The present invention relates to integrated circuits, and more particularly, to techniques for combining transistors in an integrated circuit having different threshold voltage requirements from one another.
Integrated circuits now commonly include a wide variety of different transistor types in combination with one another. By way of example, random access memory transistors, such as static random access memory (SRAM) or dynamic random access memory (DRAM) transistors, are in many configurations used in combination with a variety of logic transistors. A challenge, however, associated with integrating different transistors is that each type of transistor generally requires a threshold voltage (Vt) that is different from what the other types of transistors require. For example, with integrated circuit configurations that combine SRAM and logic transistors, the SRAM transistors typically require a higher Vt than their logic counterparts. This Vt difference is due to the relatively lower power requirements of SRAM transistors, i.e., as compared to logic transistors.
In conventional designs, these different Vt requirements are addressed through doping. Specifically, extra doping steps are performed to alter the Vt of the SRAM transistors relative to the logic transistors, and vice versa. This approach, however, has a notable drawback. Since the Vt of the transistors is determined through doping, the doping must be consistent from one device to another to attain consistent Vt. Namely, dopant fluctuations, which can occur in a significant number of devices produced, leads to variability in the transistors. Variability in the transistors leads to variability in the devices and thus affects device performance. As device feature sizes are scaled, the effects of dopant fluctuations and device variability become even more pronounced.
Therefore, improved techniques for combining transistors having different Vt requirements would be desirable.
The present invention provides techniques for combining transistors having different threshold voltage (Vt) requirements from one another. In one aspect of the invention, a semiconductor device is provided. The semiconductor device comprises a substrate having at least a first and a second n-channel field effect transistor (nFET) region, and at least a first and a second p-channel field effect transistor (pFET) region; at least one logic nFET on the substrate over the first nFET region; at least one logic pFET on the substrate over the first pFET region; at least one static random access memory (SRAM) nFET on the substrate over the second nFET region; and at least one SRAM pFET on the substrate over the second pFET region. Each of the logic nFET, logic pFET, SRAM nFET and SRAM pFET comprises a gate stack having a metal layer over a high-K layer. The logic nFET gate stack further comprises a capping layer separating the metal layer from the high-K layer, wherein the capping layer is further configured to shift a Vt of the logic nFET relative to a Vt of one or more of the logic pFET, SRAM nFET and SRAM pFET.
In another aspect of the invention, a method of fabricating a semiconductor device is provided. The method comprises the following steps. A substrate is provided having at least one logic nFET region, at least one SRAM nFET region, at least one logic pFET region and at least one SRAM pFET region. Crystalline silicon germanium is selectively formed in the logic pFET region. An interfacial layer dielectric is grown over the logic nFET region, the SRAM nFET region, the logic pFET region and the SRAM pFET region. A high-K layer is deposited over the interfacial layer dielectric. A capping layer is formed in the logic nFET region over a side of the high-K layer opposite the interfacial layer dielectric. A metal layer is deposited over the capping layer in the logic nFET region and over the high-K layer in the SRAM nFET region, the logic pFET region and the SRAM pFET region. A silicon layer is deposited over the metal layer. An etch is performed through the interfacial layer dielectric, the high-K layer, the capping layer, the metal layer and the silicon layer to form a logic nFET gate stack over the logic nFET region, and through the interfacial layer dielectric, the high-K layer, the metal layer and the silicon layer to form a SRAM nFET gate stack over the SRAM nFET region, a logic pFET gate stack over the logic pFET region and a SRAM pFET gate stack over the SRAM pFET region.
