Techniques for manufacturing ingestible event markers comprising an ingestible component

Abstract
Method and systems for manufacturing a tablet comprising an electronic device are disclosed. In one method, a powdered material is provided into a die cavity of a tablet press and an electronic device is dispensed from a tape-and-reel carrier tape operatively coupled to the tablet press into the die cavity. The powdered material and the electronic device are compressing to form a tablet. A system comprises a tablet press comprising a die cavity for receiving a powdered material and an electronic device therein, an upper punch, and a lower punch. The upper and lower punches are operative to form the powdered material and the electronic device into a tablet. A tape-and-reel carrier tape is operatively coupled to the tablet press, where the carrier tape is configured for holding the electronic device. A transfer mechanism is used to transfer the electronic device from the tape carrier to the die cavity.
Description
INTRODUCTION

Various embodiments are disclosed that relate to manufacturing electronic devices with partial power sources and, more specifically, to electronic devices secured to a tablet wherein the electronic devices are activated upon contact with a conducting fluid.


Pharmaceutical products are delivered to a user in many forms, including a pill. Integration of a pharmaceutical product with an ingestible device into a tablet is often a challenge due to the delicate nature of the electronic components as well as the difficulty in securing the electronic components to the pharmaceutical product, such as a pill, tablet, capsule. For example, tablets are typically made using a press that applies pressure to a powder form. Handling a small electronic device is often a challenge during the assembly process. Therefore, what is needed is a technique for handling a small ingestible electronic device and attaching the device to a pharmaceutical product such as a tablet without damaging the ingestible electronic device.


SUMMARY

In one aspect, a method of manufacturing a tablet comprising an electronic device is provided. The method comprises providing a powdered material into a die cavity of a tablet press; dispensing an electronic device from a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device; locating the electronic device into the die cavity; and compressing the powdered material and the electronic device to form a tablet.


In another aspect, a system for manufacturing a tablet comprising an electronic device is provided. The system comprises a tablet press comprising a die cavity for receiving a powdered material and an electronic device therein, an upper punch, and a lower punch, wherein the upper and lower punches are operative to form the powdered material and the electronic device into a tablet; a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device; and a transfer mechanism to transfer the electronic device from the tape carrier to the die cavity.





FIGURES


FIG. 1 is a perspective view of one aspect of a tape and reel assemblage for storing electronic devices.



FIG. 2 is an illustration of one aspect of a carrier tape with the cover tape removed to show an electronic device located within each of the cavities of the carrier tape.



FIG. 3 is a side view of one aspect of a carrier tape comprising a cover tape and an electronic device located within each of the cavities of the carrier tape.



FIG. 4 is a side view of one aspect of a carrier tape showing one cavity with the cover tape located over the cavity to secure the electronic device located within each of the cavities and one cavity with the cover tape removed to expose the electronic device for removal from the carrier tape.



FIG. 5 illustrates a schematic of one aspect of a tape and reel feed mechanism with a reel 100 having a hub, a carrier tape with cavities, and a cover tape.



FIG. 6 illustrates one aspect of an assembling apparatus for compressing an electronic device with a powdered material into a tablet.



FIG. 7 is a perspective view of one aspect of a portion of one aspect of a rotor of the rotary tablet press shown in FIG. 6.



FIG. 8 shows a section through the arrangement according to FIG. 7, along the line 8-8.



FIG. 9 shows an exploded perspective view of one aspect of a lower upper punch with guiding sleeve and sealing rings.



FIG. 10 shows a perspective view of one aspect of an assembly of the upper stamp with sleeve and sealing rings according to FIG. 9.



FIG. 11 shows different cross sections for the punch shafts.



FIG. 12 is a diagram of one aspect of a suction (vacuum) pick-and-place element transferring an electronic device in a die cavity of a die plate.



FIG. 13 illustrates one aspect of a low profile carrier tablet for use with a tablet press, such as the rotary punch press.



FIG. 14 illustrates one aspect an electronic device comprising materials and a base material for increased thickness.



FIG. 15 illustrates one aspect of an assembling apparatus for compressing an electronic device with a powdered material into a tablet.



FIG. 16 illustrates one aspect of an assembling apparatus employing a punch station to dispense an electronic device and compress the electronic device with a powdered material into a tablet.



FIG. 17 illustrates one aspect of an assembling apparatus employing a punch press arrangement for dispensing an electronic device from a carrier tape and compressing the electronic device with a powdered material into a tablet.



FIG. 18 illustrates one aspect of an assembling apparatus employing a punch press arrangement for dispensing an electronic device from a carrier tape comprising first and second adhesive tapes and compressing the electronic device with a powdered material into a tablet.



FIG. 19 illustrates one aspect of an assembling apparatus employing a rotating punch wheel comprising multiple punch heads for dispensing an electronic device from a carrier tape, and a separate punch press process for compressing the electronic device with a powdered material into a tablet.



FIG. 20 illustrates one aspect of an assembling apparatus employing a rotating punch wheel comprising multiple punch heads for dispensing an electronic device from a carrier tape comprising first and second adhesive tapes sandwiching an electronic device therebetween, and a separate punch press process for compressing the electronic device with a powdered material into a tablet.



FIG. 21 illustrates one aspect of an assembling apparatus employing a rotary carrier wheel comprising a first punch station and rotary punch press comprising a second punch station to dispense an electronic device and compress the electronic device with a powdered material into a tablet.



FIG. 22 illustrates one aspect of a carrier comprising an electronic device embedded in a weighted annulus.



FIG. 23 is a cross-sectional view taken along line 23-23 of the carrier shown in FIG. 22.



FIG. 24 illustrates one aspect of a tube filled with a powdered material and at least two electronic devices.



FIG. 25A illustrates one aspect of an electronic device that includes tabs or legs and electronics.



FIG. 25B illustrates one aspect of an electronic device that includes tabs or legs and electronics.



FIG. 26 illustrates one aspect of an electronic device shown on a sheet, where the electronic device includes a skirt with a plurality of holes and electronics.



FIG. 27 illustrates one aspect of an electronic device laminated between two sheets.



FIGS. 28-32 illustrate one aspect of an electronic device punched out and placed inside a hole of a transfer tray.



FIG. 33 illustrates one aspect of a logic flow diagram for a process of producing a tablet by compressing an electronic device with a powdered material.



FIG. 34 is a block diagram representation of one aspect of the event indicator system with dissimilar metals positioned on opposite ends.



FIG. 35 is a block diagram representation of another aspect of the event indicator system with dissimilar metals positioned on the same end and separated by a non-conducting material.



FIG. 36 shows ionic transfer or the current path through a conducting fluid when the event indicator system of FIG. 34 is in contact with conducting liquid and in an active state.



FIG. 37 shows an exploded view of the surface of dissimilar materials of FIG. 36.



FIG. 38 shows the event indicator system of FIG. 5 with a pH sensor unit.



FIG. 39 is a block diagram illustration of one aspect of the control device used in the system of FIGS. 34 and 35.



FIGS. 40 and 41 are cross-sectional side-views of one aspect of a pick-and-place transfer mechanism for picking an electronic device from a cavity of a carrier tape.



FIG. 42 is a top view of an electronic device located within a cavity of a carrier tape.



FIG. 43 is a side view of a pair of prongs grasping an electronic device.



FIG. 44 illustrates features provided at a distal end of a prong to facilitate locating and grasping an electronic device using the pick-and-place transfer mechanism shown in FIGS. 41 and 42.



FIG. 45 illustrates a bottom view perspective of four prongs engaging an outer diameter of a skirt portion of an electronic device.



FIG. 46A is a cross-sectional view of one aspect of a pick-and-place transfer mechanism holding an electronic device within a mechanical gripper 2154.



FIG. 46B is a bottom view of the pick-and-place transfer mechanism holding an electronic device shown in FIG. 46A.



FIG. 47 illustrates one aspect of a friction hold disc technique for handling an electronic device.



FIG. 48 illustrates one aspect of a pick-and-place transfer mechanism comprising a mobile sleeve.



FIG. 49 illustrates one aspect of a pick-and-place tool comprising an internal ejection member and a vacuum tube.



FIG. 50 illustrates one aspect of pick-and-place tool comprising an internal ejection member and an external tube comprising needles located at a distal end of the external tube.



FIG. 51 illustrates one aspect of pick-and-place tool comprising a head that has an external profile that matches the internal cavity profile of the carrier tape.



FIG. 52 illustrates one aspect of a pick-and-place tool comprising an inner slot at a distal end of a gripper.



FIG. 53 illustrates one aspect of a pick-and-place tool comprising an inner slot at a distal end of a gripper.



FIG. 54 illustrates one aspect of a pick-and-place tool comprising features at a distal end to create notches around the outer diameter of the skirt portion of the electronic device.



FIG. 55 illustrates one aspect of pick-and-place tool configured with hook-and-loop (VELCRO) or ridges at a distal end to hold the electronic device in place.



FIG. 56 illustrates one aspect of a tower for storing electronic devices.



FIG. 57 illustrates one aspect of the tower shown in FIG. 56 interfaced with a rotary transfer plate.



FIG. 58 illustrates one aspect of a transfer mechanism employing a vacuum plate for holding electronic devices until they are ready to be dispensed.



FIG. 59 illustrates another aspect of a transfer mechanism that employs a vacuum plate for holding electronic devices until they are ready to be dispensed.



FIG. 60 illustrates one aspect of a transfer mechanism that employs a vacuum plate for holding electronic devices until they are ready to be dispensed.



FIG. 61 illustrates one aspect of a transfer mechanism employing a rail feed to supply the electronic devices top the tablet process table top.



FIG. 62 illustrates a cross sectional view of an ejection mechanism that rotates eccentrically about a first axis.



FIG. 63 illustrates a side view of the ejection mechanism shown in FIG. 62.



FIG. 64 illustrates a cross sectional view of the ejection mechanism shown in FIGS. 62 and 63.



FIG. 65 illustrates a pick-and-place tool comprising a body and flexible (resilient) fingers or flaps to grasp and hold the electronic device.



FIG. 66 illustrates one aspect of a transfer mechanism that employs gravity.



FIG. 67 illustrates one aspect of a transfer mechanism that employs air pressure.



FIG. 68 illustrates one aspect of a transfer mechanism that employs a vacuum feeder.



FIG. 69 illustrates one aspect of collet gripper having a body that expands during the grip process, then contracts on the electronic device forming positive pressure grip around the outside of the electronic device.



FIG. 70 illustrates one aspect of a transfer mechanism comprising a pre punched film/carrier tape that holds the electronic device so that punching the electronic device out into the press tool with a punch can be facilitated.



FIG. 71 illustrates one aspect of a transfer mechanism as shown in FIG. 70 except that the punch occurs into a rotating plate that may hold the electronic device with a friction fit around the perimeter, or have some mechanical feature to lock in place



FIG. 72 illustrates a transfer mechanism comprising electrically charged pick-up head with fingers having opposite charge to grab the electronic device and hold the electronic device in place by electrostatic forces.





Notwithstanding the claims, the invention is also referred to in the following clauses:


1. A method of manufacturing a tablet comprising an electronic device, the method comprising:


providing a powdered material into a die cavity of a tablet press;


dispensing an electronic device from a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device;


locating the electronic device into the die cavity; and


compressing the powdered material and the electronic device to form a tablet.


2. The method of clause 1, further comprising one or more of the following steps:






    • pre-compressing the powdered material prior to locating the electronic device into the die cavity,

    • providing additional powdered material into the die cavity after forming the tablet.

    • compressing the additional powdered material to form the tablet.


      3. The method of any of the preceding clauses with one or more of the following:

    • wherein the tablet press is a rotary tablet press.

    • wherein the powdered material is a pharmaceutical material.

    • wherein the electronic device is an ingestible event marker.


      4. The method of any of the preceding clauses wherein the carrier tape comprises a cover tape and defines a cavity for holding the electronic device between the cavity and the cover tape, wherein dispensing the electronic device from the carrier tape comprises:





removing the cover tape from the carrier tape to expose the electronic device within the cavity;


transferring the cover tape to a pick-and-place transfer mechanism;


picking the electronic device from the cavity with a pick-and-place element of the transfer mechanism, wherein the pick-and-place element is preferably a vacuum tool,


transferring the pick-and-place element to the tablet press; and


placing the electronic device in the die cavity.


5. The method of clause 6, further comprising locating the pick-and-place element above the die cavity.


6. The method of clause 4 or 5 further comprising:


transferring the pick-and-place element to a carrier;


locating the pick-and-place element above the carrier;


placing the electronic device in the carrier;


picking the electronic device from the carrier with a second pick-and-place element of a second transfer mechanism; and


locating the second pick-and-place element above the die cavity.


7. The method of any of the preceding clauses wherein dispensing the electronic device from the tape carrier comprises:


transferring the carrier tape to a punch press;


punching through the carrier tape comprising the electronic device with an ejector pin portion of the punch press, wherein the ejector pin perforates the carrier tape; and


dispensing the electronic device into the die cavity through the perforations.


8. The method of clause 7, further comprising:


dispensing the electronic device into a carrier; and


transferring the carrier to the tablet press, preferably wherein the carrier frictionally engages the electronic device and centers the electronic device with the die cavity.


9. The method of any of the preceding clauses wherein the carrier tape carrier comprises first and second adhesive tapes for holding the electronic device therebetween, wherein dispensing the electronic device from the carrier tape comprises:


removing the first adhesive tape from the carrier tape to expose the electronic device within the cavity;


transferring the cover tape to a punch press;


punching through the carrier tape comprising the electronic device with an ejector pin portion of the punch press, wherein the ejector pin perforates the carrier tape; and


dispensing the electronic device into the die cavity through the perforations, and preferably further comprising the steps of dispensing the electronic device into a carrier; and


transferring the carrier to the tablet press.


10. A system for manufacturing a tablet comprising an electronic device, the system comprising:


a tablet press comprising a die cavity for receiving a powdered material and an electronic device therein, an upper punch, and a lower punch, wherein the upper and lower punches are operative to form the powdered material and the electronic device into a tablet;


a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device; and


a transfer mechanism to transfer the electronic device from the tape carrier to the die cavity.


11. The system of clause 17, wherein the transfer mechanism comprises a pick-and-place transfer mechanism operatively coupled to the carrier tape and the tablet press.


12. The system of clause 10 or 11 further comprising a carrier to receive the electronic device and center the electronic device relative to the die cavity, wherein the pick-and-place transfer mechanism locates the electronic device in the carrier.


13. The system of clause 12, further comprising a second pick-and-place transfer mechanism to pick the electronic device from the carrier, locate the second pick-and-place transfer mechanism above the die cavity, preferably wherein the first and/or second pick-and-place transfer mechanism comprises a vacuum tool.


14. The system of any of the preceding clauses 10-13 further comprising a punch press for dispensing the electronic device from the tape carrier operatively coupled to the tablet press, preferably wherein the punch press comprises a rotating punch wheel, and/or wherein the carrier tape carrier comprises first and second adhesive tapes for holding the electronic device therebetween.


15. Use of a system according to any of the preceding clauses 10-14 in a process according to any of the preceding clauses 1-9.


DESCRIPTION

The present disclosure is directed generally to various techniques are disclosed for handling an electronic device and integrating the handling process with a press process used in manufacturing a pill, tablet, or capsule. The technique includes a system and method for securing an ingestible electronic device to a pharmaceutical product in a tablet form in a press process without damaging the ingestible electronic device. The techniques include a process for manufacturing a product comprising the electronic device and a pharmaceutical agent that integrates with a tablet press, such as, for example, a rotary tablet press described hereinbelow. The techniques described herein, however, are not limited to a rotary tablet press.


