the processor 502 and patient isolated circuits is provided through an interface circuit 520. Sensors also may be in electrical communication with the processor 502 by way of the interface circuit 520.
In one aspect, the impedance may be determined by the processor 502 by dividing the output of either the first voltage sensing circuit 512 coupled across the terminals labeled ENERGY1/RETURN or the second voltage sensing circuit 524 coupled across the terminals labeled ENERGY2/RETURN by the output of the current sensing circuit 514 disposed in series with the RETURN leg of the secondary side of the power transformer 508. The outputs of the first and second voltage sensing circuits 512, 524 are provided to separate isolations transformers 516, 522 and the output of the current sensing circuit 514 is provided to another isolation transformer 516. The digitized voltage and current sensing measurements from the ADC circuit 526 are provided the processor 502 for computing impedance. As an example, the first energy modality ENERGY1 may be ultrasonic energy and the second energy modality ENERGY2 may be RF energy. Nevertheless, in addition to ultrasonic and bipolar or monopolar RF energy modalities, other energy modalities include irreversible and/or reversible electroporation and/or microwave energy, among others. Also, although the example illustrated in
As shown in
In other aspects, the generators 100, 200, 300, 400, 500 described in connection with
As shown in
The switching mechanism 1023 is configured to receive the combined energy power output 1005 from the generator 1003 and it may be provided to the energy storage device 1025, surgical instrument 9007, and/or surgical instrument 9008. The device power monitoring component 1031 is coupled to the channels for the energy storage device 1025, surgical instrument 9007, surgical instrument 9008, and may monitor where power is flowing. The control circuit 1019 comprises communication interface 1033 coupled to the handswitch serial interface 1011 and an handpiece serial interface 1013 of the generator 1003. The control circuit 1019 is also coupled to the storage control 1027, storage monitoring component 1029, and device power monitoring component 1031 of the energy storage circuit 1071.
The control circuit 1019 further comprises a serial master interface 1035 that is coupled to handswitch (HSVV) #1 circuit 1037 and handswitch (HSVV) #2 circuit 1038, includes generation and ADC, a form of memory (non volatile or flash) 1039, along with a method for detecting the presence of an attached instrument (Presence) #1 circuit 1041 and Presence #2 circuit 1042, which includes a voltage or current source and ADC. The serial master interface 1035 also includes handswitch NVM bypass channels, which couple the serial master interface 1035 to the outputs of the handswitch #1 circuit 1037 and the handswitch #2 circuit 1038, respectively. The handswitch #1 circuit 1037 and handswitch #2 circuit 1038 are coupled to the HSW 1-wire serial protocol interfaces 9013, 9014 of the surgical instruments 9007, 9008, respectively. The serial master interface 1035 further includes handpiece serial channels that are coupled to the HP 1-wire serial protocol interfaces 9015, 9016 of the surgical instruments 9007, 9008, respectively. Further, Presence #1 and Presence #2 circuits 1041, 1042 are coupled to the presence interfaces 9017, 9018 of the surgical instruments 9007, 9008, respectively.
The system 1001 allows the control circuit 1019, such as an FPGA, to communicate with more surgical instruments using adapter 1015, which acts as an expansion adapter device. According to various aspects, the adapter 1015 expands the Input/Output (I/O) capability of the generator 1003 control. The adapter 1015 may function as an extension of the central processing unit that allows commands to be transmitted over a bus between the adapter 1015 and the generator 1003 and unpacks the commands and use them to bit-bang over interfaces or to control connected analog circuit. The adapter 1015 also allows for reading in ADC values from connected surgical instruments 9007, 9008 and relay this information to the generator control and the generator control would then control the two surgical instruments 9007, 9008. According to various aspects, the generator 1003 may control the surgical instruments 9007, 9008 as two separate state machines and may store the data.
Existing interfaces (the handswitch serial interface 1011 and the handpiece serial interface 1013 lines from generator 1003) may be used in a two-wire communication protocol that enables the generator 1003 control to communicate with multiple surgical instruments connected to a dual port interface, similar to the topology of a universal serial bus (USB) hub. This allows interfacing with two separate surgical instruments simultaneously. The system 1001 may be able to generate and read hand switch waveforms and be able to handle incoming handpiece serial buses. It would also monitor two separate presence elements in the surgical instruments 9007, 9008. In one aspect, the system 1001 may include a unique presence element and may have its own NVM.
Further, according to various aspects, the control circuit 1019 may be controlled by the generator 1003. The communication between the adapter 1015 and connected surgical instruments 9007, 9008 may be relayed to generator control. The generator 1003 would control the waveform generation circuit connected to the adapter 1015 to simultaneously generate handswitch signals for surgical instruments 9007, 9008.
The system 1001 may allow surgical instrument activity that can be simultaneously detected/monitored for two surgical instruments, even during activation. If upgradeable, the adapter 1015 would be capable of handling new surgical instrument communications protocols. Further, fast switching between surgical instruments may be accomplished.
The adapter 1115 comprises energy storage circuit 1117, control circuit 1119, an adapter memory 1121 (e.g., a NVM such as an EEPROM), a serial programmable input/output (PIO) integrated circuit 1133, an handswitch Switching Mechanism 1135, an handpiece Switching Mechanism 1137, a Presence Switching Mechanism 1139, and a Generic Adapter 1141. In one aspect, the serial PIO integrated circuit 1133 may be an addressable switch. The energy storage circuity 1117 comprises a switching mechanism 1123, energy storage device 1125, storage control component 1127, storage monitoring component 1129, and a device power monitoring component 1131. The control circuit 1119 may comprise a processor, FPGA, CPLD, PLD, microcontroller, DSP, and/or an ASIC, for example. According to the aspect of FIG. 11, an FPGA or microcontroller may have limited functionality and may solely comprise functionality for monitoring and communicating energy storage.
The switching mechanism 1123 is configured to receive the combined energy power output 1105 from the generator 1103 and it may be provided to the energy storage device 1125, surgical instrument 9007, and/or surgical instrument 9008. The device power monitoring component 1131 is coupled to the channels for the energy storage device 1125, surgical instrument 9007, surgical instrument 9008, and may monitor where power is flowing.
The control circuit 1119 is coupled to the serial PIO integrated circuit 1133 and the serial PIO integrated circuit 1133 is coupled to the handpiece serial interface 1113 of the generator 1103. The control circuit 1119 may receive information regarding charger status flags and switching controls from the serial PIO integrated circuit 1133. Further, the control circuit 1119 is coupled to the handswitch switching mechanism 1135, the handpiece switching mechanism 1137, and the presence switching mechanism 1139. According to the aspect of
The handswitch switching mechanism 1135, the handpiece switching mechanism 1137, and the presence switching mechanism 1139 are coupled to the handswitch serial interface 1111, the handpiece serial interface 1113, and the presence interface 1109 of generator 1103, respectively. Further, the handswitch switching mechanism 1135, the handpiece switching mechanism 1137, and the presence switching mechanism 1139 are coupled to the HSW 1-wire serial protocol interfaces 9013, 9014, the HP 1-wire serial protocol interfaces 9015, 9016, and the presence interfaces 9017, 9018 of the surgical instruments 9007, 9008, respectively. Further, the presence switching mechanism 1139 is coupled to the generic adapter 1141.
The generator 1103 switches between monitoring the surgical instruments 9007, 9008. According to various aspects, this switching may require the generator 1103 control to keep track of surgical instruments 9007, 9008 and run two separate state machines. The control circuit 1119 will need to remember which surgical instruments are connected, so that it can output an appropriate waveform to the ports where appropriate. The generator 1103 may generate/monitor hand switch signals, as well as communicating with serial NVM devices, such adapter memory 1121. The generator 1103 may maintain constant communication with the activating surgical instrument for the duration of the activation.
System 1101 also allows for a generic adapter presence element. When first plugged in or powered on, the adapter 1115 would present this adapter resistance to the generator 1103. The generator 1103 may then relay commands to the adapter 1115 to switch between the different presence elements corresponding to the different surgical instruments 9007, 9008 connected to it. Accordingly, the generator 1103 is able to use its existing presence resistance circuit. The NVM memory 1121 exists on the adapter 1115 for additional identification of the adapter and to provide a level of security. In addition, the adapter 1115 has a serial I/O device, i.e. serial PIO integrated circuit 1133. The serial PIO integrated circuit 1133 provides a communication link between the generator 1103 and the adapter 1115.
It may be possible to communicate over the handpiece serial bus using serial communications to handpiece NVMs and UART style communication to the control circuit 1119. According to one aspect, if SLOW serial communication is used (i.e. not overdrive) and a high speed serial protocol is used, system 1101 may need to ensure that the communications protocol does not generate a signal that looked like a serial reset pulse. This would allow better generator 1103 to adapter 1115 communications and faster switching times between surgical instruments 9007, 9008.
The system 1101 uses generator communications protocol and analog circuit and allows the generator to accomplish decision making. It is a simple and efficient solution that uses a small number of circuit devices.
The control circuit 1219 is coupled to the handswitch serial interface 1211 of the generator 1203 while the serial PIO integrated circuit 1233 is coupled to the handpiece serial interface 1213 as is the handpiece switching mechanism 1221. Further, the control circuit 1119 is coupled to the handswitch #1 circuit 1231 and the handswitch #2 circuit 1271. The control circuit 1119 may comprise a processor, FPGA, CPLD, PLD, microcontroller, and/or ASIC, for example. In the example shown in
The switching mechanism 1223 is configured to receive the combined RF/ultrasonic power output 1205 from the generator 1203 and it may be provided to the energy storage circuit 1225 or the switching mechanism 1235. The control circuit 1219 is also coupled to the storage control 1227 and storage monitoring 1229 of the energy storage circuit 1217. The switching mechanism 1235 may provide the power output received from the switching mechanism 1223 to surgical instrument 9007, and/or surgical instrument 9008. The instrument power monitoring 1237 is coupled to the channels for the power output to the surgical instrument 9007 and surgical instrument 9008. The instrument power monitoring 1237 also may ensure that the switching mechanism 1235 is outputting power to correct location.
The handswitch #1 circuit 1231 and the handswitch #2 circuit 1271 are coupled to the HSW 1-wire serial protocol interfaces 9013, 9014 of the surgical instruments 9007, 9008, respectively. The handpiece switching mechanism 1221 is coupled to the handpiece serial interface 1213 of the generator 1203 and to the HP 1-wire serial protocol interfaces 9015, 9016 of the surgical instruments 9007, 9008, respectively. Further, the presence switching mechanism 1239 is coupled to the presence interface 1209 of the generator 1203 and to the presence Interfaces 9017, 9018 of the surgical instruments 9007, 9008, respectively. Further, Presence Switching mechanism is coupled to the unique presence 1241. In one aspect, different instrument presence elements may be switched on an on-demand basis using serial I/O or an adapter micro protocol.
A first communications protocol will be used to communicate to the control circuit 1219 on the adapter 1215. The generator 1203 also may have the ability to monitor surgical instruments 9007, 9008 at once. The adapter 1215 may comprise circuit to provide handswitch signal generation (e.g., in handswitch #1 circuit 1231 and handswitch #2 circuit 1271) along with ADCs to interpret this data. The adapter 1215 may modulate two surgical instrument signals into at least a first waveform and may have the ability to read in the first and second waveforms. In various aspects, the second waveforms may be interpreted and translated into the format of the first waveforms. Further, the first protocol has the ability to send 12 bits at 615 bits/sec.
The control circuit 1219 may take the handswitch data from surgical instruments 9007, 9008 and modulate it into a first protocol. There are a few ways of doing this, but it may mean that surgical instruments 9007, 9008 may comprise a first protocol functionality. The system 1201 could communicate 4-6 buttons from the surgical instrument 9007 and 4-6 buttons from the surgical instrument 9008 in the first protocol frame. Alternatively, the system 1201 could use some form of addressing to access the surgical instruments 9007, 9008. The control circuit 1219 may have the ability to address separate devices by having the generator 1203 send the control circuit 1219 different addresses split into two different address spaces, one for surgical instrument 9007 and one for surgical instrument 9008.
The handpiece communications may involve some form of switch that could either be controlled via a serial I/O device or through the control circuit 1219 via a first protocol style communication interface from the generator 1203. In one aspect, energy storage monitoring 1229 and switching between surgical instruments 9007, 9008 and charging states could be handled in this manner as well. Certain first protocol addresses could be assigned to the data from the energy storage circuit 1225 and to the surgical instruments 9007, 9008 themselves. Presence elements could also be switched in with this format. Further, in one aspect, the control circuit 1219 may translate frames into a separate format, which may mean that the control circuit 1219 might need to make some decisions on whether button presses on surgical instruments 9007, 9008 are valid or not. The system 1201 would, however, allow the generator 1203 to fully monitor the surgical instruments 9007, 9008 at the same time time-slicing or handling a new communications protocol on the handswitch serial interface 1211 of the generator 1203. The system 1201 uses generator communications to simultaneously detect the activity of two surgical instruments, even during activation.
As noted above, a single output generator can deliver both RF and ultrasonic energy through a single port and these signals can be delivered separately or simultaneously to the end effector to treat tissue. One aspect of a combined RF and ultrasonic generator is shown in
The surgical instruments described herein can also include features to allow the energy being delivered by the generator to be dynamically changed based on the type of tissue being treated by an end effector of a surgical instrument. An algorithm for controlling the power output from a generator, such as generator 100, that is delivered to the end effector of the surgical instrument can include an input that represents the tissue type to allow the energy profile from the generator to be dynamically changed during the procedure based on the type of tissue being effected by the end effector of the surgical instrument.
Various algorithms can be used to select a power profile to allow the energy being delivered from the generator to dynamically change based on the tissue type being treated by the surgical instrument.
In order to determine the type of tissue being treated by the end effector of the surgical instrument, a tissue coefficient of friction can be calculated. The calculated tissue coefficient of friction is compared to a database of tissue coefficients of friction that correlates each tissue coefficient with a tissue type, as will be discussed in more detail below. The calculated tissue coefficient of friction and its related tissue type are used by an algorithm to control the energy being delivered from the generator to the surgical instrument. In one form, the tissue coefficient of friction is described by:
Where Q is the rate of heat generation, θ is the velocity of the ultrasonic motion of the end effector, and N is the force applied to the tissue by the end effector. The velocity of the ultrasonic motion is a known value from the settings of the generator. Since the value θ is a known value, the tissue coefficient of friction can be calculated using the slope of a graph of heat generation versus force on the tissue.
The force applied to the tissue by the end effector can be measured in a variety of ways using different type of components to measure force. This force measurement can be used, for example in the equation above, to determine the tissue coefficient of friction of the tissue being treated to determine its tissue type.
Undesirable frequency content is blocked to each output terminal1311, 113, thereby preventing unwanted excitation/dissipation in the transducer and unwanted low frequency current in the tissue. Depending on the attenuation required for each output terminal 1311, 1313, in aspects, the LC filter circuits 1307, 1309 can be further enhanced with additional resonant components. Since this concept does not rely on direct interaction with a control circuit in the surgical instrument, no changes or direct interface to the ASIC would be needed.
The band-stop filter circuit 1305 has the potential of allowing simultaneous RF and Ultrasonic therapy to the same surgical instrument. According to vairous aspects, a complex, multi-frequency output waveform may be applied and the resonant filters remain effective.
The system 1400 was simulated in both the stop-band, at 350 kHz, and the pass band, at 55 kHz, to shown that the parallel LC filter circuit 1411 is effective at blocking the unwanted current while still allowing normal operation in the pass-band. For the stop-band simulation, the generator 1401 is set to maximum RF amplitude of 100 Vrms on the RF output which results in 365 Vpk on the ultrasonic tap as shown below. For the pass-band simulation, the generator 1401 is set to maximum ultrasonic output voltage of 150 Vrms or 212 Vpk and the transducer is loaded to 400 ohms.
According to
Additionally,
This system 2200 was simulated in both the stop-band, at 55 kHz, and the pass band, at 350 kHz. For the stop-band simulation, the generator 2301 is set to maximum amplitude of 150 Vrms on the ultrasonic output which results in 82 Vpk on the RF output. For the pass-band simulation, the generator 2301 is set to maximum RF output voltage of 100 Vrms or 141 Vpk and the tissue impedance is set to 50 ohms.
Plot 2301 (with the LC filter) shows significant attenuation at 55 kHz. The attenuation is most effective in a very narrow band, but that is acceptable since the harmonic output operates in a well-defined operating frequency. As the output frequency increases past 300 kHz, the capacitance dominates the LC filter and a resonant peak is formed near 500 Khz. According to one aspect, the RF output can be tuned to this peak. There is a relatively small amount of attenuation in the 300-500 kHz range and operating points in this range would be acceptable depending on the application. The high frequency attenuation is largely lossless, and results from a reactive voltage drop across the LC tank.
The system 2200 was also simulated for a high voltage transducer. The high voltage transducer simulation set the maximum harmonic voltage to 400Vrms and the transducer model 2211 was changed so that the high voltage transducer has a C0 capacitance of 1.1 nF and a maximum load (tissue) impedance of 1000 ohms. The high voltage transducer system was simulated in both the stop-band, at 350 kHz, and the pass band, at 55 kHz, to demonstrate that the high voltage transducer system is effective at blocking the unwanted current while still allowing normal operation in the pass-band. For the stop-band simulation, the generator 2201 was set to maximum RF amplitude of 100Vrms on the RF output which results in 365Vpk on the harmonic output. For the pass-band simulation, the generator 2201 was set to maximum harmonic output voltage of 400Vrms, or 566Vpk, and the high voltage transducer was loaded to 1000 ohms.
The previous simulation results show that the configurations of the LC band-stop filter of the present disclosure are effective at blocking the RF output frequency. Additionally, the simulation results also show that circuit design configurations may be optimized for the inductor and capacitor components. According to various aspects, these components may be sized and configured to support the resonant current and high output voltage of a system, while doing so at relatively low loss.
According to one aspect, resonant capacitors of the LC band-stop filter are chosen so that the resonant capacitor offers a small size and a low dissipation factor at the frequency of use. A high frequency mica capacitor, such as the CD16 series shown below in TABLE 1, has exceptional performance at the RF output frequency and offers a high current carrying capacity. According to one aspect, a single component with these specifications meets the circuit requirements without the requirement that it be connected in parallel with another component to limit losses.
According to various aspects, the inductor may be the primary source of loss in a LC band-stop filter circuit and may also drive the overall size of the circuit. There may be tradeoffs between these two factors, because smaller core geometries operate at high flux density and consequently, may have more loss. Although core loss is a consideration for both the high frequency and low frequency inductor components, core loss will be more critical for the high frequency component. According to one aspect, selection of a high efficiency core material that is optimized to operate at frequencies above 300 kHz is beneficial in order to keep losses at a particular level.
Configuration parameters for selection of an inductor include: the efficiency and performance of an optimized inductor configuration; the space available in the handle of a hand piece of the surgical instrument; the duty cycle of the application; the ability of the hand piece configuration to dissipate heat and remain acceptably cool.
As mentioned, losses may be driven predominantly by the inductor, assuming an appropriate capacitor is used that has a low dissipation factor. The mode of operation that will dissipate the most power may be when the LC circuit is operating at resonance (blocking) and not when it is passing the generator output to the respective load of the LC circuit. While at resonance, the full output voltage of the generator is seen by the LC circuit causing maximum core loss and the circulating current that is being exchanged between the capacitor and inductor may also cause copper losses.
The robustness and simplicity of the circuit components enhances safety parameters of the systems described above, for example, because the likelihood of component failure is diminished. According to various aspects, in the event of a damaged defective resonant component, systems of the present disclosure may rely on a generator to detect the presence of the defective component and correct the impedance vs frequency characteristic with a pre-run diagnostic. A pre-run diagnostic may offer direct confirmation that the LC circuit is tuned and undamaged.
According to various aspects, size and weight for the systems may be controlled by the inductor. The configuration considerations for the inductor configurations discussed above may push the inductor to be larger and heavier in order to keep the efficiency at an acceptable level. According to various aspects, given an identical set of output power requirements, the size and weight of LC band-stop filter circuit configuration may be greater than a solid state switch-based (e.g., MOSFET switch-based) configuration discussed below. According to one aspect, an LC circuit may potentially consist of a mere four passive components. According to another aspect, the LC circuit may not require the use of a printed circuit board. According to other aspects, the LC circuit may be implemented without any ASIC or hand switch electronics. Complexity of the LC circuit may increase depending on the needs of the specific application and on the possibility of implementing a hybrid concept that combines more than one of the circuits of the present disclosure. The prospect of very few components, no printed circuit board, or at least a minimalistic one, will serve to reduce both component and labor costs for the circuit configurations discussed above with regard to
As shown in
As shown in
Further, as shown in
The plot 4101 shown in
The size and weight of the instrument 3503 with a resonant MOSFET circuit may be moderate. The MOSFETs used to interrupt the generator output may be smaller than an equivalent RF band stop filter implementation, but in some embodiments they may require some board level thermal management, which may consume board space. According to embodiments, components of the system 3500 may be substantially off-the shelf and require no custom engineered components. According to embodiments, a possible custom component may be a coupled inductor, which might include a special form factor or inductance. Overall, the cost of a resonant MOSFET switch is moderate.