In yet another aspect of the invention, another method of fabricating a semiconductor device is provided. The method comprises the following steps. A substrate is provided having at least one logic nFET region, at least one SRAM nFET region, at least one logic pFET region and at least one SRAM pFET region. An interfacial layer dielectric is grown over the logic nFET region, the SRAM nFET region, the logic pFET region and the SRAM pFET region. A high-K layer is deposited over the interfacial layer dielectric. A capping layer is formed in the logic nFET region and the SRAM pFET region over a side of the high-K layer opposite the interfacial layer dielectric. A metal layer is deposited over the capping layer in the logic nFET region and the SRAM pFET region and over the high-K layer in the SRAM nFET region and the logic pFET region. A silicon layer is deposited over the metal layer. An etch is performed through the interfacial layer dielectric, the high-K layer, the capping layer, the metal layer and the silicon layer to form a logic nFET gate stack over the logic nFET region and a SRAM pFET gate stack over the SRAM pFET region, and through the interfacial layer dielectric, the high-K layer, the metal layer and the silicon layer to form a SRAM nFET gate stack over the SRAM nFET region and a logic pFET gate stack over the logic pFET region.
The method can further comprise the following steps. A tensile silicon nitride layer is deposited over the logic nFET region and the SRAM nFET region. The logic pFET region and the SRAM pFET region are oxidized. A compressive silicon nitride layer is deposited over the logic pFET region and the SRAM pFET region.
A more complete understanding of the present invention, as well as further features and advantages of the present invention, will be obtained by reference to the following detailed description and drawings.
With integrated SRAM-logic devices, it is desirable to be able to accurately and consistently alter the threshold voltage (Vt) of the SRAM transistors as compared to the Vt of the logic transistors. For example, the SRAM transistors will likely require a higher Vt than the logic transistors. As will be described in detail below, the present techniques involve transistors having high-K/metal gate stacks. A capping layer can be selectively employed in one or more of the gate stacks and/or crystalline silicon-germanium (cSiGe) can be selectively grown to alter the Vt of the corresponding transistor(s).
As shown in
Substrate 104 has both SRAM and logic n-channel field effect transistor (nFET) and p-channel field effect transistor (pFET) regions defined therein. Specifically, according to the exemplary embodiment shown illustrated in
A hardmask layer is deposited over the device and patterned to form hardmask 114 over the nFET regions, i.e., over nFET region 106 and SRAM nFET region 108. With hardmask 114 shielding logic nFET region 106 and SRAM nFET region 108, cSiGe 113 and 115 are then selectively formed, i.e., grown, in logic pFET region 110 and SRAM pFET region 112, respectively. As described above, SRAM pFET region 112 has a reduced Ge fraction, e.g., as compared to logic pFET region 110. According to an exemplary embodiment, this variation between the two pFET regions is accomplished using a two-step masking process wherein a mask (not shown) is first placed over logic pFET region 110 and the cSiGe is formed in SRAM pFET region 112 having a reduced Ge fraction. The mask is removed and a second mask (not shown) is placed over SRAM pFET region 112 and the cSiGe is formed in logic pFET region 110. The second mask is then removed. This two-step masking process is performed with hardmask 114 in place. The sequence of this two-step masking process is not important, and can be performed wherein the cSiGe is first formed in logic pFET region 110, followed by the cSiGe having the reduced Ge fraction being formed in the SRAM pFET region 112.
As shown in
As shown in
Capping layer 120 is deposited over a side of high-K layer 118 opposite IL dielectric 116. According to an exemplary embodiment, capping layer 120 comprises one or more of lanthanum oxide (La2O3), magnesium oxide (MgO), oxides of group IIA and group IIIB elements and nitrides of group IIA and group IIIB elements. Capping layers are described, for example, in U.S. Patent Application No. 2006/0289948 filed by Brown et al., entitled “Method to control flatband/threshold voltage in high-k metal gated stacks and structures thereof” and in U.S. Patent Application No. 2006/0244035 filed by Bojarczuk et al., entitled “Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for CMOS,” the disclosures both of which are incorporated by reference herein. As will be described below, in the completed device, capping layer 120 can provide between about a 300 millivolt (mV) and about a 350 mV Vt shift in the nFET. Further, reduced Ge fraction cSiGe can provide between about a 200 mV and about a 350 mV Vt shift in the pFET.