Tape and reel packaging provides a compact means for storing, transporting, and dispensing integrated circuits. The reel is placed directly onto a relatively small piece of equipment for picking and placing the circuits, and as a result this type of handling equipment has become much more desirable to the end user than the more bulky x/y table used to pick-and-place from trays.


Consequently, a need for packing reels and an assemblage which is compatible with dry baking integrated circuit devices has developed. Simply using existing reels constructed of high temperature plastic has not been successful because the design is inefficiency for baking, and because high temperature plastics are generally more dense, thus resulting in additional shipping weight.


A lightweight packing reel for storing encapsulated semiconductor devices which may be baked for extended periods of time at temperatures sufficiently high to desorb moisture from the packages, and which allows efficient flow of heat and air through the tape and reel assemblage is provided.


In the manufacture of large-scale electronic devices, it is necessary to package the electronic devices in a way which minimizes handling, and which minimizes potential damage to the electronic devices. When large numbers of identical electronic devices are required, the electronic devices frequently are packaged in elongated strips of sealed “pocket tape.”



FIG. 1 illustrates a schematic of one aspect of a tape and reel packing assemblage with a reel 100 having a hub 102 and parallel flanges 104, a carrier tape 106 with cavities 108, and a cover tape 110. The reel 100, generally constructed of plastic, provides areas on the flange where labels 112 can be placed to provide information pertaining to the electronic devices. Large openings called windows 114 in the flange are not specified, but may exist to provide a convenient means to grasp the reel. The carrier tape 106 is made of a flexible plastic material in which a series of adjacent pockets or cavities 108 are formed. The size of the cavity 108 is selected to accommodate correspondingly-sized electronic devices, with one electronic device typically being placed in each cavity 108. The cavities 108 are arranged to run the length of the carrier tape 106, which also typically includes perforated flanges along each edge of the tape for utilization in indexing machines, where the electronic devices subsequently are removed from the carrier tape 106. The cavities 108 in the carrier tape 106 can be formed by punching, embossing, thermoforming, or other techniques. The cover tape 110 has a heat or pressure sensitive adhesive on predefined sealing areas which attaches to the carrier tape, and holds the electronic device securely in the cavity 108.


The electronic devices may be automatically vacuum loaded into each cavity 108 in the carrier tape 106, the tape 106 indexed to the next position, a cover tape 110 sealed onto the loaded cavity 108, and the tape 106 indexed onto the reel 100. For unloading, the procedure may be reversed.


At the manufacturer of the electronic devices, the carrier tape 106 is moved along while the devices are inserted, and then a releasable cover tape 110 is sealed to the carrier tape 106 along the edges of the different cavities 108 to hold the electronic devices securely in the cavity 108. After this is done, the sealed carrier tape 106 is rolled up on reels 100 for delivery. The orientation of the electronic devise in the cavities 108 of the reels 100 follows according to specifications of the particular device package. Normally, inspection of the orientation of the electronic packages in the cavities 108 of the carrier tape may involve visual monitoring by an operator or machine monitoring using a suitable sensing technique, such optical inspection which is less prone to human error.



FIG. 2 is an illustration of one aspect of the carrier tape 106 with the cover tape 110 removed to show the electronic device 200 located within each of the cavities 108 of the carrier tape 106. The size of the cavity 108 is selected to accommodate correspondingly-sized electronic devices 200, with one electronic device 200 being placed in each of the cavities 108. The cavities 108 are arranged to run the length of the carrier tape 106, which includes perforated flanges 202a, 202b along each corresponding edge 204a, 204b of the carrier tape 106 for utilization in indexing machines, where the electronic devices 200 subsequently are removed from the carrier tape 106.


In one aspect, the electronic device 200 may be activated upon contact with a conducting fluid. The scope of the present disclosure, however, is not limited by the environment or type of the conducting fluid. Once ingested, the electronic device 200 comes into contact with a conducting fluid, such as stomach fluids, and the device 200 is activated. Referring again to the instance where the device 200 is used with the product that is ingested by the living organism, when the product that includes the device 200 is taken or ingested, the device 200 comes into contact with the conducting liquid of the body and a voltage potential is created and the system is activated. A portion of the power source is provided by the device 200, while another portion of the power source is provided by the conducting fluid.



FIG. 3 is a side view of one aspect of the carrier tape 106 comprising the cover tape 110 and an electronic device 200 located within each of the cavities 108 of the carrier tape 106.



FIG. 4 is a side view of one aspect of the carrier tape 106 showing one cavity with the cover tape 110 located over the cavity 108 to secure the electronic device 200 located within each of the cavities 108 and one cavity 108 with the cover tape 110 removed to expose the electronic device 200 for removal from the carrier tape 106. The electronic device 200 may be removed from the carrier tape 106 using a variety of techniques including, without limitation, pick and place components, actuators, punch portion, peeled off tape, conveyor, gravity feed, air pressure, laser cuts, die ejection, among other techniques. Pick and place components include, without limitation, vacuum tools, adhesion, gripper. Once dispensed, the electronic devices 200 can be provided to a subsequent process, such as a rotary tablet press process, by a transfer wheel, conveyor, pick and place components, actuators, hopper, gravity feed, vibratory feed, punched into rotary tablet press, slide/ramp, or air pressure.


In one aspect, the reel 100 described in connection with FIGS. 1-3, may be configured such that the carrier tape 106 or the cover tape 110 can be perforated by a punch press to eject the electronic component 200. In such aspects, the cover tape 110, for example, which may be laminated onto the carrier tape 106, may be reinforced and may have a thickness that is minimal in comparison to the thickness of the ultimate tablet product. In addition, the cover tape 110 may be made of a biocompatible material that is soluble in a liquid such as water and has low mechanical strength. In one aspect, the liquid soluble biocompatible material may be fast dissolving when exposed to a liquid. In other examples, the cover tape 110 may be formed of a non-liquid soluble material. In such cases, the cover tape 110 may be porous to allow liquid ingress.



FIG. 5 illustrates a schematic of one aspect of a tape and reel feed mechanism 300 with a reel 100 having a hub 102, a carrier tape 106 with cavities 108, and a cover tape 110. In order to dispense the carrier tape 106 from right to left in direction B, the reel 100 is rotatably unwound in direction A. The carrier tape 106 moves along a guide rail 302 and wound by a second reel 304 in direction C. A third reel 306 is wound in direction D and is used to wind the cover tape 110 as it is removed from the carrier tape 106 to expose the electronic device 200 located within the cavity 108 of the carrier tape 106. After the cover tape 110 is removed from the carrier tape 106, the electronic device 200 is exposed and passes below a rotary pick-and-place transfer mechanism 308. The rotary pick-and-place transfer mechanism 308 rotates in direction E and includes multiple suction (vacuum) based pick-and-place elements 310 that move in direction F to pick an electronic device 200 from the carrier tape 106 cavity 108. Once the pick-and-place element 310 secures the electronic device 200, the rotary pick-and-place transfer mechanism 308 rotates in direction E and the carrier tape 106 advances (feeds) in direction B such the next pick-and-place element 310 rotates into position and lowers to pick up the next electronic device 200 in the carrier tape 106. The rotary pick-and-place transfer mechanism 308 can be interfaced with a rotary tablet press to secure an ingestible electronic device to a pharmaceutical product into a tablet form in without damaging the ingestible electronic device as discussed hereinafter. It will be appreciated that any suitable robotic electronic component transfer mechanism maybe employed to transfer the electronic device 200 from the carrier tape 106 to a rotary tablet press.



FIG. 6 illustrates one aspect of an assembling apparatus 400 for compressing an electronic device with a powdered material into a tablet. In one aspect, the assembling apparatus 400 comprises a tape and reel feed mechanism 300 operatively coupled to a rotary punch press 420. The tape and reel feed mechanism 300 interfaces with a conveyor system 402 moving in direction I. As shown, the tape and reel feed mechanism 300 as described in connection with FIG. 5, comprises a pick-and-place transfer mechanism 308 to pick electronic devices 200 fed by the tape and reel feed mechanism 300 and place the electronic devices 200 in a carrier 404 located on the conveyor system 402. The carrier 404 includes a compartment 406, which is dimensioned to frictionally hold the electronic device 200 until a second rotary pick-and place machine 410 transfer the electronic device 200 from the carrier 404 to the rotary punch press 420. The second rotary pick-and-place transfer mechanism 410 rotates in direction G and includes multiple suction (vacuum) pick-and-place elements 412 to pick electronic devices 200 from the carrier 404 and place them in a die cavity 422 (punch cavity) of the rotary punch press 420, which has been pre filled with a powdered material, e.g., a powdered pharmaceutical product.


The rotary punch press 420 rotates in direction H as shown. The press 420 includes a die cavity 422 and an ejection tray (not shown). A powdered material is deposited into the die cavity 422 and may be tamped or pre-compressed. The press 420 rotates to another position, which is positioned below a pick-and-place element 412 of the pick-and-place transfer mechanism 410 to receive the electronic device 200 in the die cavity 422 that includes the powdered material.


In various aspects, the carrier 404 may be configured to center the electronic component 200 to properly align the electronic device with the die cavity 422. Thus, the carrier 404 may be configured to align the electronic device 200 with the center of the die cavity 422. This process may be assisted by vision guidance systems, pick-and-place tip designs, or other suitable mechanical configurations. Additional features include features formed on the electronic device 200 to enable suitable placement of the electronic device 200 relative to the die cavity 422.


Some of these configurations include providing a flexible membrane on the electronic device that includes a plurality of legs that engage the wall of the carrier 404 when the electronic device 200 and the powdered material in the die cavity 422 are pressed into a tablet. In various aspects, the electronic device 200 may be placed within the carrier 404 and in other aspects the electronic device 200 may be secured within the carrier using friction, ingestible glues, pressure sensitive adhesives, thermal adhesives, mechanically attachment, secured to a band that is later placed around the tablet.


Referring again to FIG. 6, the rotary punch press 420 comprises a punch portion 424 to form a tablet from a powdered material and the electronic device 200 by compression or tamping. The rotary punch press 420 is activated each time a die cavity 422 containing a powdered material and an electronic device 200 passes below the punch portion 424. A completed tablet comprising the electronic device is eventually ejected from the rotary punch press 420 and moved to a collection point through an ejection tray (not shown) for further processing, such as coating layers as needed. Examples of an ejection tray is discussed in commonly assigned International PCT US Patent Application No. 2012/0116359 titled “Integrated Ingestible Event Marker System With Pharmaceutical Product,” which is incorporated herein by reference in its entirety.



FIG. 7 is a perspective view of one aspect of a portion of a rotor 500 of the rotary punch press 420 shown in FIG. 6. FIG. 8 shows a section through the arrangement according to FIG. 7, along the line 8-8. Generally, the rotary punch press 420 comprises a rotor portion 500 and punch portion 424. When the rotor 500 is aligned with the punch portion 424, upper and a lower punch guides for upper and lower punches co-operate with die cavity 422 bores in a die plate 506 which is arranged between the upper and the lower punch guides. The punches have shafts, which are sealedly axially movable in guiding bores of the punch guides by means of a sealing arrangement.


Turning now to FIGS. 7 and 8, in one aspect, the rotary punch press 420, from which only a cut-out is shown in FIG. 7, has an upper punch guide 502 and a lower punch guide 504, as well as a die plate 506 between the upper and the lower punch guiding 502, 504. In the illustrated example, the rotary punch press 420 is formed of plural pieces where the upper punch portion 424 is stationary and the lower rotor 500 portion rotates in direction H. In other aspects, the punch portion 424 and the rotor 500 may be formed as a unit in one single piece. The die plate 506 in particular may comprise individual segments.


The upper punch guide 502 has accommodation bores 508, and the lower punch guide 504 has accommodation bores 510. The punch guides 502, 504 guide in a pair-wise fashion upper punches 512 and lower punches 514, which co-operate with die bores 516 of the die plate 506 in order to press together powder-shaped material (e.g., the powdered material) and the electronic device 200 in the die cavities 422.


As shown in FIG. 8 in particular, the accommodation bores 508, 510 receive guiding sleeves 518, 520. FIG. 9 shows the upper and lower punches 512, 514 with the respective guiding sleeves 524, 526 and sealing rings 528, 530, in an exploded perspective view. FIG. 10 shows the assembly of the upper stamp with sleeve 518, and sealing rings according to FIG. 9, in a perspective view. In FIG. 9, the upper and lower punches 512, 514 and guiding sleeves 518, 520 are depicted. FIG. 11 shows different cross sections for the punch shafts. The pressing punches 512, 514 have a head 522, a shaft 524 and a tool portion 526. Only the tool portion 526 co-operates with the die bores 516 (in the following, only the upper punch 512 is treated, wherein the lower punch 514 is to be regarded in the same way). The head 522 is essentially standardized in its topside. It co-operates with not shown pressing rollers, which press the upper punch 512 into the die bore 516 against the material which is to be pressed, e.g., the pharmaceutical powder and electronic device. The shaft 524 may have an out of round cross section. In FIG. 11, cross section shapes are exemplified. FIG. 11a shows a triangular cross section, FIG. 11b a square one, and FIG. 11c a cross section which is composed of three circle sections, wherein the transitions are rounded. The guiding sleeves 518, 520, which can consist of ceramic material and which are glued into the accommodation bores 508 and 510, respectively, have a cross section which is complementary to the cross section of the shafts 524. For this reason, the described cross sections fix the rotational position of the punches 512, 514 in the punch guiding 502 or 504, respectively. An upper sealing ring 528 and a lower sealing ring 530 is associated to each punch 512, 514 and to each guiding sleeve 518, 520 respectively.


The rotary punch press 420 described in connection with FIGS. 7-11 may be embodied in many different forms, there are described in detail merely as a specific embodiment example and this description is not intended to limit the claimed subject matter to the particular aspect illustrated.



FIG. 12 is a diagram of a suction (vacuum) pick-and-place element 412 transferring an electronic device 200 in a die cavity 422 of a die plate 506. The die cavity 422 includes a powdered material 550, e.g., powdered pharmaceutical, which has been tamped or pre-compressed and which will be compressed together with the electronic device 200 into a tablet. The pick-and-place element 412 includes a vacuum line 552 coupled to a vacuum source. To pick up an electronic device 200, the tip 554 of the pick-and-place element 412 is placed in contact with a top surface of the electronic device 200 and the vacuum source is turned on. Once the pick-and-place element 412 is aligned with the die cavity 422, the vacuum source is turned off and the electronic device 200 falls into the die cavity 422 and is positioned above the pre-compressed powdered material 550.



FIG. 13 illustrates one aspect of a low profile carrier tablet 600 for use with a tablet press, such as the rotary punch press 420. The low profile carrier tablet 600 is combined with an electronic device 200. The low profile carrier tablet 600 may have a diameter φ of about 2 to 6 mm and a thickness H2 of about 300 μm to about 3 mm. The electronic device 200 may have a diameter comparable with the low profile carrier tablet 600 and a thickness H1 of about 300 μm. The low profile carrier tablet 600 comprises a low tack adhesive applied to the surface that receives the electronic device 200 for rapid separation of the carrier 600 and the electronic device 200 when exposed to a liquid (e.g., water). Also, the carrier 600 is formed of a material for fast dissolution in the liquid.



