Techniques for inspecting managed workloads deployed in a cloud computing environment

Information

  • Patent Grant
  • 12061925
  • Patent Number
    12,061,925
  • Date Filed
    Friday, September 15, 2023
    a year ago
  • Date Issued
    Tuesday, August 13, 2024
    3 months ago
Abstract
A system and method for inspecting managed workloads in a cloud computing environment for cybersecurity threats improves inspection of managed workload service repositories, by only inspecting bases of managed workload deployed in the cloud computing environment. The method includes discovering a managed workload deployed in a cloud computing environment; determining an identifier of the managed workload, wherein the identifier includes an indicator to a base repository in which a base is stored, and wherein the managed workload is currently deployed in the cloud computing environment, the base repository further storing a plurality of bases, wherein a portion of the plurality of bases do not correspond to a deployed workload; accessing the base repository to pull the base; and inspecting the base of the deployed managed workload for a cybersecurity threat.
Description
TECHNICAL FIELD

The present disclosure relates generally to cybersecurity and specifically to inspection of managed virtual instances.


BACKGROUND

Cloud computing infrastructure providers, such as Amazon® Web Services (AWS), Google® Cloud Platform (GCP), Microsoft® Azure, and Oracle® Cloud Infrastructure (OCI), are able to provision hardware resources to multiple tenants (i.e., users and groups of users) by creating an abstraction layer and provisioning the resources as requested.


Tenants in a cloud computing infrastructure may have their own cloud computing environments deployed on top of the infrastructure, with resources provisioned thereto. One advantage of a cloud computing infrastructure is therefore the ability to dynamically deploy workloads in the cloud computing environment. This ability is lacking in on-premise network environments, which require a physical installation in order to increase compute resources. Some cloud computing infrastructure providers include a managed virtual instance service. For example, AWS includes Amazon Elastic Container Service (ECS), which is a managed container service.


The service provided by ECS allows a user to upload a container image to a registry which stores the container image, and deploys containers based on the container image in response to demand. The service provides autonomous provisioning of resources, and automatic scaling, which may be beneficial in certain situations.


As another example, a virtual machine (VM) may be deployed using a managed image. For example, Microsoft® Azure Compute Gallery allows storing an image of a disk for a VM, and deploying VMs in a cloud computing environment based on the managed image.


As yet another example, AWS includes a Serverless Application Repository, which is a managed repository for serverless applications. The applications are stored in the repository, including, for example, source code of the application. Instances of the application may be deployed based on the stored application code.


Each of these example repositories may store hundreds, thousands, or more, of different images, application code, and the like, from which a virtual instance may be deployed. However, not every image, application code, and the like, has a corresponding virtual instance which is currently deployed.


While managed workloads certainly have benefits, their deployment is not always fully native to the cloud computing environment, as they are stored outside of the cloud computing environment. Therefore, managed workloads may be susceptible to threats which are more difficult to detect than for workloads which are deployed natively in the cloud computing environment.


Furthermore, a repository may contain thousands or more of different images. Scanning each image for cybersecurity threats is time consuming, resource intensive, and requires devoting cloud resources which add to the operation cost of the cloud environment.


It would therefore be advantageous to provide a solution that would overcome the challenges noted above.


SUMMARY

A summary of several example embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor to delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term “some embodiments” or “certain embodiments” may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.


Certain embodiments disclosed herein include a method for inspecting managed workloads in a cloud computing environment for cybersecurity threats. The method comprises: discovering a managed workload deployed in a cloud computing environment; determining an identifier of the managed workload, wherein the identifier includes an indicator to a base repository in which a base is stored, and wherein the managed workload is currently deployed in the cloud computing environment, the base repository further storing a plurality of bases, wherein a portion of the plurality of bases do not correspond to a deployed workload; accessing the base repository to pull the base; and inspecting the base of the deployed managed workload for a cybersecurity threat.


Certain embodiments disclosed herein also include a non-transitory computer readable medium having stored thereon causing a processing circuitry to execute a process, the process comprising: discovering a managed workload deployed in a cloud computing environment; determining an identifier of the managed workload, wherein the identifier includes an indicator to a base repository in which a base is stored, and wherein the managed workload is currently deployed in the cloud computing environment, the base repository further storing a plurality of bases, wherein a portion of the plurality of bases do not correspond to a deployed workload; accessing the base repository to pull the base; and inspecting the base of the deployed managed workload for a cybersecurity threat.


Certain embodiments disclosed herein also include a system for inspecting managed workloads in a cloud computing environment for cybersecurity threats. The system comprises: a processing circuitry; and a memory, the memory containing instructions that, when executed by the processing circuitry, configure the system to: discover a managed workload deployed in a cloud computing environment; determine an identifier of the managed workload, wherein the identifier includes an indicator to a base repository in which a base is stored, and wherein the managed workload is currently deployed in the cloud computing environment, the base repository further storing a plurality of bases, wherein a portion of the plurality of bases do not correspond to a deployed workload; access the base repository to pull the base; and inspect the base of the deployed managed workload for a cybersecurity threat.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.



FIG. 1 is a diagram of a cloud computing infrastructure, implemented in accordance with an embodiment.