Losses for the system 4300 are driven primarily by the pair of MOSFET switches 4305, 4307. According to various aspects, these parts can be optimized for each output and since the switching time is in the millisecond scale and not nanoseconds, high efficiency parts may be available that contribute low total loss. The remaining components that enhance the MOSFET are not power components and should not be a significant contributor to losses. Overall power efficiency of the system 4300 is considered to be good. According to various aspects, a single fault tolerant architecture that employs redundant components may provide a solution to a component failure hazard. The size and weight of the ASIC controlled MOSFET switch circuit configuration of instrument 4303 is excellent. The MOSFETs used to interrupt the generator output may be smaller than equivalent RF filter implementations, but may also require some board level thermal management that consumes board space. According to various aspects, the pulse transformer and buffer that enhance the MOSFET switch may also be very small. Additionally, the components for the ASIC controlled MOSFET switch circuit configuration of instrument 4303 may off-the shelf and require no custom engineered components.
Losses for the system 4300 are driven primarily by the MOSFET switches 4305, 4307. According to embodiments, these parts can be optimized for each output and since the switching time is in the millisecond scale and not nanoseconds, high efficiency parts may be available that contribute low total loss. The remaining components that enhance the MOSFET are not power components and should not be a significant contributor to losses. Overall power efficiency of the system 4300 is considered to be good. According to embodiments, a single fault tolerant architecture that employs redundant components may provide a solution to a component failure hazard. The size and weight of the ASIC controlled MOSFET switch circuit design of instrument 4303 is excellent. The MOSFETs used to interrupt the generator output may be smaller than equivalent RF filter implementations, but may also require some board level thermal management that consumes board space. According to embodiments, the pulse transformer and buffer that enhance the MOSFET switch may also be very small. Additionally, the components for the ASIC controlled MOSFET switch circuit design of instrument 4303 may off-the shelf and require no custom engineered components. Overall, the cost of the ASIC controlled MOSFET switch circuit design of instrument 4303 is good.
The system 5000 is similar to the ASIC controlled MOSFET switch configurations discussed with regard to
Other configurations discussed herein may use a signal switch closure to command a secondary power switch actuation via a control circuit. The system 5100 eliminates circuitry that may be necessary for such a secondary electronic actuation and uses an input to a switch 5123 to both command the control circuit 5119 (e.g., ASIC) for activation and engage the appropriate output 5111 or 5113 to the combined ultrasonic and RF surgical instrument 5103. In one aspect, the switch that performs this may be a snap-action variety which requires very little throw to engage the contacts. In another aspect, a mechanical rocker style switch mechanism may be employed in the combined ultrasonic and RF surgical instrument 5103 which ensures that the two states are mutually exclusive.
The simulations indicates that by using band-stop output filters, a mixed frequency waveform produced by the generator can be split and diverted to separate output loads. The simulation also shows that a DC bus can readily be generated to power a variety of low energy loads within the instrument 5303. According to the aspect of
Turning now to
The application portion comprises EEPROM 7039, presence resistor 7041, and an output for ultrasonic energy 7045. The application portion further comprises rectifier circuit 7047, driver circuit 7049, driver circuit 7051, and DC motor 7043. Rectifier circuit 7047 comprises at least one diode and at least one capacitor. The rectifier circuit 7047 is coupled to the driver circuit 7049, which is coupled to the DC motor 7043. Driver circuit 7051 is coupled to control circuit 7027 and driver circuit 7049. EEPROM 7039 and presence resistor 7041 are also coupled to control circuit 7027. The system 7000 allows switching between an RF mode and an ultrasonic mode and supports mixed output frequencies, which allows tissues impedance sensing while the ultrasonic output is active. It also provides for a DC motor at the ultrasonic output that uses energy directed to the RF output terminal for generating a DC voltage.
Turning now to
The application portion comprises EEPROM 6239, presence resistor 6241, and outputs for RF and ultrasonic energy 6243, 6245, respectively. EEPROM 6239 and presence resistor 6241 are coupled to control circuit 6233. The system 6200 allows switching between an RF mode and an ultrasonic, also called ultrasonic, mode and allows for a transfer of weight, volume, and heat away from the handle and application portion. The two control circuits 6227, 6233 (e.g., ASIC devices) may also add flexibility to features that are available in the handle and the proximal plug.
The application portion comprises EEPROM 6339, presence resistor 6342, and outputs for RF and ultrasonic energy 6343, 6345, respectively. EEPROM 6339 and presence resistor 6342 are coupled to control circuit 6327. The system 6300 allows switching between an RF mode and an ultrasonic mode and allows for minimal cost and complexity in the handle of the surgical instrument.
The application portion comprises EEPROM 6439, presence resistor 6441, and outputs for RF and ultrasonic energy 6443, 6445, respectively. EEPROM 6439 and presence resistor 6441 are coupled to control circuit 6433. The system 6400 allows switching between an RF mode and an ultrasonic mode and the two control circuits 6427, 6433 (e.g., ASIC devices) may also add flexibility to features that are available in the handle and the distal plug.
The application portion comprises EEPROM 6539, presence resistor 6541, and outputs for RF and ultrasonic energy 6543, 6545, respectively. EEPROM 6539 and presence resistor 6541 are coupled to control circuit 6527. The system 6500 allows switching between an RF mode.
The application portion comprises EEPROM 6639, presence resistor 6641, and outputs for RF and ultrasonic energy 6643, 6645, respectively. EEPROM 6639 and presence resistor 6241 are coupled to control circuit 6627. The system 6600 allows switching between an RF mode and an ultrasonic mode and allows for a low cost cable configuration.
The application portion comprises EEPROM 6739, presence resistor 6741, and outputs for RF and ultrasonic energy 6743, 6745, respectively. The pair of bandstop filters 6715 are coupled to the outputs for RF and ultrasonic energy 6743, 6745. EEPROM 6739 and presence resistor 6741 are coupled to control circuit 6727. The system 6700 allows switching between an RF mode and an ultrasonic mode and supports mixed output frequencies, which allows tissues impedance sensing while the ultrasonic output is active. It also allows for a transfer of weight, volume, and heat away from the handle and application portion.
The application portion comprises EEPROM 6839, presence resistor 6841, and outputs for RF and ultrasonic energy 6843, 6845, respectively. The pair of bandstop filters 6815 are coupled to the outputs for RF and ultrasonic energy 6843, 6845. EEPROM 6839 and presence resistor 6841 are coupled to control circuit 6827. The system 6800 allows switching between an RF mode and an ultrasonic mode and supports mixed output frequencies, which allows tissues impedance sensing while the ultrasonic output is active.
The application portion comprises EEPROM 6939, presence resistor 6941, and outputs for RF and ultrasonic energy 6943, 6945, respectively. The pair of bandstop filters 6915 are coupled to the outputs for RF and ultrasonic energy 6943, 6945. EEPROM 6939 and presence resistor 6941 are coupled to control circuit 6927. The system 6900 allows switching between an RF mode and an ultrasonic mode and supports mixed output frequencies, which allows tissues impedance sensing while the ultrasonic output is active. It also provides for a low cost cable configuration.
The application portion comprises EEPROM 7039, presence resistor 7041, and an output for ultrasonic energy 7045. The application portion further comprises rectifier circuit 7047, driver circuit 7049, driver circuit 7051, and DC motor 7043. Rectifier circuit 7047 comprises at least one diode and at least one capacitor. The rectifier circuit 7047 is coupled to the driver circuit 7049, which is coupled to the DC motor 7043. Driver circuit 7051 is coupled to control circuit 7027 and driver circuit 7049. EEPROM 7039 and presence resistor 7041 are also coupled to control circuit 7027. The system 7000 allows switching between an RF mode and an ultrasonic mode and supports mixed output frequencies, which allows tissues impedance sensing while the ultrasonic output is active. It also provides for a DC motor at the ultrasonic output that uses energy directed to the RF output terminal for generating a DC voltage.
The application portion comprises EEPROM 7139, presence resistor 7141, and high voltage RF and ultrasonic energy outputs 7143, 7145, respectively. Transformer 7130 is coupled to one of the bandstop filters 7115 and the secondary side of transformer 7130 is coupled to the high voltage RF and ultrasonic energy outputs 7143, 7145. EEPROM 7139 and presence resistor 7141 are coupled to control circuit 7127. The system 7100 allows switching between an RF mode and an ultrasonic mode and supports mixed output frequencies, which allows tissues impedance sensing while the ultrasonic output is active. It also supports high RF output voltage for surface coagulation.
The application portion comprises EEPROM 7239, presence resistor 7241, end effector jaw position switch 7247, and RF and ultrasonic energy outputs 7243, 7245, respectively. Transformer 7230 is coupled to one of the bandstop filters 7215. The secondary side of transformer 7230 is coupled to the ultrasonic energy output 7245 and one position of the end effector jaw position switch 7247, while the other position of the end effector jaw position switch 7247 is coupled to the primary side of transformer 7230. EEPROM 7239 and presence resistor 7241 are coupled to control circuit 7227. The system 7200 allows switching between an RF mode and an ultrasonic mode and supports mixed output frequencies, which allows tissues impedance sensing while the ultrasonic output is active. It also supports high RF output voltage for surface coagulation when end effector jaws are open and supports standard RF voltages for sealing and cutting when the jaws are closed.
The application portion comprises EEPROM 7339, presence resistor 7341, and outputs for RF and ultrasonic energy 7343, 7345, respectively. Transformer 7230 is coupled to one of the bandstop filters 7315 and one of the MOSFET switches 7318 on the primary side. The secondary side of transformer 7230 is coupled to the other MOSFET switches 7318. EEPROM 7339 and presence resistor 7341 are coupled to control circuit 7327. The system 7300 allows switching between an RF mode and an ultrasonic mode and supports mixed output frequencies, which allows tissues impedance sensing while the ultrasonic output is active. It also supports high RF output voltage for surface coagulation when end effector jaws are open and supports standard RF voltages for sealing and cutting when the jaws are closed.
The application portion comprises EEPROM 7439, presence resistor 7441, and high voltage RF and ultrasonic energy outputs 7443, 7445, respectively. Transformer 7430 is coupled to one of the bandstop filters 7115 and the secondary side of transformer 7130 is coupled to the high voltage RF and ultrasonic energy outputs 7443, 7445. EEPROM 7439 and presence resistor 7441 are coupled to control circuit 7427. The system 7400 allows switching between an RF mode and an ultrasonic mode and supports mixed output frequencies, which allows tissues impedance sensing while the ultrasonic output is active. It also supports high RF output voltage for surface coagulation and transfers weight, volume, and heat away from the handle and application portion.
Characterization is performed 7510 on at least one component of the circuit. A frequency of the RF component is adjusted 7520 based on a result of the characterization. The generator delivers 7530 the combined signal to the surgical instrument. The circuit steers 7540 the RF component to the RF energy output, and steers 7550 the ultrasonic component to the ultrasonic energy output.
Turning now back to
Turning now to
Turning now to
A first input 7710 indicating a user selection of one of a first option and a second option may be received. For example, the first option may a seal only option, and the second option may be a seal and cut option. The user selection may be received as a button selection. For example, the button may be a switch or trigger located at a handle of the surgical instrument. Signal from a trigger aperture sensor may be fed via ASIC (application specific integration circuit) in the surgical instrument to a generator of RF and/or ultrasonic signals.
A second input 7720 indicating whether the first jaw and the second jaw are in the closed position or in the open position 7720 may be received. For example, a jaw aperture sensor in the surgical instrument may be used to sense the open or closed position, and a corresponding signal may be fed via ASIC in the surgical instrument to the generator of RF and/or ultrasonic signals.
A third input 7730 indicating electrical impedance at the RF energy output may be received. Low electrical impedance may indicate a short condition, which may be caused by a stapled tissue. Medium electrical impedance may indicate that a tissue is present without staples. High electrical impedance may indicate an open circuit condition.
Based at least in part on the first input 7710, the second input 7720 and the third input 7730, a mode of operation for treating a tissue may be selected 7740 from a plurality of modes of operation, which may comprise a first mode wherein the RF energy output applies RF energy to the tissue, and a second mode wherein the ultrasonic energy output applies ultrasonic energy to the tissue. The plurality of modes of operation may further comprise a third mode wherein the RF energy output applies RF energy to the tissue and the ultrasonic energy output applies ultrasonic energy to the tissue; and a fourth mode wherein no RF energy or ultrasonic energy is applied to the tissue.
A level of energy applied by the RF energy output or ultrasonic energy output may also be selected 7750 based at least in part on the first input, the second input and the third input. For example, an EEPROM (Electrically Erasable Programmable Read-Only Memory) located at the surgical instrument or a non-volatile memory located at the generator may be accessed to load a wave-shape table and other RF and/or ultrasonic parameters such as voltage, current, power, and algorithm in order to performed the desired operation in the most optimal way.
According to some aspects of the present disclosure, the first input 7710, the second input 7720 and the third input 7730 may be received at a generator for providing RF energy and ultrasonic energy to the surgical instrument, and the selections are performed at the generator.
Accordingly, with reference now to
Accordingly, upon selecting the seal only mode 7814, the system determines 7816 whether the clamp arm 146 of the surgical instrument 108 is in an open position or a closed position and then measures the impedance between the clamp arm 146 and the ultrasonic blade 149. When the clamp arm 146 is in a closed position 7822 the measured electrical impedance 7824 between the electrode in the clamp arm 146 and the ultrasonic blade 149 is low 7938 or indicates a short circuit, the system assumes that stapled tissue is present between the jaws 125 and applies 7840 low ultrasonic energy to the tissue located between the clamp arm 146 and the ultrasonic blade 149. Accordingly, the surgical instrument 108 completes the user intention of sealing 7842 stapled tissue located between the clamp arm 146 and the ultrasonic blade 149.
Still with reference to the seal only mode 7814 sequence, when the he clamp arm 146 is in a closed position 7822 and the measured electrical impedance 7824 is within a range that indicates 7844 the presence of tissue without staples between the clamp arm 146 and the ultrasonic blade 149, the system applies 7846 RF energy according to a predetermined seal only algorithm. Accordingly, the surgical instrument 108 completes the user intention 7948 of sealing a vessel or tissue bundle located between the clamp arm 146 and the ultrasonic blade 149.
Still with reference to the seal only mode 7814, when the seal only mode 7814 is selected and the clamp arm 146 is in an open 7826 position, and the measured electrical impedance 7828 is high 7850 or indicates an open circuit, the system determines that an error has occurred and provides 7854 an error indication but does not deliver either RF or ultrasonic energy. Accordingly, the surgical instrument 108 completes the user intention 7854 of no job identified.
Still with reference to the seal only mode 7814 sequence, when the clamp arm 146 is in an open position 7926 and the electrical impedance 7828 is medium 7856 or indicates the presence of tissue located between the clamp arm 146 and the ultrasonic blade 149, the system determines that the user intends to perform spot coagulation and applies 7858 high voltage RF energy to the tissue. Accordingly, the surgical instrument 108 completes the user intention 7860 of spot coagulating the tissue. The RF energy provided for spot coagulation also may have a high crest factor as shown and described in connection with
Having described the seal only mode 7814 sequence, the description now turns to the seal and cut mode 7818 sequence. When the seal and cut mode 7818 option is selected, the system determines 7820 whether the clamp arm 146 is in an open position or a closed position. When the clamp arm 146 is in a closed position 7830 and the measured electrical impedance 7832 is low 7862 or indicates the presence of a short circuit, the system determines that stapled tissue is located between the clamp arm 146 and the ultrasonic blade 149 and applies 7864 low ultrasonic energy to the stapled tissue. Accordingly, the surgical instrument 108 completes the user intention 7866 of sealing and cutting stapled tissue located between the clamp arm 146 and the ultrasonic blade 149.
Still with reference to the seal and cut mode 7818, when the clamp arm 146 is in a closed 7830 and the measured electrical impedance 7832 is medium 7868 or indicates that tissue without staples is present between the clamp arm 146 and the ultrasonic blade 149, the system firstly applies 7870 RF energy to seal the tissue and secondly applies 7870 ultrasonic energy to cut the tissue. Accordingly, the surgical instrument 108 completes the user intention 7872 of sealing and cutting a vessel or tissue bundle located between the clamp arm 146 and the ultrasonic blade 149.
Still with reference to the seal and cut mode 7818, when the clamp arm 146 is in an open position 7834 and the measured electrical impedance 7836 is high 7874 or indicates an open circuit, the system applies 7876 high ultrasonic energy to the tissue. Accordingly, the surgical instrument 108 completes the user intention 7878 of back cutting or creating an otomy.
Still with reference to the seal and cut mode 7818, when the clamp arm 146 is in an open position 7834 and the measured electrical impedance 7836 is medium 7880 or indicates that tissue is present between the clamp arm 146 and the ultrasonic blade 149, the system determines that the user intends to perform spot coagulation and applies 7882 high voltage RF to the to the tissue. Accordingly, the surgical instrument 108 completes the user intention 7884 of spot coagulation. The RF energy provided for spot coagulation may have a high crest factor as shown and described in connection with
Therefore, according to aspects of the present disclosure, various tissue effects can be provided in an automatic fashion. Therefore, a user does not need to access a complicated set of buttons or other inputs to perform the desired operation.
Turning now to
Examples of waveforms representing energy for delivery from a generator are illustrated in
For example,
For example,
A variety of other techniques can be used for compressing and/or limiting the waveforms of the output signals. It should be noted that the integrity of the ultrasonic output signal 604 (
While the examples herein are described mainly in the context of electrosurgical instruments, it should be understood that the teachings herein may be readily applied to a variety of other types of medical instruments. By way of example only, the teachings herein may be readily applied to tissue graspers, tissue retrieval pouch deploying instruments, surgical staplers, ultrasonic surgical instruments, etc. It should also be understood that the teachings herein may be readily applied to any of the instruments described in any of the references cited herein, such that the teachings herein may be readily combined with the teachings of any of the references cited herein in numerous ways. Other types of instruments into which the teachings herein may be incorporated will be apparent to those of ordinary skill in the art.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Aspects of the present disclosure have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery. For instance, those of ordinary skill in the art will recognize that various teaching herein may be readily combined with various teachings of U.S. Pat. No. 6,783,524, titled ROBOTIC SURGICAL TOOL WITH ULTRASOUND CAUTERIZING AND CUTTING INSTRUMENT, published Aug. 31, 2004, the disclosure of which is incorporated by reference herein.
Aspects of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Various aspects may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, aspects of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, aspects of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, aspects described herein may be processed before surgery. First, a new or used instrument may be obtained and if necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various aspects of the present disclosure, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present disclosure. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, aspects, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present disclosure should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
While various details have been set forth in the foregoing description, it will be appreciated that the various aspects of the techniques for circuit topologies for combined generator may be practiced without these specific details. One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
Further, while several forms have been illustrated and described, it is not the intention of the applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.
For conciseness and clarity of disclosure, selected aspects of the foregoing disclosure have been shown in block diagram form rather than in detail. Some portions of the detailed descriptions provided herein may be presented in terms of instructions that operate on data that is stored in a computer memory. Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art. In general, an algorithm refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the foregoing disclosure, it is appreciated that, throughout the foregoing disclosure, discussions using terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
The foregoing detailed description has set forth various forms of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one form, several portions of the subject matter described herein may be implemented via an application specific integrated circuits (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), or other integrated formats. However, those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative form of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).
In some instances, one or more elements may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. It is to be understood that depicted architectures of different components contained within, or connected with, different other components are merely examples, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated also can be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated also can be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
In other instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
While particular aspects of the present disclosure have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
It is worthy to note that any reference to “one aspect,” “an aspect,” “one form,” or “a form” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in one form,” or “in an form” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).
A sale of a system or method may likewise occur in a territory even if components of the system or method are located and/or used outside the territory. Further, implementation of at least part of a system for performing a method in one territory does not preclude use of the system in another territory.
All of the above-mentioned U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, non-patent publications referred to in this specification and/or listed in any Application Data Sheet, or any other disclosure material are incorporated herein by reference, to the extent not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
Various aspects of the subject matter described herein are set out in the following numbered clauses:
1. A system for managing RF and ultrasonic signals output by a generator, comprising: a surgical instrument comprising an RF energy output, an ultrasonic energy output, and a circuit configured to receive a combined Radio Frequency (RF) and ultrasonic signal from the generator; wherein the circuit is configured to filter frequency content of the combined signal and is configured to provide a first filtered signal to the RF energy output and a second filtered signal to the ultrasonic energy output.