FIG. 14 illustrates one aspect of an electronic device 200 comprising materials 610, 612 and a base material 614 for increased thickness. The base material 614 is attached to the base of the electronic device 200 by low pressure lamination. As shown, each layer of material 610, 612, 614 has a corresponding thickness H3, H4, H5. The dimensions of these thicknesses may vary from about 300 μm to about 3 mm. Optionally, a bore 616 may be defined in the area above the electronic device 200. Although in the illustrated example, three separate materials 610, 612, 614 are depicted, one or more materials may be employed. In one aspect, the skirt materials 610, 612, 614 are “non-electrically-conducting materials” and may be formed in various shapes and configurations. For example, the electronic device 200 may be surrounded entirely or partially by the materials 610, 612, 614 and may be positioned along a central axis of the electronic device 200 or off-center relative to a central axis. Thus, the shape of the materials 610, 612, 614 is not limited by the shape or size. Furthermore, in other aspects, the materials 610, 612, 614 may be separated by an additional material that is positioned in any defined region between the materials 610, 612, 614.



FIG. 15 illustrates one aspect of an assembling apparatus 700 for compressing an electronic device with a powdered material into a tablet. In one aspect, the assembling apparatus 700 comprises a tape and reel feed mechanism 300 operatively coupled to a rotary punch press 420. The tape and reel feed mechanism 300 interfaces directly with the rotary punch press 420 without using the conveyor system of FIG. 6. As shown, the tape and reel feed mechanism 300 comprises a rotary pick-and-place transfer mechanism 410 that rotates in direction G and includes multiple suction (vacuum) pick-and-place elements 412. The pick-and-place elements 412 pick electronic devices 200 from the carrier tape 106 and place them in a die cavity 422 of the rotary punch press 420, which has been pre filled with a powdered material. As the tape and reel feed mechanism 300 moves in direction B, the rotary punch press 420 rotates in direction H as shown. The rotary punch press 420 and the punch portion 424 operate in the same manner previously discussed in connection with FIGS. 6-12 to produce a tablet comprising the electronic device 200.



FIG. 16 illustrates one aspect of an assembling apparatus 800 employing a punch station 808 to dispense an electronic device 200 and compress the electronic device 200 with a powdered material into a tablet. In one aspect, the assembling apparatus 800 comprises a tape and reel feed mechanism 802 operatively coupled to a rotary punch press 420, previously discussed in connection with FIGS. 6-12. The tape and reel feed mechanism 802 does not include a rotary transfer mechanism using a rotary pick-and-place transfer mechanism as previously discussed herein. The tape and reel feed mechanism 802 feeds the carrier tape 106 in direction B without removing the cover tape from the carrier tape 106. Rather than using a rotary pick-and-place transfer mechanism to pick and place the electronic device 200 into the die cavity 422 of the rotary punch press 420, an ejector pin 804 (or punch) on the punch station 808 is used to punch the electronic device 200 through the carrier tape 106 package by perforating the carrier tape 106, leaving a perforation 806 or aperture, such that the electronic device 200 drops into the die cavity 422 positioned below the ejector pin 804. The ejector pin 804 is rotationally stationary and vertically movable by cam, solenoid, or other suitable actuation mechanism, without limitation. As the tape and reel feed mechanism 802 moves in direction B, the rotary punch press 420 rotates in direction H as shown. The rotary punch press 420 and the punch portion 424 operate in the same manner previously discussed in connection with FIGS. 6-12 to produce a tablet comprising the electronic device 200.



FIG. 17 illustrates one aspect of an assembling apparatus 900 employing a punch press arrangement for dispensing an electronic device from a carrier tape and compressing the electronic device with a powdered material into a tablet. In one aspect, the assembling apparatus 900 comprises a tape and reel feed mechanism operatively coupled to a rotary punch press 420, previously discussed in connection with FIGS. 6-12. In the illustrated example, the carrier tape 106 is fed in direction B in between the die plate 506 and the punch portion 424 of the rotary punch press 420. The carrier tape 106 indexes in direction B such that the electronic device 200 is axially centered with the die cavity 422, which contains a powdered material 550, which has been tamped or pre-compressed, and the upper and lower punches 512, 514. A cam 902 actuates the upper punch 512—which acts as an ejector pin—to perforate the carrier tape 106, forming apertures 906, 908 above and below the carrier tape 106, to dispense the electronic device 200 into the die cavity 422 above the pre-compressed powdered material 550. As the cam 902 rotates further in direction K, the upper punch 512 compresses the powdered material 550 and the electronic device 200 into a tablet form. Thus, in a single operation, the electronic device 200 is dispensed and pressed into the tablet by actuating the upper punch 512 with the cam 902.



FIG. 18 illustrates one aspect of an assembling apparatus 1000 employing a punch press arrangement for dispensing an electronic device 200 from a carrier tape 1002 comprising first and second adhesive tapes 1004, 1006 and compressing the electronic device 200 with a powdered material into a tablet. In one aspect, the assembling apparatus 1000 comprises a tape and reel feed mechanism operatively coupled to a rotary punch press 420, previously discussed in connection with FIGS. 6-12. In the illustrated example, a carrier tape 1002 comprises a first adhesive tape 1004 and a second adhesive tape 1006 with the electronic device 200 located therebetween. The first and second adhesive tapes 1004, 1006 should have low mechanical strength but may be reinforced to facilitate reel handling. The first and second adhesive tapes 1004, 1006 may be laminated to the carrier tape 1002. As the carrier tape 1002 feds in direction B, a roller 1008 peels off the second adhesive tape 1006 to expose one side of the electronic device 200. The opposite side of the electronic device 200 remains attached to the first adhesive tape 1004. When the electronic device 200 is axially aligned with the die cavity 422 and the upper and lower punches 512, 514, the cam 902 actuates the upper punch 512 to perforate the first adhesive tape 1004 forming apertures 1010 in the first adhesive tape 1004 to eject the electronic device 200 into the die cavity 422 above the powdered material 550, which has been tamped or pre-compressed. As the cam 902 rotates further in direction K, the upper punch 512 compresses the powdered material 550 and the electronic device 200 into a tablet form. Thus, in a single operation, the electronic device 200 is dispensed and pressed into the tablet by actuating the upper punch 512 with the cam 902.


In one aspect, the upper punch 512 of the rotary punch press 420 used to cut through the carrier tape 1002, can have the same diameter as the electronic device 200, for example. Thus, after the electronic device 200 is ejected from the first adhesive tape 1004, the portion of the first adhesive tape 1004 located above the electronic device 200 remains attached to the electronic device 200. Accordingly, the first adhesive tape 1004 should be made of a biocompatible material and the thickness of the first adhesive tape 1004 should be selected to minimize the appearance on the tablet. The first adhesive tape 1004 may be made of a material that is fast dissolving in an aqueous solution. In another example, the adhesive tape 1004 need not necessarily be soluble in an aqueous solution. As such, the adhesive tape 1004 in contact with the electronic device 200 can be porous to allow aqueous solution ingress.



FIG. 19 illustrates one aspect of an assembling apparatus 1100 employing a rotating punch wheel 1102 comprising multiple punch heads 1104 for dispensing an electronic device 200 from a carrier tape 106, and a separate punch press process for compressing the electronic device 200 with a powdered material into a tablet. In one aspect, the assembling apparatus 1100 comprises a tape and reel feed mechanism operatively coupled to a rotary punch press 420, previously discussed in connection with FIGS. 6-12. In the illustrated example, the assembling apparatus 1100 comprises a rotating punch wheel 1102 comprising multiple punch heads 1104. As the carrier tape 106 is fed in direction B, the punch wheel 1102 rotates in direction L such that the punch head 1104 perforates the carrier tape 106, forming apertures 1106, 1108 above and below the carrier tape 106, to dispense the electronic device 200 into the die cavity 422 above the powdered material 550, which has been tamped or pre-compressed. Once the electronic device 200 is positioned within the die cavity 422, the process continues to the punch portion 424 of the rotary punch press 420 to press the electronic device 200 into a tablet using the upper and lower pressing punches 512, 514.



FIG. 20 illustrates one aspect of an assembling apparatus 1200 employing a rotating punch wheel 1102 comprising multiple punch heads 1104 for dispensing an electronic device 200 from a carrier tape 1002 comprising first and second adhesive tapes 1004, 1006 sandwiching an electronic device 200 therebetween, and a separate punch press process for compressing the electronic device 200 with a powdered material into a tablet. In one aspect, the assembling apparatus 1200 comprises a tape and reel feed mechanism operatively coupled to a rotary punch press 420, previously discussed in connection with FIGS. 6-12. In the illustrated example, the assembling apparatus 1200 comprises a rotating punch wheel 1102 comprising multiple punch heads 1104. The carrier 1002 comprises a first adhesive tape 1004 and a second adhesive tape 1006 with the electronic device 200 located therebetween, where the first and second adhesive tapes 1004, 1006 have low mechanical strength but may be reinforced to facilitate reel handling, as discussed in connection with FIG. 18. As the carrier tape 1002 is fed in direction B, the second adhesive tape 1006 is peeled from the electronic device 200 and is rolled up by a roller 1008. The punch wheel 1102 rotates in direction L such that the punch head 1104 perforates the first adhesive tape 1004, forming apertures 1206 in the first adhesive tape 1104, to dispense the electronic device 200 into the die cavity 422 above the powdered material 550, which has been tamped or pre-compressed. Once the electronic device 200 is positioned within the die cavity 422, the process continues to the punch portion 424 of the rotary punch press 420 to press the electronic device 200 into a tablet using the upper and lower pressing punches 512, 514.



FIG. 21 illustrates one aspect of an assembling apparatus 1200 employing a rotary carrier wheel 1210 comprising a first punch station 1212 and rotary punch press 420 comprising a second punch station 1214 to dispense an electronic device 200 and compress the electronic device 200 with a powdered material into a tablet. In one aspect, the assembling apparatus 1200 comprises a tape and reel feed mechanism 802 operatively coupled to a rotary punch press 420, previously discussed in connection with FIGS. 6-12. The tape and reel feed mechanism 802 does not include a rotary transfer mechanism using a rotary pick-and-place transfer mechanism as previously discussed herein. The tape and reel feed mechanism 802 feeds the carrier tape 106 in direction B without removing the cover tape from the carrier tape 106.


In the illustrated example, the carrier tape 106 is positioned below a first punch station 1212 comprising an ejector pin 1202 as the rotary carrier wheel 1210 rotates in direction M. The rotary carrier wheel 1210 can ride on a top surface of the rotary punch press 420 table for placement control. As the rotary carrier wheel 1210 rotates in direction M, the ejector pin 1202 of the first punch station 1212 punches the electronic device 200 through the carrier tape 106 package by perforating the carrier tape 106, leaving a perforation 806 or aperture, such that the electronic device 200 drops into a carrier assembly 1204 positioned below the ejector pin 804. The ejector pin 804 is rotationally stationary and vertically movable by cam, solenoid, or other suitable actuation mechanism, without limitation. The carrier assembly 1204 comprises an aperture 1206 to frictionally hold the electronic device 200 in place until the next transfer process step. The transfer wheel 1210 rotates in direction M to the second punch station 1214 at the rotary punch press 420, which rotates in direction N, where a second ejector pin 1208 punches the electronic device 200 into the die cavity 422 of the rotary punch press 420, which has been pre filled with a powdered material 550, which has been tamped or pre-compressed. In one aspect, the second ejector pin 1208 can provide pre-compression or tamping of the powdered material 550. The rotary punch press 420 and the punch portion 424 operate in the same manner previously discussed in connection with FIGS. 6-12 to produce a tablet comprising the electronic device 200.


In various aspects, the carrier assembly 1204 may be configured to center the electronic component 200 to properly align the electronic device with the die cavity 422. Thus, the carrier assembly 1204 may be configured to align the electronic device 200 with the center of the die cavity 422. This process may be assisted by vision guidance systems, pick-and-place tip designs, or other suitable mechanical configurations. Additional features include features formed on the electronic device 200 to enable suitable placement of the electronic device 200 relative to the die cavity 422.


In other aspects, rather than employing the first or second punch stations 1212, 1214 comprising ejector pins 1202, 1208 at the rotary carrier wheel 1210 or the rotary punch press 420 wheel, the electronic device 200 can be handled with a vacuum pick-and-place machine can be employed to pick-up pre-punched electronic devices 200 from a waffle pack, tube, vibratory bowl, sheet, web strip, IDEC tray, carrier tape with adhered electronic device, among others.



FIG. 22 illustrates one aspect of a carrier 1400 comprising an electronic device 200 embedded in a weighted annulus 1402, and FIG. 23 is a cross-sectional view taken along line 23-23. With reference now to FIGS. 22 and 23, in one aspect, the weight and shape of the carrier 1400 is compatible with core tablet press handlers that interface with the rotary punch press 420, as previously described. The carrier 1400 defines a cavity 1404 for receiving the electronic device 200 therein.



FIG. 24 illustrates one aspect of a tube 1500 filled with a powdered material 550 and at least two electronic devices 200. The tube 1500 is loaded with powdered material 550 and is then tamped or pre-compressed. The tube 1500 is loaded with alternating layers of a pre-metered quantity of powdered material 550 and electronic devices 200. A press punch compresses the powdered material 550 and the electronic devices 200 into tablet forms.


Any of the processes described hereinabove for manufacturing a tablet comprising an electronic device may be controlled using a variety of process controls. Such process controls include, without limitation, monitoring for various process variables or parameters to ensure that a suitable amount of powdered material was or is dispensed into the die cavity and to also to determine that a single electronic device, or suitable number of electronic devices, is dispensed in the die cavity per tablet. Such process variables or parameters that can be monitored by a process control system include, without limitation, weight of the dispended powdered material, weight of the electronic device, metal detection to detect the electronic device, wireless interrogation of the electronic device, tamp/compression force compression measurements, vision, X-rays, light/backlight/dark contrast, vertical placement, electrical, among others. In addition, any of the electronic device, powder filling, or tablet ejection operations described hereinabove, may be vision controlled, or controlled by other suitable process control means described herein.


Any of the operations described hereinabove for transferring the electronic device, powdered material, or tablet may be performed using transfer wheels, conveyors, pick-and-place machines, hopper feed, gravity feed, mechanical feed, punch press, slide ramp, rotary wheel, vibratory bowl, among other suitable transfer mechanisms. In addition, any of such component transfer operations may be performed by a SCARA Cartesian robotic device, where SCARA is an acronym that stands for Selective Compliant Assembly Robot. It also may be referred to as a Selective Compliant Articulated Robot Arm. In general, a SCARA robot is a 4-axis robot arm that can move to any X-Y-Z coordinate within a predefined work envelope. A fourth axis of motion may include wrist rotation (Theta-Z). The vertical motion is usually an independent linear axis at the wrist or in the base. The SCARA robot arm includes a parallel-axis joint layout with an arm that is slightly compliant in the X-Y direction but rigid in the “Z” direction making it selective compliant. A SCARA robot may be configured to operate under controlling software that requires inverse kinematics for linear interpolated moves.


As previously discussed, accessing and handling of the electronic device 200 may be performed using a variety of techniques including, without limitation, pick and place components, actuators, punch portion, peeled off tape, conveyor, gravity feed, air pressure, laser cuts, die ejection, among other techniques. Pick and place components include, without limitation, vacuum tools, adhesion, gripper. Once dispensed, the electronic devices 200 can be provided to a subsequent process, such as a rotary tablet press process, by a transfer wheel, conveyor, pick and place components, actuators, hopper, gravity feed, vibratory feed, punched into rotary tablet press, slide/ramp, or air pressure.