FIG. 2 is a flowchart of a method for inspecting managed workloads, implemented in accordance with an embodiment.



FIG. 3 is a flowchart of a method for inspecting a workload in a cloud computing environment, implemented in accordance with an embodiment.



FIG. 4 is a schematic diagram of a controller according to an embodiment.





DETAILED DESCRIPTION

It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.


The various disclosed embodiments include a method and system for inspecting a managed workload, such as containers, in a cloud computing environment. A managed workload is a workload which is generated (i.e., deployed) based off of an image file, application code, and the like, stored, for example, in a repository of a cloud computing infrastructure. A cloud computing infrastructure may be, for example, Microsoft® Azure, Google® Cloud Platform (GCP), Amazon® Web Services (AWS), and the like. Inspecting a repository of images, application code, and the like, of a cloud computing environment is a resource intensive and time consuming process. Often repositories contain images which do not correspond to deployed workloads, where a deployed workload is a workload which is, for example, deployed in a production environment. A production environment is a cloud computing environment which provides resources and services to users. By inspecting only the images, application code, and the like, of managed workloads which are actually deployed, resources devoted to inspection may be reduced, as well as a reduction in inspection time.


The various embodiments disclosed herein provide techniques for efficiently inspecting managed workloads which are actually deployed in a cloud computing environment at the time of inspection. The embodiments include discovering and accessing images, application code, and the like, from which the managed workloads are generated. While it is noted that selecting an image of a managed workload for inspection is a process which can be accomplished by a human, such a selection is accomplished inefficiently and inconsistently. Specifically, a human has subjective criteria for selection of managed workload images from an image repository, resulting in an inconsistent selection between different humans. Furthermore, due to the sheer size of the amount of managed workload images stored in a repository, a single human operator using their own same subjective criteria in selecting the images which should be inspected, is highly unlikely to be able to repeat the task of selection with a consistent result.


It is further recognized that a human may provide rules for selecting an image of a managed workload. However, such rules are again created using subjective criteria, and even when an initial set of rules is created, the nature of cloud computing environments is their fast-paced change, meaning a rule created now may be irrelevant in a few minutes, hours, or days, time. Applying such rules on a consistently changing environment would result in inconsistent application of the rules. Constantly creating rules would again result in an inconsistent application, as a human creates rules based on subjective criteria.


The disclosed embodiments avoid this inconsistent execution by generating objective rules which select managed workload images for inspection based on predefined criteria, selecting the managed workload images based on the predefined criteria, wherein the criteria includes detecting managed workloads actually deployed in a cloud computing environment at the time of inspection, and selecting for inspection only managed workload images which correspond to the workloads which are deployed at the time of inspection in the cloud computing environment.



FIG. 1 is an example of a diagram of a cloud computing infrastructure 100, implemented in accordance with an embodiment. A cloud computing infrastructure 100 may be, for example, Amazon® Web Services (AWS), Google® Cloud Platform (GCP), Microsoft® Azure, Oracle® Cloud Infrastructure (OCI), and the like. In an embodiment, a plurality of cloud computing infrastructures may be utilized, each having at least one cloud computing environment deployed thereon. A cloud computing environment 110 is deployed on the cloud computing infrastructure 100. A cloud computing environment 110 may be, for example, a virtual private cloud (VPC) deployed on GCP.


The cloud computing environment 110 includes cloud entities, such as resources and principals. A resource is a cloud entity which supplies functionality, such as processing power, memory, storage, communication, and the like. A resource may supply more than one functionality. Resources may include, for example, virtual machines (VMs) such as VM 112, container engines such as container engines 114, serverless functions such as serverless functions 116, and the like. The cloud computing environment 110 may further include an application programming interface (API), through which actions in the cloud environment may be triggered. A VM may be implemented using Oracle® VirtualBox. A container engine may be implemented using Kubernetes® or Docker®. A serverless function may implemented using Lambda®.


A principal is a cloud entity which acts on a resource, meaning it can request, or otherwise initiate, actions or operations in the cloud environment which cause a resource to perform a function. A principal may be, for example, a user account, a service account, a role, and the like. In an embodiment a principal is implemented as a data structure which includes information about an entity, such as username, a password hash, an associated role, and the like.


The cloud computing environment 110 is communicatively coupled with an inspection environment 120. The inspection environment 120 is a cloud computing environment. In an embodiment, the inspection environment 120 is deployed on the cloud computing infrastructure 100, in another cloud computing infrastructure, or a combination thereof. In certain embodiments a portion of the inspection environment 120 is deployed in the cloud computing environment 110. In some embodiments, certain workloads deployed in the inspection environment 120 may be deployed in the cloud computing environment 110.


The inspection environment 120 includes a plurality of inspector workloads, such as inspector 124. The inspector 124 is configured to inspect cloud entities of the cloud computing environment 110. In an embodiment, a snapshot may be generated based on a disk of a workload, such as the container 114. The snapshot may be mounted as a volume which is accessible by the inspector 124. The inspector 124 may inspect the volume for security objects, such as secrets, keys, user account information, and the like. In some embodiments, the inspector 124 inspects the volume for applications, operating systems, binaries, libraries, and the like. The inspector 124 is configured to detect cybersecurity threats, vulnerabilities, misconfigurations, exposures, and the like.