As shown in
As shown in
A Si layer 128 is then deposited over a side of metal layer 126 opposite capping layer 121/high-K layer 118. According to an exemplary embodiment, Si layer 128 comprises polysilicon (poly-Si) and/or amorphous Si and is deposited to a thickness of about 1,000 angstroms (Å) at its thickest point. However, depending on the technology, the thickness of Si layer 128 can vary from between about 500 Å to about 1,000 Å at its thickest point.
As shown in
Gate stack 132 is defined over SRAM nFET region 108. Gate stack 132 comprises IL dielectric 116b (formed from IL dielectric 116), high-K layer 118b (formed from high-K layer 118) over IL dielectric 116b, metal layer 126b (formed from metal layer 126) over a side of high-K layer 118b opposite IL dielectric 116b and Si layer 128b (formed from Si layer 128) over a side of metal layer 126b opposite high-K layer 118b.
Gate stack 134 is defined over logic pFET region 110. Gate stack 134 comprises IL dielectric 116c (formed from IL dielectric 116), high-K layer 118c (formed from high-K layer 118) over IL dielectric 116c, metal layer 126c (formed from metal layer 126) over a side of high-K layer 118c opposite IL dielectric 116c and Si layer 128c (formed from Si layer 128) over a side of metal layer 126c opposite high-K layer 118c.
Gate stack 136 is defined over SRAM pFET region 112. Gate stack 136 comprises IL dielectric 116d (formed from IL dielectric 116), high-K layer 118d (formed from high-K layer 118) over IL dielectric 116d, metal layer 126d (formed from metal layer 126) over a side of high-K layer 118d opposite IL dielectric 116d and Si layer 128d (formed from Si layer 128) over a side of metal layer 126d opposite high-K layer 118d.
Standard processes can then be carried out to form source and drain regions on opposite sides of the gate stacks. Oxide and/or nitride spacers can also be formed around the gate stack, as needed.
As a result of performing the steps shown illustrated in
By comparison, the SRAM nFET, which does not have a capping layer in its gate stack, i.e., gate stack 132, will have a Vt that is about 200 mV greater than the Vt of the logic nFET. For the pFETs, which also do not have a capping layer in their gate stacks, the Vt is on target (i.e., at or near pFET band edge). Further, the presence of reduced Ge fraction cSiGe in the SRAM pFET (as described above) will provide a positive Vt shift of between about a 200 mV and about a 350 mV in the SRAM pFET, as compared to the Vt of the logic pFET. Thus, the use of reduced Ge fraction cSiGe to shift Vt operates independently of the use of a capping layer to shift Vt. In general, the use of reduced Ge fraction cSiGe provides a positive Vt shift, and the use of a capping layer provides a negative Vt shift.
The above-described techniques are beneficial since they minimize the number of masking steps involved, which is favorable for reducing production time and costs. Other techniques, however, may be employed. For example, the same gate stack configurations can be obtained using a different masking process. Specifically, with reference to the step shown in
A capping layer is then deposited over the metal layer/high-K layer, followed by a second metal layer, e.g., a second TiN layer, being deposited over the capping layer. A second mask is then patterned to cover the second TiN layer over the logic nFET region, allowing for the selective removal of the second TiN and capping layers from over the SRAM nFET, logic pFET and SRAM pFET regions. Following the removal of the second TiN and capping layers from over the SRAM nFET, logic pFET and SRAM pFET regions, the mask is also removed. From this point on, the remainder of the process is the same as is illustrated in
Substrate 204 has both SRAM and logic nFET and pFET regions defined therein. Specifically, according to the exemplary embodiment shown illustrated in
A hardmask layer is deposited over the device and patterned to form hardmask 214 over the nFET regions, i.e., over logic nFET region 206 and SRAM nFET region 208. With hardmask 214 shielding logic nFET region 206 and SRAM nFET region 208, cSiGe 213 and 215 are then selectively formed, i.e., grown, in logic pFET region 210 and SRAM pFET region 212, respectively. As shown in
As shown in
As shown in
As shown in
A Si layer 228 is then deposited over a side of metal layer 226 opposite high-K layer 218/capping layer 221/capping layer 222. According to an exemplary embodiment, Si layer 228 comprises poly-Si and/or amorphous Si and is deposited to a thickness of about 1,000 Å at its thickest point. However, depending on the technology, the thickness of Si layer 228 can vary from about 500 Å to about 1,000 Å at its thickest point.