2. The system of clause 1, wherein the circuit comprises a resonator.
3. The system of clause 1 or 2, wherein the circuit comprises a high frequency band-stop filter.
4. The system of any one of clauses 1-3, wherein the high frequency band-stop filter comprises a first LC filter circuit and a second LC filter circuit.
5. The system of any one of clauses 1-4, wherein the combined signal comprises a 350 kHz component.
6. The system of any one of clauses 1-5, wherein the combined signal comprises a 55 kHz component.
7. The system of any one of clauses 1-6, wherein the surgical instrument is configured to apply a therapy from the RF energy output and the ultrasonic energy output simultaneously.
8. A system for managing RF and ultrasonic signals output by a generator, comprising: a surgical instrument comprising an RF energy output, an ultrasonic energy output, and a circuit configured to receive a combined Radio Frequency (RF) and ultrasonic signal from the generator; wherein the circuit is configured to switch between the RF energy output and the ultrasonic energy output according to the combined signal received from the generator.
9. The system of clause 8, wherein the circuit comprises two pairs of MOSFET switches.
10. The system of clause 9, wherein each of the two pairs of MOSFET switches is connected source to source.
11. The system of clause 9 or 10, further comprising a first coupled inductor and a second coupled inductor.
12. The system of clause 11, wherein the gate of each MOSFET of a first pair of MOSFET switches is coupled together and is coupled to the first coupled inductor.
13. The system of clause 11 or 12, wherein the gate of each MOSFET of a second pair of MOSFET switches is coupled together and is coupled to the second coupled inductor.
14. The system of any one of clauses 11-13, further comprising a first capacitor and a second capacitor, wherein the first capacitor is coupled to the primary side of the first coupled inductor and the second capacitor is coupled to the primary side of the second coupled inductor.
15. The system of any one of clauses 9-14, further comprising a control circuit, a first pulse transformer, and a second pulse transformer, wherein the control circuit is coupled to the first and second pulse transformers, and wherein the first pulse transformer is coupled to a first pair of the two pairs of MOSFET switches and the second pulse transformer is coupled to a second pair of the two pairs of MOSFET switches.
16. The system of clause 15, wherein each of the two pairs of MOSFET switches are connected source to source.
17. The system of clause 16, wherein the gate of each MOSFET of the first pair of MOSFET switches is coupled together and is coupled to the first pulse transformer.
18. The system of clause 16 or 17, wherein the gate of each MOSFET of a second pair of MOSFET switches is coupled together and is coupled to the second pulse transformer.
19. The system of clause 18, wherein the circuit comprises a first switching element coupled to the RF energy output and a second switching element coupled to the ultrasonic energy output.
20. The system of clause 19, wherein the first switching element and the second switching element are each electromechanical relays.
21. The system of clause 19 or 20, wherein the first switching element and the second switching element are coupled to a control circuit.
22. The system of any one of clauses 19-21, further comprising a switch mechanism to actuate the first switching element and the second switching element.
23. The system of clause 22, wherein the switch mechanism is a mechanical rocker style switch mechanism.
24. A system for managing RF and ultrasonic signals output by a generator, comprising: a surgical instrument comprising an RF energy output, an ultrasonic energy output, and a circuit configured to receive a combined Radio Frequency (RF) and ultrasonic signal from the generator; wherein the circuit comprises: a filter circuit configured to filter frequency content of the combined signal; and a switching element configured to switch between an on-state and an off-state to one of the RF energy output or the ultrasonic energy output according to the combined signal received from the generator.
25. The system of clause 24, wherein the filter circuit is coupled to the ultrasonic energy output and the switching element is coupled to the RF energy output.
26. A system for managing radio frequency (RF) and ultrasonic signals output by a generator, comprising: a surgical instrument comprising an RF energy output, an ultrasonic energy output, and a circuit; wherein the circuit is configured to: receive a combined RF and ultrasonic signal from the generator; generate an RF filtered signal by filtering RF frequency content from the combined signal; generate an ultrasonic filtered signal by filtering ultrasonic frequency content from the combined signal; provide the RF filtered signal to the RF energy output; and provide the ultrasonic filtered signal to the ultrasonic energy output.
27. The system of clause 26, wherein the circuit comprises: a first resonator tuned to a frequency of the RF output; and a second resonator tuned to a frequency of the ultrasonic output.
28. The system of clause 26 or 27, wherein the circuit comprises a high frequency band-stop filter.
29. The system of any one of clauses 26-28, wherein the high frequency band-stop filter comprises a first inductor-capacitor (LC) filter circuit configured to block the RF frequency content of the combined signal and a second LC filter circuit configured to block the ultrasonic frequency content of the combined signal.
30. The system of any one of clauses 26-29, wherein the circuit comprises a high frequency pass band filter.
31. The system of any one of clauses 26-30, wherein the high frequency pass band filter comprises a first resistor-inductor-capacitor (RLC) filter circuit configured to allow passage of the RF frequency content of the combined signal while blocking all other frequency content and a second RLC filter circuit configured to allow passage of the ultrasonic frequency content of the combined signal while blocking all other frequency content.
32. The system of any one of clauses 26-31, wherein the surgical instrument is configured to apply a therapy from the RF energy output and the ultrasonic energy output simultaneously.
33. A system for managing radio frequency (RF) and ultrasonic signals output by a generator, comprising: a surgical instrument comprising an RF energy output, an ultrasonic energy output, and a circuit; wherein the circuit is configured to: receive a combined RF and ultrasonic signal from the generator; and switch between the RF energy output and the ultrasonic energy output according to the combined signal received from the generator.
34. The system of clause 33, wherein the circuit comprises two pairs of metal oxide semiconductor field effect transistor (MOSFET) switches.
35. The system of clause 33 or 34, wherein each of the two pairs of MOSFET switches is connected source to source.
36. The system of any one of clauses 34-35, wherein the circuit further comprises a first coupled inductor and a second coupled inductor.
37. The system of any one of clauses 33-36, wherein the two pairs of MOSFET switches comprises a first pair of MOSFET switches and a second pair of MOSFET switches; and a gate of each MOSFET of the first pair of MOSFET switches is coupled together and is coupled to the first coupled inductor.
38. The system of any one of clauses 33-37, wherein the gate of each MOSFET of the second pair of MOSFET switches is coupled together and is coupled to the second coupled inductor.
39. The system of any one of clauses 33-38, wherein: the circuit further comprises a first capacitor and a second capacitor; the first capacitor is coupled to a primary side of the first coupled inductor; and the second capacitor is coupled to a primary side of the second coupled inductor.
40. The system of any one of clauses 33-39, wherein the circuit further comprises: an application-specific integrated circuit (ASIC); a first pulse transformer coupled to the ASIC on a first side of the first pulse transformer and coupled to a first pair of the two pairs of MOSFET switches on a second side of the first pulse transformer; and a second pulse transformer coupled to the ASIC on a first side of the second pulse transformer and coupled to a second pair of the two pairs of MOSFET switches on a second side of the second pulse transformer.
41. The system of any one of clauses 33-40, wherein one polarity of a differential pulse applied to the first pulse transformer is configured to enhance the first pair of MOSFET pairs, and an opposite polarity of the differential pulse applied to the first pulse transformer is configured to turn off the first pair of MOSFET pairs.
42. The system of any one of clauses 33-41, wherein the circuit comprises: an application-specific integrated circuit (ASIC); a first electromechanical relay coupled to the ASIC and the RF energy output and is configured to switch to the RF energy output; and a second electromechanical relay coupled to the ASIC and the ultrasonic energy output and is configured to switch to the ultrasonic energy output.
43. The system of any one of clauses 33-42, wherein the circuit further comprises a switch mechanism configured to actuate the first electromechanical relay and the second electromechanical relay.
44. The system of any one of clauses 33-44, wherein the switch mechanism comprises a mechanical rocker style switch mechanism.
45. A system for managing radio frequency (RF) and ultrasonic signals output by a generator, comprising: a surgical instrument comprising an RF energy output, an ultrasonic energy output, and a circuit; wherein the circuit is configured to receive a combined RF and ultrasonic signal from the generator; and the circuit comprises: a filter circuit configured to filter frequency content of the combined signal; and a switching element configured to switch between an on-state and an off-state to one of the RF energy output or the ultrasonic energy output according to the combined signal received from the generator.
46. A system for managing radio frequency (RF) and ultrasonic signals output by a generator, comprising: a surgical instrument comprising a direct current (DC) motor load, an ultrasonic energy output, and a circuit; wherein the circuit is configured to: receive a combined RF and ultrasonic signal from the generator; generate an ultrasonic filtered signal by filtering ultrasonic frequency content from the combined RF and ultrasonic signal; generate DC voltage by filtering RF frequency content from the combined RF and ultrasonic signal; provide the DC voltage to the DC motor load; and provide the ultrasonic filtered signal to the ultrasonic energy output.
47. The system of clause 46, wherein the surgical instrument further comprises at least one electrical component, and the DC motor load is configured to power the at least one electrical component using the generated DC voltage.
48. The system of clause 46 or 47, wherein the at least one electrical component comprises an end effector.
49. The system of any one of clauses 46-48, wherein the at least one electrical component comprises one or more light emitting diodes (LEDs).
50. The system of any one of clauses 46-49, wherein the at least one electrical component comprises one or more sensors configured to detect a physiological condition of tissue at a surgical site.
51. The system of any one of clauses 46-50, wherein the circuit comprises a high frequency band-stop filter.
52. The system of any one of clauses 46-51, wherein filtering the ultrasonic frequency content comprises filtering the ultrasonic frequency content through the high frequency band-stop filter.
53. The system of any one of clauses 46-52, wherein generating the DC voltage by filtering comprises filtering the RF frequency content through the high frequency band-stop filter.
54. The system of any one of clauses 46-53, wherein the circuit comprises a rectifier configured to produce the DC voltage.
55. The system of any one of clauses 46-54, wherein the surgical instrument is configured to apply a therapy of RF energy through the DC motor load and the ultrasonic energy output simultaneously.
56. The system of any one of clauses 46-55, wherein the surgical instrument is configured to switch between applying RF energy through the DC motor load and applying ultrasonic energy through the ultrasonic energy output.
57. The system of any one of clauses 46-56, wherein the circuit further comprises: an application specific integrated circuit (ASIC); a memory coupled to the ASIC; a switch array coupled to the ASIC; and a rectifier coupled to the ASIC; wherein the ASIC is configured to control switching between the DC motor load and the ultrasonic energy output through the switch array.
58. A surgical instrument comprising: a direct current (DC) motor load; an ultrasonic energy output, and a circuit; wherein the circuit is configured to: receive a combined radio frequency (RF) and ultrasonic signal from a generator electrically coupled to the surgical instrument; generate an ultrasonic filtered signal by filtering ultrasonic frequency content from the combined RF and ultrasonic signal; generate DC voltage by filtering RF frequency content from the combined RF and ultrasonic signal; provide the DC voltage to the DC motor load; and provide the ultrasonic filtered signal to the ultrasonic energy output.
59. The surgical instrument of clause 58, further comprising an end effector, and wherein the DC motor load is configured to power the end effector using the generated DC voltage.
60. The surgical instrument of clause 58 or 59, wherein the circuit comprises a high frequency band-stop filter.
61. The surgical instrument of any one of clauses 58-60, wherein filtering the ultrasonic frequency content comprises filtering the ultrasonic frequency content through the high frequency band-stop filter.
62. The surgical instrument of any one of clauses 58-61, wherein generating the DC voltage by filtering comprises filtering the RF frequency content through the high frequency band-stop filter.
63. The surgical instrument of any one of clauses 58-62, wherein the surgical instrument is configured to apply a therapy of RF energy through the DC motor load and the ultrasonic energy output simultaneously.
64. The surgical instrument of any one of clauses 58-63, wherein the circuit is further configured to switch between applying RF energy through the DC motor load and applying ultrasonic energy through the ultrasonic energy output.
65. A surgical instrument comprising: a direct current (DC) motor load; an ultrasonic energy output; and a circuit, the circuit comprising: an application specific integrated circuit (ASIC); a memory coupled to the ASIC; a switch array coupled to the ASIC; and a rectifier coupled to the ASIC; wherein the circuit is configured to: receive a combined radio frequency (RF) and ultrasonic signal from a generator electrically coupled to the surgical instrument; generate an ultrasonic filtered signal by filtering ultrasonic frequency content from the combined RF and ultrasonic signal; generate DC voltage by filtering RF frequency content from the combined RF and ultrasonic signal; provide the DC voltage to the DC motor load; and provide the ultrasonic filtered signal to the ultrasonic energy output; wherein the ASIC is configured to control switching between applying RF energy through the DC motor load and applying ultrasonic energy through the ultrasonic energy output.
66. A system comprising a generator and a surgical instrument, wherein the generator is configured to deliver a combined signal comprising a radio frequency (RF) component and an ultrasonic component to the surgical instrument; and the surgical instrument comprises: an RF energy output, an ultrasonic energy output, a circuit configured to steer the RF component to the RF energy output and steer the ultrasonic component to the ultrasonic energy output, wherein the generator is configured to adjust a frequency of the RF component based on a characterization of a circuit component of the circuit.
67. The system of clause 66, wherein the circuit component comprises a band-stop filter.
68. The system of clause 66 or 67, wherein the circuit further comprises a variable component.
69. The system of any one of clauses 66-68, wherein the characterization of the circuit component comprises sending a ping signal to the circuit component.
70. The system of any one of clauses 66-69, wherein a result of the characterization is stored in the surgical instrument.
71. The system of any one of clauses 66-70, wherein the characterization is performed when the surgical instrument is manufactured.
72. The system of any one of clauses 66-71, wherein the characterization is performed when the surgical instrument is connected to the generator.
73. The system of any one of clauses 66-72, wherein the characterization is performed after the surgical instrument delivers energy to a tissue.
74. The system of any one of clauses 66-73, wherein the characterization is performed while the surgical instrument is delivering energy to a tissue.
75. The system of any one of clauses 66-74, wherein the characterization is performed periodically.
76. A method for providing a combined signal comprising a radio frequency (RF) component and an ultrasonic component by a generator to a surgical instrument, the surgical instrument comprising an RF energy output, an ultrasonic energy output and a circuit, the method comprising: performing characterization on a circuit component of the circuit; adjusting a frequency of the RF component based on a result of the characterization; delivering, by the generator, the combined signal to the surgical instrument; steering, by the circuit, the RF component to the RF energy output; and steering, by the circuit, the ultrasonic component to the ultrasonic energy output.
77. The method of clause 76, wherein the circuit component comprises a band-stop filter.
78. The method of clause 76 or 77, wherein the circuit further comprises a variable component.
79. The method of any one of clauses 76-78, wherein performing characterization on the circuit component comprises sending a ping signal to the circuit component.
80. The method of any one of clauses 76-79, further comprising storing a result of the characterization in the surgical instrument.
81. The method of any one of clauses 76-80, wherein the characterization is performed when the surgical instrument is manufactured.
82. The method of any one of clauses 76-81, wherein the characterization is performed when the surgical instrument is connected to the generator.
83. The method of any one of clauses 76-82, wherein the characterization is performed after the surgical instrument delivers energy to a tissue.
84. The method of any one of clauses 76-83, wherein the characterization is performed while the surgical instrument is delivering energy to a tissue.
85. A generator for providing a combined signal comprising a radio frequency (RF) component and an ultrasonic component to a surgical instrument, the generator being configured to: perform characterization on a circuit component of a circuit of the surgical instrument for steering the RF component to an RF output and steering the ultrasonic component to an ultrasonic output; adjust a frequency of the RF component based on a result of the characterization; and deliver the combined signal to the surgical instrument.
86. A method for operating a surgical instrument, the surgical instrument comprising a radio frequency (RF) energy output, an ultrasonic energy output, and a first jaw and a second jaw configured for pivotal movement between a closed position and an open position, the method comprising: receiving a first input indicating a user selection of one of a first option and a second option; receiving a second input indicating whether the first jaw and the second jaw are in the closed position or in the open position; receiving a third input indicating electrical impedance at the RF energy output; and selecting a mode of operation for treating a tissue from a plurality of modes of operation based at least in part on the first input, the second input and the third input, wherein the plurality of modes of operation comprises: a first mode wherein the RF energy output applies RF energy to the tissue; and a second mode wherein the ultrasonic energy output applies ultrasonic energy to the tissue.
87. The method of clause 86, wherein the first option is a seal only option, and the second option is a seal and cut option.
88. The method of clause 86 or 87, wherein the user selection is a button selection.
89. The method of any one of clauses 86-88, wherein the plurality of modes of operation further comprises: a third mode wherein the RF energy output applies RF energy to the tissue and the ultrasonic energy output applies ultrasonic energy to the tissue; and a fourth mode wherein no RF energy or ultrasonic energy is applied to the tissue.
90. The method of clause 89, wherein the third mode is selected when the first input indicates the second option, the second input indicates the closed position, and the third input indicates medium electrical impedance, wherein RF energy is applied before ultrasonic energy is applied.
91. The method of clause 89, wherein the fourth mode is selected when the first input indicates the first option, the second input indicates the open position, and the third input indicates high electrical impedance.
92. The method of any one of clauses 86-91, further comprising selecting a level of energy applied by the RF energy output based at least in part on the first input, the second input and the third input.
93. The method of any one of clauses 86-92, wherein the first mode is selected and the level of energy applied by the RF energy output is selected as high, when the second input indicates the open position, and the third input indicates medium electrical impedance.
94. The method of any one of clauses 86-93, further comprising selecting a level of energy applied by the ultrasonic energy output based at least in part on the first input, the second input and the third input.
95. The method of any one of clauses 86-94, wherein the second mode is selected and the level of energy applied by the ultrasonic energy output is selected as low, when the second input indicates the closed position, and the third input indicates low electrical impedance.
96. The method of any one of clauses 86-94, wherein the second mode is selected and the level of energy applied by the ultrasonic energy output is selected as high, when the first input indicates the second option, the second input indicates the open position, and the third input indicates high electrical impedance.
97. The method of any one of clauses 86-96, wherein the first mode is selected when the first input indicates the first option, the second input indicates the closed position, and the third input indicates medium electrical impedance.
98. The method of any one of clauses 86-97, further comprising selecting a waveform of energy applied by the RF energy output or the ultrasonic energy output based at least in part on the first input, the second input and the third input.
99. A generator for delivering radio frequency (RF) energy and ultrasonic energy to a surgical instrument, the surgical instrument comprising a first jaw and a second jaw configured for pivotal movement between a closed position and an open position, the generator being configured to: receive a first input indicating a user selection of one of a first option and a second option; receive a second input indicating whether the first jaw and the second jaw are in the closed position or in the open position; receive a third input indicating electrical impedance at a RF energy output of the surgical instrument; and select a mode of operation for treating a tissue from a plurality of modes of operation based at least in part on the first input, the second input and the third input, wherein the plurality of modes of operation comprises: a first mode wherein the generator delivers RF energy to the surgical instrument; and a second mode wherein the generator delivers ultrasonic energy to the surgical instrument.
100. The generator of clause 99, wherein the plurality of modes of operation further comprises: a third mode wherein the generator delivers RF energy and ultrasonic energy to the surgical instrument; and a fourth mode wherein the generator delivers no RF energy or ultrasonic energy to the surgical instrument.
101. The generator of clause 99 or 100, wherein the generator is further configured to deliver RF energy to the surgical instrument at a level determined based at least in part on the first input, the second input and the third input.
102. The generator of anyone of clauses 99-101, wherein the generator is configured to select the first mode and the level of RF energy is determined as high, when the second input indicates the open position, and the third input indicates medium electrical impedance.
103. The generator of any one of clauses 99-102, wherein the generator is further configured to deliver ultrasonic energy to the surgical instrument at a level determined based at least in part on the first input, the second input and the third input.
104. The generator of any one of clauses 99-103, wherein the generator is configured to select the second mode and the level of ultrasonic energy is determined as low, when the second input indicates the closed position, and the third input indicates low electrical impedance.
105. A surgical instrument comprising: a first jaw and a second jaw configured for pivotal movement between a closed position and an open position; a radio frequency (RF) energy output configured to apply RF energy to a tissue at least when a first mode of operation is selected; and an ultrasonic energy output configured to apply ultrasonic energy to the tissue at least when a second mode of operation is selected, wherein a mode of operation is selected from a plurality of modes of operation comprising the first mode and the second mode based at least in part on a first input, a second input and a third input, wherein: the first input indicates a user selection of one of a first option and a second option; the second input indicates whether the first jaw and the second jaw are in the closed position or in the open position; and the third input indicates electrical impedance at the RF energy output.