The inspection environment 120 further includes a security database 122, which is implemented as a graph database. A security graph may be stored on the security database 122. The security graph includes a representation of the cloud computing environment 110. For example, cloud entities of the cloud computing environment 110 may be represented each as nodes in the security graph. In an embodiment the security graph is generated based on objects detected by an inspector, such as inspector 124.


A controller 126 is further included in the inspection environment 120. In an embodiment the controller 126 is a workload deployed in the inspection environment 120 which is configured to initiate inspection of the cloud computing environment 110. For example, initiating inspection may include determining what cloud entities to inspect, when to inspect them, and the like.


The inspection environment 120 and cloud computing environment 120 are further communicatively coupled with a managed workload service (MWS) 130. A managed workload service 130 may be, for example, a managed container service, a managed disk service, a managed application service, and the like. While this example embodiment discusses a managed container service, the teachings may equally be applied to other managed workload services without departing from the scope of this disclosure. The MWS 130 may be deployed as a cloud computing environment on a cloud computing infrastructure.


A managed container service (MCS) may be, for example, Amazon® Elastic Container Service (ECS). A managed disk service may be, for example, Azure® Compute Gallery. A managed application service may be, for example, AWS® Serverless Application Repository. The MWS 130 includes a repository 132, and a managed container 134. In an embodiment, the repository 132 is configured to store container images based on which containers are deployed. In other embodiments, the repository 132 is configured to store disk images, application source code, and the like.


In some embodiments, the controller 126 is further configured to query the security graph to detect managed workloads. In an embodiment, the inspector 124 is configured to determine that the container 114 communicates with a managed container 134. The inspector 124 may be configured to perform such a determination by, for example, configuring the inspector 124 to query the API 118 to receive a network communication log of the cloud computing environment 110 and detect that the container 114 sends and receives network messages from the managed container 134. In some embodiments, a name assigned to the managed container 134 may indicate that the managed container 134 is a managed workload. For example, a container named “example-webapp-ecs” is probably managed by ECS. Once a determination is made that a container is a managed container, the controller 126 is configured to send a request to the repository 132 to receive an image on which the managed container 134 is based. The image may then be inspected by the inspector 124.


In an embodiment, inspecting an image may include, for example, generating a disk based on the image, mounting the disk, and configuring an inspector to inspect the disk. In another embodiment, inspecting an application code may include, for example, providing the application code to an inspector, which is configured to detect cybersecurity threats in the application code.



FIG. 2 is an example of a flowchart 200 of a method for inspecting managed workloads, implemented in accordance with an embodiment. An example method for inspecting a workload is discussed in more detail in FIG. 3 below. One advantage of the method described herein is that inspecting an image, application code, and the like, from which a plurality of managed workloads are actually deployed in a cloud computing environment allows to inspect a single image (e.g., once) rather than inspect each of a plurality of managed workloads which are deployed in the cloud computing environment.


At S210, a deployed managed workload is discovered. A managed workload may be, for example, a virtual machine (VM) generated using a managed disk service, a container generated using a managed image, a serverless function deployed using a managed application service, and the like. In an embodiment, discovering a managed workload includes detecting in a network traffic log communication between a workload deployed in a cloud computing environment, and another workload which is deployed outside of the cloud computing environment. In certain embodiments, detecting a managed workload includes parsing a name of a workload into elements, and matching an element against a list of known managed workload services.


A deployed managed workload is a workload which, at the time of inspection, is deployed in a cloud computing environment. A repository for managed workloads may include a large number of images, application code, and the like, which do not all correspond to workloads which are actually deployed. For example, older versions of a workload may be stored in the repository, without a clear indication that they are not actually deployed. By discovering a managed workload which is actually deployed in a cloud computing environment, and then selecting an image (or application code) which corresponds to the deployed managed workload, inspection of the entire repository is avoided, leading to a reduction in resources required for performing inspection for cybersecurity threats.


In an embodiment, a plurality of workloads may be discovered. In certain embodiments, a first portion of the plurality of workloads may be deployed in the cloud computing environment natively, and a second portion of the plurality of workloads may be managed workloads, such as managed containers. As used herein, a native deployment of a workload in a cloud computing environment is a deployment which is performed in response to an instruction generated by a user account, service account, and the like, associated with the cloud computing environment, while a managed workload is a workload, such as a container, VM, serverless function, and the like, which is deployed based on an instruction generated by a managed workload service, such as the MWS 130 of FIG. 1 above.


At S220, an identifier of the managed workload is determined. In some embodiments, a name assigned to the managed workload may indicate that the workload is a managed workload (i.e., generated based off of a managed disk, managed image, managed application code, and the like). For example, a container named “example-webapp-ecs” is probably managed by ECS. A name of the workload may be parsed into elements, and the elements may be matched against a list of known managed virtual workload services.