It will be appreciated that any of the tape-and-reel feed mechanisms described hereinabove may be configured to operate with a singles reel or with multiple reels. In other aspects, the reel may be replaced with a web or sheet comprising one or more rows and columns of components, e.g., electronic devices, for dispensing and transferring into the die cavity for compression with a powdered material into a tablet.


Referring now to FIG. 25A, in accordance with one aspect, the electronic device 200 includes tabs or legs 428 and electronics 426. The legs 428 are flexible and as the electronic device 200 is pushed into the die cavity 422, the friction between the legs 428 and the wall of the die cavity 422 hold the electronic device 200 in place.


Turning now to FIG. 25B, in accordance with one aspect, the electronic device 200 includes tabs or legs 430 and electronics 426. The legs 430 are used to secure the electronic device 200 into the carrier 404. The carrier 404 includes a matching number of slots or indentations 432 to the legs 430 of the electronic device 200. In an alternative aspect, the number of legs 430 may differ from the number of slots 432. As the electronic device 200 is pressed inside the carrier 404, the tabs 430 engage the slots 432 and lock the electronic device 200 into place mechanically. In use, as the carrier 404 dissolves, the walls of the carrier 404 change shape or collapse causing the electronic device 200 to be released from the carrier 404. In addition, a film layer may be manufactured via lamination, application of a coating solution, or slurry followed by a cure. In accordance with other aspects, the film or layer may be formed using dry compression, such as tablet press.


As shown in FIG. 26, the electronic device 200 shown on a sheet 441, where the electronic device 200 includes a skirt with a plurality of holes 444 and electronics 440. As the sheets 442a and 442b are subject to heating or pressure, then the sheets 442a and 442b are secured to each other through the holes 444 and the electronic device 200 is securely held between the sheets 442a and 442b. As shown in FIG. 27, the electronic device 200 is laminated between the sheets 442a and 442b. Thus, as the portions of the sheets 442a and 442b are exposed to heat or pressure, then the oversized portions at the edges are secured to each other forming a pocket that surrounds the electronic device 200 as well as secured to in place through the holes 444 as noted above. In accordance with another aspect, the holes 444 may be eliminated when the device is placed between the oversized portions and secured within a pocket that surrounds the electronic device 200.


Referring now to FIGS. 28-32, in accordance with one aspect, the electronic device 200 may be punched out and placed inside a hole 462a of a transfer tray 462. The tray 462 is shown in FIG. 28 with a plurality of holes. As shown in FIG. 29, the tray 462 is positioned below a sheet of electronic devices 200. A punch blade 454 cuts an electronic device 200 from the sheet of devices and inserts the electronic device 200 into the hole 462a. The electronic device 200 is held in place in the hole 462 with friction as shown in FIG. 30. The tray 462 is then advanced to the next step of the process and a punch press 470 pushes the electronic device 200 into a die cavity 422 as shown in FIGS. 31 and 32.


Having described various manufacturing systems for producing a tablet by compressing an electronic device with a powdered material, the present disclosure now turns to a description of a general process for producing a tablet by compressing an electronic device with a powdered material. Accordingly, FIG. 33 illustrates one aspect of a logic flow diagram 1600 for a process of producing a tablet by compressing an electronic device with a powdered material. At 1602, a powdered material is provided into a die cavity. At 1604, the powdered material in the die cavity tamped or pre-compressed. At 1606, an electronic device, preferably in the form of a semiconductor die, is inserted into the die cavity above the pre-compressed powdered material. At 1608, the electronic device is compressed with the pre-compressed powdered material. At 1610, an additional, over layer, of powdered material is provided into the die cavity to form a tablet. At 1612, the over layer of powdered material is compressed. At 1614, the pressed electronic device and powdered material in the form of a tablet is ejected from the die cavity.


In one aspect, a machine vision inspection of the die cavity may be performed after any one of the steps 1602-1614. The vision inspection can be useful to determine whether the powdered material and/or the die have been properly placed in the die cavity prior to tamping or compressing them into the final tablet product. In other aspects, in addition to machine vision, other forms of inspection may be employed, such as, for example, without limitation, weight of the dispended powdered material, weight of the electronic device, metal detection to detect the electronic device, wireless interrogation of the electronic device, tamp/compression force compression measurements, X-rays, light/backlight/dark contrast, vertical placement, electrical, among others.


In one aspect, the electronic device 200 is an ingestible event marker (IEM) as illustrated and described in connection with FIG. 34. With reference to FIG. 34, there is shown one aspect of an ingestible device event indicator system with dissimilar metals positioned on opposite ends as system 2030. The system 2030 can be used in association with any pharmaceutical product, as mentioned above, to determine when a patient takes the pharmaceutical product. As indicated above, the scope of the present disclosure is not limited by the environment and the product that is used with the system 2030. For example, the system 2030 may be compressed into a tablet or placed within a capsule and the tablet or capsule is placed within the conducting liquid. The tablet or capsule would then dissolve over a period of time and release the system 2030 into the conducting liquid. Thus, in one aspect, the tablet or capsule would contain the system 2030 and no product. Such a tablet or capsule may then be used in any environment where a conducting liquid is present and with any product. For example, the tablet or capsule may be dropped into a container filled with jet fuel, salt water, tomato sauce, motor oil, or any similar product. Additionally, the tablet or capsule containing the system 2030 may be ingested at the same time that any pharmaceutical product is ingested in order to record the occurrence of the event, such as when the product was taken.


In the specific example of the system 2030 combined with the pharmaceutical product, as the product or pill, tablet, or capsule is ingested, the system 2030 is activated. The system 2030 controls conductance to produce a unique current signature that is detected, thereby signifying that the pharmaceutical product has been taken. The system 2030 includes a framework 2032. The framework 2032 is a chassis for the system 2030 and multiple components are attached to, deposited upon, or secured to the framework 2032. In this aspect of the system 2030, a digestible material 2034 is physically associated with the framework 2032. The material 2034 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework all of which may be referred to herein as “deposit” with respect to the framework 2032. The material 2034 is deposited on one side of the framework 2032. The materials of interest that can be used as material 2034 include, but are not limited to: Cu or CuI. The material 2034 is deposited by physical vapor deposition, electrodeposition, or plasma deposition, among other protocols. The material 2034 may be from about 0.05 to about 500 μm thick, such as from about 5 to about 100 μm thick. The shape is controlled by shadow mask deposition, or photolithography and etching. Additionally, even though only one region is shown for depositing the material, each system 2030 may contain two or more electrically unique regions where the material 2034 may be deposited, as desired.


At a different side, which is the opposite side as shown in FIG. 34, another digestible material 2036 is deposited, such that materials 2034 and 2036 are dissimilar. Although not shown, the different side selected may be the side next to the side selected for the material 2034. The scope of the present disclosure is not limited by the side selected and the term “different side” can mean any of the multiple sides that are different from the first selected side. Furthermore, even though the shape of the system is shown as a square, the shape maybe any geometrically suitable shape. Material 2034 and 2036 are selected such that they produce a voltage potential difference when the system 2030 is in contact with conducting liquid, such as body fluids. The materials of interest for material 2036 include, but are not limited to: Mg, Zn, or other electronegative metals. As indicated above with respect to the material 2034, the material 2036 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework. Also, an adhesion layer may be necessary to help the material 2036 (as well as material 2034 when needed) to adhere to the framework 2032. Typical adhesion layers for the material 2036 are Ti, TiW, Cr or similar material. Anode material and the adhesion layer may be deposited by physical vapor deposition, electrodeposition or plasma deposition. The material 2036 may be from about 0.05 to about 500 μm thick, such as from about 5 to about 100 μm thick. However, the scope of the present disclosure is not limited by the thickness of any of the materials nor by the type of process used to deposit or secure the materials to the framework 2032.


Thus, when the system 2030 is in contact with the conducting liquid, a current path, an example is shown in FIG. 36, is formed through the conducting liquid between material 2034 and 2036. A control device 2038 is secured to the framework 2032 and electrically coupled to the materials 2034 and 2036. The control device 2038 includes electronic circuitry, for example control logic that is capable of controlling and altering the conductance between the materials 2034 and 2036.


The voltage potential created between the materials 2034 and 2036 provides the power for operating the system as well as produces the current flow through the conducting fluid and the system. In one aspect, the system operates in direct current mode. In an alternative aspect, the system controls the direction of the current so that the direction of current is reversed in a cyclic manner, similar to alternating current. As the system reaches the conducting fluid or the electrolyte, where the fluid or electrolyte component is provided by a physiological fluid, e.g., stomach acid, the path for current flow between the materials 2034 and 2036 is completed external to the system 2030; the current path through the system 2030 is controlled by the control device 2038. Completion of the current path allows for the current to flow and in turn a receiver, not shown, can detect the presence of the current and recognize that the system 2030 has been activate and the desired event is occurring or has occurred.


In one aspect, the two materials 2034 and 2036 are similar in function to the two electrodes needed for a direct current power source, such as a battery. The conducting liquid acts as the electrolyte needed to complete the power source. The completed power source described is defined by the physical chemical reaction between the materials 2034 and 2036 of the system 2030 and the surrounding fluids of the body. The completed power source may be viewed as a power source that exploits reverse electrolysis in an ionic or a conductive solution such as gastric fluid, blood, or other bodily fluids and some tissues. Additionally, the environment may be something other than a body and the liquid may be any conducting liquid. For example, the conducting fluid may be salt water or a metallic based paint.


In certain aspects, these two materials are shielded from the surrounding environment by an additional layer of material. Accordingly, when the shield is dissolved and the two dissimilar materials are exposed to the target site, a voltage potential is generated.


Referring again to FIG. 34, the materials 2034 and 2036 provide the voltage potential to activate the control device 2038. Once the control device 2038 is activated or powered up, the control device 2038 can alter conductance between the materials 2034 and 2036 in a unique manner. By altering the conductance between materials 2034 and 2036, the control device 2038 is capable of controlling the magnitude of the current through the conducting liquid that surrounds the system 2030. This produces a unique current signature that can be detected and measured by a receiver (not shown), which can be positioned internal or external to the body. In addition to controlling the magnitude of the current path between the materials, non-conducting materials, membrane, or “skirt” are used to increase the “length” of the current path and, hence, act to boost the conductance path, as disclosed in the U.S. patent application Ser. No. 12/238,345 entitled, “In-Body Device with Virtual Dipole Signal Amplification” filed Sep. 25, 2008, the entire content of which is incorporated herein by reference. Alternatively, throughout the disclosure herein, the terms “non-conducting material”, “membrane”, and “skirt” are interchangeably with the term “current path extender” without impacting the scope or the present aspects and the claims herein. The skirt, shown in portion at 2035 and 2037, respectively, may be associated with, e.g., secured to, the framework 2032. Various shapes and configurations for the skirt are contemplated as within the scope of the present disclosure. For example, the system 2030 may be surrounded entirely or partially by the skirt and the skirt maybe positioned along a central axis of the system 2030 or off-center relative to a central axis. Thus, the scope of the present disclosure is not limited by the shape or size of the skirt. Furthermore, in other aspects, the materials 2034 and 2036 may be separated by one skirt that is positioned in any defined region between the materials 2034 and 2036.


Referring now to FIG. 35, in another aspect of an ingestible device is shown in more detail as system 2040. The system 2040 includes a framework 2042. The framework 2042 is similar to the framework 2032 of FIG. 34. In this aspect of the system 2040, a digestible or dissolvable material 2044 is deposited on a portion of one side of the framework 2042. At a different portion of the same side of the framework 2042, another digestible material 2046 is deposited, such that materials 2044 and 2046 are dissimilar. More specifically, material 2044 and 2046 are selected such that they form a voltage potential difference when in contact with a conducting liquid, such as body fluids. Thus, when the system 2040 is in contact with and/or partially in contact with the conducting liquid, then a current path, an example is shown in FIG. 36, is formed through the conducting liquid between material 2044 and 2046. A control device 2048 is secured to the framework 2042 and electrically coupled to the materials 2044 and 2046. The control device 2048 includes electronic circuitry that is capable of controlling part of the conductance path between the materials 2044 and 2046. The materials 2044 and 2046 are separated by a non-conducting skirt 2049. Various examples of the skirt 2049 are disclosed in U.S. Provisional Application No. 61/173,511 filed on Apr. 28, 2009 and entitled “HIGHLY RELIABLE INGESTIBLE EVENT MARKERS AND METHODS OF USING SAME” and U.S. Provisional Application No. 61/173,564 filed on Apr. 28, 2009 and entitled “INGESTIBLE EVENT MARKERS HAVING SIGNAL AMPLIFIERS THAT COMPRISE AN ACTIVE AGENT”; as well as U.S. application Ser. No. 12/238,345 filed Sep. 25, 2008 and published as 2009-0082645, entitled “IN-BODY DEVICE WITH VIRTUAL DIPOLE SIGNAL AMPLIFICATION”; the entire disclosure of each is incorporated herein by reference.


Once the control device 2048 is activated or powered up, the control device 2048 can alter conductance between the materials 2044 and 2046. Thus, the control device 2048 is capable of controlling the magnitude of the current through the conducting liquid that surrounds the system 2040. As indicated above with respect to system 2030, a unique current signature that is associated with the system 2040 can be detected by a receiver (not shown) to mark the activation of the system 2040. In order to increase the “length” of the current path the size of the skirt 2049 is altered. The longer the current path, the easier it may be for the receiver to detect the current.


Referring now to FIG. 36, the system 2030 of FIG. 34 is shown in an activated state and in contact with conducting liquid. The system 2030 is grounded through ground contact 2052. The system 2030 also includes a sensor module 2074, which is described in greater detail with respect to FIG. 39 ion or current paths 2050 form between material 2034 to material 2036 through the conducting fluid in contact with the system 2030. The voltage potential created between the material 2034 and 2036 is created through chemical reactions between materials 2034/2036 and the conducting fluid.



FIG. 37 shows an exploded view of the surface of the material 2034. The surface of the material 2034 is not planar, but rather an irregular surface 2054 as shown. The irregular surface 2054 increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid.


In one aspect, at the surface of the material 2034, there is chemical reaction between the material 2034 and the surrounding conducting fluid such that mass is released into the conducting fluid. The term “mass” as used herein refers to protons and neutrons that form a substance. One example includes the instant where the material is CuCl and when in contact with the conducting fluid, CuCl becomes Cu (solid) and Cl in solution. The flow of ions into the conduction fluid is depicted by the ion paths 2050. In a similar manner, there is a chemical reaction between the material 2036 and the surrounding conducting fluid and ions are captured by the material 2036. The release of ions at the material 2034 and capture of ion by the material 2036 is collectively referred to as the ionic exchange. The rate of ionic exchange and, hence the ionic emission rate or flow, is controlled by the control device 2038. The control device 2038 can increase or decrease the rate of ion flow by altering the conductance, which alters the impedance, between the materials 2034 and 2036. Through controlling the ion exchange, the system 2030 can encode information in the ionic exchange process. Thus, the system 2030 uses ionic emission to encode information in the ionic exchange.


The control device 2038 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, the control device 2038 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, the control device 2038 encodes information in the current flow or the ionic exchange. For example, the control device 2038 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency modulation, Amplitude modulation, on-off keying, and PSK with on-off keying.