106. A method, comprising receiving, by a surgical instrument a combined radio frequency (RF) and ultrasonic signal from a generator, the surgical instrument comprising an RF energy output, an ultrasonic energy output, and a circuit; generating, by the circuit, a RF filtered signal by filtering RF frequency content from the combined signal; filtering, by the circuit, ultrasonic frequency content from the combined signal; generating, by the circuit, an ultrasonic filtered signal; providing, by the circuit, the RF filtered signal to the RF energy output; and providing, by the circuit, the ultrasonic filtered signal to the ultrasonic energy output.
107. The method of clause 106, comprising tuning, by the circuit, a first resonator to a frequency of the RF output; and tuning, by the circuit, a second resonator to a frequency of the ultrasonic output.
108. The method of clause 106 or 107, wherein the circuit comprises a high frequency band-stop filter, the method comprising blocking, by a first inductor-capacitor (LC) filter circuit of the high frequency band-stop filter, the RF frequency content of the combined signal; and blocking, by a second LC filter circuit of the high frequency band-stop filter, the ultrasonic frequency content of the combined signal.
109. The method of any one of clauses 106-108, wherein the circuit comprises a high frequency pass band filter, the method comprising passing, by a first resistor-inductor-capacitor (RLC) filter circuit of the high frequency pass band filter, the RF frequency content of the combined signal; blocking, by the first RLC filter, all other frequency content; passing, by a second RLC filter circuit of the high frequency pass band filter, the ultrasonic frequency content of the combined signal; and blocking, by the second RLC filter circuit, all other frequency content.
110. The method of any one of clauses 106-109, simultaneously applying, by the surgical instrument, a therapy from the RF energy output and the ultrasonic energy output.
111. The method of any one of clauses 106-110, comprising switching between the RF energy output and the ultrasonic energy output according to the combined signal received from the generator.
112. The method of any one of clauses 106-111, wherein the surgical instrument comprises a direct current (DC) motor load, the method comprising generating, by the circuit, a DC voltage by filtering the RF frequency content from the combined RF and ultrasonic signal; and providing, by the circuit, the DC voltage to the DC motor load.
113. A method, comprising receiving, by a surgical instrument, a combined signal comprising a radio frequency (RF) component and an ultrasonic component, from a generator, the surgical instrument comprising an RF energy output, an ultrasonic energy output, and a circuit configured to steer the RF component to the RF energy output and steer the ultrasonic component to the ultrasonic energy output; characterizing a circuit component of the circuit; and adjusting a frequency of the RF component based on the characterization of the circuit component.
114. The method of clause 113, wherein the characterization of the circuit component comprises receiving, by the circuit, a ping signal to the circuit component.
115. The method of clause 113 or 114, comprising storing a result of the characterization in a memory component of the surgical instrument.
116. The method of any one of clauses 113-115, comprising performing the characterization when the surgical instrument is manufactured; when the surgical instrument is connected to the generator; after the surgical instrument delivers energy to a tissue; while the surgical instrument is delivering energy to a tissue; or periodically.
117. The method of any one of clauses 113-116, comprising steering, by the circuit, the RF component to the RF energy output; and steering, by the circuit, the ultrasonic component to the ultrasonic energy output.
118. A method, comprising receiving, by a surgical instrument, a first input indicating a user selection of a first option or a second option, the surgical instrument comprising a radio frequency (RF) energy output, an ultrasonic energy output, and a first jaw and a second jaw configured for pivotal movement between a closed position and an open position; receiving, by the surgical instrument, a second input indicating whether the first jaw and the second jaw are in the closed position or in the open position; and selecting, by the surgical instrument, a first mode or a second mode of treating a tissue based on the first input and the second input, wherein the first mode comprises applying RF energy to the tissue; and the second mode comprises applying ultrasonic energy to the tissue.
119. The method of clause 118, comprising selecting, by the surgical instrument, a third mode or a fourth mode of treating a tissue based on the first input and the second input, wherein the third mode comprises applying the RF energy and the ultrasonic energy to the tissue; and the fourth mode comprising applying no RF energy or ultrasonic energy to the tissue.
120. The method of clause 118 or 119, comprising selecting the third mode when the first input indicates the second option, the second input indicates the closed position, and the third input indicates medium electrical impedance; and applying the RF energy to the tissue before applying the ultrasonic energy.
121. The method of any one of clauses 119 or 120, comprising selecting the fourth mode when the first input indicates the first option, the second input indicates the open position, and the third input indicates high electrical impedance.
122. The method of any one of clauses 118-121, further comprising selecting a level of energy applied by the RF energy output based on the first input and second input.
123. The method of any one of clauses 118-122, further comprising selecting a level of energy applied by the ultrasonic energy output based on the first input and second input.
124. The method of any one of clauses 118-123, comprising selecting the first mode when the first input indicates the first option, the second input indicates the closed position, and a third input indicates medium electrical impedance.
125. The method of any one of clauses 118-124, comprising selecting a waveform of energy applied by the RF energy output or the ultrasonic energy output based on the first input and the second input.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/235,260, titled GENERATOR FOR PROVIDING COMBINED RADIO FREQUENCY AND ULTRASONIC ENERGIES, filed Sep. 30, 2015, U.S. Provisional Application Ser. No. 62/235,368, titled CIRCUIT TOPOLOGIES FOR GENERATOR, filed Sep. 30, 2015, and U.S. Provisional Application Ser. No. 62/235,466, titled SURGICAL INSTRUMENT WITH USER ADAPTABLE ALGORITHMS, filed Sep. 30, 2015, the contents of each of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
969528 | Disbrow | Sep 1910 | A |
1570025 | Young | Jan 1926 | A |
1813902 | Bovie | Jul 1931 | A |
2188497 | Calva | Jan 1940 | A |
2366274 | Luth et al. | Jan 1945 | A |
2425245 | Johnson | Aug 1947 | A |
2442966 | Wallace | Jun 1948 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
2597564 | Bugg | May 1952 | A |
2704333 | Calosi et al. | Mar 1955 | A |
2736960 | Armstrong | Mar 1956 | A |
2748967 | Roach | Jun 1956 | A |
2845072 | Shafer | Jul 1958 | A |
2849788 | Creek | Sep 1958 | A |
2867039 | Zach | Jan 1959 | A |
2874470 | Richards | Feb 1959 | A |
2990616 | Balamuth et al. | Jul 1961 | A |
RE25033 | Balamuth et al. | Aug 1961 | E |
3015961 | Roney | Jan 1962 | A |
3033407 | Alfons | May 1962 | A |
3053124 | Balamuth et al. | Sep 1962 | A |
3082805 | Royce | Mar 1963 | A |
3166971 | Stoecker | Jan 1965 | A |
3322403 | Murphy | May 1967 | A |
3432691 | Shoh | Mar 1969 | A |
3433226 | Boyd | Mar 1969 | A |
3489930 | Shoh | Jan 1970 | A |
3513848 | Winston et al. | May 1970 | A |
3514856 | Camp et al. | Jun 1970 | A |
3525912 | Wallin | Aug 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3554198 | Tatoian et al. | Jan 1971 | A |
3580841 | Cadotte et al. | May 1971 | A |
3606682 | Camp et al. | Sep 1971 | A |
3614484 | Shoh | Oct 1971 | A |
3616375 | Inoue | Oct 1971 | A |
3629726 | Popescu | Dec 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3668486 | Silver | Jun 1972 | A |
3702948 | Balamuth | Nov 1972 | A |
3703651 | Blowers | Nov 1972 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3777760 | Essner | Dec 1973 | A |
3805787 | Banko | Apr 1974 | A |
3809977 | Balamuth et al. | May 1974 | A |
3830098 | Antonevich | Aug 1974 | A |
3854737 | Gilliam, Sr. | Dec 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3875945 | Friedman | Apr 1975 | A |
3885438 | Harris, Sr. et al. | May 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3924335 | Balamuth et al. | Dec 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
3989952 | Hohmann | Nov 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4012647 | Balamuth et al. | Mar 1977 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4074719 | Semm | Feb 1978 | A |
4156187 | Murry et al. | May 1979 | A |
4167944 | Banko | Sep 1979 | A |
4188927 | Harris | Feb 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4203430 | Takahashi | May 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4281785 | Brooks | Aug 1981 | A |
4300083 | Heiges | Nov 1981 | A |
4302728 | Nakamura | Nov 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4306570 | Matthews | Dec 1981 | A |
4314559 | Allen | Feb 1982 | A |
4353371 | Cosman | Oct 1982 | A |
4409981 | Lundberg | Oct 1983 | A |
4445063 | Smith | Apr 1984 | A |
4463759 | Garito et al. | Aug 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4492231 | Auth | Jan 1985 | A |
4494759 | Kieffer | Jan 1985 | A |
4504264 | Kelman | Mar 1985 | A |
4512344 | Barber | Apr 1985 | A |
4526571 | Wuchinich | Jul 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4541638 | Ogawa et al. | Sep 1985 | A |
4545374 | Jacobson | Oct 1985 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4549147 | Kondo | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4553544 | Nomoto et al. | Nov 1985 | A |
4562838 | Walker | Jan 1986 | A |
4574615 | Bower et al. | Mar 1986 | A |
4582236 | Hirose | Apr 1986 | A |
4593691 | Lindstrom et al. | Jun 1986 | A |
4617927 | Manes | Oct 1986 | A |
4633119 | Thompson | Dec 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4641053 | Takeda | Feb 1987 | A |
4646738 | Trott | Mar 1987 | A |
4646756 | Watmough et al. | Mar 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4662068 | Polonsky | May 1987 | A |
4674502 | Imonti | Jun 1987 | A |
4694835 | Strand | Sep 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4712722 | Hood et al. | Dec 1987 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4808154 | Freeman | Feb 1989 | A |
4819635 | Shapiro | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4830462 | Karny et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4836186 | Scholz | Jun 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4852578 | Companion et al. | Aug 1989 | A |
4860745 | Farin et al. | Aug 1989 | A |
4862890 | Stasz et al. | Sep 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4881550 | Kothe | Nov 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4910389 | Sherman et al. | Mar 1990 | A |
4915643 | Samejima et al. | Apr 1990 | A |
4920978 | Colvin | May 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4936842 | D'Amelio et al. | Jun 1990 | A |
4954960 | Lo et al. | Sep 1990 | A |
4965532 | Sakurai | Oct 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
5001649 | Lo et al. | Mar 1991 | A |
5009661 | Michelson | Apr 1991 | A |
5013956 | Kurozumi et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5035695 | Weber, Jr. et al. | Jul 1991 | A |
5042461 | Inoue et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5061269 | Muller | Oct 1991 | A |
5075839 | Fisher et al. | Dec 1991 | A |
5084052 | Jacobs | Jan 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5105117 | Yamaguchi | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5109819 | Custer et al. | May 1992 | A |
5112300 | Ureche | May 1992 | A |
5113139 | Furukawa | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5126618 | Takahashi et al. | Jun 1992 | A |
D327872 | McMills et al. | Jul 1992 | S |
5152762 | McElhenney | Oct 1992 | A |
5156633 | Smith | Oct 1992 | A |
5160334 | Billings et al. | Nov 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5163537 | Radev | Nov 1992 | A |
5163945 | Ortiz et al. | Nov 1992 | A |
5167619 | Wuchinich | Dec 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
5172344 | Ehrlich | Dec 1992 | A |
5174276 | Crockard | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176677 | Wuchinich | Jan 1993 | A |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grzeszykowski | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
D334173 | Liu et al. | Mar 1993 | S |
5190517 | Zieve et al. | Mar 1993 | A |
5190518 | Takasu | Mar 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5205817 | Idemoto et al. | Apr 1993 | A |
5209719 | Baruch et al. | May 1993 | A |
5213569 | Davis | May 1993 | A |
5214339 | Naito | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5218529 | Meyer et al. | Jun 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5222937 | Kagawa | Jun 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5231989 | Middleman et al. | Aug 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5241968 | Slater | Sep 1993 | A |
5242339 | Thornton | Sep 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5246003 | DeLonzor | Sep 1993 | A |
5254129 | Alexander | Oct 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5258004 | Bales et al. | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5264925 | Shipp et al. | Nov 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5275166 | Vaitekunas et al. | Jan 1994 | A |
5275607 | Lo et al. | Jan 1994 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282817 | Hoogeboom et al. | Feb 1994 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5307976 | Olson et al. | May 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5318564 | Eggers | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5339723 | Huitema | Aug 1994 | A |
5342356 | Ellman et al. | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5345937 | Middleman et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5353474 | Good et al. | Oct 1994 | A |
5357164 | Imabayashi et al. | Oct 1994 | A |
5357423 | Weaver et al. | Oct 1994 | A |
5359994 | Krauter et al. | Nov 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5368557 | Nita et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5371429 | Manna | Dec 1994 | A |
5374813 | Shipp | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5387215 | Fisher | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5394187 | Shipp | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395363 | Billings et al. | Mar 1995 | A |
5395364 | Anderhub et al. | Mar 1995 | A |
5396266 | Brimhall | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403334 | Evans et al. | Apr 1995 | A |
5406503 | Williams, Jr. et al. | Apr 1995 | A |
5408268 | Shipp | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5417709 | Slater | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5423844 | Miller | Jun 1995 | A |
5428504 | Bhatla | Jun 1995 | A |
5429131 | Scheinman et al. | Jul 1995 | A |
5438997 | Sieben et al. | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5451053 | Garrido | Sep 1995 | A |
5451220 | Ciervo | Sep 1995 | A |
5451227 | Michaelson | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5462604 | Shibano et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5483501 | Park et al. | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5486189 | Mudry et al. | Jan 1996 | A |
5490860 | Middle et al. | Feb 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5499992 | Meade et al. | Mar 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5507297 | Slater et al. | Apr 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5520704 | Castro et al. | May 1996 | A |
5522832 | Kugo et al. | Jun 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5540693 | Fisher | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5548286 | Craven | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5562659 | Morris | Oct 1996 | A |
5562703 | Desai | Oct 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5571121 | Heifetz | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5591187 | Dekel | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5600526 | Russell et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5603773 | Campbell | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609573 | Sandock | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618304 | Hart et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632717 | Yoon | May 1997 | A |
5640741 | Yano | Jun 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5647871 | Levine et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5649955 | Hashimoto et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5655100 | Ebrahim et al. | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674219 | Monson et al. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5678568 | Uchikubo et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5695510 | Hood | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5704791 | Gillio | Jan 1998 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5717306 | Shipp | Feb 1998 | A |
5720742 | Zacharias | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722980 | Schulz et al. | Mar 1998 | A |
5723970 | Bell | Mar 1998 | A |
5728130 | Ishikawa et al. | Mar 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733074 | Stock et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5766164 | Mueller et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5776155 | Beaupre et al. | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5800448 | Banko | Sep 1998 | A |
5800449 | Wales | Sep 1998 | A |
5805140 | Rosenberg et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5808396 | Boukhny | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810828 | Lightman et al. | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5823197 | Edwards | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5836957 | Schulz et al. | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5858018 | Shipp et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5873882 | Straub et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5883615 | Fago et al. | Mar 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5897523 | Wright et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5903607 | Tailliet | May 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5906627 | Spaulding | May 1999 | A |
5906628 | Miyawaki et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5911699 | Anis et al. | Jun 1999 | A |
5913823 | Hedberg et al. | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5929846 | Rosenberg et al. | Jul 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5954717 | Behl et al. | Sep 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
5974342 | Petrofsky | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5980510 | Tsonton et al. | Nov 1999 | A |
5980546 | Hood | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993465 | Shipp et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
5994855 | Lundell et al. | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6024750 | Mastri et al. | Feb 2000 | A |
6027515 | Cimino | Feb 2000 | A |
6031526 | Shipp | Feb 2000 | A |
6033375 | Brumbach | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6036667 | Manna et al. | Mar 2000 | A |