At S230, a repository of a managed workload service is accessed. In an embodiment, the repository is accessed to pull an image based off of which the managed workload is deployed. In an embodiment, accessing an image of the managed workload includes pulling the image from an image storage (i.e., repository). The image storage may be a managed workload repository, such as Amazon® Elastic Container Registry (ECR). For example, in response to determining that the managed workload is managed by ECS, Amazon ECR may be accessed with a request to pull the image corresponding to the determined identifier. In certain embodiments, a repository of a managed application service may be accessed to pull application code. In other embodiments, a repository of a managed disk service may be accessed to pull an image of a managed disk. A managed image, managed disk, managed application code, and the like, are referred to herein as a base, based off of which a workload may be deployed in a cloud computing environment.


At S240, the base is provided for inspection to detect cybersecurity threats. An example of a method for inspecting a container image is discussed in more detail in FIG. 3 below. In an embodiment, a workload, such as a container, may be deployed in an inspection environment based on an image pulled from a managed container repository. The deployed container may then be inspected, for example according to the method detailed below. A cybersecurity threat may be, for example, a vulnerability, an exposure, a misconfiguration, and the like.


At S250, a check is performed to determine if another base, of a different managed workload, should be inspected. If ‘yes’, execution may continue with another base at S230. Otherwise, execution may terminate.



FIG. 3 is an example flowchart 300 of a method for inspecting a workload in a cloud computing environment, implemented in accordance with an embodiment. In an embodiment the method is performed by the inspector 124. In certain embodiments the workload is a workload generated based off of any one of: an image from an image repository, a disk image from a managed disk service, and an application code from a managed application service. Inspection for cybersecurity threats is performed, in this embodiment, in a container-based computing environment.


At S310, an inspection message is received. The inspection message may be generated by a controller, such as controller 126 of FIG. 1 above. The inspection message may include an identifier of a container node on a cluster and an identifier of a workload (e.g., inspector) for inspecting the contents thereof.


At S320, a disk scan resource is generated. A notification may be generated by a scan broker and received by the operator to indicate that a disk scan resource should be generated. A disk scan resource may be implemented as a storage resource in a cluster. In an embodiment, the disk scan resource is generated by a disk manager service. A disk manager service may provision physical storage resources as virtual storage devices, in order to generate a disk scan resource, which may include one or more such virtual storage devices.


At S330, a volume identifier (ID) is generated for each disk generated for the disk scan resource. A generated disk may be based off a snapshot from a volume of a workload. The volume identifier may be sent to the operator, for example, by a disk manager service.


At S340, a persistent volume (PV) for the generated disk is generated. In an embodiment the PV may be generated by the operator. A persistent volume is a storage resource which is provisioned in a cluster. Optionally, a CSI driver, implemented as a microservice in each different cloud environment, attaches the PV to the node used for inspection, and mounts the PV on the node.


In an embodiment, an instruction is generated to erase the PV in response to completing the disk inspection.


At S350, a pod is generated for disk inspection, with a persistent volume claim (PVC) on the PV. The PVC is a request to access a storage resource. A pod is a set of containers running on a cluster. For example, each container of the inspection pod may include an inspection application which inspects a workload for different types of objects, such as secrets, policies, applications, nested workloads, and the like.


At S360, results from the disk inspection pod are received. Results may be received as objects, which may be used to generate nodes for a graph database, such as the security graph described in FIG. 1 above. Objects may also be files, such as text files, containing passwords, certificates, and other information used for authenticating network communication, and the like.


At S370, at least a portion of the received results are stored in a graph database containing a security graph. Storing results may include generating a node in the security graph, wherein the node is generated based on a predefined schema of the security graph. In other embodiments storing results may include generating an edge connecting a first node to a second node.



FIG. 4 is an example schematic diagram of a controller 126 according to an embodiment. The controller 126 includes a processing circuitry 410 coupled to a memory 420, a storage 430, and a network interface 440. In an embodiment, the components of the controller 126 may be communicatively connected via a bus 450.


The processing circuitry 410 may be realized as one or more hardware logic components and circuits. For example, and without limitation, illustrative types of hardware logic components that can be used include field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), Application-specific standard products (ASSPs), system-on-a-chip systems (SOCs), graphics processing units (GPUs), tensor processing units (TPUs), general-purpose microprocessors, microcontrollers, digital signal processors (DSPs), and the like, or any other hardware logic components that can perform calculations or other manipulations of information.


The memory 420 may be volatile (e.g., random access memory, etc.), non-volatile (e.g., read only memory, flash memory, etc.), or a combination thereof.


In one configuration, software for implementing one or more embodiments disclosed herein may be stored in the storage 430. In another configuration, the memory 420 is configured to store such software. Software shall be construed broadly to mean any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions, when executed by the processing circuitry 410, cause the processing circuitry 410 to perform the various processes described herein.


The storage 430 may be magnetic storage, optical storage, and the like, and may be realized, for example, as flash memory or other memory technology, compact disk-read only memory (CD-ROM), Digital Versatile Disks (DVDs), or any other medium which can be used to store the desired information.


The network interface 440 allows the controller 126 to communicate with, for example, the inspector 124, the graph database 122, and the like.


It should be understood that the embodiments described herein are not limited to the specific architecture illustrated in FIG. 4, and other architectures may be equally used without departing from the scope of the disclosed embodiments. Furthermore, other workloads described herein, such as the inspector 124, may utilize a similar architecture as the one described above.


The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.