As shown in
Gate stack 232 is defined over SRAM nFET region 208. Gate stack 232 comprises IL dielectric 216b (formed from IL dielectric 216), high-K layer 218b (formed from high-K layer 218) over IL dielectric 216b, metal layer 226b (formed from metal layer 226) over a side of high-K layer 218b opposite IL dielectric 216b and Si layer 228b (formed from Si layer 228) over a side of metal layer 226b opposite high-K layer 218b.
Gate stack 234 is defined over logic pFET region 210. Gate stack 234 comprises IL dielectric 216c (formed from IL dielectric 216), high-K layer 218c (formed from high-K layer 218) over IL dielectric 216c, metal layer 226c (formed from metal layer 226) over a side of high-K layer 218c opposite IL dielectric 216c and Si layer 228c (formed from Si layer 228) over a side of metal layer 226c opposite high-K layer 218c.
Gate stack 236 is defined over SRAM pFET region 212. Gate stack 236 comprises IL dielectric 216d (formed from IL dielectric 216), high-K layer 218d (formed from high-K layer 218) over IL dielectric 216d, capping layer 222d (formed from capping layer 222) over a side of high-K layer 218d opposite IL dielectric 216d, metal layer 226d (formed from metal layer 226) over a side of capping layer 222d opposite high-K layer 218d and Si layer 228d (formed from Si layer 228) over a side of metal layer 226d opposite capping layer 222d.
Standard processes can then be carried out to form source and drain regions on opposite sides of the gate stacks. Oxide and/or nitride spacers can also be formed around the gate stack, as needed.
As a result of performing the steps shown illustrated in
The above-described techniques are beneficial since they involve only a single masking step, which is favorable for reducing production time and costs. Other techniques, however, may be employed. For example, the same gate stack configurations can be obtained using a two-step masking process. Specifically, with reference to the step shown in
A capping layer is then deposited over the metal layer/high-K layer, followed by a second metal layer, e.g., a second TiN layer, being deposited over the capping layer. A second mask is then patterned to cover the second TiN layer over the logic nFET and SRAM pFET regions, allowing for the selective removal of the second TiN and capping layers from over the logic pFET and SRAM nFET regions. Following the removal of the second TiN and capping layers from over the logic pFET and SRAM nFET regions, the mask is also removed. From this point on, the remainder of the process is the same as is illustrated in
Substrate 304 has both SRAM and logic nFET and pFET regions defined therein. Specifically, according to the exemplary embodiment shown illustrated in
A hardmask layer is deposited over the device and patterned to form hardmasks 313 and 314 over logic nFET region 306/SRAM nFET region 308 and SRAM pFET region 312, respectively. With hardmask 313 shielding logic nFET region 306/SRAM nFET region 308 and hardmask 314 shielding SRAM pFET region 312, cSiGe 315 is then selectively formed, i.e., grown, in logic pFET region 310. As shown in
As shown in
Capping layer 320 is deposited over a side of high-K layer 318 opposite IL dielectric 316. According to an exemplary embodiment, capping layer 320 comprises one or more of La2O3, MgO, oxides of group IIA and group IIIB elements and nitrides of group IIA and group IIIB elements.