As indicated above, the various aspects disclosed herein, such as systems 2030 and 2040 of FIGS. 34 and 35, respectively, include electronic components as part of the control device 2038 or the control device 2048. Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters. Each component may be secured to the framework and/or to another component. The components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.


As indicated above, the system, such as system 2030 and 2040, control the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow. Through altering the conductance in a specific manner the system is capable of encoding information in the ionic exchange and the current signature. The ionic exchange or the current signature is used to uniquely identify the specific system. Additionally, the systems 2030 and 2040 are capable of producing various different unique exchanges or signatures and, thus, provide additional information. For example, a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical environment. To further illustrate, a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature.


Referring now to FIG. 39, a block diagram representation of the control device 2038 is shown. The device 2030 includes a control module 2062, a counter or clock 2064, and a memory 2066. Additionally, the device 2038 is shown to include a sensor module 2072 as well as the sensor module 2074, which was referenced in FIG. 36. The control module 2062 has an input 2068 electrically coupled to the material 2034 and an output 2070 electrically coupled to the material 2036. The control module 2062, the clock 2064, the memory 2066, and the sensor modules 2072/2074 also have power inputs (some not shown). The power for each of these components is supplied by the voltage potential produced by the chemical reaction between materials 2034 and 2036 and the conducting fluid, when the system 2030 is in contact with the conducting fluid. The control module 2062 controls the conductance through logic that alters the overall impedance of the system 2030. The control module 2062 is electrically coupled to the clock 2064. The clock 2064 provides a clock cycle to the control module 2062. Based upon the programmed characteristics of the control module 2062, when a set number of clock cycles have passed, the control module 2062 alters the conductance characteristics between materials 2034 and 2036. This cycle is repeated and thereby the control device 2038 produces a unique current signature characteristic. The control module 2062 is also electrically coupled to the memory 2066. Both the clock 2064 and the memory 2066 are powered by the voltage potential created between the materials 2034 and 2036.


The control module 2062 is also electrically coupled to and in communication with the sensor modules 2072 and 2074. In the aspect shown, the sensor module 2072 is part of the control device 2038 and the sensor module 2074 is a separate component. In alternative aspects, either one of the sensor modules 2072 and 2074 can be used without the other and the scope of the present disclosure is not limited by the structural or functional location of the sensor modules 2072 or 2074. Additionally, any component of the system 2030 may be functionally or structurally moved, combined, or repositioned without limiting the scope of the present disclosure. Thus, it is possible to have one single structure, for example a processor, which is designed to perform the functions of all of the following modules: the control module 2062, the clock 2064, the memory 2066, and the sensor module 2072 or 2074. On the other hand, it is also within the scope of the present disclosure to have each of these functional components located in independent structures that are linked electrically and able to communicate.


Referring again to FIG. 39, the sensor modules 2072 or 2074 can include any of the following sensors: temperature, pressure, pH level, and conductivity. In one aspect, the sensor modules 2072 or 2074 gather information from the environment and communicate the analog information to the control module 2062. The control module then converts the analog information to digital information and the digital information is encoded in the current flow or the rate of the transfer of mass that produces the ionic flow. In another aspect, the sensor modules 2072 or 2074 gather information from the environment and convert the analog information to digital information and then communicate the digital information to control module 2062. In the aspect shown in FIG. 36, the sensor modules 2074 is shown as being electrically coupled to the material 2034 and 2036 as well as the control device 2038. In another aspect, as shown in FIG. 39, the sensor module 2074 is electrically coupled to the control device 2038 at connection 2078. The connection 2078 acts as both a source for power supply to the sensor module 2074 and a communication channel between the sensor module 2074 and the control device 2038.


Referring now to FIG. 38, the system 2030 includes a pH sensor module 2076 connected to a material 2039, which is selected in accordance with the specific type of sensing function being performed. The pH sensor module 2076 is also connected to the control device 2038. The material 2039 is electrically isolated from the material 2034 by a non-conductive barrier 2055. In one aspect, the material 2039 is platinum. In operation, the pH sensor module 2076 uses the voltage potential difference between the materials 2034/2036. The pH sensor module 2076 measures the voltage potential difference between the material 2034 and the material 2039 and records that value for later comparison. The pH sensor module 2076 also measures the voltage potential difference between the material 2039 and the material 2036 and records that value for later comparison. The pH sensor module 2076 calculates the pH level of the surrounding environment using the voltage potential values. The pH sensor module 2076 provides that information to the control device 2038. The control device 2038 varies the rate of the transfer of mass that produces the ionic transfer and the current flow to encode the information relevant to the pH level in the ionic transfer, which can be detected by a receiver (not shown). Thus, the system 2030 can determine and provide the information related to the pH level to a source external to the environment.


As indicated above, the control device 2038 can be programmed in advance to output a pre-defined current signature. In another aspect, the system can include a receiver system that can receive programming information when the system is activated. In another aspect, not shown, the switch 2064 and the memory 2066 can be combined into one device.


In addition to the above components, the system 2030 may also include one or other electronic components. Electrical components of interest include, but are not limited to: additional logic and/or memory elements, e.g., in the form of an integrated circuit; a power regulation device, e.g., battery, fuel cell or capacitor; a sensor, a stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc.


In various aspects, the techniques described herein provide bonding of a skirt material and or/sensor surface to the tablet powdered material blend or granulation during compression of tablets or the placement of an electronic device such as an IEM in the tablet press for sensor-in-tablet platform. In one aspect, texture or features may be added to the skirt film during manufacturing of the film, during manufacturing of the IEM, or after manufacturing the IEM. The texture may be created by mechanical deformation of the skirt, laser texturing of the skirt, chemical etch, or by making the formulation more porous, or by thermal processing. In another aspect, macroscale features may be created such as holes, slots, indentations, or other shapes to provide tablet bonding or riveting to the IEM. In yet another aspect, an adhesive may be added to the skirt, or otherwise the skirt may be made sticky to enhance bonding of the tablet material to the IEM.



FIGS. 40 and 41 illustrate one aspect of a pick-and-place transfer mechanism 2100 for picking an electronic device 200 from a cavity 108 of a carrier tape 106 and transferring the electronic device 200. The pick-and-place transfer mechanism 2100 comprises a housing 2102 that defines a chamber 2120 to contain a movable pressure plate 2104 and a movable prong holder plate 2106. The pressure plate 2104 is movable in a downward direction to pick an electronic device 200 comprising a skirt 2110 by the application of a force FD, which also compresses a spring 2108. The spring 2108 stores energy and applies an upward force FU to lift the electronic device 200 from the cavity 108 of the carrier tape 106. The downward force FD may be applied mechanically by a piston 2112 (as shown) or by pressurized air acting against the pressure plate 2104. If the downward force FD is applied by the piston 212, the spring force FC may be used as the lifting force. If the downward force FD is applied by pressurized air, then the application of a vacuum may be employed to lift the pressure plate 2104.


Attached to the pressure plate 2104 are a plurality of prongs 2114 (arms), which are elongated members employed to engage the outer diameter 2116 (perimeter) of the skirt 2110 portion of the electronic device 200 in order to lift the electronic device 200 out of the cavity 108. In one aspect four prongs 2114 are employed to grasp the outer diameter 2116 of the skirt 2110 surrounding the electronic device 200. This is best illustrated in FIG. 45, which illustrates a bottom view perspective of the four prongs 2114 engaging the outer diameter 2116 of the skirt 2110 portion of the electronic device 200. With reference now to FIGS. 40, 41, and 45, the four prongs 2114 are slidably disposed within corresponding apertures formed in prong holder 2106. The prong holder 2106 is configured such that the distal ends 2118 of the prongs 2114 expand slightly as indicted by the arrows in order to facilitate engagement of the perimeter of the skirt 2110. Once the electronic device 200 is grasped by the outer diameter 2116 of the skirt portion 2110 of the electronic device 200, the electronic device 200 can be released by extending and expanding the prongs 2114 from the spring loaded chamber 2120. This will help lock the electronic device 200 into a controlled environment to lift out of the carrier tape 106 and load into the rotary tablet press or onto a conveyor belt, as previously discussed.


In one aspect, the spring loaded chamber 2120 may comprise a vacuum opening 2122 on a side to add vacuum to assist with lifting and holding the electronic device 200.



FIG. 42 is a top view of the electronic device 200 located within the cavity 108 of the carrier tape 106. As illustrated, the electronic device 200 sits in a square surface mount technology (SMT) carrier tape 106 pocket or cavity 106, which leaves the four corners 2128 open and available to receive the distal ends 2118 of the prongs 2114. As described in connection with FIGS. 40 and 41, the prongs 2114 are attached to a spring loaded (or air actuated) chamber 2120 that expands the prongs 2114 to fit into the four corners 2128 of the carrier tape cavity 108 pocket, and then retracts and tightens the prongs 2114 around the outer diameter 2116 of the skirt 2110 portion of the electronic device 2110 as shown in FIG. 45, from a bottom view perspective, and FIG. 43 from a side view perspective.


As shown in FIG. 44, the distal end 2118 of each prong 2114 comprises feature to assist locating and grasping the electronic device 200. In one aspect, for example, a indent 2124 feature located near the distal end 2118 of the prong 2114 will assist to secure the electronic device 200 into place. Also, the tip portion of the prong 2114 comprises a slight chamfer 2126 to help slide the prong 2114 corners 2128 inside the cavity 108 portion of the carrier tape 106.



FIG. 46A is a cross-sectional view of one aspect of a pick-and-place tool 2150 holding an electronic device 200 within a mechanical gripper 2154. FIG. 46B is a bottom view of the pick-and-place tool 2150 holding an electronic device 200 shown in FIG. 46A. With reference to both FIGS. 46A and 46B, as shown, a vacuum tube 2152 pick tool is located within a chamber 2158 defined by a mechanical gripper 2154. The pick-and-place tool 2150 may comprise a plurality of mechanical grippers 2154 comprising a flange 2156 portion for grasping and holding the outer diameter 2116 portion of the skirt 2110 portion of the electronic device 200. As illustrated in FIG. 46B, in one aspect, the pick-and-place tool 2150 may comprise four mechanical grippers 2154 each comprising a flange 2156 portion for clamping or grasping and holding the electronic 200 by the outer diameter 2116 of the skirt 2110. In operation, the mechanical gripper 2154 is sued to clamp around the outer diameter 2116 of the skirt 2110 portion of the electronic device 200. The distal ends 2160 of the mechanical gripper 2154 spread open when the pick-and-place tool 2150 is extended, but when the retracted, the mechanical gripper 2154 closes around the outer diameter 2116 of the skirt 2110 portion of the electronic device 200 and centers the electronic device 200 relative to the vacuum tube 2152 pick tip.



FIG. 47 illustrates one aspect of a friction hold disc mechanism 2170 for handling an electronic device 200. An electronic device 200 is initially contained within a tape carrier 2172. A cam driven pin 2174 movable in direction V is used to push the electronic device 200 from the carrier tape 2172 into a cavity 2180 of a rotating disc 2176. The electronic device 200 is pushed or placed in the cavity 2180 of the rotating disc 2176 and is then centered over a carrier 2178 before being pushed into the carrier 2178 by the vertically V cam driven pin 2174.



FIG. 48 illustrates one aspect of a pick-and-place tool 2170 comprising a mobile sleeve 2172. As shown in FIG. 48, the pick-and-place tool 2170 comprises mobile sleeve 2172 that is capable of moving up-and-down in a direction V. The mobile sleeve 2172 is spring 2174 loaded. As shown, the mobile sleeve 2172 is used to center the electronic device 200 relative to a vacuum tube 2152 pick tool is located within the mobile sleeve 2172.



FIG. 49 illustrates one aspect of a pick-and-place tool 2200 comprising an internal ejection member 2202 (plunger) and a vacuum tube 2204. The ejection member 2202 is movable in direction V within an inner chamber 2206 defined by the vacuum tube 2204. The distal end 2208 of the vacuum tube 2204 is shaped to center the electronic device 200 with the ejection member 2202. In the illustrated example, the distal end 2208 of the vacuum tube 2204 comprises tapered edges 2210 to slidably receive and center the electronic device 200 relative to the ejection member 2202. The electronic device 200 is picked when a vacuum is applied to the vacuum tube 2204. The ejection member 2202 may be spring loaded, or otherwise movable, to push out the electronic device 200 once the vacuum is removed for placement.



FIG. 50 illustrates one aspect of pick-and-place tool 2220 comprising an internal ejection member 2222 (plunger) and an external tube 2224 comprising needles 2230 located at a distal end of the external tube 2224. The needles 2230 puncture the skirt 2210 portion of the electronic device 200. The ejection tube 2222 is movable in direction V within an inner chamber 2226 defined by the external tube 2224. The ejection tube 2222 can be mechanically pushed to eject the electronic device 200 from the needles 2230 when the placed over a desired location. The ejection tube 2222 may be spring loaded or cam driven without the need of a vacuum source for picking and/or placing the electronic device.



FIG. 51 illustrates one aspect of pick-and-place tool 2240 comprising a head 2242 that has an external profile that matches the internal cavity profile of the carrier tape. As shown, the distal end 2246 of the head 2242 comprises a tapered outer wall 2244 where the profile of the tapered outer wall 2244 complements (or matches) the internal profile 2248 of the carrier tape 106 cavity 108. Thus, when the distal end 2246 of the head 2242 is inserted within the cavity 108 of the carrier tape 108, the distal end 2246 of the head 2242 is centered with the electronic device 200. Similarly, the shape of the tapered outer wall 2244 forces the electronic device 200 to be centered with a complementary shaped inner cavity during placement.



FIG. 52 illustrates one aspect of a pick-and-place tool 2260 comprising an inner slot 2266 at a distal end 2272 of a gripper 2268. As shown, the pick-and-place tool 2260 comprises an outer gripper 2268 with an inner slot 2266 defined at a distal end 2272 of the gripper 2268. A punch 2274 that is movable in direction V is used to push the electronic device 200 into a chamber 2276 defined within the distal end 2272 of the gripper 2268. The outer diameter 2116 of the skirt 2110 portion of the electronic device 200 flexes and snaps in and out of the slot 2266 within the chamber 2276. An ejection member 2264 that is movable in direction V is used to eject the electronic device 200 when it is time for placement.



FIG. 53 illustrates one aspect of a pick-and-place tool 2280 comprising an inner slot 2286 at a distal end 2292 of a gripper 2282. As shown, the pick-and-place tool 2280 comprises an outer gripper 2282 with an inner slot 2286 defined by snap elements 2294 located at the distal end 2292 of the gripper 2282. The pick-and-place tool 2280 is plunged in a downward direction to snap the outer diameter 2116 of the skirt 2110 portion of the electronic device 200 such that it is snapped into the chamber 2290. The outer diameter 2116 of the skirt 2110 portion of the electronic device 200 flexes and snaps in and out of the chamber 2290 and is held in place by the vertical seat defined by the snap elements 2294. An ejection member 2284 (plunger) that is movable in direction V is used to eject the electronic device 200 when it is time for placement.



FIG. 54 illustrates one aspect of a pick-and-place tool 2300 comprising features 2304 at a distal end 2310 to create notches around the outer diameter 2116 of the skirt 2110 portion of the electronic device 200. The pick-and-place tool 2300 comprises a movable body portion 2302 and notching features 2304 at the distal end. The notching features 2304 pinch the edges of the skirt material 2308 to create notches in the skirt portion 2110 of the electronic device 200 for frictional holding in a carrier. The cutout 2306 portion below the tool 2300 shows the features formed in the skirt 2110 portion of the electronic device 200. Since the notched edges hold the electronic device 200 in a carrier or cavity by friction, the electronic device 200 forced out by a plunger, similar to the ejection members described previously.