All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosed embodiment and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosed embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The terms workload, virtual instance, and resource are used throughout this disclosure interchangeably, unless otherwise noted.


It should be understood that any reference to an element herein using a designation such as “first,” “second,” and so forth does not generally limit the quantity or order of those elements. Rather, these designations are generally used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements may be employed there or that the first element must precede the second element in some manner. Also, unless stated otherwise, a set of elements comprises one or more elements.


As used herein, the phrase “at least one of” followed by a listing of items means that any of the listed items can be utilized individually, or any combination of two or more of the listed items can be utilized. For example, if a system is described as including “at least one of A, B, and C,” the system can include A alone; B alone; C alone; 2A; 2B; 2C; 3A; A and B in combination; B and C in combination; A and C in combination; A, B, and C in combination; 2A and C in combination; A, 3B, and 2C in combination; and the like.

Claims
  • 1. A method for inspecting running containers in a cloud computing environment for cybersecurity threats, comprising: discovering a container running in a cloud computing environment;detecting an identifier of the running container, wherein the identifier includes an indicator to a repository in which an image of the container is stored, the repository further storing a plurality of images, wherein a second image of the plurality of images does not correspond to a container running in the cloud computing environment;accessing the repository to pull the image;inspecting the image of the running container for a cybersecurity threat;inspecting the image of the running container for the cybersecurity threat when the container is running in the cloud computing environment; andconfiguring an inspector to halt inspection of an image not corresponding to a container running in the cloud computing environment.
  • 2. The method of claim 1, further comprising: parsing the identifier into a plurality of elements; andmatching an element of the plurality of elements to a predetermined list of repository identifiers.
  • 3. The method of claim 1, further comprising: generating a representation of the cloud computing environment in a security database.
  • 4. The method of claim 3, further comprising: traversing a security graph stored in the security database; andinspecting a workload represented on the traversed security graph.
  • 5. The method of claim 1, wherein the cybersecurity threat is any one of: a vulnerability, an exposure, a misconfiguration, and a combination thereof.
  • 6. The method of claim 1, further comprising: providing application code to an inspector; andconfiguring the inspector to detect the cybersecurity threat in the provided application code.
  • 7. The method of claim 1, further comprising: inspecting the image of the running container for detection of any one of: a secret, a key, a user account information, a nested workload, a policy, and a combination thereof.
  • 8. A non-transitory computer-readable medium storing a set of instructions for inspecting running containers in a cloud computing environment for cybersecurity threats, the set of instructions comprising: one or more instructions that, when executed by one or more processors of a device, cause the device to:discover a container running in a cloud computing environment;detect an identifier of the running container, wherein the identifier includes an indicator to a repository in which an image of the container is stored, the repository further storing a plurality of images, wherein a second image of the plurality of images does not correspond to a container running in the cloud computing environment;access the repository to pull the image;inspect the image of the running container for a cybersecurity threat;inspecting the image of the running container for a cybersecurity threat;inspecting the image of the running container for the cybersecurity threat when the container is running in the cloud computing environment; andconfiguring an inspector to halt inspection of an image not corresponding to a container running in the cloud computing environment.
  • 9. A system for inspecting running containers in a cloud computing environment for cybersecurity threats comprising: a processing circuitry; anda memory, the memory containing instructions that, when executed by the processing circuitry, configure the system to:discover a container running in a cloud computing environment;detect an identifier of the running container, wherein the identifier includes an indicator to a repository in which an image of the container is stored, the repository further storing a plurality of images, wherein a second image of the plurality of images does not correspond to a container running in the cloud computing environment;access the repository to pull the image;inspect the image of the running container for a cybersecurity threat;inspect the image of the running container for the cybersecurity threat when the container is running in the cloud computing environment; andconfigure an inspector to halt inspection of an image not corresponding to a container running in the cloud computing environment.
  • 10. The system of claim 9, wherein the memory contains further instructions which when executed by the processing circuitry further configure the system to: parse the identifier into a plurality of elements; andmatch an element of the plurality of elements to a predetermined list of repository identifiers.
  • 11. The system of claim 9, wherein the memory contains further instructions which when executed by the processing circuitry further configure the system to: generate a representation of the cloud computing environment in a security database.
  • 12. The system of claim 11, wherein the memory contains further instructions which when executed by the processing circuitry further configure the system to: traverse a security graph stored in the security database; andinspect a workload represented on the traversed security graph.
  • 13. The system of claim 9, wherein the cybersecurity threat is any one of: a vulnerability, an exposure, a misconfiguration, and a combination thereof.
  • 14. The system of claim 9, wherein the memory contains further instructions which when executed by the processing circuitry further configure the system to: provide application code to an inspector; andconfigure the inspector to detect the cybersecurity threat in the provided application code.
  • 15. The system of claim 9, wherein the memory contains further instructions which when executed by the processing circuitry further configure the system to: inspect the image of the running containers for detection of any one of: a secret, a key, a user account information, a nested workload, a policy, and a combination thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/804,212 filed May 26, 2022, all contents of which are hereby incorporated by reference.