6036707 | Spaulding | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6048224 | Kay | Apr 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6080149 | Huang et al. | Jun 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6096033 | Tu et al. | Aug 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099542 | Cohn et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110127 | Suzuki | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117152 | Huitema | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126629 | Perkins | Oct 2000 | A |
6126658 | Baker | Oct 2000 | A |
6129735 | Okada et al. | Oct 2000 | A |
6129740 | Michelson | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132427 | Jones et al. | Oct 2000 | A |
6132429 | Baker | Oct 2000 | A |
6132448 | Perez et al. | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6139561 | Shibata et al. | Oct 2000 | A |
6142615 | Qiu et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6144402 | Norsworthy et al. | Nov 2000 | A |
6147560 | Erhage et al. | Nov 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6156029 | Mueller | Dec 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6162194 | Shipp | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6165150 | Banko | Dec 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6174310 | Kirwan, Jr. | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6179853 | Sachse et al. | Jan 2001 | B1 |
6183426 | Akisada et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193709 | Miyawaki et al. | Feb 2001 | B1 |
6204592 | Hur | Mar 2001 | B1 |
6205855 | Pfeiffer | Mar 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6210337 | Dunham et al. | Apr 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6241724 | Fleischman et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251110 | Wampler | Jun 2001 | B1 |
6252110 | Uemura et al. | Jun 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
D445092 | Lee | Jul 2001 | S |
D445764 | Lee | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6257241 | Wampler | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6259230 | Chou | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6280407 | Manna et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6287344 | Wampler et al. | Sep 2001 | B1 |
6290575 | Shipp | Sep 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6299591 | Banko | Oct 2001 | B1 |
6306131 | Hareyama et al. | Oct 2001 | B1 |
6306157 | Shchervinsky | Oct 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6311783 | Harpell | Nov 2001 | B1 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6332891 | Himes | Dec 2001 | B1 |
6338657 | Harper et al. | Jan 2002 | B1 |
6340352 | Okada et al. | Jan 2002 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
6350269 | Shipp et al. | Feb 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6356224 | Wohlfarth | Mar 2002 | B1 |
6358246 | Behl et al. | Mar 2002 | B1 |
6358264 | Banko | Mar 2002 | B2 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6379320 | Lafon et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6384690 | Wilhelmsson et al. | May 2002 | B1 |
6387094 | Eitenmuller | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6390973 | Ouchi | May 2002 | B1 |
6391026 | Hung et al. | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402743 | Orszulak et al. | Jun 2002 | B1 |
6402748 | Schoenman et al. | Jun 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6416469 | Phung et al. | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6425906 | Young et al. | Jul 2002 | B1 |
6428538 | Blewett et al. | Aug 2002 | B1 |
6428539 | Baxter et al. | Aug 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6440062 | Ouchi | Aug 2002 | B1 |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6449006 | Shipp | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6459363 | Walker et al. | Oct 2002 | B1 |
6461363 | Gadberry et al. | Oct 2002 | B1 |
6464689 | Qin et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6468270 | Hovda et al. | Oct 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6475215 | Tanrisever | Nov 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6500112 | Khouri | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6500312 | Wedekamp | Dec 2002 | B2 |
6503248 | Levine | Jan 2003 | B1 |
6506208 | Hunt et al. | Jan 2003 | B2 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6511493 | Moutafis et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6514267 | Jewett | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6527736 | Attinger et al. | Mar 2003 | B1 |
6531846 | Smith | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6543452 | Lavigne | Apr 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6551309 | LePivert | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6561983 | Cronin et al. | May 2003 | B2 |
6562035 | Levin | May 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6565558 | Lindenmeier et al. | May 2003 | B1 |
6572563 | Ouchi | Jun 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
D477408 | Bromley | Jul 2003 | S |
6585735 | Frazier et al. | Jul 2003 | B1 |
6588277 | Giordano et al. | Jul 2003 | B2 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6590733 | Wilson et al. | Jul 2003 | B1 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6607540 | Shipp | Aug 2003 | B1 |
6610059 | West, Jr. | Aug 2003 | B1 |
6610060 | Mulier et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6623500 | Cook et al. | Sep 2003 | B1 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626848 | Neuenfeldt | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6635057 | Harano et al. | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6651669 | Burnside | Nov 2003 | B1 |
6652513 | Panescu et al. | Nov 2003 | B2 |
6652539 | Shipp et al. | Nov 2003 | B2 |
6652545 | Shipp et al. | Nov 2003 | B2 |
6656132 | Ouchi | Dec 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6660017 | Beaupre | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6666860 | Takahashi | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6669690 | Okada et al. | Dec 2003 | B1 |
6669710 | Moutafis et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679875 | Honda et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6685700 | Behl et al. | Feb 2004 | B2 |
6685701 | Orszulak et al. | Feb 2004 | B2 |
6685703 | Pearson et al. | Feb 2004 | B2 |
6689145 | Lee et al. | Feb 2004 | B2 |
6689146 | Himes | Feb 2004 | B1 |
6690960 | Chen et al. | Feb 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6702821 | Bonutti | Mar 2004 | B2 |
6716215 | David et al. | Apr 2004 | B1 |
6719692 | Kleffner et al. | Apr 2004 | B2 |
6719765 | Bonutti | Apr 2004 | B2 |
6719776 | Baxter et al. | Apr 2004 | B2 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
D490059 | Conway et al. | May 2004 | S |
6731047 | Kauf et al. | May 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6739872 | Turri | May 2004 | B1 |
6740079 | Eggers et al. | May 2004 | B1 |
D491666 | Kimmell et al. | Jun 2004 | S |
6743245 | Lobdell | Jun 2004 | B2 |
6746284 | Spink, Jr. | Jun 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6752815 | Beaupre | Jun 2004 | B2 |
6755825 | Shoenman et al. | Jun 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6762535 | Take et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773435 | Schulze et al. | Aug 2004 | B2 |
6773443 | Truwit et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6778023 | Christensen | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6789939 | Schrodinger et al. | Sep 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6794027 | Araki et al. | Sep 2004 | B1 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6809508 | Donofrio | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6814731 | Swanson | Nov 2004 | B2 |
6819027 | Saraf | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6835082 | Gonnering | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6843789 | Goble | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6860878 | Brock | Mar 2005 | B2 |
6860880 | Treat et al. | Mar 2005 | B2 |
6863676 | Lee et al. | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6882439 | Ishijima | Apr 2005 | B2 |
6887209 | Kadziauskas et al. | May 2005 | B2 |
6887252 | Okada et al. | May 2005 | B1 |
6893435 | Goble | May 2005 | B2 |
6898536 | Wiener et al. | May 2005 | B2 |
6899685 | Kermode et al. | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6915623 | Dey et al. | Jul 2005 | B2 |
6923804 | Eggers et al. | Aug 2005 | B2 |
6923806 | Hooven et al. | Aug 2005 | B2 |
6926712 | Phan | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6926717 | Garito et al. | Aug 2005 | B1 |
6929602 | Hirakui et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6933656 | Matsushita et al. | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6942660 | Pantera et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6946779 | Birgel | Sep 2005 | B2 |
6948503 | Refior et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6974450 | Weber et al. | Dec 2005 | B2 |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979332 | Adams | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
6988295 | Tillim | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7001335 | Adachi et al. | Feb 2006 | B2 |
7001379 | Behl et al. | Feb 2006 | B2 |
7001382 | Gallo, Sr. | Feb 2006 | B2 |
7004951 | Gibbens, III | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7014638 | Michelson | Mar 2006 | B2 |
7018389 | Camerlengo | Mar 2006 | B2 |
7025732 | Thompson et al. | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7033357 | Baxter et al. | Apr 2006 | B2 |
7037306 | Podany et al. | May 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044949 | Orszulak et al. | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7066893 | Hibner et al. | Jun 2006 | B2 |
7066895 | Podany | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077845 | Hacker et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083613 | Treat | Aug 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7094235 | Francischelli | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7101378 | Salameh et al. | Sep 2006 | B2 |
7104834 | Robinson et al. | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7113831 | Hooven | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7117034 | Kronberg | Oct 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7119516 | Denning | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7128720 | Podany | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7144403 | Booth | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
D536093 | Nakajima et al. | Jan 2007 | S |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7156853 | Muratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160259 | Tardy et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7198635 | Danek et al. | Apr 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207997 | Shipp et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210881 | Greenberg | May 2007 | B2 |
7211079 | Treat | May 2007 | B2 |
7217128 | Atkin et al. | May 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7226448 | Bertolero et al. | Jun 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7235071 | Gonnering | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7241294 | Reschke | Jul 2007 | B2 |
7244262 | Wiener et al. | Jul 2007 | B2 |
7251531 | Mosher et al. | Jul 2007 | B2 |
7252641 | Thompson et al. | Aug 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7258688 | Shah et al. | Aug 2007 | B1 |
7264618 | Murakami et al. | Sep 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7269873 | Brewer et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
D552241 | Bromley et al. | Oct 2007 | S |
7282048 | Goble et al. | Oct 2007 | B2 |
7285895 | Beaupre | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7300431 | Dubrovsky | Nov 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7300446 | Beaupre | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303531 | Lee et al. | Dec 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311706 | Schoenman et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7318831 | Alvarez et al. | Jan 2008 | B2 |
7318832 | Young et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7335165 | Truwit et al. | Feb 2008 | B2 |
7335997 | Wiener | Feb 2008 | B2 |
7337010 | Howard et al. | Feb 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckal et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7357802 | Palanker et al. | Apr 2008 | B2 |
7361172 | Cimino | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7403224 | Fuller et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
7412008 | Lliev | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7416437 | Sartor et al. | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
7419490 | Falkenstein et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7422463 | Kuo | Sep 2008 | B2 |
7422582 | Malackowski et al. | Sep 2008 | B2 |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431704 | Babaev | Oct 2008 | B2 |
7431720 | Pendekanti et al. | Oct 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7449004 | Yamada et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455641 | Yamada et al. | Nov 2008 | B2 |
7462181 | Kraft et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7473145 | Ehr et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7481775 | Weikel, Jr. et al. | Jan 2009 | B2 |
7488285 | Honda et al. | Feb 2009 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7491202 | Odom et al. | Feb 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7498080 | Tung et al. | Mar 2009 | B2 |
7502234 | Goliszek et al. | Mar 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7520865 | Radley Young et al. | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7530986 | Beaupre et al. | May 2009 | B2 |
7534243 | Chin et al. | May 2009 | B1 |
7535233 | Kojovic et al. | May 2009 | B2 |
D594983 | Price et al. | Jun 2009 | S |
7540871 | Gonnering | Jun 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7544200 | Houser | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7553309 | Buysse et al. | Jun 2009 | B2 |
7554343 | Bromfield | Jun 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7563259 | Takahashi | Jul 2009 | B2 |
7566318 | Haefner | Jul 2009 | B2 |
7567012 | Namikawa | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7569057 | Liu et al. | Aug 2009 | B2 |
7572266 | Young et al. | Aug 2009 | B2 |
7572268 | Babaev | Aug 2009 | B2 |
7578820 | Moore et al. | Aug 2009 | B2 |
7582084 | Swanson et al. | Sep 2009 | B2 |
7582086 | Privitera et al. | Sep 2009 | B2 |
7582087 | Tetzlaff et al. | Sep 2009 | B2 |
7582095 | Shipp et al. | Sep 2009 | B2 |
7585181 | Olsen | Sep 2009 | B2 |
7586289 | Andruk et al. | Sep 2009 | B2 |
7587536 | McLeod | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7594925 | Danek et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7601119 | Shahinian | Oct 2009 | B2 |
7601136 | Akahoshi | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7621930 | Houser | Nov 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7632267 | Dahla | Dec 2009 | B2 |
7632269 | Truckai et al. | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645240 | Thompson et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7645278 | Ichihashi et al. | Jan 2010 | B2 |
7648499 | Orszulak et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7655003 | Lorang et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7659833 | Warner et al. | Feb 2010 | B2 |
7662151 | Crompton, Jr. et al. | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7667592 | Ohyama et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7670338 | Albrecht et al. | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7678069 | Baker et al. | Mar 2010 | B1 |
7678105 | McGreevy et al. | Mar 2010 | B2 |
7678125 | Shipp | Mar 2010 | B2 |
7682366 | Sakurai et al. | Mar 2010 | B2 |
7686770 | Cohen | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7691095 | Bednarek et al. | Apr 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7708768 | Danek et al. | May 2010 | B2 |
7713202 | Boukhny et al. | May 2010 | B2 |
7713267 | Pozzato | May 2010 | B2 |
7714481 | Sakai | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7721935 | Racenet et al. | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7726537 | Olson et al. | Jun 2010 | B2 |
7727177 | Bayat | Jun 2010 | B2 |
7731717 | Odom et al. | Jun 2010 | B2 |
7738969 | Bleich | Jun 2010 | B2 |
7740594 | Hibner | Jun 2010 | B2 |
7744615 | Couture | Jun 2010 | B2 |
7749240 | Takahashi et al. | Jul 2010 | B2 |
7751115 | Song | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766693 | Sartor et al. | Aug 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7768510 | Tsai et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7771444 | Patel et al. | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7776036 | Schechter et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7778733 | Nowlin et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780593 | Ueno et al. | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7793814 | Racenet et al. | Sep 2010 | B2 |
7796969 | Kelly et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799020 | Shores et al. | Sep 2010 | B2 |
7799027 | Hafner | Sep 2010 | B2 |
7799045 | Masuda | Sep 2010 | B2 |
7803152 | Honda et al. | Sep 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7811283 | Moses et al. | Oct 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819819 | Quick et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
7821143 | Wiener | Oct 2010 | B2 |
D627066 | Romero | Nov 2010 | S |
7824401 | Manzo et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7834484 | Sartor | Nov 2010 | B2 |
7837699 | Yamada et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846155 | Houser et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7846161 | Dumbauld et al. | Dec 2010 | B2 |
7854735 | Houser et al. | Dec 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7861906 | Doll et al. | Jan 2011 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7862561 | Swanson et al. | Jan 2011 | B2 |
7867228 | Nobis et al. | Jan 2011 | B2 |
7871392 | Sartor | Jan 2011 | B2 |
7871423 | Livneh | Jan 2011 | B2 |
7876030 | Taki et al. | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7877852 | Unger et al. | Feb 2011 | B2 |
7878991 | Babaev | Feb 2011 | B2 |
7879033 | Sartor et al. | Feb 2011 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7892606 | Thies et al. | Feb 2011 | B2 |
7896875 | Heim et al. | Mar 2011 | B2 |
7897792 | Iikura et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7901423 | Stulen et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909820 | Lipson et al. | Mar 2011 | B2 |
7909824 | Masuda et al. | Mar 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7919184 | Mohapatra et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
7931611 | Novak et al. | Apr 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
D637288 | Houghton | May 2011 | S |
D638540 | Ijiri et al. | May 2011 | S |
7935114 | Takashino et al. | May 2011 | B2 |
7936203 | Zimlich | May 2011 | B2 |
7951095 | Makin et al. | May 2011 | B2 |
7951165 | Golden et al. | May 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7956620 | Gilbert | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7967602 | Lindquist | Jun 2011 | B2 |
7972328 | Wham et al. | Jul 2011 | B2 |
7972329 | Refior et al. | Jul 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7981050 | Ritchart et al. | Jul 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
7997278 | Utley et al. | Aug 2011 | B2 |
7998157 | Culp et al. | Aug 2011 | B2 |
8002732 | Visconti | Aug 2011 | B2 |
8002770 | Swanson et al. | Aug 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8033173 | Ehlert et al. | Oct 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8048070 | O'Brien et al. | Nov 2011 | B2 |
8052672 | Laufer et al. | Nov 2011 | B2 |
8055208 | Lilla et al. | Nov 2011 | B2 |
8056720 | Hawkes | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8057468 | Konesky | Nov 2011 | B2 |
8057498 | Robertson | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8070036 | Knodel | Dec 2011 | B1 |