As shown in
As shown in
A Si layer 328 is then deposited over a side of metal layer 326 opposite capping layer 321/high-K layer 318. According to an exemplary embodiment, Si layer 328 comprises poly-Si and/or amorphous Si and is deposited to a thickness of about 1,000 Å at its thickest point. However, depending on the technology, the thickness of Si layer 328 can vary from about 500 Å to about 1,000 Å at its thickest point.
As shown in
Gate stack 332 is defined over SRAM nFET region 308. Gate stack 332 comprises IL dielectric 316b (formed from IL dielectric 316), high-K layer 318b (formed from high-K layer 318) over IL dielectric 316b, metal layer 326b (formed from metal layer 326) over a side of high-K layer 318b opposite IL dielectric 316b and Si layer 328b (formed from Si layer 328) over a side of metal layer 326b opposite high-K layer 318b.
Gate stack 334 is defined over logic pFET region 310. Gate stack 334 comprises IL dielectric 316c (formed from IL dielectric 316), high-K layer 318c (formed from high-K layer 318) over IL dielectric 316c, metal layer 326c (formed from metal layer 326) over a side of high-K layer 318c opposite IL dielectric 316c and Si layer 328c (formed from Si layer 328) over a side of metal layer 326c opposite high-K layer 318c.
Gate stack 336 is defined over SRAM pFET region 312. Gate stack 336 comprises IL dielectric 316d (formed from IL dielectric 316), high-K layer 318d (formed from high-K layer 318) over IL dielectric 316d, metal layer 326d (formed from metal layer 326) over a side of high-K layer 318d opposite IL dielectric 316d and Si layer 328d (formed from Si layer 328) over a side of metal layer 326d opposite high-K layer 318d.
Standard processes can then be carried out to form source and drain regions on opposite sides of the gate stacks. Oxide and/or nitride spacers can also be formed around the gate stack, as needed.
As a result of performing the steps shown illustrated in
The above-described techniques are beneficial since they involve only a single masking step, which is favorable for reducing production time and costs. Other techniques, however, may be employed. For example, the same gate stack configurations can be obtained using a two-step masking process. Specifically, with reference to the step shown in
A capping layer is then deposited over the metal layer/high-K layer, followed by a second metal layer, e.g., a second TiN layer, being deposited over the capping layer. A second mask is then patterned to cover the second TiN layer over the logic nFET region, allowing for the selective removal of the second TiN and capping layers from over the SRAM nFET, logic pFET and SRAM pFET regions. Following the removal of the second TiN and capping layers from over the SRAM nFET, logic pFET and SRAM pFET regions, the mask is also removed. From this point on, the remainder of the process is the same as is illustrated in
As shown in
A capping layer is then deposited over a side of high-K layer 408 opposite IL dielectric 406/STI region 403/STI region 404/STI region 405. The capping layer can comprise one or more of La2O3, MgO, oxides of group IIA and group IIIB elements and nitrides of group IIA and group IIIB elements. The capping layer is then selectively removed from over the SRAM nFET/logic pFET regions to form capping layer 410 over the logic nFET/SRAM pFET regions, as shown in
As shown in
As shown in
Gate stack 432 is defined over the SRAM pFET region. Gate stack 432 comprises IL dielectric 406b (formed from IL dielectric 406), high-K layer 408b (formed from high-K layer 408) over IL dielectric 406b, capping layer 410b (formed from capping layer 410) over a side of high-K layer 408b opposite IL dielectric 406b, metal layer 412b (formed from metal layer 412) over a side of capping layer 410b opposite high-K layer 408b and Si layer 414b (formed from Si layer 414) over a side of metal layer 412b opposite capping layer 410b.
Gate stack 434 is defined over the SRAM nFET region. Gate stack 434 comprises IL dielectric 406c (formed from IL dielectric 406), high-K layer 408c (formed from high-K layer 408) over IL dielectric 406c, metal layer 412c (formed from metal layer 412) over a side of high-K layer 408c opposite IL dielectric 406c and Si layer 414c (formed from Si layer 414) over a side of metal layer 412c opposite high-K layer 408c.