US Referenced Citations (246)
Number Name Date Kind
6910132 Bhattacharya Jun 2005 B1
7627652 Commons et al. Dec 2009 B1
7784101 Verbowski et al. Aug 2010 B2
8200965 Fujibayashi et al. Jun 2012 B2
8413239 Sutton Apr 2013 B2
8499354 Satish et al. Jul 2013 B1
8595822 Schrecker et al. Nov 2013 B2
8701200 Naldurg et al. Apr 2014 B2
8789049 Hutchins et al. Jul 2014 B2
8898481 Osburn, III et al. Nov 2014 B1
8914406 Haugsnes Dec 2014 B1
9009836 Yarykin et al. Apr 2015 B1
9119017 Sinha Aug 2015 B2
9165142 Sanders et al. Oct 2015 B1
9172621 Dippenaar Oct 2015 B1
9330273 Khetawat et al. May 2016 B2
9369433 Paul Jun 2016 B1
9419996 Porat Aug 2016 B2
9438634 Ross et al. Sep 2016 B1
9467473 Jayaraman Oct 2016 B2
9544327 Sharma et al. Jan 2017 B1
9563385 Kowalski et al. Feb 2017 B1
9569328 Pavlov et al. Feb 2017 B2
9582662 Messick et al. Feb 2017 B1
9607104 Turner et al. Mar 2017 B1
9646172 Hahn May 2017 B1
9661009 Karandikar et al. May 2017 B1
9672355 Titonis et al. Jun 2017 B2
9712503 Ahmed Jul 2017 B1
9892261 Joram et al. Feb 2018 B2
10002247 Suarez et al. Jun 2018 B2
10032032 Suarez et al. Jul 2018 B2
10063445 Preece Aug 2018 B1
10135826 Reddy Nov 2018 B2
10229125 Goodman et al. Mar 2019 B2
10255370 Carpenter et al. Apr 2019 B2
10360025 Foskett et al. Jul 2019 B2
10412103 Haugsnes Sep 2019 B2
10412109 Loureiro et al. Sep 2019 B2
10503904 Singh et al. Dec 2019 B1
10540499 Wailly et al. Jan 2020 B2
10554507 Siddiqui et al. Feb 2020 B1
10567468 Perlmutter Feb 2020 B2
10572226 Biskup et al. Feb 2020 B2
10574675 Peppe et al. Feb 2020 B2
10623386 Bernat et al. Apr 2020 B1
10630642 Clark et al. Apr 2020 B2
10664619 Marelas May 2020 B1
10691636 Tabaaloute et al. Jun 2020 B2
10725775 Suarez et al. Jul 2020 B2
10735442 Swackhamer Aug 2020 B1
10791138 Siddiqui et al. Sep 2020 B1
10803188 Rajput et al. Oct 2020 B1
10831898 Wagner Nov 2020 B1
10915626 Tang Feb 2021 B2
10924503 Pereira et al. Feb 2021 B1
10972484 Swackhamer Apr 2021 B1
10997293 Wiest et al. May 2021 B2
11005860 Glyer et al. May 2021 B1
11044118 Reed et al. Jun 2021 B1
11099976 Khakare et al. Aug 2021 B2
11165652 Byrne Nov 2021 B1
11216563 Veselov et al. Jan 2022 B1
11245730 Bailey Feb 2022 B2
11271961 Berger Mar 2022 B1
11334670 Franco et al. May 2022 B2
11366897 Ramanathan et al. Jun 2022 B1
11388183 Hoopes et al. Jul 2022 B2
11444974 Shakhzadyan Sep 2022 B1
11483317 Bolignano et al. Oct 2022 B1
11496498 Wright et al. Nov 2022 B2
11496519 Gupta et al. Nov 2022 B1
11503063 Rao Nov 2022 B2
11507672 Pagnozzi et al. Nov 2022 B1
11516222 Srinivasan et al. Nov 2022 B1
11520907 Borowiec et al. Dec 2022 B1
11546360 Woodford et al. Jan 2023 B2
11556659 Kumar et al. Jan 2023 B1
11558401 Vashisht et al. Jan 2023 B1
11558423 Gordon et al. Jan 2023 B2
11567751 Cosentino et al. Jan 2023 B2
11570090 Shen et al. Jan 2023 B2
11614956 Tsirkin et al. Mar 2023 B2
11645390 Vijayvargiya et al. May 2023 B2
11662928 Kumar et al. May 2023 B1
11669386 Abrol Jun 2023 B1
11750566 Montilla Lugo Sep 2023 B1
11757844 Xiao Sep 2023 B2
11770398 Erlingsson Sep 2023 B1
11792284 Nanduri Oct 2023 B1
11799874 Lichtenstein et al. Oct 2023 B1
11803766 Srinivasan Oct 2023 B1
11841945 Fogel Dec 2023 B1
11914707 Ramanathan et al. Feb 2024 B1
11922220 Haghighat et al. Mar 2024 B2
11936785 Shemesh et al. Mar 2024 B1
20050283645 Turner et al. Dec 2005 A1
20070174915 Gribble et al. Jul 2007 A1
20080075283 Takahashi Mar 2008 A1
20080221833 Brown et al. Sep 2008 A1
20080320594 Jiang Dec 2008 A1
20100281275 Lee et al. Nov 2010 A1
20120110651 Van Biljon et al. May 2012 A1
20130124669 Anderson et al. May 2013 A1
20130160119 Sartin Jun 2013 A1
20130160129 Sartin Jun 2013 A1
20140096134 Barak Apr 2014 A1
20140237537 Manmohan Aug 2014 A1
20140317677 Vaidya Oct 2014 A1
20140337613 Martini Nov 2014 A1
20150033305 Shear Jan 2015 A1