8070711 | Bassinger et al. | Dec 2011 | B2 |
8070762 | Escudero et al. | Dec 2011 | B2 |
8075555 | Truckai et al. | Dec 2011 | B2 |
8075558 | Truckai et al. | Dec 2011 | B2 |
8089197 | Rinner et al. | Jan 2012 | B2 |
8092475 | Cotter et al. | Jan 2012 | B2 |
8096459 | Ortiz et al. | Jan 2012 | B2 |
8097012 | Kagarise | Jan 2012 | B2 |
8100894 | Mucko et al. | Jan 2012 | B2 |
8105230 | Honda et al. | Jan 2012 | B2 |
8105323 | Buysse et al. | Jan 2012 | B2 |
8105324 | Palanker et al. | Jan 2012 | B2 |
8114104 | Young et al. | Feb 2012 | B2 |
8118276 | Sanders et al. | Feb 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8133218 | Daw et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8142421 | Cooper et al. | Mar 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8147485 | Wham et al. | Apr 2012 | B2 |
8147488 | Masuda | Apr 2012 | B2 |
8147508 | Madan et al. | Apr 2012 | B2 |
8152801 | Goldberg et al. | Apr 2012 | B2 |
8152825 | Madan et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162966 | Connor et al. | Apr 2012 | B2 |
8172846 | Brunnett et al. | May 2012 | B2 |
8172870 | Shipp | May 2012 | B2 |
8177800 | Spitz et al. | May 2012 | B2 |
8182502 | Stulen et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8186877 | Klimovitch et al. | May 2012 | B2 |
8187267 | Pappone et al. | May 2012 | B2 |
D661801 | Price et al. | Jun 2012 | S |
D661802 | Price et al. | Jun 2012 | S |
D661803 | Price et al. | Jun 2012 | S |
D661804 | Price et al. | Jun 2012 | S |
8197472 | Lau et al. | Jun 2012 | B2 |
8197479 | Olson et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8207651 | Gilbert | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8211100 | Podhajsky et al. | Jul 2012 | B2 |
8221306 | Okada et al. | Jul 2012 | B2 |
8221415 | Francischelli | Jul 2012 | B2 |
8226580 | Govari et al. | Jul 2012 | B2 |
8226665 | Cohen | Jul 2012 | B2 |
8226675 | Houser et al. | Jul 2012 | B2 |
8231607 | Takuma | Jul 2012 | B2 |
8235917 | Joseph et al. | Aug 2012 | B2 |
8236018 | Yoshimine et al. | Aug 2012 | B2 |
8236019 | Houser | Aug 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8241235 | Kahler et al. | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8241282 | Unger et al. | Aug 2012 | B2 |
8241283 | Guerra et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8241312 | Messerly | Aug 2012 | B2 |
8246575 | Viola | Aug 2012 | B2 |
8246615 | Behnke | Aug 2012 | B2 |
8246616 | Amoah et al. | Aug 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8246642 | Houser et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8252012 | Stulen | Aug 2012 | B2 |
8253303 | Giordano et al. | Aug 2012 | B2 |
8257377 | Wiener et al. | Sep 2012 | B2 |
8257387 | Cunningham | Sep 2012 | B2 |
8262563 | Bakos et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8267935 | Couture et al. | Sep 2012 | B2 |
8273087 | Kimura et al. | Sep 2012 | B2 |
D669992 | Schafer et al. | Oct 2012 | S |
D669993 | Merchant et al. | Oct 2012 | S |
8277446 | Heard | Oct 2012 | B2 |
8277447 | Garrison et al. | Oct 2012 | B2 |
8277471 | Wiener et al. | Oct 2012 | B2 |
8282581 | Zhao et al. | Oct 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8286846 | Smith et al. | Oct 2012 | B2 |
8287485 | Kimura et al. | Oct 2012 | B2 |
8287528 | Wham et al. | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8292886 | Kerr et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8292905 | Taylor et al. | Oct 2012 | B2 |
8295902 | Salahieh et al. | Oct 2012 | B2 |
8298223 | Wham et al. | Oct 2012 | B2 |
8298225 | Gilbert | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8298233 | Mueller | Oct 2012 | B2 |
8303576 | Brock | Nov 2012 | B2 |
8303580 | Wham et al. | Nov 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8303613 | Crandall et al. | Nov 2012 | B2 |
8306629 | Mioduski et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8319400 | Houser et al. | Nov 2012 | B2 |
8323302 | Robertson et al. | Dec 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328761 | Widenhouse et al. | Dec 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8328833 | Cuny | Dec 2012 | B2 |
8328834 | Isaacs et al. | Dec 2012 | B2 |
8333778 | Smith et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8334635 | Voegele et al. | Dec 2012 | B2 |
8337407 | Quistgaard et al. | Dec 2012 | B2 |
8338726 | Palmer et al. | Dec 2012 | B2 |
8343146 | Godara et al. | Jan 2013 | B2 |
8344596 | Nield et al. | Jan 2013 | B2 |
8348880 | Messerly et al. | Jan 2013 | B2 |
8348947 | Takashino et al. | Jan 2013 | B2 |
8348967 | Stulen | Jan 2013 | B2 |
8353297 | Dacquay et al. | Jan 2013 | B2 |
8357103 | Mark et al. | Jan 2013 | B2 |
8357149 | Govari et al. | Jan 2013 | B2 |
8357158 | McKenna et al. | Jan 2013 | B2 |
8361066 | Long et al. | Jan 2013 | B2 |
8361072 | Dumbauld et al. | Jan 2013 | B2 |
8361569 | Saito et al. | Jan 2013 | B2 |
8366727 | Witt et al. | Feb 2013 | B2 |
8372064 | Douglass et al. | Feb 2013 | B2 |
8372099 | Deville et al. | Feb 2013 | B2 |
8372101 | Smith et al. | Feb 2013 | B2 |
8372102 | Stulen et al. | Feb 2013 | B2 |
8374670 | Selkee | Feb 2013 | B2 |
8377044 | Coe et al. | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8377085 | Smith et al. | Feb 2013 | B2 |
8382748 | Geisel | Feb 2013 | B2 |
8382775 | Bender et al. | Feb 2013 | B1 |
8382782 | Robertson et al. | Feb 2013 | B2 |
8382792 | Chojin | Feb 2013 | B2 |
8388646 | Chojin | Mar 2013 | B2 |
8388647 | Nau, Jr. et al. | Mar 2013 | B2 |
8394115 | Houser et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403948 | Deville et al. | Mar 2013 | B2 |
8403949 | Palmer et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8409234 | Stahler et al. | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418073 | Mohr et al. | Apr 2013 | B2 |
8418349 | Smith et al. | Apr 2013 | B2 |
8419757 | Smith et al. | Apr 2013 | B2 |
8419758 | Smith et al. | Apr 2013 | B2 |
8419759 | Dietz | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8425410 | Murray et al. | Apr 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8430811 | Hess et al. | Apr 2013 | B2 |
8430874 | Newton et al. | Apr 2013 | B2 |
8430876 | Kappus et al. | Apr 2013 | B2 |
8430897 | Novak et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8439912 | Cunningham et al. | May 2013 | B2 |
8439939 | Deville et al. | May 2013 | B2 |
8444637 | Podmore et al. | May 2013 | B2 |
8444662 | Palmer et al. | May 2013 | B2 |
8444663 | Houser et al. | May 2013 | B2 |
8444664 | Balanev et al. | May 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8454599 | Inagaki et al. | Jun 2013 | B2 |
8454639 | Du et al. | Jun 2013 | B2 |
8459525 | Yates et al. | Jun 2013 | B2 |
8460284 | Aronow et al. | Jun 2013 | B2 |
8460288 | Tamai et al. | Jun 2013 | B2 |
8460292 | Truckai et al. | Jun 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8469981 | Robertson et al. | Jun 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8484833 | Cunningham et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8485970 | Widenhouse et al. | Jul 2013 | B2 |
8486057 | Behnke, II | Jul 2013 | B2 |
8486096 | Robertson et al. | Jul 2013 | B2 |
8491578 | Manwaring et al. | Jul 2013 | B2 |
8491625 | Homer | Jul 2013 | B2 |
8496682 | Guerra et al. | Jul 2013 | B2 |
D687549 | Johnson et al. | Aug 2013 | S |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8509318 | Tailliet | Aug 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8512337 | Francischelli et al. | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8512364 | Kowalski et al. | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8518067 | Masuda et al. | Aug 2013 | B2 |
8521331 | Itkowitz | Aug 2013 | B2 |
8523882 | Huitema et al. | Sep 2013 | B2 |
8523889 | Stulen et al. | Sep 2013 | B2 |
8528563 | Gruber | Sep 2013 | B2 |
8529437 | Taylor et al. | Sep 2013 | B2 |
8529565 | Masuda et al. | Sep 2013 | B2 |
8531064 | Robertson et al. | Sep 2013 | B2 |
8535311 | Schall | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8535341 | Allen | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8546996 | Messerly et al. | Oct 2013 | B2 |
8546999 | Houser et al. | Oct 2013 | B2 |
8551077 | Main et al. | Oct 2013 | B2 |
8551086 | Kimura et al. | Oct 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8562600 | Kirkpatrick et al. | Oct 2013 | B2 |
8562604 | Nishimura | Oct 2013 | B2 |
8568390 | Mueller | Oct 2013 | B2 |
8568397 | Homer et al. | Oct 2013 | B2 |
8568400 | Gilbert | Oct 2013 | B2 |
8568412 | Brandt et al. | Oct 2013 | B2 |
8569997 | Lee | Oct 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574231 | Boudreaux et al. | Nov 2013 | B2 |
8574253 | Gruber et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8579928 | Robertson et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8585727 | Polo | Nov 2013 | B2 |
8588371 | Ogawa et al. | Nov 2013 | B2 |
8591459 | Clymer et al. | Nov 2013 | B2 |
8591506 | Wham et al. | Nov 2013 | B2 |
8591536 | Robertson | Nov 2013 | B2 |
D695407 | Price et al. | Dec 2013 | S |
D696631 | Price et al. | Dec 2013 | S |
8596513 | Olson et al. | Dec 2013 | B2 |
8597193 | Grunwald et al. | Dec 2013 | B2 |
8602031 | Reis et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8603089 | Viola | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8617194 | Beaupre | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8623011 | Spivey | Jan 2014 | B2 |
8623016 | Fischer | Jan 2014 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8623044 | Timm et al. | Jan 2014 | B2 |
8628529 | Aldridge et al. | Jan 2014 | B2 |
8628534 | Jones et al. | Jan 2014 | B2 |
8632461 | Glossop | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8638428 | Brown | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8641663 | Kirschenman et al. | Feb 2014 | B2 |
8647350 | Mohan et al. | Feb 2014 | B2 |
8650728 | Wan et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652132 | Tsuchiya et al. | Feb 2014 | B2 |
8652155 | Houser et al. | Feb 2014 | B2 |
8657489 | Ladurner et al. | Feb 2014 | B2 |
8659208 | Rose et al. | Feb 2014 | B1 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8663223 | Masuda et al. | Mar 2014 | B2 |
8663262 | Smith et al. | Mar 2014 | B2 |
8668691 | Heard | Mar 2014 | B2 |
8668710 | Slipszenko et al. | Mar 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685016 | Wham et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8690582 | Rohrbach et al. | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8696366 | Chen et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8696666 | Sanai et al. | Apr 2014 | B2 |
8702609 | Hadjicostis | Apr 2014 | B2 |
8702704 | Shelton, IV et al. | Apr 2014 | B2 |
8704425 | Giordano et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8709031 | Stulen | Apr 2014 | B2 |
8709035 | Johnson et al. | Apr 2014 | B2 |
8715270 | Weitzner et al. | May 2014 | B2 |
8715277 | Weizman | May 2014 | B2 |
8721640 | Taylor et al. | May 2014 | B2 |
8721657 | Kondoh et al. | May 2014 | B2 |
8734443 | Hixson et al. | May 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8747351 | Schultz | Jun 2014 | B2 |
8747404 | Boudreaux et al. | Jun 2014 | B2 |
8749116 | Messerly et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8753338 | Widenhouse et al. | Jun 2014 | B2 |
8754570 | Voegele et al. | Jun 2014 | B2 |
8758342 | Bales et al. | Jun 2014 | B2 |
8758352 | Cooper et al. | Jun 2014 | B2 |
8764735 | Coe et al. | Jul 2014 | B2 |
8764747 | Cummings et al. | Jul 2014 | B2 |
8767970 | Eppolito | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8771269 | Sherman et al. | Jul 2014 | B2 |
8771270 | Burbank | Jul 2014 | B2 |
8771293 | Surti et al. | Jul 2014 | B2 |
8773001 | Wiener et al. | Jul 2014 | B2 |
8777944 | Frankhouser et al. | Jul 2014 | B2 |
8777945 | Floume et al. | Jul 2014 | B2 |
8779648 | Giordano et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8784418 | Romero | Jul 2014 | B2 |
8790342 | Stulen et al. | Jul 2014 | B2 |
8795274 | Hanna | Aug 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795327 | Dietz et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8801710 | Ullrich et al. | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8808204 | Irisawa et al. | Aug 2014 | B2 |
8808319 | Houser et al. | Aug 2014 | B2 |
8814856 | Elmouelhi et al. | Aug 2014 | B2 |
8814870 | Paraschiv et al. | Aug 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8821388 | Naito et al. | Sep 2014 | B2 |
8827992 | Koss et al. | Sep 2014 | B2 |
8827995 | Schaller et al. | Sep 2014 | B2 |
8834466 | Cummings et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8845537 | Tanaka et al. | Sep 2014 | B2 |
8845630 | Mehta et al. | Sep 2014 | B2 |
8848808 | Dress | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852184 | Kucklick | Oct 2014 | B2 |
8858547 | Brogna | Oct 2014 | B2 |
8862955 | Cesari | Oct 2014 | B2 |
8864749 | Okada | Oct 2014 | B2 |
8864757 | Klimovitch et al. | Oct 2014 | B2 |
8864761 | Johnson et al. | Oct 2014 | B2 |
8870865 | Frankhouser et al. | Oct 2014 | B2 |
8876726 | Amit et al. | Nov 2014 | B2 |
8876858 | Braun | Nov 2014 | B2 |
8882766 | Couture et al. | Nov 2014 | B2 |
8882791 | Stulen | Nov 2014 | B2 |
8888776 | Dietz et al. | Nov 2014 | B2 |
8888783 | Young | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8900259 | Houser et al. | Dec 2014 | B2 |
8906016 | Boudreaux et al. | Dec 2014 | B2 |
8906017 | Rioux et al. | Dec 2014 | B2 |
8911438 | Swoyer et al. | Dec 2014 | B2 |
8911460 | Neurohr et al. | Dec 2014 | B2 |
8920412 | Fritz et al. | Dec 2014 | B2 |
8920414 | Stone et al. | Dec 2014 | B2 |
8920421 | Rupp | Dec 2014 | B2 |
8926607 | Norvell et al. | Jan 2015 | B2 |
8926608 | Bacher et al. | Jan 2015 | B2 |
8926620 | Chasmawala et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8932282 | Gilbert | Jan 2015 | B2 |
8932299 | Bono et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8951248 | Messerly et al. | Feb 2015 | B2 |
8951272 | Robertson et al. | Feb 2015 | B2 |
8956349 | Aldridge et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8961515 | Twomey et al. | Feb 2015 | B2 |
8961547 | Dietz et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8968283 | Kharin | Mar 2015 | B2 |
8968294 | Maass et al. | Mar 2015 | B2 |
8968355 | Malkowski et al. | Mar 2015 | B2 |
8974447 | Kimball et al. | Mar 2015 | B2 |
8974477 | Yamada | Mar 2015 | B2 |
8974479 | Ross et al. | Mar 2015 | B2 |
8979843 | Timm et al. | Mar 2015 | B2 |
8979844 | White et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986287 | Park et al. | Mar 2015 | B2 |
8986297 | Daniel et al. | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989855 | Murphy et al. | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8992526 | Brodbeck et al. | Mar 2015 | B2 |
8998891 | Garito et al. | Apr 2015 | B2 |
9005199 | Beckman et al. | Apr 2015 | B2 |
9011437 | Woodruff et al. | Apr 2015 | B2 |
9011471 | Timm et al. | Apr 2015 | B2 |
9017326 | DiNardo et al. | Apr 2015 | B2 |
9017355 | Smith et al. | Apr 2015 | B2 |
9017372 | Artale et al. | Apr 2015 | B2 |
9023070 | Levine et al. | May 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9028397 | Naito | May 2015 | B2 |
9028476 | Bonn | May 2015 | B2 |
9028478 | Mueller | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9031667 | Williams | May 2015 | B2 |
9033973 | Krapohl et al. | May 2015 | B2 |
9035741 | Hamel et al. | May 2015 | B2 |
9037259 | Mathur | May 2015 | B2 |
9039690 | Kersten et al. | May 2015 | B2 |
9039695 | Giordano et al. | May 2015 | B2 |
9039705 | Takashino | May 2015 | B2 |
9039731 | Joseph | May 2015 | B2 |
9043018 | Mohr | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044238 | Orszulak | Jun 2015 | B2 |
9044243 | Johnson et al. | Jun 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9044256 | Cadeddu et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050093 | Aldridge et al. | Jun 2015 | B2 |
9050098 | Deville et al. | Jun 2015 | B2 |
9050123 | Krause et al. | Jun 2015 | B2 |
9050124 | Houser | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9059547 | McLawhorn | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060775 | Wiener et al. | Jun 2015 | B2 |
9060776 | Yates et al. | Jun 2015 | B2 |
9066720 | Ballakur et al. | Jun 2015 | B2 |
9066723 | Beller et al. | Jun 2015 | B2 |
9066747 | Robertson | Jun 2015 | B2 |
9072523 | Houser et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9072539 | Messerly et al. | Jul 2015 | B2 |
9084624 | Larkin et al. | Jul 2015 | B2 |
9089327 | Worrell et al. | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107684 | Ma | Aug 2015 | B2 |
9107689 | Robertson et al. | Aug 2015 | B2 |
9107690 | Bales, Jr. et al. | Aug 2015 | B2 |
9113900 | Buysse et al. | Aug 2015 | B2 |
9113907 | Allen, IV et al. | Aug 2015 | B2 |
9113940 | Twomey | Aug 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9119957 | Gantz et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9125667 | Stone et al. | Sep 2015 | B2 |
9144453 | Rencher et al. | Sep 2015 | B2 |
9147965 | Lee | Sep 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9165114 | Jain et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168085 | Juzkiw et al. | Oct 2015 | B2 |
9168089 | Buysse et al. | Oct 2015 | B2 |
9173656 | Schurr et al. | Nov 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186199 | Strauss et al. | Nov 2015 | B2 |
9186204 | Nishimura et al. | Nov 2015 | B2 |
9186796 | Ogawa | Nov 2015 | B2 |
9192380 | (Tarinelli) Racenet et al. | Nov 2015 | B2 |
9192421 | Garrison | Nov 2015 | B2 |
9192428 | Houser et al. | Nov 2015 | B2 |
9192431 | Woodruff et al. | Nov 2015 | B2 |
9198714 | Worrell et al. | Dec 2015 | B2 |
9198715 | Livneh | Dec 2015 | B2 |
9198776 | Young | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204891 | Weitzman | Dec 2015 | B2 |
9204918 | Germain et al. | Dec 2015 | B2 |
9204923 | Manzo et al. | Dec 2015 | B2 |
9216050 | Condie et al. | Dec 2015 | B2 |
9216051 | Fischer et al. | Dec 2015 | B2 |
9216062 | Duque et al. | Dec 2015 | B2 |
9220483 | Frankhouser et al. | Dec 2015 | B2 |
9220527 | Houser et al. | Dec 2015 | B2 |
9220559 | Worrell et al. | Dec 2015 | B2 |
9226750 | Weir et al. | Jan 2016 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226766 | Aldridge et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9232979 | Parihar et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237921 | Messerly et al. | Jan 2016 | B2 |
9241060 | Fujisaki | Jan 2016 | B1 |
9241692 | Gunday et al. | Jan 2016 | B2 |
9241728 | Price et al. | Jan 2016 | B2 |
9241730 | Babaev | Jan 2016 | B2 |
9241731 | Boudreaux et al. | Jan 2016 | B2 |
9241768 | Sandhu et al. | Jan 2016 | B2 |
9247953 | Palmer et al. | Feb 2016 | B2 |
9254165 | Aronow et al. | Feb 2016 | B2 |
9259234 | Robertson et al. | Feb 2016 | B2 |
9259265 | Harris et al. | Feb 2016 | B2 |
9265567 | Orban, III et al. | Feb 2016 | B2 |
9265926 | Strobl et al. | Feb 2016 | B2 |
9265973 | Akagane | Feb 2016 | B2 |
9277962 | Koss et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283027 | Monson et al. | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9305497 | Seo et al. | Apr 2016 | B2 |
9307388 | Liang et al. | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9308009 | Madan et al. | Apr 2016 | B2 |
9308014 | Fischer | Apr 2016 | B2 |
9314261 | Bales, Jr. et al. | Apr 2016 | B2 |
9314292 | Trees et al. | Apr 2016 | B2 |
9314301 | Ben-Haim et al. | Apr 2016 | B2 |
9326754 | Polster | May 2016 | B2 |
9326787 | Sanai et al. | May 2016 | B2 |
9326788 | Batross et al. | May 2016 | B2 |
9333025 | Monson et al. | May 2016 | B2 |
9333034 | Hancock | May 2016 | B2 |
9339289 | Robertson | May 2016 | B2 |
9339323 | Eder et al. | May 2016 | B2 |
9339326 | McCullagh et al. | May 2016 | B2 |
9345534 | Artale et al. | May 2016 | B2 |
9345900 | Wu et al. | May 2016 | B2 |
9351642 | Nadkarni et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351754 | Vakharia et al. | May 2016 | B2 |
9352173 | Yamada et al. | May 2016 | B2 |
9358065 | Ladtkow et al. | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9370611 | Ross et al. | Jun 2016 | B2 |
9375230 | Ross et al. | Jun 2016 | B2 |