FIG. 55 illustrates one aspect of pick-and-place tool 2320 configured with hook-and-loop (VELCRO) or ridges 2330 at a distal end 2332 to hold the electronic device 200 in place. The pick-and-place tool 2320 comprises an outer body 2322 portion defining an inner chamber 2326 for movably receiving therein an ejection member 2324 (plunger) that is movable in direction V. A distal end 2332 of the pick-and-place tool 2320 comprises hook-and-loop (VELCRO) or ridges 2330 at a distal end 2332 to hold the electronic device 200. The ejection tool 2324 or plunger is used to force out or eject the electronic device when it is time for placement.



FIG. 56 illustrates one aspect of a tower 2340 for storing electronic devices 200. In the illustrated example, the tower 2340 comprises a cylindrical body 2342 defining an inner chamber 2348 suitable for storing electronic devices 200. The cylindrical body 2342 comprises seats 2344 or ledges to holding the electronic devices 200 within the chamber 2348. Electronic devices 200 are located below the tower body 2342 in the usual carrier tape 106. A punch 2346 movable in direction V is used to punch through the carrier tape 106 and load the electronic device 200 into the camber 2348.



FIG. 57 illustrates one aspect of the tower 2340 interfaced with a rotary transfer plate 2354. A shown, the tower 2340 may be flipped upside down to dispense the electronic devices 200 into nests 2352 located on the rotary transfer plate 2354.



FIG. 58 illustrates one aspect of a transfer mechanism 2400 employing a vacuum plate 2402 for holding electronic devices 200 until they are ready to be dispensed. In the illustrated example, the electronic devices 200 are moving along the in the carrier tape 106. Just prior to reaching the vacuum plate 2402, the cover tape 110 is removed such that the vacuum plate 2402 applies negative pressure to the top side of the electronic device 200 to hold the electronic device 200 in place until ready for dispensing on a conveyor 2404, as shown, or a carrier.



FIG. 59 illustrates another aspect of a transfer mechanism 2450 that employs a vacuum plate 2402 for holding electronic devices 200 until they are ready to be dispensed. The electronic devices 200 are supplied by way of the carrier tape 106. The cover tape 110 is removed at a stripping station 2458 just prior to the vacuum plate 2402 such that when the cover tape 110 is removed, the negative pressure from the vacuum plate is applied to the top portion of the electronic device 200 to hold the electronic device in place until it is time to dispense. In the illustrated example, an insert pin 2452 pushes out the electronic device 200 into a die cavity 2454 located on the tablet top plate 2456. A bottom punch 2458 is used to form the electronic device 200 into a tablet using the die cavity 2454.



FIG. 60 illustrates one aspect of a transfer mechanism that employs a vacuum plate 2402 for holding electronic devices 200 until they are ready to be dispensed. The electronic devices 200 are supplied by way of the carrier tape 106. The cover tape 110 is removed at a stripping station 2458 by a stripping edge 2455 just prior to the vacuum plate 2402 such that when the cover tape 110 is removed, the negative pressure from the vacuum plate is applied to the top portion of the electronic device 200 to hold the electronic device in place until it is time to dispense. In the illustrated example, an insert pin 2468 pushes out the electronic device 200 into a die cavity 2462 located on the tablet top plate 2464. The insert pin 2468 moves through the carrier tape 106 to push the electronic device 200 into the die cavity 2462. In one aspect, the insert pin 2468 activation can be linear motion.



FIG. 61 illustrates one aspect of a transfer mechanism 2470 employing a rail feed 2472 to supply the electronic devices 200 top the tablet process table top 2476. In the illustrated example, the electronic devices 200 are supplied to the punch station 2482 above the punch die cavity 2474 by way of the rail feed 2472. A linear actuator 2480 having electronic device 200 alignment pins 2478 is used to transfer the electronic device 100 into the die cavity 2474. The electronic devices 200 are forced down the rail feed 2472 into insert position. The linear actuator 2480 aligns the electronic device 200 with four pins 2478 and then applies a force F to the electronic device 200 to bend or flex the skirt 2110 portion of the electronic device 200 slightly out of the opening 2484 beneath the rail feed 2472 and in to the die cavity 2474. In another aspect, the linear actuator 2480 dispense the electronic devices 200 into carriers or nests located on the process table top 2476.



FIG. 62 illustrates a cross sectional view of an ejection mechanism 2500 that rotates eccentrically about a first axis 2508. The ejection mechanism 2500 comprises vacuum tubes 2506 and ejector members 2502 therebetween. The ejector members 2502 are rotatably attached to a wheel 2504 that rotates eccentrically such that the ejector members 2502 act on the electronic device.



FIG. 63 illustrates a side view of the ejection mechanism 2500 shown in FIG. 62. As shown, the wheel 2504 rotates about the axis 2508, which causes the ejector members 2502 to move accordingly. A second wheel attached to the vacuum tubes 2506 (not shown) rotates about a center axis 2510.



FIG. 64 illustrates a cross sectional view of the ejection mechanism 2500 shown in FIGS. 62 and 63. As shown, the vacuum tubes 2506 hold the electronic device 200 place. The ejector members 2502 are coupled to a first wheel 2504 that rotates eccentrically about the axis 2508. The vacuum tubes 2506 for holding the electronic device 200 are coupled to a second wheel 2512 that rotates on center about axis 2510. Thus, when the electronic device 200 gets to the bottom and interfaces with the tablet press cavity, the offset ejector member 2502 ejects the electronic device 200 out into the cavity.



FIG. 65 illustrates a pick-and-place tool 2600 comprising a body 2602 and flexible (resilient) fingers or flaps 2604 to grasp and hold the electronic device 200. In one aspect, the resilient fingers 2604 may be made of rubber or other suitable material.



FIG. 66 illustrates one aspect of a transfer mechanism 2610 that employs gravity. The transfer mechanism 2610 uses of gravity and a plated template 2612 to allow an electronic device 200 to fall into the press 2614 and center it as it falls thru the template.



FIG. 67 illustrates one aspect of a transfer mechanism 2620 that employs air pressure. The transfer mechanism 2620 uses air pressure 2622 from the bottom of the carrier tape 106 to push the electronic device 200 out of the carrier tape 106 through a pressurized feeder tube 2624 which ejects the electronic device 200 into the press 2614.



FIG. 68 illustrates one aspect of a transfer mechanism 2630 that employs a vacuum feeder. The transfer mechanism 2630 uses a vacuum feeder wheel 2632 that holds the electronic devices 200 by a vacuum tube and the wheel spins and places the electronic device 200 in the press 2614. In one aspect, the vacuum feeder 2634 has an array of vacuum heads.



FIG. 69 illustrates one aspect of collet gripper 2640 having a body 2642 that expands during the grip process, then contracts on the electronic device 200 forming positive pressure grip around the outside of the electronic device 200. The mechanism to open and close the collet gripper head 2644 can be cam driven (pointy arrow in middle).



FIG. 70 illustrates one aspect of a transfer mechanism 2650 comprising a pre punched film/carrier tape 2652 that holds the electronic device 200 so that punching the electronic device 200 out into the press tool 2654 with a punch 2656 can be facilitated. This would also facilitate unique perimeter designs mentioned previously.



FIG. 71 illustrates one aspect of a transfer mechanism 2660 as shown in FIG. 70 except that the punch occurs into a rotating plate 2664 that may hold the electronic device 200 with a friction fit around the perimeter, or have some mechanical feature to lock in place. This rotating plate can move the electronic device 200 into the press area.



FIG. 72 illustrates a transfer mechanism 2670 comprising electrically charged pick-up head with fingers 2672, 2674 having opposite charge to grab the electronic device and hold the electronic device 200 in place by electrostatic forces.


It is worthy to note that any reference to “one aspect” or “an aspect” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect” or “in an aspect” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.


Some aspects may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.


While certain features of the aspects have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true scope of the disclosed aspects.

