Some conventional guided munitions have movable fins which control their trajectories during flight. The fins, which are located outside the munition shells, move in various directions to steer the guided munitions through air (and/or water) to their intended targets.
For such a conventional guided munition, a guidance system typically resides within the munition shell. The guidance system typically includes a processor, motors, and motor linkages connecting the motors to the fins. During flight, the processor operates the motors which drive their corresponding linkages to move the fins. With the fins disposed on the outside of the munition shell, and the fins aerodynamically guide the munition to its intended targets.
Examples of conventional guided munitions include rockets, guided missiles which are fired from the ground, and guided bombs which are dropped from aircraft. Some conventional torpedoes also have movable fins which enable the torpedoes to change course after launch.
It may be desirable to store the movable fins of a guided munition within the munition shell until after launch. That is, in some situations, it may be advantageous to initially dispose the movable fins in retracted positions within the munition shell, and later deploy the movable fins into their external operating positions outside the munition shell after launch. For example, with the movable fins in their retracted positions prior to launch, the munition shell may be better suited for certain types of transport and launching alternatives.
One approach to using initially retracted fins involves launching a munition shell from the ground with the fins stored within the munition shell until the munition shell reaches its apex. Then, an unlock/deploy system within the munition shell extends the fins to their external operating positions through openings of the munition shell. Once the fins are in their external operating positions, a guidance system within the munition shell moves the fins thus steering the munition shell to its intended target.
Unfortunately, if the openings of the munition shell through which the fins extend are not initially covered, the guidance system is susceptible to damage. In particular, aerodynamic forces in the vicinity of the openings during launch may wear, overstress or even destroy the motors and/or corresponding linkages of the guidance system. Furthermore, contaminants (e.g., environmental dirt and debris during transport or storage, gases during munition firing, etc.) could enter through the openings and cause the guidance system to operate improperly or even fail. The result may be catastrophic if the guided munition steers off course and hits an unintended target.
Various embodiments of the invention are directed to techniques which control access through slots on projectiles (e.g., guided munitions) using slot covers. While the slot covers are in place, the slot covers are capable of protecting the internal components of the projectiles against external interference (e.g., damaging aerodynamic forces, contamination, tampering, etc.). Once the slot covers are released, control surface members substantially residing within inner cavities are free to extend and control the trajectories of the projectiles.
One embodiment is directed to a slot cover actuation assembly to control access through a slot on a projectile. The slot cover actuation assembly includes a slot cover, a fastener (e.g., a screw), and an actuator (e.g., a squib device). The fastener is arranged to position the slot cover at an installation position on the projectile. The slot cover covers the slot on the projectile when the slot cover resides at the installation position. The actuator is arranged to release the slot cover from the installation position on the projectile. The slot cover uncovers the slot on the projectile when the actuator releases the slot cover from the installation position on the projectile.
The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the invention.
Certain embodiments of the invention are directed to techniques which control access through slots (or openings) on projectiles (e.g., a guided munitions) using slot covers. While the slot covers are in place, the slot covers are capable of protecting the projectiles against the passage of external interference (e.g., damaging aerodynamic forces, contamination, external tampering, etc.). Once the slot covers are released, control surface members substantially residing within the outer housings of the projectiles are free to deploy and control the trajectories of the projectiles.
As shown in
The slot cover actuation assembly 24 includes a slot cover 36, a fastener 38, and an actuator 40. The slot cover 36 is substantially plane-shaped (e.g., in the Y-Z plane of
In some arrangements, the actuator 40 is a squib device having a threaded member 48 that attaches to the inner support 30, and the fastener 38 is a threaded screw (or bolt) having a head portion 50 and shaft portion 52 which threads into the threaded member 48 of the squib device. Prior to detonation of the squib device, the threads of the screw reliably hold the slot cover 36 at the installation position 42. Then, in response to the activation signal 44, the squib device provides an explosive force which propels the slot cover 36 and the fastener 38 in a direction (e.g., see the positive X-direction in
In some arrangements, threads of the shaft portion 52 are arranged to give way during activation of the squib device thus enabling the screw to release from the threaded member 48 of the actuator 40. For example, the explosive force may be large enough to strip the shaft portion 52 of the screw from its holding position and eject both the screw and the slot cover 36 safely away from the outer housing 28 so that they do not inadvertently interfere with the subsequent flight of the projectile apparatus 20.
In other arrangements, the actuator 40 has an undercut area which is arranged to fail in response to detonation of the squib device. Accordingly, when the squib device explodes, the freed portion of the actuator (e.g., the threaded member 48), the fastener 38 and the slot cover 36 separate from the outer housing 28 allowing the control surface member 34 to freely deploy. Further details will now be provided with reference to
It should be understood that, prior to launch, the control surface members 34 reside within the inner cavity 32 (
However, once the corresponding slot cover actuation assemblies 24 (generally illustrated by the arrow 24 in
As further shown in
In some alternative arrangements, slot cover removal does not serve to release the control surface member 34 (e.g., a spring loaded fin) as described above. In these alternative arrangements, the control surface member 34 is locked in a stowed position perhaps more deeply within the internal cavity 32. Then, once the slot cover 36 is released, the control surface member 34 deploys through the slot 26 into its operating position by actuation of a separate unlocking/deployment system.
By way of example only, the force 62 on the control surface member 34 is shown in
As shown, the slot cover 36 is elongated along the Z-direction in
The fastener hole 82 (e.g., a countersunk single screw hole) allows the shaft portion 52 (
In step 104, the user positions the slot cover at an installation position on the projectile using a fastener (e.g., see the fastener 38 in
In step 106, the user arranges for an actuator to release the slot cover from the installation position on the projectile (e.g., see the actuator 40 in
In a situation where there are multiple slots requiring access control, the user is capable of repeating the procedure 100 for each slot. For example, in the context of a projectile having four slots through which initially retracted control surface members 34 deploy following launch, the user performs the procedure 100 for each of the four slots (e.g., see
As described above, embodiments of the invention are directed to techniques which control access through slots 26 on projectiles 20 (e.g., guided munitions) using slot covers 36. While the slot covers 36 are in place, the slot covers 36 are capable of protecting the internal components of the projectiles 20 against external interference (e.g., damaging aerodynamic forces, contamination, tampering, etc.). Once the slot covers 36 are released, control surface members 34 substantially residing within inner cavities 32 are free to extend and control the trajectories of the projectiles 20.
While various embodiments of the invention have been particularly shown and described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.