9375232 | Hunt et al. | Jun 2016 | B2 |
9375256 | Cunningham et al. | Jun 2016 | B2 |
9375267 | Kerr et al. | Jun 2016 | B2 |
9385831 | Marr et al. | Jul 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9393037 | Olson et al. | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
9402680 | Ginnebaugh et al. | Aug 2016 | B2 |
9402682 | Worrell et al. | Aug 2016 | B2 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9408622 | Stulen et al. | Aug 2016 | B2 |
9408660 | Strobl et al. | Aug 2016 | B2 |
9414853 | Stulen et al. | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9421060 | Monson et al. | Aug 2016 | B2 |
9427249 | Robertson et al. | Aug 2016 | B2 |
9427279 | Muniz-Medina et al. | Aug 2016 | B2 |
9439668 | Timm et al. | Sep 2016 | B2 |
9439669 | Wiener et al. | Sep 2016 | B2 |
9439671 | Akagane | Sep 2016 | B2 |
9445784 | O'Keeffe | Sep 2016 | B2 |
9445832 | Wiener et al. | Sep 2016 | B2 |
9451967 | Jordan et al. | Sep 2016 | B2 |
9456863 | Moua | Oct 2016 | B2 |
9456864 | Witt et al. | Oct 2016 | B2 |
9468498 | Sigmon, Jr. | Oct 2016 | B2 |
9486236 | Price et al. | Nov 2016 | B2 |
9492146 | Kostrzewski et al. | Nov 2016 | B2 |
9492224 | Boudreaux et al. | Nov 2016 | B2 |
9498245 | Voegele et al. | Nov 2016 | B2 |
9498275 | Wham et al. | Nov 2016 | B2 |
9504483 | Houser et al. | Nov 2016 | B2 |
9504520 | Worrell et al. | Nov 2016 | B2 |
9504524 | Behnke, II | Nov 2016 | B2 |
9504855 | Messerly et al. | Nov 2016 | B2 |
9510850 | Robertson et al. | Dec 2016 | B2 |
9510906 | Boudreaux et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9522032 | Behnke | Dec 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9526565 | Strobl | Dec 2016 | B2 |
9545253 | Worrell et al. | Jan 2017 | B2 |
9545497 | Wenderow et al. | Jan 2017 | B2 |
9554846 | Boudreaux | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9560995 | Addison et al. | Feb 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9574644 | Parihar | Feb 2017 | B2 |
9592072 | Akagane | Mar 2017 | B2 |
9597143 | Madan et al. | Mar 2017 | B2 |
9610091 | Johnson et al. | Apr 2017 | B2 |
9610114 | Baxter, III et al. | Apr 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9623237 | Turner et al. | Apr 2017 | B2 |
9636135 | Stulen | May 2017 | B2 |
9636165 | Larson et al. | May 2017 | B2 |
9638770 | Dietz et al. | May 2017 | B2 |
9642644 | Houser et al. | May 2017 | B2 |
9642669 | Takashino et al. | May 2017 | B2 |
9643052 | Tchao et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649126 | Robertson et al. | May 2017 | B2 |
9655670 | Larson et al. | May 2017 | B2 |
9662131 | Omori et al. | May 2017 | B2 |
9668806 | Unger et al. | Jun 2017 | B2 |
9671860 | Ogawa et al. | Jun 2017 | B2 |
9675374 | Stulen et al. | Jun 2017 | B2 |
9675375 | Houser et al. | Jun 2017 | B2 |
9687290 | Keller | Jun 2017 | B2 |
9700309 | Jaworek et al. | Jul 2017 | B2 |
9700339 | Nield | Jul 2017 | B2 |
9700343 | Messerly et al. | Jul 2017 | B2 |
9705456 | Gilbert | Jul 2017 | B2 |
9707004 | Houser et al. | Jul 2017 | B2 |
9707027 | Ruddenklau et al. | Jul 2017 | B2 |
9707030 | Davison et al. | Jul 2017 | B2 |
9713507 | Stulen et al. | Jul 2017 | B2 |
9717548 | Couture | Aug 2017 | B2 |
9717552 | Cosman et al. | Aug 2017 | B2 |
9724120 | Faller et al. | Aug 2017 | B2 |
9724152 | Horlle et al. | Aug 2017 | B2 |
9737326 | Worrell et al. | Aug 2017 | B2 |
9737355 | Yates et al. | Aug 2017 | B2 |
9737358 | Beckman et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
9743946 | Faller et al. | Aug 2017 | B2 |
9743947 | Price et al. | Aug 2017 | B2 |
9757142 | Shimizu | Sep 2017 | B2 |
9757186 | Boudreaux et al. | Sep 2017 | B2 |
9764164 | Wiener et al. | Sep 2017 | B2 |
9770285 | Zoran et al. | Sep 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9788851 | Dannaher et al. | Oct 2017 | B2 |
9795405 | Price et al. | Oct 2017 | B2 |
9795436 | Yates et al. | Oct 2017 | B2 |
9795808 | Messerly et al. | Oct 2017 | B2 |
9801648 | Houser et al. | Oct 2017 | B2 |
9802033 | Hibner et al. | Oct 2017 | B2 |
9808308 | Faller et al. | Nov 2017 | B2 |
9814514 | Shelton, IV et al. | Nov 2017 | B2 |
9820768 | Gee et al. | Nov 2017 | B2 |
9820771 | Norton et al. | Nov 2017 | B2 |
9820806 | Lee et al. | Nov 2017 | B2 |
9839443 | Brockman et al. | Dec 2017 | B2 |
9848901 | Robertson et al. | Dec 2017 | B2 |
9848902 | Price et al. | Dec 2017 | B2 |
9848937 | Trees et al. | Dec 2017 | B2 |
9861428 | Trees et al. | Jan 2018 | B2 |
9867651 | Wham | Jan 2018 | B2 |
9867670 | Brannan et al. | Jan 2018 | B2 |
9872722 | Lech | Jan 2018 | B2 |
9872725 | Worrell et al. | Jan 2018 | B2 |
9872726 | Morisaki | Jan 2018 | B2 |
9877720 | Worrell et al. | Jan 2018 | B2 |
9877776 | Boudreaux | Jan 2018 | B2 |
9883884 | Neurohr et al. | Feb 2018 | B2 |
9888958 | Evans et al. | Feb 2018 | B2 |
9907563 | Germain et al. | Mar 2018 | B2 |
9913656 | Stulen | Mar 2018 | B2 |
9913680 | Voegele et al. | Mar 2018 | B2 |
9918730 | Trees et al. | Mar 2018 | B2 |
9925003 | Parihar et al. | Mar 2018 | B2 |
9949785 | Price et al. | Apr 2018 | B2 |
9949788 | Boudreaux | Apr 2018 | B2 |
9962182 | Dietz et al. | May 2018 | B2 |
9974539 | Yates et al. | May 2018 | B2 |
9987033 | Neurohr et al. | Jun 2018 | B2 |
10004526 | Dycus et al. | Jun 2018 | B2 |
10010339 | Witt et al. | Jul 2018 | B2 |
10010341 | Houser et al. | Jul 2018 | B2 |
10016207 | Suzuki et al. | Jul 2018 | B2 |
10022142 | Aranyi et al. | Jul 2018 | B2 |
10022567 | Messerly et al. | Jul 2018 | B2 |
10022568 | Messerly et al. | Jul 2018 | B2 |
10028761 | Leimbach et al. | Jul 2018 | B2 |
10028786 | Mucilli et al. | Jul 2018 | B2 |
10034684 | Weisenburgh, II et al. | Jul 2018 | B2 |
10034704 | Asher et al. | Jul 2018 | B2 |
10039588 | Harper et al. | Aug 2018 | B2 |
10045794 | Witt et al. | Aug 2018 | B2 |
10045810 | Schall et al. | Aug 2018 | B2 |
10045819 | Jensen et al. | Aug 2018 | B2 |
10070916 | Artale | Sep 2018 | B2 |
10085762 | Timm et al. | Oct 2018 | B2 |
10085792 | Johnson et al. | Oct 2018 | B2 |
10092310 | Boudreaux et al. | Oct 2018 | B2 |
10092344 | Mohr et al. | Oct 2018 | B2 |
10092348 | Boudreaux | Oct 2018 | B2 |
10092350 | Rothweiler et al. | Oct 2018 | B2 |
10111699 | Boudreaux | Oct 2018 | B2 |
10111703 | Cosman, Jr. et al. | Oct 2018 | B2 |
10117667 | Robertson et al. | Nov 2018 | B2 |
10117702 | Danziger et al. | Nov 2018 | B2 |
10130410 | Strobl et al. | Nov 2018 | B2 |
10130412 | Wham | Nov 2018 | B2 |
10154848 | Chernov et al. | Dec 2018 | B2 |
10154852 | Conlon et al. | Dec 2018 | B2 |
10159524 | Yates et al. | Dec 2018 | B2 |
10166060 | Johnson et al. | Jan 2019 | B2 |
10172669 | Felder et al. | Jan 2019 | B2 |
10179022 | Yates et al. | Jan 2019 | B2 |
10188455 | Hancock et al. | Jan 2019 | B2 |
10194972 | Yates et al. | Feb 2019 | B2 |
10194973 | Wiener et al. | Feb 2019 | B2 |
10194976 | Boudreaux | Feb 2019 | B2 |
10194977 | Yang | Feb 2019 | B2 |
10194999 | Bacher et al. | Feb 2019 | B2 |
10201365 | Boudreaux et al. | Feb 2019 | B2 |
10201382 | Wiener et al. | Feb 2019 | B2 |
10226273 | Messerly et al. | Mar 2019 | B2 |
10231747 | Stulen et al. | Mar 2019 | B2 |
10245095 | Boudreaux | Apr 2019 | B2 |
10251664 | Shelton, IV et al. | Apr 2019 | B2 |
10263171 | Wiener et al. | Apr 2019 | B2 |
10265117 | Wiener et al. | Apr 2019 | B2 |
10265118 | Gerhardt | Apr 2019 | B2 |
10271840 | Sapre | Apr 2019 | B2 |
10278721 | Dietz et al. | May 2019 | B2 |
20010025173 | Ritchie et al. | Sep 2001 | A1 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020002380 | Bishop | Jan 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020029055 | Bonutti | Mar 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020052617 | Anis et al. | May 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020156466 | Sakurai et al. | Oct 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20020165577 | Witt et al. | Nov 2002 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030014087 | Fang et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030040758 | Wang et al. | Feb 2003 | A1 |
20030050572 | Brautigam et al. | Mar 2003 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030144680 | Kellogg et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030181898 | Bowers | Sep 2003 | A1 |
20030199794 | Sakurai et al. | Oct 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20030212363 | Shipp | Nov 2003 | A1 |
20030212392 | Fenton et al. | Nov 2003 | A1 |
20030212422 | Fenton et al. | Nov 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040087943 | Dycus et al. | May 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040097911 | Murakami et al. | May 2004 | A1 |
20040097912 | Gonnering | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040132383 | Langford et al. | Jul 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040142667 | Lochhead et al. | Jul 2004 | A1 |
20040147934 | Kiester | Jul 2004 | A1 |
20040147945 | Fritzsch | Jul 2004 | A1 |
20040158237 | Abboud et al. | Aug 2004 | A1 |
20040167508 | Wham et al. | Aug 2004 | A1 |
20040176686 | Hare et al. | Sep 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040193153 | Sartor et al. | Sep 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040215132 | Yoon | Oct 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20040267311 | Viola et al. | Dec 2004 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050020967 | Ono | Jan 2005 | A1 |
20050021018 | Anderson et al. | Jan 2005 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050021078 | Vleugels et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050070800 | Takahashi | Mar 2005 | A1 |
20050088285 | Jei | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050099824 | Dowling et al. | May 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050182339 | Lee et al. | Aug 2005 | A1 |
20050188743 | Land | Sep 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050192611 | Houser | Sep 2005 | A1 |
20050222598 | Ho et al. | Oct 2005 | A1 |
20050234484 | Houser et al. | Oct 2005 | A1 |
20050249667 | Tuszynski et al. | Nov 2005 | A1 |
20050256405 | Makin et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050262175 | Iino et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20050271807 | Iljima et al. | Dec 2005 | A1 |
20050273090 | Nieman et al. | Dec 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060025757 | Heim | Feb 2006 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060058825 | Ogura et al. | Mar 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060066181 | Bromfield et al. | Mar 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060095046 | Trieu et al. | May 2006 | A1 |
20060109061 | Dobson et al. | May 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060206100 | Eskridge et al. | Sep 2006 | A1 |
20060206115 | Schomer et al. | Sep 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060217729 | Eskridge et al. | Sep 2006 | A1 |
20060224160 | Trieu et al. | Oct 2006 | A1 |
20060247558 | Yamada | Nov 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20060264995 | Fanton et al. | Nov 2006 | A1 |
20060265035 | Yachi et al. | Nov 2006 | A1 |
20060270916 | Skwarek et al. | Nov 2006 | A1 |
20060271030 | Francis et al. | Nov 2006 | A1 |
20060293656 | Shadduck et al. | Dec 2006 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070021738 | Hasser et al. | Jan 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070032704 | Gandini et al. | Feb 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070056596 | Fanney et al. | Mar 2007 | A1 |
20070060935 | Schwardt et al. | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070066971 | Podhajsky | Mar 2007 | A1 |
20070067123 | Jungerman | Mar 2007 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070074584 | Talarico et al. | Apr 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070156163 | Davison et al. | Jul 2007 | A1 |
20070166663 | Telles et al. | Jul 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070185474 | Nahen | Aug 2007 | A1 |
20070191712 | Messerly et al. | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070203483 | Kim et al. | Aug 2007 | A1 |
20070208336 | Kim et al. | Sep 2007 | A1 |
20070208340 | Ganz et al. | Sep 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070239101 | Kellogg | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20070265620 | Kraas et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20070288055 | Lee | Dec 2007 | A1 |
20070299895 | Johnson et al. | Dec 2007 | A1 |
20080005213 | Holtzman | Jan 2008 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080033465 | Schmitz et al. | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080051812 | Schmitz et al. | Feb 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080077145 | Boyden et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080097501 | Blier | Apr 2008 | A1 |
20080114355 | Whayne et al. | May 2008 | A1 |
20080114364 | Goldin et al. | May 2008 | A1 |
20080122496 | Wagner | May 2008 | A1 |
20080125768 | Tahara et al. | May 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080147092 | Rogge et al. | Jun 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188755 | Hart | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208108 | Kimura | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080214967 | Aranyi et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080243162 | Shibata et al. | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080281200 | Voic et al. | Nov 2008 | A1 |
20080281315 | Gines | Nov 2008 | A1 |
20080287944 | Pearson et al. | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20090012516 | Curtis et al. | Jan 2009 | A1 |
20090023985 | Ewers | Jan 2009 | A1 |
20090048537 | Lydon et al. | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090054886 | Yachi et al. | Feb 2009 | A1 |
20090054889 | Newton et al. | Feb 2009 | A1 |
20090054894 | Yachi | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090088785 | Masuda | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090118751 | Wiener et al. | May 2009 | A1 |
20090143678 | Keast et al. | Jun 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090163807 | Sliwa | Jun 2009 | A1 |
20090182322 | D'Amelio et al. | Jul 2009 | A1 |
20090182331 | D'Amelio et al. | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090216157 | Yamada | Aug 2009 | A1 |
20090223033 | Houser | Sep 2009 | A1 |
20090240244 | Malis et al. | Sep 2009 | A1 |
20090248021 | McKenna | Oct 2009 | A1 |
20090254077 | Craig | Oct 2009 | A1 |
20090254080 | Honda | Oct 2009 | A1 |
20090259149 | Tahara et al. | Oct 2009 | A1 |
20090264909 | Beaupre | Oct 2009 | A1 |
20090270771 | Takahashi | Oct 2009 | A1 |
20090270812 | Litscher et al. | Oct 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20090270891 | Beaupre | Oct 2009 | A1 |
20090270899 | Carusillo et al. | Oct 2009 | A1 |
20090287205 | Ingle | Nov 2009 | A1 |
20090299141 | Downey et al. | Dec 2009 | A1 |
20090327715 | Smith et al. | Dec 2009 | A1 |
20100004508 | Naito et al. | Jan 2010 | A1 |
20100022825 | Yoshie | Jan 2010 | A1 |
20100030233 | Whitman et al. | Feb 2010 | A1 |
20100034605 | Huckins et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100042093 | Wham et al. | Feb 2010 | A9 |
20100049180 | Wells et al. | Feb 2010 | A1 |
20100057118 | Dietz et al. | Mar 2010 | A1 |
20100063525 | Beaupre et al. | Mar 2010 | A1 |
20100063528 | Beaupre | Mar 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100106173 | Yoshimine | Apr 2010 | A1 |
20100109480 | Forslund et al. | May 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100168741 | Sanai et al. | Jul 2010 | A1 |
20100168742 | Shibata | Jul 2010 | A1 |
20100181966 | Sakakibara | Jul 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100204721 | Young et al. | Aug 2010 | A1 |
20100222714 | Muir et al. | Sep 2010 | A1 |
20100222752 | Collins, Jr. et al. | Sep 2010 | A1 |
20100228250 | Brogna | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20100280368 | Can et al. | Nov 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20100331742 | Masuda | Dec 2010 | A1 |
20110004233 | Muir et al. | Jan 2011 | A1 |
20110015631 | Wiener | Jan 2011 | A1 |
20110028964 | Edwards | Feb 2011 | A1 |
20110071523 | Dickhans | Mar 2011 | A1 |
20110106141 | Nakamura | May 2011 | A1 |
20110125149 | El-Galley et al. | May 2011 | A1 |
20110125151 | Strauss et al. | May 2011 | A1 |
20110160725 | Kabaya et al. | Jun 2011 | A1 |
20110238010 | Kirschenman et al. | Sep 2011 | A1 |
20110273465 | Konishi et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110279268 | Konishi et al. | Nov 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110313415 | Fernandez et al. | Dec 2011 | A1 |
20120004655 | Kim et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120022583 | Sugalski et al. | Jan 2012 | A1 |
20120041358 | Mann et al. | Feb 2012 | A1 |
20120059289 | Nield et al. | Mar 2012 | A1 |
20120071863 | Lee et al. | Mar 2012 | A1 |
20120078139 | Aldridge et al. | Mar 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120101495 | Young et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120116222 | Sawada et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116266 | Houser | May 2012 | A1 |
20120116381 | Houser et al. | May 2012 | A1 |
20120143211 | Kishi | Jun 2012 | A1 |
20120150049 | Zielinski et al. | Jun 2012 | A1 |
20120150169 | Zielinksi et al. | Jun 2012 | A1 |
20120172904 | Muir et al. | Jul 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120253328 | Cunningham et al. | Oct 2012 | A1 |
20120265196 | Turner | Oct 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120296371 | Kappus et al. | Nov 2012 | A1 |
20130023925 | Mueller | Jan 2013 | A1 |
20130035685 | Fischer et al. | Feb 2013 | A1 |
20130085510 | Stefanchik et al. | Apr 2013 | A1 |
20130123776 | Monson et al. | May 2013 | A1 |
20130158659 | Bergs et al. | Jun 2013 | A1 |
20130158660 | Bergs et al. | Jun 2013 | A1 |
20130165929 | Muir et al. | Jun 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130253256 | Griffith et al. | Sep 2013 | A1 |
20130277410 | Fernandez et al. | Oct 2013 | A1 |
20130296843 | Boudreaux et al. | Nov 2013 | A1 |
20130296908 | Schulte | Nov 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005705 | Weir et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140012299 | Stoddard et al. | Jan 2014 | A1 |
20140014544 | Bugnard et al. | Jan 2014 | A1 |
20140121569 | Schafer et al. | May 2014 | A1 |
20140135804 | Weisenburgh, II et al. | May 2014 | A1 |
20140194868 | Sanai et al. | Jul 2014 | A1 |
20140194874 | Dietz et al. | Jul 2014 | A1 |
20140194875 | Reschke et al. | Jul 2014 | A1 |
20140207135 | Winter | Jul 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140276659 | Juergens et al. | Sep 2014 | A1 |
20140276754 | Gilbert et al. | Sep 2014 | A1 |
20140276797 | Batchelor et al. | Sep 2014 | A1 |
20140276806 | Heim | Sep 2014 | A1 |
20150032100 | Coulson et al. | Jan 2015 | A1 |
20150032150 | Ishida et al. | Jan 2015 | A1 |
20150080876 | Worrell et al. | Mar 2015 | A1 |
20150080887 | Sobajima et al. | Mar 2015 | A1 |
20150094703 | Zikorus et al. | Apr 2015 | A1 |
20150112335 | Boudreaux et al. | Apr 2015 | A1 |
20150157356 | Gee | Jun 2015 | A1 |
20150164533 | Felder et al. | Jun 2015 | A1 |
20150164534 | Felder et al. | Jun 2015 | A1 |
20150164535 | Felder et al. | Jun 2015 | A1 |
20150164536 | Czarnecki et al. | Jun 2015 | A1 |
20150164537 | Cagle et al. | Jun 2015 | A1 |
20150164538 | Aldridge et al. | Jun 2015 | A1 |
20150230861 | Woloszko et al. | Aug 2015 | A1 |
20150238257 | Hancock | Aug 2015 | A1 |
20150238260 | Nau, Jr. | Aug 2015 | A1 |
20150257780 | Houser | Sep 2015 | A1 |
20150272659 | Boudreaux et al. | Oct 2015 | A1 |
20150272660 | Boudreaux et al. | Oct 2015 | A1 |
20150313667 | Allen, IV | Nov 2015 | A1 |
20150320480 | Cosman, Jr. et al. | Nov 2015 | A1 |
20150320481 | Cosman, Jr. et al. | Nov 2015 | A1 |
20160030076 | Faller et al. | Feb 2016 | A1 |
20160045248 | Unger et al. | Feb 2016 | A1 |
20160051316 | Boudreaux | Feb 2016 | A1 |
20160074108 | Woodruff et al. | Mar 2016 | A1 |
20160128762 | Harris et al. | May 2016 | A1 |
20160144204 | Akagane | May 2016 | A1 |