Claims
  • 1. A method of manufacturing a tablet comprising an electronic device, the method comprising: providing a powdered material into a die cavity of a tablet press;dispensing an electronic device from a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device;locating the electronic device into the die cavity; andcompressing the powdered material and the electronic device to form a tablet; andwherein the carrier tape comprises a cover tape and defines a cavity for holding the electronic device between the cavity and the cover tape, wherein dispensing the electronic device from the carrier tape comprises: removing the cover tape from the carrier tape to expose the electronic device within the cavity;transferring the cover tape to a pick-and-place transfer mechanism;picking the electronic device from the cavity with a pick-and-place element of the transfer mechanism;transferring the pick-and-place element to the tablet press; andplacing the electronic device in the die cavity.
  • 2. The method of claim 1, further comprising pre-compressing the powdered material prior to locating the electronic device into the die cavity.
  • 3. The method of claim 1, further comprising providing additional powdered material into the die cavity after forming the tablet.
  • 4. The method of claim 3, further comprising compressing the additional powdered material to form the tablet.
  • 5. The method of claim 1, wherein the tablet press is a rotary tablet press.
  • 6. The method of claim 1, wherein the powdered material is a pharmaceutical material.
  • 7. The method of claim 1, wherein the electronic device is an ingestible event marker.
  • 8. The method of claim 1, further comprising locating the pick-and-place element above the die cavity.
  • 9. The method of claim 8, further comprising: transferring the pick-and-place element to a carrier;locating the pick-and-place element above the carrier;placing the electronic device in the carrier;picking the electronic device from the carrier with a second pick-and-place element of a second transfer mechanism; andlocating the second pick-and-place element above the die cavity.
  • 10. The method of claim 1, wherein the pick-and-place element is a vacuum tool.
  • 11. A method of manufacturing a tablet comprising an electronic device, the method comprising: providing a powdered material into a die cavity of a tablet press;dispensing an electronic device from a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device;locating the electronic device into the die cavity; andcompressing the powdered material and the electronic device to form a tablet; andwherein dispensing the electronic device from the tape carrier comprises: transferring the carrier tape to a punch press;punching through the carrier tape comprising the electronic device with an ejector pin portion of the punch press, wherein the ejector pin perforates the carrier tape; anddispensing the electronic device into the die cavity through the perforations;dispensing the electronic device into a carrier; andtransferring the carrier to the tablet press.
  • 12. The method of claim 11, wherein the carrier frictionally engages the electronic device and centers the electronic device with the die cavity.
  • 13. A method of manufacturing a tablet comprising an electronic device, the method comprising: providing a powdered material into a die cavity of a tablet press;dispensing an electronic device from a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device;locating the electronic device into the die cavity; andcompressing the powdered material and the electronic device to form a tablet; andwherein the carrier tape carrier comprises first and second adhesive tapes for holding the electronic device therebetween, wherein dispensing the electronic device from the carrier tape comprises: removing the first adhesive tape from the carrier tape to expose the electronic device within the cavity;transferring the cover tape to a punch press;punching through the carrier tape comprising the electronic device with an ejector pin portion of the punch press, wherein the ejector pin perforates the carrier tape; anddispensing the electronic device into the die cavity through the perforations.
  • 14. The method of claim 13, further comprising: dispensing the electronic device into a carrier; andtransferring the carrier to the tablet press.
  • 15. A system for manufacturing a tablet comprising an electronic device, the system comprising: a tablet press comprising a die cavity for receiving a powdered material and an electronic device therein, an upper punch, and a lower punch, wherein the upper and lower punches are operative to form the powdered material and the electronic device into a tablet;a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device; anda transfer mechanism to transfer the electronic device from the tape carrier to the die cavity; andwherein the transfer mechanism comprises a pick-and-place transfer mechanism operatively coupled to the carrier tape and the tablet press.
  • 16. A system for manufacturing a tablet comprising an electronic device, the system comprising: a tablet press comprising a die cavity for receiving a powdered material and an electronic device therein, an upper punch, and a lower punch, wherein the upper and lower punches are operative to form the powdered material and the electronic device into a tablet;a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device; anda transfer mechanism to transfer the electronic device from the tape carrier to the die cavity; andfurther comprising a carrier to receive the electronic device and center the electronic device relative to the die cavity, wherein the pick-and-place transfer mechanism locates the electronic device in the carrier.
  • 17. The system of claim 16, further comprising a second pick-and-place transfer mechanism to pick the electronic device from the carrier, locate the second pick-and-place transfer mechanism above the die cavity.
  • 18. A system for manufacturing a tablet comprising an electronic device, the system comprising: a tablet press comprising a die cavity for receiving a powdered material and an electronic device therein, an upper punch, and a lower punch, wherein the upper and lower punches are operative to form the powdered material and the electronic device into a tablet;a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device; anda transfer mechanism to transfer the electronic device from the tape carrier to the die cavity; andwherein the pick-and-place transfer mechanism comprises a vacuum tool.
  • 19. The system of claim 18, further comprising a punch press for dispensing the electronic device from the tape carrier operatively coupled to the tablet press.
  • 20. The system of claim 19, wherein the punch press comprises a rotating punch wheel.
  • 21. A system for manufacturing a tablet comprising an electronic device, the system comprising: a tablet press comprising a die cavity for receiving a powdered material and an electronic device therein, an upper punch, and a lower punch, wherein the upper and lower punches are operative to form the powdered material and the electronic device into a tablet;a tape-and-reel carrier tape operatively coupled to the tablet press, the carrier tape configured for holding the electronic device; anda transfer mechanism to transfer the electronic device from the tape carrier to the die cavity; andwherein the carrier tape carrier comprises first and second adhesive tapes for holding the electronic device therebetween.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to International Application No. PCT/US2013/051511 filed Jul. 22, 2013, which application pursuant to 35 U.S.C. §119(e), claims priority to the filing date of U.S. Provisional Patent Application Ser. No. 61/674,851 filed Jul. 23, 2012; the disclosures of which are herein incorporated by reference. The present application is also related to commonly assigned U.S. application Ser. No. 13/319,977 entitled INGESTIBLE EVENT MARKERS COMPRISING AN INGESTIBLE COMPONENT, filed May 10, 2010; U.S. application Ser. No. 13/319,309 entitled INTEGRATED INGESTIBLE EVENT MARKER SYSTEM WITH PHARMACEUTICAL PRODUCT, filed Dec. 2, 2010; International Application No. PCT/US2011/031536 entitled MINIATURE INGESTIBLE DEVICE, filed Apr. 4, 2011; and International Application No. PCT/US2011/061478, entitled INGESTIBLE DEVICE WITH PHARMACEUTICAL PRODUCT, filed Nov. 18, 2011; each of which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/051511 7/22/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/018454 1/30/2014 WO A
US Referenced Citations (826)
Number Name Date Kind
1548459 Hammer Aug 1925 A
3589943 Grubb et al. Jun 1971 A
3607788 Adolph Sep 1971 A
3642008 Bolduc Feb 1972 A
3679480 Brown et al. Jul 1972 A
3682160 Murata Aug 1972 A
3719183 Schwartz Mar 1973 A
3799802 Schneble, Jr. et al. Mar 1974 A
3828766 Krasnow Aug 1974 A
3837339 Aisenberg et al. Sep 1974 A
3849041 Knapp Nov 1974 A
3893111 Cotter Jul 1975 A
3944064 Bashaw et al. Mar 1976 A
3967202 Batz Jun 1976 A
3989050 Buchalter Nov 1976 A
4017856 Wiegand Apr 1977 A
4055178 Harrigan Oct 1977 A
4062750 Butler Dec 1977 A
4077397 Ellis Mar 1978 A
4077398 Ellis Mar 1978 A
4082087 Howson Apr 1978 A
4090752 Long May 1978 A
4106348 Auphan Aug 1978 A
4129125 Lester et al. Dec 1978 A
4166453 McClelland Sep 1979 A
4239046 Ong Dec 1980 A
4251795 Shibasaki et al. Feb 1981 A
4269189 Abraham May 1981 A
4331654 Morris May 1982 A
4345588 Widder et al. Aug 1982 A
4418697 Tama Dec 1983 A
4425117 Hugemann Jan 1984 A
4439196 Higuchi Mar 1984 A
4494950 Fischell Jan 1985 A
4559950 Vaughan Dec 1985 A
4564363 Bagnall et al. Jan 1986 A
4635641 Hoffman Jan 1987 A
4654165 Eisenberg Mar 1987 A
4663250 Ong et al. May 1987 A
4669479 Dunseath Jun 1987 A
4687660 Baker et al. Aug 1987 A
4725997 Urquhart et al. Feb 1988 A
4749575 Rotman et al. Jun 1988 A
4763659 Dunseath Aug 1988 A
4767627 Caldwell et al. Aug 1988 A
4784162 Ricks Nov 1988 A
4793825 Benjamin et al. Dec 1988 A
4844076 Lesho Jul 1989 A
4876093 Theeuwes et al. Oct 1989 A
4896261 Nolan Jan 1990 A
4975230 Pinkhasov Dec 1990 A
4987897 Funke Jan 1991 A
5000957 Eckenhoff et al. Mar 1991 A
5016634 Vock et al. May 1991 A
5018335 Yamamoto et al. May 1991 A
5079006 Urquhart Jan 1992 A
5110441 Kinlen et al. May 1992 A
5160885 Hannam et al. Nov 1992 A
5167626 Casper et al. Dec 1992 A
5176626 Soehendra Jan 1993 A
5261402 DiSabito Nov 1993 A
5263481 Axelgaard et al. Nov 1993 A
5279607 Schentag et al. Jan 1994 A
5281287 Lloyd Jan 1994 A
5283136 Peled et al. Feb 1994 A
5305745 Zacouto Apr 1994 A
5318557 Gross Jun 1994 A
5331953 Andersson et al. Jul 1994 A
5394882 Mawhinney Mar 1995 A
5395366 D'Andrea et al. Mar 1995 A
5436091 Shackle et al. Jul 1995 A
5443461 Atkinson et al. Aug 1995 A
5443843 Curatolo et al. Aug 1995 A
5458141 Neil Oct 1995 A
5458994 Nesselbeck et al. Oct 1995 A
5485841 Watkin et al. Jan 1996 A
5506248 Nikfar et al. Apr 1996 A
5551020 Flax et al. Aug 1996 A
5567210 Bates et al. Oct 1996 A
5596302 Mastrocola et al. Jan 1997 A
5600548 Nguyen et al. Feb 1997 A
5634468 Platt Jun 1997 A
5645063 Straka et al. Jul 1997 A
5659247 Clements Aug 1997 A
5705189 Lehmann et al. Jan 1998 A
5724432 Bouvet et al. Mar 1998 A
5738708 Peachey et al. Apr 1998 A
5740811 Hedberg Apr 1998 A
5757326 Koyama et al. May 1998 A
5772575 Lesinski et al. Jun 1998 A
5792048 Schaefer Aug 1998 A
5802467 Salazar et al. Sep 1998 A
5833716 Bar-Or Nov 1998 A
5842324 Grosskopf et al. Dec 1998 A
5845265 Woolston Dec 1998 A
5862803 Besson Jan 1999 A
5868136 Fox Feb 1999 A
5925030 Gross et al. Jul 1999 A
5957854 Besson et al. Sep 1999 A
5963132 Yoakum et al. Oct 1999 A
5974124 Schlueter, Jr. et al. Oct 1999 A
5981166 Mandecki Nov 1999 A
5999846 Pardey et al. Dec 1999 A
6038464 Axelgaard et al. Mar 2000 A
6042710 Dubrow Mar 2000 A
6047203 Sackner Apr 2000 A
6068589 Neukermans May 2000 A
6076016 Feierbach et al. Jun 2000 A
6081734 Batz Jun 2000 A
6091975 Daddona et al. Jul 2000 A
6095985 Raymond et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6141592 Pauly Oct 2000 A
6149940 Maggi et al. Nov 2000 A
6200265 Walsh et al. Mar 2001 B1
6206702 Hayden et al. Mar 2001 B1
6217744 Crosby Apr 2001 B1
6231593 Meserol May 2001 B1
6245057 Sieben et al. Jun 2001 B1
6269058 Yamanoi et al. Jul 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6287252 Lugo Sep 2001 B1
6288629 Cofino et al. Sep 2001 B1
6289238 Besson et al. Sep 2001 B1
6315719 Rode et al. Nov 2001 B1
6317714 Del Castillo Nov 2001 B1
6342774 Kreisinger et al. Jan 2002 B1
6344824 Takasugi et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6364834 Reuss Apr 2002 B1
6366206 Ishikawa et al. Apr 2002 B1
6371927 Brune Apr 2002 B1
6374670 Spelman Apr 2002 B1
6380858 Yarin et al. Apr 2002 B1
6390088 Nohl et al. May 2002 B1
6394997 Lemelson May 2002 B1
6426863 Munshi Jul 2002 B1
6432292 Pinto et al. Aug 2002 B1
6440069 Raymond et al. Aug 2002 B1
6441747 Khair Aug 2002 B1
6453199 Kobozev Sep 2002 B1
6477424 Thompson et al. Nov 2002 B1
6496705 Ng et al. Dec 2002 B1
6526315 Inagawa Feb 2003 B1
6531026 Takeichi et al. Mar 2003 B1
6544174 West Apr 2003 B2
6564079 Cory May 2003 B1
6572636 Hagen et al. Jun 2003 B1
6577893 Besson et al. Jun 2003 B1
6579231 Phipps Jun 2003 B1
6595929 Stivoric Jul 2003 B2
6599284 Faour Jul 2003 B2
6605038 Teller Aug 2003 B1
6609018 Cory Aug 2003 B2
6612984 Kerr Sep 2003 B1
6632175 Marshall Oct 2003 B1
6632216 Houzego et al. Oct 2003 B2
6635279 Kolter et al. Oct 2003 B2
6643541 Mok et al. Nov 2003 B2
6654638 Sweeney Nov 2003 B1
6663846 McCombs Dec 2003 B1
6673474 Yamamoto Jan 2004 B2
6680923 Leon Jan 2004 B1
6689117 Sweeney et al. Feb 2004 B2
6694161 Mehrotra Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6720923 Hayward et al. Apr 2004 B1
6738671 Christophersom et al. May 2004 B2
6740033 Olejniczak et al. May 2004 B1
6745082 Axelgaard et al. Jun 2004 B2
6755783 Cosentino Jun 2004 B2
6757523 Fry Jun 2004 B2
6759968 Zierolf Jul 2004 B2
6773429 Sheppard et al. Aug 2004 B2
6800060 Marshall Oct 2004 B2
6801137 Eggers et al. Oct 2004 B2
6816794 Alvi Nov 2004 B2
6822554 Vrijens et al. Nov 2004 B2
6824512 Warkentin et al. Nov 2004 B2
6836862 Erekson et al. Dec 2004 B1
6839659 Tarassenko et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6842636 Perrault Jan 2005 B2
6845272 Thomsen Jan 2005 B1
6864780 Doi Mar 2005 B2
6879810 Bouet Apr 2005 B2
6909878 Haller Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6928370 Anuzis et al. Aug 2005 B2
6929636 Von Alten Aug 2005 B1
6937150 Medema Aug 2005 B2
6942616 Kerr Sep 2005 B2
6951536 Yokoi Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6960617 Omidian et al. Nov 2005 B2
6968153 Heinonen Nov 2005 B1
6977511 Patel et al. Dec 2005 B2
6987965 Ng et al. Jan 2006 B2
6990082 Zehavi et al. Jan 2006 B1
7002476 Rapchak Feb 2006 B2
7004395 Koenck Feb 2006 B2
7009634 Iddan et al. Mar 2006 B2
7009946 Kardach Mar 2006 B1
7013162 Gorsuch Mar 2006 B2
7016648 Haller Mar 2006 B2
7020508 Stivoric Mar 2006 B2
7024248 Penner et al. Apr 2006 B2
7031745 Shen Apr 2006 B2
7031857 Tarassenko et al. Apr 2006 B2
7039453 Mullick May 2006 B2
7044911 Drinan et al. May 2006 B2
7046649 Awater et al. May 2006 B2
7083578 Lewkowicz Aug 2006 B2
7116252 Teraguchi Oct 2006 B2
7118531 Krill Oct 2006 B2
7127300 Mazar et al. Oct 2006 B2
7146228 Nielsen Dec 2006 B2
7146449 Do et al. Dec 2006 B2
7149581 Goedeke et al. Dec 2006 B2
7154071 Sattler et al. Dec 2006 B2
7155232 Godfrey et al. Dec 2006 B2
7160258 Imran Jan 2007 B2
7164942 Avrahami Jan 2007 B2
7171166 Ng et al. Jan 2007 B2
7171177 Park et al. Jan 2007 B2
7171259 Rytky Jan 2007 B2
7176784 Gilbert et al. Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188199 Leung et al. Mar 2007 B2
7188767 Penuela Mar 2007 B2
7194038 Inkinen Mar 2007 B1
7206630 Tarler Apr 2007 B1
7209790 Thompson et al. Apr 2007 B2
7215660 Perlman May 2007 B2
7215991 Besson May 2007 B2