20150055647 Roberts Feb 2015 A1
20150163192 Jain Jun 2015 A1
20150172321 Kirti et al. Jun 2015 A1
20150254364 Piduri et al. Sep 2015 A1
20150304302 Zhang et al. Oct 2015 A1
20160063466 Sheridan et al. Mar 2016 A1
20160105454 Li Apr 2016 A1
20160140352 Nickolov May 2016 A1
20160156664 Nagaratnam Jun 2016 A1
20160224600 Munk Aug 2016 A1
20160366185 Lee et al. Dec 2016 A1
20170026416 Carpenter et al. Jan 2017 A1
20170034198 Powers et al. Feb 2017 A1
20170070506 Reddy Mar 2017 A1
20170104755 Arregoces Apr 2017 A1
20170185784 Madou Jun 2017 A1
20170187743 Madou Jun 2017 A1
20170223024 Desai Aug 2017 A1
20170237560 Mueller et al. Aug 2017 A1
20170257347 Yan Sep 2017 A1
20180004950 Gupta et al. Jan 2018 A1
20180007087 Grady et al. Jan 2018 A1
20180026995 Dufour et al. Jan 2018 A1
20180027009 Santos Jan 2018 A1
20180063290 Yang et al. Mar 2018 A1
20180159882 Brill Jun 2018 A1
20180181310 Feinberg et al. Jun 2018 A1
20180234459 Kung Aug 2018 A1
20180239902 Godard Aug 2018 A1
20180270268 Gorodissky et al. Sep 2018 A1
20180276084 Mitkar et al. Sep 2018 A1
20180278639 Bernstein Sep 2018 A1
20180288129 Joshi Oct 2018 A1
20180309747 Sweet Oct 2018 A1
20180321993 McClory Nov 2018 A1
20180359058 Kurian Dec 2018 A1
20180359059 Kurian Dec 2018 A1
20190058722 Levin Feb 2019 A1
20190068617 Coleman Feb 2019 A1
20190068627 Thampy Feb 2019 A1
20190104140 Gordeychik et al. Apr 2019 A1
20190116111 Izard et al. Apr 2019 A1
20190121986 Stopel Apr 2019 A1
20190132350 Smith et al. May 2019 A1
20190149604 Jahr May 2019 A1
20190171811 Daniel et al. Jun 2019 A1
20190191417 Baldemair et al. Jun 2019 A1
20190207966 Vashisht et al. Jul 2019 A1
20190220575 Boudreau Jul 2019 A1
20190245883 Gorodissky et al. Aug 2019 A1
20190260764 Humphrey et al. Aug 2019 A1
20200028862 Lin Jan 2020 A1
20200050440 Chuppala et al. Feb 2020 A1
20200082094 McAllister et al. Mar 2020 A1
20200125352 Kannan Apr 2020 A1
20200244678 Shua Jul 2020 A1
20200259852 Wolff et al. Aug 2020 A1
20200287927 Zadeh et al. Sep 2020 A1
20200320845 Livny et al. Oct 2020 A1
20200336489 Wuest et al. Oct 2020 A1
20200387357 Mathon et al. Dec 2020 A1
20200389469 Litichever et al. Dec 2020 A1
20210026932 Boudreau Jan 2021 A1
20210089662 Muniswamy-Reddy et al. Mar 2021 A1
20210105304 Kraning et al. Apr 2021 A1
20210149788 Downie May 2021 A1
20210158835 Hill et al. May 2021 A1
20210176123 Plamondon Jun 2021 A1
20210200881 Joshi et al. Jul 2021 A1
20210203684 Maor et al. Jul 2021 A1
20210211453 Cooney Jul 2021 A1
20210216630 Karr Jul 2021 A1
20210226812 Park Jul 2021 A1
20210234889 Burle et al. Jul 2021 A1
20210263802 Gottemukkula et al. Aug 2021 A1
20210314342 Oberg Oct 2021 A1
20210320794 Auh et al. Oct 2021 A1
20210329019 Shua et al. Oct 2021 A1
20210334386 AlGhamdi et al. Oct 2021 A1
20210357246 Kumar et al. Nov 2021 A1
20210368045 Verma Nov 2021 A1
20210382995 Massiglia et al. Dec 2021 A1
20210382997 Yi et al. Dec 2021 A1
20210409486 Martinez Dec 2021 A1
20220012771 Gustafson Jan 2022 A1
20220086173 Yavo et al. Mar 2022 A1
20220131888 Kanso Apr 2022 A1
20220156396 Bednash et al. May 2022 A1
20220179964 Qiao et al. Jun 2022 A1
20220182403 Mistry Jun 2022 A1
20220188273 Koorapati et al. Jun 2022 A1
20220197926 Passey et al. Jun 2022 A1
20220215101 Rioux et al. Jul 2022 A1
20220232024 Kapoor Jul 2022 A1
20220263656 Moore Aug 2022 A1
20220284362 Bellinger et al. Sep 2022 A1
20220309166 Shenoy et al. Sep 2022 A1
20220326861 Shachar et al. Oct 2022 A1
20220327119 Gasper et al. Oct 2022 A1
20220342690 Shua Oct 2022 A1
20220342997 Watanabe et al. Oct 2022 A1
20220345481 Shua Oct 2022 A1
20220350931 Shua Nov 2022 A1
20220357992 Karpovsky Nov 2022 A1
20220400128 Kfir et al. Dec 2022 A1
20220407841 Karpowicz Dec 2022 A1
20220407889 Narigapalli et al. Dec 2022 A1
20220413879 Passey et al. Dec 2022 A1
20220414103 Upadhyay et al. Dec 2022 A1