20160157927 | Corbett et al. | Jun 2016 | A1 |
20160175029 | Witt et al. | Jun 2016 | A1 |
20160199123 | Thomas et al. | Jul 2016 | A1 |
20160199125 | Jones | Jul 2016 | A1 |
20160206342 | Robertson et al. | Jul 2016 | A1 |
20160262786 | Madan et al. | Sep 2016 | A1 |
20160270840 | Yates et al. | Sep 2016 | A1 |
20160270841 | Strobl et al. | Sep 2016 | A1 |
20160270842 | Strobl et al. | Sep 2016 | A1 |
20160270843 | Boudreaux et al. | Sep 2016 | A1 |
20160278848 | Boudreaux et al. | Sep 2016 | A1 |
20160287311 | Friedrichs | Oct 2016 | A1 |
20160296249 | Robertson | Oct 2016 | A1 |
20160296250 | Olson et al. | Oct 2016 | A1 |
20160296251 | Olson et al. | Oct 2016 | A1 |
20160296252 | Olson et al. | Oct 2016 | A1 |
20160296268 | Gee et al. | Oct 2016 | A1 |
20160296270 | Strobl et al. | Oct 2016 | A1 |
20160317217 | Batross et al. | Nov 2016 | A1 |
20160324537 | Green et al. | Nov 2016 | A1 |
20160338726 | Stulen et al. | Nov 2016 | A1 |
20160346001 | Vakharia et al. | Dec 2016 | A1 |
20160367273 | Robertson et al. | Dec 2016 | A1 |
20160367281 | Gee et al. | Dec 2016 | A1 |
20160374708 | Wiener et al. | Dec 2016 | A1 |
20160374709 | Timm et al. | Dec 2016 | A1 |
20160374712 | Stulen et al. | Dec 2016 | A1 |
20170000512 | Conlon et al. | Jan 2017 | A1 |
20170000516 | Stulen et al. | Jan 2017 | A1 |
20170000541 | Yates et al. | Jan 2017 | A1 |
20170000542 | Yates et al. | Jan 2017 | A1 |
20170000553 | Wiener et al. | Jan 2017 | A1 |
20170000554 | Yates et al. | Jan 2017 | A1 |
20170056056 | Wiener et al. | Mar 2017 | A1 |
20170056058 | Voegele et al. | Mar 2017 | A1 |
20170086876 | Wiener et al. | Mar 2017 | A1 |
20170086908 | Wiener et al. | Mar 2017 | A1 |
20170086909 | Yates et al. | Mar 2017 | A1 |
20170086911 | Wiener et al. | Mar 2017 | A1 |
20170086912 | Wiener et al. | Mar 2017 | A1 |
20170086913 | Yates et al. | Mar 2017 | A1 |
20170086914 | Wiener et al. | Mar 2017 | A1 |
20170095267 | Messerly et al. | Apr 2017 | A1 |
20170105757 | Weir et al. | Apr 2017 | A1 |
20170105782 | Scheib et al. | Apr 2017 | A1 |
20170105786 | Scheib et al. | Apr 2017 | A1 |
20170105791 | Yates et al. | Apr 2017 | A1 |
20170119426 | Akagane | May 2017 | A1 |
20170135751 | Rothweiler et al. | May 2017 | A1 |
20170143371 | Witt et al. | May 2017 | A1 |
20170143877 | Witt et al. | May 2017 | A1 |
20170164994 | Smith | Jun 2017 | A1 |
20170189095 | Danziger et al. | Jul 2017 | A1 |
20170189096 | Danziger et al. | Jul 2017 | A1 |
20170196586 | Witt et al. | Jul 2017 | A1 |
20170196587 | Witt et al. | Jul 2017 | A1 |
20170202571 | Shelton, IV et al. | Jul 2017 | A1 |
20170202572 | Shelton, IV et al. | Jul 2017 | A1 |
20170202591 | Shelton, IV et al. | Jul 2017 | A1 |
20170202592 | Shelton, IV et al. | Jul 2017 | A1 |
20170202593 | Shelton, IV et al. | Jul 2017 | A1 |
20170202594 | Shelton, IV et al. | Jul 2017 | A1 |
20170202595 | Shelton, IV | Jul 2017 | A1 |
20170202596 | Shelton, IV et al. | Jul 2017 | A1 |
20170202597 | Shelton, IV et al. | Jul 2017 | A1 |
20170202598 | Shelton, IV et al. | Jul 2017 | A1 |
20170202599 | Shelton, IV et al. | Jul 2017 | A1 |
20170202605 | Shelton, IV et al. | Jul 2017 | A1 |
20170202607 | Shelton, IV et al. | Jul 2017 | A1 |
20170202608 | Shelton, IV et al. | Jul 2017 | A1 |
20170202609 | Shelton, IV et al. | Jul 2017 | A1 |
20170207467 | Shelton, IV et al. | Jul 2017 | A1 |
20170209167 | Nield | Jul 2017 | A1 |
20170238991 | Worrell et al. | Aug 2017 | A1 |
20170245875 | Timm et al. | Aug 2017 | A1 |
20170312014 | Strobl et al. | Nov 2017 | A1 |
20170312015 | Worrell et al. | Nov 2017 | A1 |
20170312016 | Strobl et al. | Nov 2017 | A1 |
20170312017 | Trees et al. | Nov 2017 | A1 |
20170312018 | Trees et al. | Nov 2017 | A1 |
20170312019 | Trees et al. | Nov 2017 | A1 |
20170319228 | Worrell et al. | Nov 2017 | A1 |
20170319265 | Yates et al. | Nov 2017 | A1 |
20170325874 | Noack et al. | Nov 2017 | A1 |
20170348064 | Stewart et al. | Dec 2017 | A1 |
20180014872 | Dickerson | Jan 2018 | A1 |
20180028257 | Yates et al. | Feb 2018 | A1 |
20180036061 | Yates et al. | Feb 2018 | A1 |
20180036065 | Yates et al. | Feb 2018 | A1 |
20180042658 | Shelton, IV et al. | Feb 2018 | A1 |
20180064961 | Wiener et al. | Mar 2018 | A1 |
20180098785 | Price et al. | Apr 2018 | A1 |
20180098808 | Yates et al. | Apr 2018 | A1 |
20180146976 | Clauda et al. | May 2018 | A1 |
20180177545 | Boudreaux et al. | Jun 2018 | A1 |
20180235691 | Voegele et al. | Aug 2018 | A1 |
20180280083 | Parihar et al. | Oct 2018 | A1 |
20190021783 | Asher et al. | Jan 2019 | A1 |
20190105067 | Boudreaux et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
2003241752 | Sep 2003 | AU |
2535467 | Apr 1993 | CA |
1233944 | Nov 1999 | CN |
1253485 | May 2000 | CN |
2460047 | Nov 2001 | CN |
1634601 | Jul 2005 | CN |
1640365 | Jul 2005 | CN |
1694649 | Nov 2005 | CN |
1775323 | May 2006 | CN |
1922563 | Feb 2007 | CN |
2868227 | Feb 2007 | CN |
1951333 | Apr 2007 | CN |
101035482 | Sep 2007 | CN |
101040799 | Sep 2007 | CN |
101396300 | Apr 2009 | CN |
101467917 | Jul 2009 | CN |
101474081 | Jul 2009 | CN |
101674782 | Mar 2010 | CN |
101883531 | Nov 2010 | CN |
102160045 | Aug 2011 | CN |
202027624 | Nov 2011 | CN |
102834069 | Dec 2012 | CN |
101313865 | Jan 2013 | CN |
3904558 | Aug 1990 | DE |
9210327 | Nov 1992 | DE |
4300307 | Jul 1994 | DE |
4323585 | Jan 1995 | DE |
19608716 | Apr 1997 | DE |
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
20021619 | Mar 2001 | DE |
10042606 | Aug 2001 | DE |
10201569 | Jul 2003 | DE |
102012109037 | Apr 2014 | DE |
0171967 | Feb 1986 | EP |
0336742 | Oct 1989 | EP |
0136855 | Nov 1989 | EP |
0342448 | Nov 1989 | EP |
0443256 | Aug 1991 | EP |
0456470 | Nov 1991 | EP |
0238667 | Feb 1993 | EP |
0340803 | Aug 1993 | EP |
0598976 | Jun 1994 | EP |
0630612 | Dec 1994 | EP |
0424685 | May 1995 | EP |
0677275 | Oct 1995 | EP |
0482195 | Jan 1996 | EP |
0695535 | Feb 1996 | EP |
0705571 | Apr 1996 | EP |
0741996 | Nov 1996 | EP |
0612570 | Jun 1997 | EP |
0557806 | May 1998 | EP |
0640317 | Sep 1999 | EP |
1108394 | Jun 2001 | EP |
1138264 | Oct 2001 | EP |
0908148 | Jan 2002 | EP |
1229515 | Aug 2002 | EP |
0722696 | Dec 2002 | EP |
1285634 | Feb 2003 | EP |
0908155 | Jun 2003 | EP |
0705570 | Apr 2004 | EP |
0765637 | Jul 2004 | EP |
0870473 | Sep 2005 | EP |
0624346 | Nov 2005 | EP |
1594209 | Nov 2005 | EP |
1199044 | Dec 2005 | EP |
1609428 | Dec 2005 | EP |
1199043 | Mar 2006 | EP |
1293172 | Apr 2006 | EP |
0875209 | May 2006 | EP |
1433425 | Jun 2006 | EP |
1256323 | Aug 2006 | EP |
1698289 | Sep 2006 | EP |
1704824 | Sep 2006 | EP |
1749479 | Feb 2007 | EP |
1767157 | Mar 2007 | EP |
1254637 | Aug 2007 | EP |
1815950 | Aug 2007 | EP |
1839599 | Oct 2007 | EP |
1844720 | Oct 2007 | EP |
1862133 | Dec 2007 | EP |
1875875 | Jan 2008 | EP |
1878399 | Jan 2008 | EP |
1915953 | Apr 2008 | EP |
1532933 | May 2008 | EP |
1199045 | Jun 2008 | EP |
1707143 | Jun 2008 | EP |
1943957 | Jul 2008 | EP |
1964530 | Sep 2008 | EP |
1972264 | Sep 2008 | EP |
1974771 | Oct 2008 | EP |
1435852 | Dec 2008 | EP |
1498082 | Dec 2008 | EP |
1707131 | Dec 2008 | EP |
1477104 | Jan 2009 | EP |
2014218 | Jan 2009 | EP |
1849424 | Apr 2009 | EP |
2042112 | Apr 2009 | EP |
2042117 | Apr 2009 | EP |
2060238 | May 2009 | EP |
1832259 | Jun 2009 | EP |
2074959 | Jul 2009 | EP |
1810625 | Aug 2009 | EP |
2090256 | Aug 2009 | EP |
2092905 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
1747761 | Oct 2009 | EP |
2106758 | Oct 2009 | EP |
2111813 | Oct 2009 | EP |
2131760 | Dec 2009 | EP |
1769766 | Feb 2010 | EP |
2151204 | Feb 2010 | EP |
2153791 | Feb 2010 | EP |
2200145 | Jun 2010 | EP |
1214913 | Jul 2010 | EP |
2238938 | Oct 2010 | EP |
2243439 | Oct 2010 | EP |
2298154 | Mar 2011 | EP |
2305144 | Apr 2011 | EP |
1510178 | Jun 2011 | EP |
1946708 | Jun 2011 | EP |
2335630 | Jun 2011 | EP |
1502551 | Jul 2011 | EP |
1728475 | Aug 2011 | EP |
2353518 | Aug 2011 | EP |
2361562 | Aug 2011 | EP |
2365608 | Sep 2011 | EP |
2420197 | Feb 2012 | EP |
2422721 | Feb 2012 | EP |
1927321 | Apr 2012 | EP |
2436327 | Apr 2012 | EP |
2529681 | Dec 2012 | EP |
1767164 | Jan 2013 | EP |
2316359 | Mar 2013 | EP |
2090238 | Apr 2013 | EP |
2578172 | Apr 2013 | EP |
1586275 | May 2013 | EP |
1616529 | Sep 2013 | EP |
1997438 | Nov 2013 | EP |
2668922 | Dec 2013 | EP |
2508143 | Feb 2014 | EP |
2583633 | Oct 2014 | EP |
2076195 | Dec 2015 | EP |
2113210 | Mar 2016 | EP |
2510891 | Jun 2016 | EP |
2227155 | Jul 2016 | EP |
2859858 | Dec 2016 | EP |
2115068 | Jun 1998 | ES |
1482943 | Aug 1977 | GB |
2032221 | Apr 1980 | GB |
2317566 | Apr 1998 | GB |
2379878 | Nov 2004 | GB |
2472216 | Feb 2011 | GB |
2447767 | Aug 2011 | GB |
S50100891 | Aug 1975 | JP |
S5968513 | May 1984 | JP |
S59141938 | Aug 1984 | JP |
S62221343 | Sep 1987 | JP |
S62227343 | Oct 1987 | JP |
S62292153 | Dec 1987 | JP |
S62292154 | Dec 1987 | JP |
S63109386 | May 1988 | JP |
S63315049 | Dec 1988 | JP |
H01151452 | Jun 1989 | JP |
H01198540 | Aug 1989 | JP |
H0271510 | May 1990 | JP |
H02286149 | Nov 1990 | JP |
H02292193 | Dec 1990 | JP |
H0337061 | Feb 1991 | JP |
H0425707 | Feb 1992 | JP |
H0464351 | Feb 1992 | JP |
H04150847 | Feb 1992 | JP |
H0430508 | Mar 1992 | JP |
H04152942 | May 1992 | JP |
H 0541716 | Feb 1993 | JP |
H0595955 | Apr 1993 | JP |
H05115490 | May 1993 | JP |
H0670938 | Mar 1994 | JP |
H06104503 | Apr 1994 | JP |
H06217988 | Aug 1994 | JP |
H06507081 | Aug 1994 | JP |
H 07500514 | Jan 1995 | JP |
H07508910 | Oct 1995 | JP |
H07308323 | Nov 1995 | JP |
H0824266 | Jan 1996 | JP |
H08229050 | Sep 1996 | JP |
H08275951 | Oct 1996 | JP |
H08336544 | Nov 1996 | JP |
H08336544 | Dec 1996 | JP |
H08336545 | Dec 1996 | JP |
H09503146 | Mar 1997 | JP |
H09130655 | May 1997 | JP |
H09135553 | May 1997 | JP |
H09140722 | Jun 1997 | JP |
H105237 | Jan 1998 | JP |
H100295700 | Nov 1998 | JP |
H11501543 | Feb 1999 | JP |
H11128238 | May 1999 | JP |
H11192235 | Jul 1999 | JP |
H11253451 | Sep 1999 | JP |
H11318918 | Nov 1999 | JP |
2000041991 | Feb 2000 | JP |
2000070279 | Mar 2000 | JP |
2000210299 | Aug 2000 | JP |
2000271145 | Oct 2000 | JP |
2000287987 | Oct 2000 | JP |
2001029353 | Feb 2001 | JP |
2001502216 | Feb 2001 | JP |
2001309925 | Nov 2001 | JP |
2002059380 | Feb 2002 | JP |
2002177295 | Jun 2002 | JP |
2002186901 | Jul 2002 | JP |
2002204808 | Jul 2002 | JP |
2002238919 | Aug 2002 | JP |
2002263579 | Sep 2002 | JP |
2002301086 | Oct 2002 | JP |
2002306504 | Oct 2002 | JP |
2002330977 | Nov 2002 | JP |
2002542690 | Dec 2002 | JP |
2003000612 | Jan 2003 | JP |
2003010201 | Jan 2003 | JP |
2003510158 | Mar 2003 | JP |
2003116870 | Apr 2003 | JP |
2003126104 | May 2003 | JP |
2003126110 | May 2003 | JP |
2003153919 | May 2003 | JP |
2003530921 | Oct 2003 | JP |
2003310627 | Nov 2003 | JP |
2003339730 | Dec 2003 | JP |
2004129871 | Apr 2004 | JP |
2004147701 | May 2004 | JP |
2005003496 | Jan 2005 | JP |
2005027026 | Jan 2005 | JP |
2005040222 | Feb 2005 | JP |
2005066316 | Mar 2005 | JP |
2005074088 | Mar 2005 | JP |
2005507679 | Mar 2005 | JP |
2005534451 | Nov 2005 | JP |
2005337119 | Dec 2005 | JP |
2006006410 | Jan 2006 | JP |
2006068396 | Mar 2006 | JP |
2006075376 | Mar 2006 | JP |
2006081664 | Mar 2006 | JP |
2006114072 | Apr 2006 | JP |
2006512149 | Apr 2006 | JP |
2006116194 | May 2006 | JP |
2006158525 | Jun 2006 | JP |
2006217716 | Aug 2006 | JP |
2006218296 | Aug 2006 | JP |
2006288431 | Oct 2006 | JP |
2007037568 | Feb 2007 | JP |
2007050181 | Mar 2007 | JP |
2007-524459 | Aug 2007 | JP |
2007229454 | Sep 2007 | JP |
2007527747 | Oct 2007 | JP |
2007296369 | Nov 2007 | JP |
200801876 | Jan 2008 | JP |
2008018226 | Jan 2008 | JP |
200833644 | Feb 2008 | JP |
2008036390 | Feb 2008 | JP |
2008508065 | Mar 2008 | JP |
2008119250 | May 2008 | JP |
2008515562 | May 2008 | JP |
2008521503 | Jun 2008 | JP |
2008188160 | Aug 2008 | JP |
D1339835 | Aug 2008 | JP |
2008212679 | Sep 2008 | JP |
2008536562 | Sep 2008 | JP |
2008284374 | Nov 2008 | JP |
2009511206 | Mar 2009 | JP |
2009082711 | Apr 2009 | JP |
2009517181 | Apr 2009 | JP |
4262923 | May 2009 | JP |
2009523567 | Jun 2009 | JP |
2009148557 | Jul 2009 | JP |
2009236177 | Oct 2009 | JP |
2009254819 | Nov 2009 | JP |
2010000336 | Jan 2010 | JP |
2010009686 | Jan 2010 | JP |
2010514923 | May 2010 | JP |
2010121865 | Jun 2010 | JP |
2010534522 | Nov 2010 | JP |
2010540186 | Dec 2010 | JP |
2011505198 | Feb 2011 | JP |
2012075899 | Apr 2012 | JP |
2012071186 | Apr 2012 | JP |
2012235658 | Nov 2012 | JP |
5208761 | Jun 2013 | JP |
5714508 | May 2015 | JP |
2015515339 | May 2015 | JP |
5836543 | Dec 2015 | JP |
100789356 | Dec 2007 | KR |
2154437 | Aug 2000 | RU |
22035 | Mar 2002 | RU |
2201169 | Mar 2003 | RU |
2304934 | Aug 2007 | RU |
2405603 | Dec 2010 | RU |
850068 | Jul 1981 | SU |
WO-8103272 | Nov 1981 | WO |
WO-9222259 | Dec 1992 | WO |
WO-9307817 | Apr 1993 | WO |
WO-9308757 | May 1993 | WO |
WO-9314708 | Aug 1993 | WO |
WO-9316646 | Sep 1993 | WO |
WO-9320877 | Oct 1993 | WO |
WO-9322973 | Nov 1993 | WO |
WO-9400059 | Jan 1994 | WO |
WO-9421183 | Sep 1994 | WO |
WO-9424949 | Nov 1994 | WO |
WO-9509572 | Apr 1995 | WO |
WO-9510978 | Apr 1995 | WO |
WO-9534259 | Dec 1995 | WO |
WO-9630885 | Oct 1996 | WO |
WO-9635382 | Nov 1996 | WO |
WO-9639086 | Dec 1996 | WO |
WO-9710764 | Mar 1997 | WO |
WO-9800069 | Jan 1998 | WO |
WO-9816156 | Apr 1998 | WO |
WO-9826739 | Jun 1998 | WO |
WO-9835621 | Aug 1998 | WO |
WO-9837815 | Sep 1998 | WO |
WO-9840020 | Sep 1998 | WO |
WO-9847436 | Oct 1998 | WO |
WO-9857588 | Dec 1998 | WO |
WO-9920213 | Apr 1999 | WO |
WO-9923960 | May 1999 | WO |
WO-9940857 | Aug 1999 | WO |
WO-9940861 | Aug 1999 | WO |
WO-9952489 | Oct 1999 | WO |
WO-0024330 | May 2000 | WO |
WO-0024331 | May 2000 | WO |
WO-0025691 | May 2000 | WO |
WO-0064358 | Nov 2000 | WO |
WO-0074585 | Dec 2000 | WO |
WO-0124713 | Apr 2001 | WO |
WO-0128444 | Apr 2001 | WO |
WO-0154590 | Aug 2001 | WO |
WO-0167970 | Sep 2001 | WO |
WO-0172251 | Oct 2001 | WO |
WO-0195810 | Dec 2001 | WO |
WO-0224080 | Mar 2002 | WO |
WO-0238057 | May 2002 | WO |
WO-02062241 | Aug 2002 | WO |
WO-02080797 | Oct 2002 | WO |
WO-03001986 | Jan 2003 | WO |
WO-03013374 | Feb 2003 | WO |
WO-03020339 | Mar 2003 | WO |
WO-03028541 | Apr 2003 | WO |
WO-03030708 | Apr 2003 | WO |
WO-03068046 | Aug 2003 | WO |
WO-03082133 | Oct 2003 | WO |
WO-03095028 | Nov 2003 | WO |
WO-2004011037 | Feb 2004 | WO |
WO-2004012615 | Feb 2004 | WO |
WO-2004026104 | Apr 2004 | WO |
WO-2004032754 | Apr 2004 | WO |
WO-2004032762 | Apr 2004 | WO |
WO-2004032763 | Apr 2004 | WO |
WO-2004037095 | May 2004 | WO |
WO-2004060141 | Jul 2004 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2004098426 | Nov 2004 | WO |
WO-2004112618 | Dec 2004 | WO |
WO-2005052959 | Jun 2005 | WO |
WO-2005117735 | Dec 2005 | WO |
WO-2005122917 | Dec 2005 | WO |
WO-2006012797 | Feb 2006 | WO |
WO-2006021269 | Mar 2006 | WO |
WO-2006036706 | Apr 2006 | WO |
WO-2006042210 | Apr 2006 | WO |
WO-2006055166 | May 2006 | WO |
WO-2006058223 | Jun 2006 | WO |
WO-2006063199 | Jun 2006 | WO |
WO-2006083988 | Aug 2006 | WO |
WO-2006101661 | Sep 2006 | WO |
WO-2006119139 | Nov 2006 | WO |
WO-2006119376 | Nov 2006 | WO |
WO-2006129465 | Dec 2006 | WO |
WO-2007008703 | Jan 2007 | WO |
WO-2007008710 | Jan 2007 | WO |
WO-2007038538 | Apr 2007 | WO |
WO-2007040818 | Apr 2007 | WO |
WO-2007047380 | Apr 2007 | WO |
WO-2007047531 | Apr 2007 | WO |
WO-2007056590 | May 2007 | WO |
WO-2007087272 | Aug 2007 | WO |
WO-2007089724 | Aug 2007 | WO |
WO-2007143665 | Dec 2007 | WO |
WO-2008016886 | Feb 2008 | WO |
WO-2008020964 | Feb 2008 | WO |
WO-2008042021 | Apr 2008 | WO |
WO-2008045348 | Apr 2008 | WO |
WO-2008049084 | Apr 2008 | WO |
WO-2008051764 | May 2008 | WO |
WO-2008089174 | Jul 2008 | WO |
WO-2008099529 | Aug 2008 | WO |
WO-2008101356 | Aug 2008 | WO |
WO-2008118709 | Oct 2008 | WO |
WO-2008130793 | Oct 2008 | WO |
WO-2009010565 | Jan 2009 | WO |
WO-2009018067 | Feb 2009 | WO |
WO-2009018406 | Feb 2009 | WO |
WO-2009022614 | Feb 2009 | WO |
WO-2009027065 | Mar 2009 | WO |
WO-2009036818 | Mar 2009 | WO |
WO-2009039179 | Mar 2009 | WO |
WO-2009046234 | Apr 2009 | WO |
WO-2009059741 | May 2009 | WO |
WO-2009073402 | Jun 2009 | WO |
WO-2009082477 | Jul 2009 | WO |
WO-2009088550 | Jul 2009 | WO |
WO-2009120992 | Oct 2009 | WO |
WO-2009141616 | Nov 2009 | WO |
WO-2009149234 | Dec 2009 | WO |
WO-2010017149 | Feb 2010 | WO |
WO-2010017266 | Feb 2010 | WO |
WO-2010068783 | Jun 2010 | WO |
WO-2010104755 | Sep 2010 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011044338 | Apr 2011 | WO |
WO-2011044343 | Apr 2011 | WO |
WO-2011052939 | May 2011 | WO |
WO-2011060031 | May 2011 | WO |
WO-2011084768 | Jul 2011 | WO |
WO-2011089717 | Jul 2011 | WO |
WO-2011100321 | Aug 2011 | WO |
WO-2011144911 | Nov 2011 | WO |
WO-2012044597 | Apr 2012 | WO |
WO-2012044606 | Apr 2012 | WO |
WO-2012061638 | May 2012 | WO |
WO-2012061722 | May 2012 | WO |
WO-2012128362 | Sep 2012 | WO |
WO-2012135705 | Oct 2012 | WO |
WO-2012135721 | Oct 2012 | WO |
WO-2012150567 | Nov 2012 | WO |
WO-2012166510 | Dec 2012 | WO |
WO-2013018934 | Feb 2013 | WO |
WO-2013034629 | Mar 2013 | WO |
WO-2013062978 | May 2013 | WO |
WO-2013102602 | Jul 2013 | WO |
WO-2013154157 | Oct 2013 | WO |
WO-2014092108 | Jun 2014 | WO |
WO-2015197395 | Dec 2015 | WO |
WO-2016009921 | Jan 2016 | WO |
Entry |
---|
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages). |
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages). |
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages). |
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages). |
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291. |
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp. |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999. |
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989. |
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages). |
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549. |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006). |
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003). |
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990). |
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541. |
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970). |
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997). |
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961). |
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000). |
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages). |
http://www.apicalinstr.com/generators.htm. |
http://www.dotmed.com/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724. |
http:/www.ethicon.com/gb-en/healthcare-professionals/products/energy-devices/capital//ge . . . . |
http://www.medicalexpo.com/medical-manufacturer/electrosurgical-generator-6951.html. |
http://www.megadyne.com/es_generator.php. |
http://www.valleylab.com/product/es/generators/index.html. |
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984. |
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages). |
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002. |
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages). |
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973). |
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288. |
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988). |
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988. |
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995). |
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008). |
http://www.4-traders.com/JOHNSON-JOHNSON-4832/news/Johnson-Johnson-Ethicon-E . . . . |
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached). |
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971). |
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/. |
Moraleda et al., A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend, Sensors 2013, 13, 13076-13089, doi: 10.3390/s131013076, ISSN 1424-8220. |
Number | Date | Country | |
---|---|---|---|
20170086910 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62235260 | Sep 2015 | US | |
62235466 | Sep 2015 | US | |
62235368 | Sep 2015 | US |