Gate stack 436 is defined over the logic pFET region. Gate stack 436 comprises IL dielectric 406d (formed from IL dielectric 406), high-K layer 408d (formed from high-K layer 408) over IL dielectric 406d, metal layer 412d (formed from metal layer 412) over a side of high-K layer 408d opposite IL dielectric 406d and Si layer 414d (formed from Si layer 414) over a side of metal layer 412d opposite high-K layer 408d.
As shown in
Source/drain diffusions are formed in each of the nFET and pFET regions. Namely, source/drain diffusions 446a and 448a are formed in the logic nFET region, source/drain diffusions 446b and 448b are formed in the SRAM pFET region, source/drain diffusions 446c and 448c are formed in the SRAM nFET region and source/drain diffusions 446d and 448d are formed in the logic pFET region.
Exposed Si areas in each of the nFET and pFET regions are then silicided. As a result, silicide regions 450a are formed in the exposed Si areas of the logic nFET region, i.e., at gate stack 430 and source/drain diffusions 446a and 448a. Silicide regions 450b are formed in the exposed Si areas of the SRAM pFET region, i.e., at gate stack 432 and source/drain diffusions 446b and 448b. Silicide regions 450c are formed in the exposed Si areas of the SRAM nFET region, i.e., at gate stack 434 and source/drain diffusions 446c and 448c. Silicide regions 450d are formed in the exposed Si areas of the logic pFET region, i.e., at gate stack 436 and source/drain diffusions 446d and 448d.
Following silicidation, the nitride spacers are removed from each of the nFET and pFET regions, as shown in
As shown in
As shown in
Although illustrative embodiments of the present invention have been described herein, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be made by one skilled in the art without departing from the scope of the invention.
This application is a continuation of U.S. application Ser. No. 12/720,354 filed on Mar. 9, 2010, now U.S. Pat. No. 8,212,322, which is a divisional of U.S. patent application Ser. No. 11/927,964, filed on Oct. 30, 2007, now U.S. Pat. No. 7,718,496, the contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5320975 | Cederbaum et al. | Jun 1994 | A |
5712201 | Lee et al. | Jan 1998 | A |
6259126 | Hsu et al. | Jul 2001 | B1 |
6492690 | Ueno et al. | Dec 2002 | B2 |
6586807 | Nishida et al. | Jul 2003 | B2 |
6699756 | Hsiao | Mar 2004 | B1 |
6768179 | Cho et al. | Jul 2004 | B2 |
6815282 | Dachtera et al. | Nov 2004 | B2 |
6894356 | Choi | May 2005 | B2 |
6924237 | Ootsuka et al. | Aug 2005 | B2 |
7109076 | Sakai et al. | Sep 2006 | B2 |
7274072 | Chang et al. | Sep 2007 | B2 |
7329923 | Doris et al. | Feb 2008 | B2 |
7342287 | Chuang et al. | Mar 2008 | B2 |
7388238 | Osada et al. | Jun 2008 | B2 |
7388267 | Chen et al. | Jun 2008 | B1 |
7432567 | Doris et al. | Oct 2008 | B2 |
7439118 | Kanno | Oct 2008 | B2 |
7471548 | Baiocco et al. | Dec 2008 | B2 |
7479683 | Bojarczuk et al. | Jan 2009 | B2 |
7521765 | Tsutsumi et al. | Apr 2009 | B2 |
7550337 | Chang et al. | Jun 2009 | B2 |