20220417011 Shua Dec 2022 A1
20220417219 Sheriff Dec 2022 A1
20230007014 Narayan Jan 2023 A1
20230040635 Narayan Feb 2023 A1
20230075355 Twigg Mar 2023 A1
20230087093 Ithal et al. Mar 2023 A1
20230110080 Hen Apr 2023 A1
20230123477 Luttwak et al. Apr 2023 A1
20230125134 Raleigh et al. Apr 2023 A1
20230134674 Quinn et al. May 2023 A1
20230136839 Sundararajan et al. May 2023 A1
20230164148 Narayan May 2023 A1
20230192418 Horowitz et al. Jun 2023 A1
20230208870 Yellapragada et al. Jun 2023 A1
20230231867 Rampura Jul 2023 A1
20230237068 Sillifant et al. Jul 2023 A1
20230254330 Singh Aug 2023 A1
20230297666 Atamli et al. Sep 2023 A1
20230325814 Vijayan et al. Oct 2023 A1
20230336578 Lidgi et al. Oct 2023 A1
20230376586 Shemesh et al. Nov 2023 A1
20240007492 Shen et al. Jan 2024 A1
20240037229 Pabon et al. Feb 2024 A1
20240045838 Reiss et al. Feb 2024 A1
20240080329 Reed et al. Mar 2024 A1
20240080332 Ganesh et al. Mar 2024 A1
Foreign Referenced Citations (3)
Number Date Country
4160983 Apr 2023 EP
4254869 Oct 2023 EP
2421792 Jun 2011 RU
Non-Patent Literature Citations (18)
Entry
Microsoft Docs. “Create a VM from a managed image”. Article. Jan. 5, 2022. https://docs.microsoft.com/en-us/azure/virtual-machines/windows/create-vm-generalized-managed.
Guo, yu et al. Enabling Encrypted Rich Queries in Distributed Key-Value Stores. IEEE Transactions on Parallel and Distributed Systems, vol. 30, Issue: 6. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8567979 (Year: 2019).
Kumar, Anuj et al. A New Approach for Security in Cloud Data Storage for IOT Applicatiions Using Hybrid Cryptography Technique. 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9087010 (Year: 2020).
Mishra, Bharati; Jena, Debasish et al. Securing Files in the Cloud. 2016 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=7819669 (Year: 2016).
Ali Gholami; Security and privacy of sensitive data in cloud computing: A survey of recent developments; ARIX:2016; pp. 131-150.
Christos Kyrkou; Towards artificial-intelligence-based cybersecurity for robustifying automated driving systems against camera sensor attacks; IEEE 2020; pp. 476-481.
Henry Hanping Feng; Anomaly Detection Using Call Stack Information; IEEE: Year:2003; pp. 1-14.
International Search Report for PCT Application No. PCT/IB2022/060940 dated Feb. 1, 2023. The International Bureau of WIPO.
International Search Report for PCT/IB2023/050848, dated May 9, 2023. International Bureau of WIPO.
International Search Report of PCT/IB2023/058074, dated Nov. 20, 2023. Searching Authority United States Patent and Trademark Office, Alexandria, Virginia.
International Search Report, PCT/IB23/55312. ISA/US, Commissioner for Patents, Alexandria, Virginia. Dated Aug. 30, 2023.
Microsoft Build. “Introduction to Azure managed disks”. Aug. 21, 2023, https://docs.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview.
Written Opinion of the International Searching Authority for PCT Application No. PCT/IB2022/060940 dated Feb. 1, 2023. The International Bureau of WIPO.
Written Opinion of the International Searching Authority, PCT/IB23/55312. ISA/US Commissioner for Patents, Alexandria, Virginia. Dated Aug. 30, 2023.
Written Opinion of the Searching Authority for PCT/IB2023/050484, dated May 9, 2023. International Bureau of WIPO.
Written Opinion of the Searching Authority of PCT/IB2023/058074, dated Nov. 20, 2023. Searching Authority United States Patent and Trademark Office, Alexandria, Virginia.
Zhang et al. BMC Bionformatics 2014. “On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types”. http://www.biomedcentral.com/1471-2105/15/110.
Sahil Suneja; Safe Inspection of Live Virtual Machines; IEEE; Year:2017; pp. 97-111.
Continuations (1)
Number Date Country
Parent 17804212 May 2022 US
Child 18468166 US