7569466 | Callegari et al. | Aug 2009 | B2 |
7601579 | Kanno | Oct 2009 | B2 |
7605429 | Bernstein et al. | Oct 2009 | B2 |
7718496 | Frank et al. | May 2010 | B2 |
7723798 | Doris et al. | May 2010 | B2 |
7732872 | Cheng et al. | Jun 2010 | B2 |
7781273 | Schepis et al. | Aug 2010 | B2 |
7824987 | Tamaki et al. | Nov 2010 | B2 |
7838942 | Dennard et al. | Nov 2010 | B2 |
7855105 | Jagannathan et al. | Dec 2010 | B1 |
7863126 | Park et al. | Jan 2011 | B2 |
7880243 | Doris et al. | Feb 2011 | B2 |
7915692 | Juengling | Mar 2011 | B2 |
7927950 | Choi et al. | Apr 2011 | B2 |
7943460 | Mo et al. | May 2011 | B2 |
8012820 | Majumdar et al. | Sep 2011 | B2 |
8507992 | Mo et al. | Aug 2013 | B2 |
20020094616 | Hsiao | Jul 2002 | A1 |
20030031044 | Higeta et al. | Feb 2003 | A1 |
20030096501 | Ootsuka et al. | May 2003 | A1 |
20030173625 | Choi | Sep 2003 | A1 |
20030181005 | Hachimine et al. | Sep 2003 | A1 |
20050073061 | Lee | Apr 2005 | A1 |
20050098839 | Lee et al. | May 2005 | A1 |
20050168895 | Akiyama | Aug 2005 | A1 |
20050205929 | Nagano et al. | Sep 2005 | A1 |
20060081939 | Akasaka et al. | Apr 2006 | A1 |
20060099765 | Yang | May 2006 | A1 |
20060138568 | Taniguchi et al. | Jun 2006 | A1 |
20060189075 | Kanno | Aug 2006 | A1 |
20060231899 | Chang et al. | Oct 2006 | A1 |
20060244035 | Bojarczuk et al. | Nov 2006 | A1 |
20060246647 | Visokay et al. | Nov 2006 | A1 |
20060275969 | Sakai et al. | Dec 2006 | A1 |
20060289948 | Brown et al. | Dec 2006 | A1 |
20070018253 | Liaw | Jan 2007 | A1 |
20070085151 | Kotani | Apr 2007 | A1 |
20070187769 | Anderson et al. | Aug 2007 | A1 |
20080085578 | Kanno | Apr 2008 | A1 |
20080142895 | Baiocco et al. | Jun 2008 | A1 |
20080303105 | Chang et al. | Dec 2008 | A1 |
20090014798 | Zhu et al. | Jan 2009 | A1 |
20090039434 | Doris et al. | Feb 2009 | A1 |
20090039447 | Copel et al. | Feb 2009 | A1 |
20090108373 | Frank et al. | Apr 2009 | A1 |
20090174010 | Yang et al. | Jul 2009 | A1 |
20090212369 | Park et al. | Aug 2009 | A1 |
20090224332 | Tsutsumi et al. | Sep 2009 | A1 |
20090263950 | Koyama et al. | Oct 2009 | A1 |
20100330761 | Oh et al. | Dec 2010 | A1 |
20110114952 | Yamada | May 2011 | A1 |
Number | Date | Country |
---|---|---|
20030043666 | Jun 2003 | KR |
100618815 | Aug 2006 | KR |
20060093664 | Aug 2006 | KR |
Entry |
---|
English Abstract of JP2003059273A, filed by Higeta; Hitachi Ltd. , published Feb. 28, 2003. |
English Abstract of JP2005268322A, filed by Nagano; Toshiba Corp., published Sep. 29, 2005. |
English Abstract of JP2005285809A, file by Yamagishi; Sony Corp., published Oct. 13, 2005. |
English Abstract of JP2003151976A, filed by Sakashita; TDK Corp., published May 23, 2003. |
English Abstract of JP2003273240A, filed by Hachimine; Hitachi Ltd., published Sep. 26, 2003. |
Number | Date | Country | |
---|---|---|---|
20120181610 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11927964 | Oct 2007 | US |
Child | 12720354 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12720354 | Mar 2010 | US |
Child | 13433815 | US |