7218967 Bergelson May 2007 B2
7231451 Law Jun 2007 B2
7243118 Lou Jul 2007 B2
7246521 Kim Jul 2007 B2
7249212 Do Jul 2007 B2
7252792 Perrault Aug 2007 B2
7253716 Lovoi et al. Aug 2007 B2
7261690 Teller Aug 2007 B2
7270633 Goscha Sep 2007 B1
7273454 Raymond et al. Sep 2007 B2
7289855 Nghiem Oct 2007 B2
7291497 Holmes Nov 2007 B2
7292139 Mazar et al. Nov 2007 B2
7294105 Islam Nov 2007 B1
7313163 Liu Dec 2007 B2
7317378 Jarvis et al. Jan 2008 B2
7318808 Tarassenko et al. Jan 2008 B2
7336929 Yasuda Feb 2008 B2
7342895 Serpa Mar 2008 B2
7346380 Axelgaard et al. Mar 2008 B2
7349722 Witkowski et al. Mar 2008 B2
7352998 Palin Apr 2008 B2
7353258 Washburn Apr 2008 B2
7357891 Yang et al. Apr 2008 B2
7359674 Markki Apr 2008 B2
7366558 Virtanen et al. Apr 2008 B2
7368190 Heller et al. May 2008 B2
7368191 Andelman et al. May 2008 B2
7373196 Ryu et al. May 2008 B2
7375739 Robbins May 2008 B2
7376435 McGowan May 2008 B2
7382263 Danowski et al. Jun 2008 B2
7387607 Holt Jun 2008 B2
7388903 Godfrey et al. Jun 2008 B2
7389088 Kim Jun 2008 B2
7392015 Farlow Jun 2008 B1
7395106 Ryu et al. Jul 2008 B2
7396330 Banet Jul 2008 B2
7404968 Abrams et al. Jul 2008 B2
7413544 Kerr Aug 2008 B2
7414534 Kroll et al. Aug 2008 B1
7414543 Rye et al. Aug 2008 B2
7415242 Ngan Aug 2008 B1
7424268 Diener Sep 2008 B2
7424319 Muehlsteff Sep 2008 B2
7427266 Ayer et al. Sep 2008 B2
7442164 Berrang et al. Oct 2008 B2
7471665 Perlman Dec 2008 B2
7499674 Salokannel Mar 2009 B2
7510121 Koenck Mar 2009 B2
7512448 Malick Mar 2009 B2
7515043 Welch Apr 2009 B2
7519416 Sula et al. Apr 2009 B2
7523756 Minai Apr 2009 B2
7525426 Edelstein Apr 2009 B2
7537590 Santini, Jr. et al. May 2009 B2
7539533 Tran May 2009 B2
7542878 Nanikashvili Jun 2009 B2
7551590 Haller Jun 2009 B2
7554452 Cole Jun 2009 B2
7558620 Ishibashi Jul 2009 B2
7575005 Mumford Aug 2009 B2
7616111 Covannon Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7626387 Adachi Dec 2009 B2
7639473 Hsu et al. Dec 2009 B2
7640802 King et al. Jan 2010 B2
7645262 Greenberg et al. Jan 2010 B2
7647112 Tracey Jan 2010 B2
7647185 Tarassenko et al. Jan 2010 B2
7653031 Godfrey et al. Jan 2010 B2
7672714 Kuo et al. Mar 2010 B2
7673679 Harrison et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7686839 Parker Mar 2010 B2
7697994 VanDanacker et al. Apr 2010 B2
7720036 Sadri May 2010 B2
7729776 Von Arx et al. Jun 2010 B2
7733224 Tran Jun 2010 B2
7736318 Cosentino Jun 2010 B2
7756587 Penner et al. Jul 2010 B2
7782991 Sobchak et al. Aug 2010 B2
7796043 Euliano et al. Sep 2010 B2
7797033 D'Andrea et al. Sep 2010 B2
7809399 Lu Oct 2010 B2
7844341 Von Arx et al. Nov 2010 B2
7881799 Greenberg et al. Feb 2011 B2
7978064 Zdeblick et al. Jul 2011 B2
7983189 Bugenhagen Jul 2011 B2
8036731 Kimchy et al. Oct 2011 B2
8036748 Zdeblick et al. Oct 2011 B2
8055334 Savage et al. Nov 2011 B2
8082919 Brunnberg et al. Dec 2011 B2
8131376 Faraji et al. Mar 2012 B1
8207731 Moskalenko Jun 2012 B2
8224596 Agrawal et al. Jul 2012 B2
8271146 Heber et al. Sep 2012 B2
8374698 Ok et al. Feb 2013 B2
8389003 Mintchev et al. Mar 2013 B2
8404275 Habboushe Mar 2013 B2
8425492 Herbert et al. Apr 2013 B2
8443214 Lee et al. May 2013 B2
8532776 Greenberg et al. Sep 2013 B2
8564432 Covannon et al. Oct 2013 B2
8597186 Hafezi et al. Dec 2013 B2
8698006 Bealka et al. Apr 2014 B2
8758237 Sherman et al. Jun 2014 B2
8784308 Duck et al. Jul 2014 B2
8836513 Hafezi et al. Sep 2014 B2
8858432 Robertson Oct 2014 B2
8932221 Colliou et al. Jan 2015 B2
8945005 Hafezi et al. Feb 2015 B2
9107806 Hafezi et al. Aug 2015 B2
9119918 Robertson et al. Sep 2015 B2
9161707 Hafezi et al. Oct 2015 B2
20010027331 Thompson Oct 2001 A1
20010044588 Mault Nov 2001 A1
20010051766 Gazdzinski Dec 2001 A1
20020002326 Causey et al. Jan 2002 A1
20020026111 Ackerman Feb 2002 A1
20020032384 Raymond et al. Mar 2002 A1
20020032385 Raymond et al. Mar 2002 A1
20020040278 Anuzis et al. Apr 2002 A1
20020077620 Sweeney et al. Jun 2002 A1
20020132226 Nair Sep 2002 A1
20020179921 Cohn Dec 2002 A1
20020192159 Reitberg Dec 2002 A1
20020193669 Glukhovsky Dec 2002 A1
20020198470 Imran et al. Dec 2002 A1
20030017826 vrijens et al. Jan 2003 A1
20030023150 Yokoi et al. Jan 2003 A1
20030028226 Thompson Feb 2003 A1
20030062551 Chen et al. Apr 2003 A1
20030065536 Hansen Apr 2003 A1
20030076179 Branch et al. Apr 2003 A1
20030083559 Thompson May 2003 A1
20030126593 Mault Jul 2003 A1
20030130714 Nielsen et al. Jul 2003 A1
20030135128 Suffin et al. Jul 2003 A1
20030135392 Vrijens et al. Jul 2003 A1
20030152622 Louie-Helm et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030158756 Abramson Aug 2003 A1
20030162556 Libes Aug 2003 A1
20030164401 Andreasson et al. Sep 2003 A1
20030167000 Mullick et al. Sep 2003 A1
20030171791 KenKnight Sep 2003 A1
20030171898 Tarassenko et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030185286 Yuen Oct 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030187338 Say et al. Oct 2003 A1
20030195403 Berner et al. Oct 2003 A1
20030213495 Fujita et al. Nov 2003 A1
20030214579 Iddan Nov 2003 A1
20030216622 Meron et al. Nov 2003 A1
20030216625 Phipps Nov 2003 A1
20030216666 Ericson et al. Nov 2003 A1
20030216729 Marchitto Nov 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040018476 LaDue Jan 2004 A1
20040034295 Salganicoff Feb 2004 A1
20040049245 Gass Mar 2004 A1
20040073095 Causey et al. Apr 2004 A1
20040073454 Urquhart et al. Apr 2004 A1
20040077995 Ferek-Petric Apr 2004 A1
20040082982 Gord et al. Apr 2004 A1
20040087839 Raymond et al. May 2004 A1
20040092801 Drakulic May 2004 A1
20040106859 Say et al. Jun 2004 A1
20040115507 Potter et al. Jun 2004 A1
20040115517 Fukuda et al. Jun 2004 A1
20040121015 Chidlaw et al. Jun 2004 A1
20040148140 Tarassenko et al. Jul 2004 A1
20040153007 Harris Aug 2004 A1
20040167226 Serafini Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040193020 Chiba Sep 2004 A1
20040193029 Glukhovsky Sep 2004 A1
20040193446 Mayer et al. Sep 2004 A1
20040199222 Sun et al. Oct 2004 A1
20040215084 Shimizu et al. Oct 2004 A1
20040218683 Batra Nov 2004 A1
20040220643 Schmidt Nov 2004 A1
20040224644 Wu Nov 2004 A1
20040225199 Evanyk Nov 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040258571 Lee et al. Dec 2004 A1
20040260154 Sidelnik Dec 2004 A1
20050003074 Brown et al. Jan 2005 A1
20050017841 Doi Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021370 Riff Jan 2005 A1
20050024198 Ward Feb 2005 A1
20050027205 Tarassenko et al. Feb 2005 A1
20050038321 Fujita et al. Feb 2005 A1
20050043634 Yokoi et al. Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050054897 Hashimoto et al. Mar 2005 A1
20050055014 Coppeta et al. Mar 2005 A1
20050062644 Leci Mar 2005 A1
20050065407 Nakamura et al. Mar 2005 A1
20050070778 Lackey Mar 2005 A1
20050075145 Dvorak et al. Apr 2005 A1
20050090753 Goor et al. Apr 2005 A1
20050092108 Andermo May 2005 A1
20050096514 Starkebaum May 2005 A1
20050096562 Delalic et al. May 2005 A1
20050101843 Quinn May 2005 A1
20050101872 Sattler May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050116820 Goldreich Jun 2005 A1
20050117389 Worledge Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131281 Ayer et al. Jun 2005 A1
20050143623 Kojima Jun 2005 A1
20050146594 Nakatani et al. Jul 2005 A1
20050148883 Boesen Jul 2005 A1
20050154428 Bruinsma Jul 2005 A1
20050156709 Gilbert et al. Jul 2005 A1
20050165323 Montgomery Jul 2005 A1
20050177069 Takizawa Aug 2005 A1
20050182389 LaPorte Aug 2005 A1
20050187789 Hatlestad et al. Aug 2005 A1
20050192489 Marshall Sep 2005 A1
20050197680 DelMain et al. Sep 2005 A1
20050208251 Aisenbrey Sep 2005 A1
20050228268 Cole Oct 2005 A1
20050234307 Heinonen Oct 2005 A1
20050240305 Bogash et al. Oct 2005 A1
20050245794 Dinsmoor Nov 2005 A1
20050259768 Yang et al. Nov 2005 A1
20050261559 Mumford Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050267756 Schultz et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050277999 Strother et al. Dec 2005 A1
20050279054 Mauze et al. Dec 2005 A1
20050280539 Pettus Dec 2005 A1
20050285746 Sengupta Dec 2005 A1
20050288594 Lewkowicz et al. Dec 2005 A1
20060001496 Abrosimov et al. Jan 2006 A1
20060028727 Moon et al. Feb 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060058602 Kwiatkowski et al. Mar 2006 A1
20060061472 Lovoi et al. Mar 2006 A1
20060065713 Kingery Mar 2006 A1
20060068006 Begleiter Mar 2006 A1
20060074283 Henderson Apr 2006 A1
20060074319 Barnes et al. Apr 2006 A1
20060078765 Yang et al. Apr 2006 A1
20060095091 Drew May 2006 A1
20060095093 Bettesh et al. May 2006 A1
20060100533 Han May 2006 A1
20060109058 Keating May 2006 A1
20060110962 Powell May 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060136266 Tarassenko et al. Jun 2006 A1
20060142648 Banet Jun 2006 A1
20060145876 Kimura et al. Jul 2006 A1
20060148254 McLean Jul 2006 A1
20060149339 Burnes Jul 2006 A1
20060155174 Glukhovsky et al. Jul 2006 A1
20060155183 Kroecker Jul 2006 A1
20060161225 Sormann et al. Jul 2006 A1
20060179949 Kim Aug 2006 A1
20060183993 Horn Aug 2006 A1
20060184092 Atanasoska et al. Aug 2006 A1
20060204738 Dubrow et al. Sep 2006 A1
20060210626 Spaeder Sep 2006 A1
20060216603 Choi Sep 2006 A1
20060218011 Walker Sep 2006 A1
20060235489 Drew Oct 2006 A1
20060243288 Kim et al. Nov 2006 A1
20060247505 Siddiqui Nov 2006 A1
20060253005 Drinan Nov 2006 A1
20060270346 Ibrahim Nov 2006 A1
20060273882 Posamentier Dec 2006 A1
20060276702 McGinnis Dec 2006 A1
20060280227 Pinkney Dec 2006 A1
20060282001 Noel Dec 2006 A1
20060289640 Mercure Dec 2006 A1
20060293607 Alt Dec 2006 A1
20070000776 Karube et al. Jan 2007 A1
20070002038 Suzuki Jan 2007 A1
20070006636 King et al. Jan 2007 A1
20070008113 Spoonhower et al. Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070027386 Such Feb 2007 A1
20070027388 Chou Feb 2007 A1
20070038054 Zhou Feb 2007 A1
20070049339 Barak et al. Mar 2007 A1
20070055098 Shimizu et al. Mar 2007 A1
20070060797 Ball Mar 2007 A1
20070060800 Drinan et al. Mar 2007 A1
20070066929 Ferren et al. Mar 2007 A1
20070073353 Rooney et al. Mar 2007 A1
20070096765 Kagan May 2007 A1
20070106346 Bergelson May 2007 A1
20070123772 Euliano May 2007 A1
20070129622 Bourget Jun 2007 A1
20070130287 Kumar Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142721 Berner et al. Jun 2007 A1
20070156016 Betesh Jul 2007 A1
20070160789 Merical Jul 2007 A1
20070162089 Mosesov Jul 2007 A1
20070162090 Penner Jul 2007 A1
20070167495 Brown et al. Jul 2007 A1
20070167848 Kuo et al. Jul 2007 A1
20070173701 Al-Ali Jul 2007 A1
20070179347 Tarassenko et al. Aug 2007 A1
20070179371 Peyser et al. Aug 2007 A1
20070185393 Zhou Aug 2007 A1
20070191002 Ge Aug 2007 A1
20070196456 Stevens Aug 2007 A1
20070207793 Myer Sep 2007 A1
20070208233 Kovacs Sep 2007 A1
20070213659 Trovato et al. Sep 2007 A1
20070237719 Jones Oct 2007 A1
20070244370 Kuo et al. Oct 2007 A1
20070255198 Leong et al. Nov 2007 A1
20070255330 Lee Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070279217 Venkatraman Dec 2007 A1
20070282174 Sabatino Dec 2007 A1
20070282177 Pilz Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080014866 Lipowshi Jan 2008 A1
20080020037 Robertson et al. Jan 2008 A1
20080021519 DeGeest Jan 2008 A1
20080021521 Shah Jan 2008 A1
20080027679 Shklarski Jan 2008 A1
20080033273 Zhou Feb 2008 A1
20080038588 Lee Feb 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080045843 Tsuji et al. Feb 2008 A1
20080046038 Hill Feb 2008 A1
20080051647 Wu et al. Feb 2008 A1
20080051667 Goldreich Feb 2008 A1
20080058614 Banet Mar 2008 A1
20080062856 Feher Mar 2008 A1
20080065168 Bitton et al. Mar 2008 A1
20080074307 Boric-Lubecke Mar 2008 A1
20080077015 Boric-Lubecke Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080077188 Denker et al. Mar 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091114 Min Apr 2008 A1
20080097549 Colbaugh Apr 2008 A1
20080097917 Dicks et al. Apr 2008 A1
20080103440 Ferren et al. May 2008 A1
20080112885 Okunev et al. May 2008 A1
20080114224 Bandy et al. May 2008 A1
20080119705 Patel May 2008 A1
20080119716 Boric-Lubecke May 2008 A1
20080121825 Trovato et al. May 2008 A1
20080137566 Marholev Jun 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080140403 Hughes et al. Jun 2008 A1
20080146871 Arneson et al. Jun 2008 A1
20080146889 Young Jun 2008 A1
20080146892 LeBoeuf Jun 2008 A1
20080154104 Lamego Jun 2008 A1
20080166992 Ricordi Jul 2008 A1
20080175898 Jones et al. Jul 2008 A1
20080183245 Van Oort Jul 2008 A1
20080188837 Belsky et al. Aug 2008 A1
20080194912 Trovato et al. Aug 2008 A1
20080208009 Shklarski Aug 2008 A1
20080214901 Gehman Sep 2008 A1
20080214985 Yanaki Sep 2008 A1
20080243020 Chou Oct 2008 A1
20080249360 Li Oct 2008 A1
20080262320 Schaefer et al. Oct 2008 A1
20080262336 Ryu Oct 2008 A1
20080269664 Trovato et al. Oct 2008 A1
20080275312 Mosesov Nov 2008 A1
20080284599 Zdeblick et al. Nov 2008 A1
20080288027 Kroll Nov 2008 A1
20080294020 Sapounas Nov 2008 A1
20080299197 Toneguzzo et al. Dec 2008 A1
20080300572 Rankers Dec 2008 A1
20080303638 Nguyen Dec 2008 A1
20080306357 Korman Dec 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080306360 Robertson et al. Dec 2008 A1
20080311852 Hansen Dec 2008 A1
20080312522 Rowlandson Dec 2008 A1
20080316020 Robertson Dec 2008 A1
20090009330 Sakama et al. Jan 2009 A1
20090009332 Nunez et al. Jan 2009 A1
20090024045 Prakash Jan 2009 A1
20090024112 Edwards et al. Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030297 Miller Jan 2009 A1
20090034209 Joo Feb 2009 A1
20090043171 Rule Feb 2009 A1
20090048498 Riskey Feb 2009 A1
20090062634 Say et al. Mar 2009 A1
20090062670 Sterling Mar 2009 A1
20090069642 Gao Mar 2009 A1
20090069655 Say et al. Mar 2009 A1
20090069656 Say et al. Mar 2009 A1
20090069657 Say et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069724 Otto et al. Mar 2009 A1
20090076343 James Mar 2009 A1
20090082645 Hafezi et al. Mar 2009 A1
20090087483 Sison Apr 2009 A1
20090088618 Ameson Apr 2009 A1
20090099435 Say et al. Apr 2009 A1
20090105561 Boyden et al. Apr 2009 A1
20090110148 Zhang Apr 2009 A1
20090112626 Talbot Apr 2009 A1
20090124871 Arshak May 2009 A1
20090124965 Greenberg et al. May 2009 A1
20090131774 Sweitzer May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090142853 Warrington et al. Jun 2009 A1
20090149839 Hyde et al. Jun 2009 A1
20090157113 Marcotte Jun 2009 A1
20090157358 Kim Jun 2009 A1
20090161602 Matsumoto Jun 2009 A1
20090163789 Say et al. Jun 2009 A1
20090171180 Pering Jul 2009 A1
20090171420 Brown et al. Jul 2009 A1
20090173628 Say et al. Jul 2009 A1
20090177055 Say et al. Jul 2009 A1
20090177056 Say et al. Jul 2009 A1
20090177057 Say et al. Jul 2009 A1
20090177058 Say et al. Jul 2009 A1
20090177059 Say et al. Jul 2009 A1
20090177060 Say et al. Jul 2009 A1
20090177061 Say et al. Jul 2009 A1
20090177062 Say et al. Jul 2009 A1
20090177063 Say et al. Jul 2009 A1
20090177064 Say et al. Jul 2009 A1
20090177065 Say et al. Jul 2009 A1
20090177066 Say et al. Jul 2009 A1
20090182206 Najafi Jul 2009 A1
20090182207 Riskey et al. Jul 2009 A1
20090182212 Say et al. Jul 2009 A1
20090182213 Say et al. Jul 2009 A1
20090182214 Say et al. Jul 2009 A1
20090182215 Say et al. Jul 2009 A1
20090182388 Von Arx Jul 2009 A1
20090187088 Say et al. Jul 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187090 Say et al. Jul 2009 A1
20090187091 Say et al. Jul 2009 A1
20090187092 Say et al. Jul 2009 A1
20090187093 Say et al. Jul 2009 A1
20090187094 Say et al. Jul 2009 A1
20090187095 Say et al. Jul 2009 A1
20090187381 King et al. Jul 2009 A1
20090192351 Nishino Jul 2009 A1
20090192368 Say et al. Jul 2009 A1
20090192369 Say et al. Jul 2009 A1
20090192370 Say et al. Jul 2009 A1
20090192371 Say et al. Jul 2009 A1
20090192372 Say et al. Jul 2009 A1
20090192373 Say et al. Jul 2009 A1
20090192374 Say et al. Jul 2009 A1
20090192375 Say et al. Jul 2009 A1
20090192376 Say et al. Jul 2009 A1
20090192377 Say et al. Jul 2009 A1
20090192378 Say et al. Jul 2009 A1
20090192379 Say et al. Jul 2009 A1
20090198115 Say et al. Aug 2009 A1
20090198116 Say et al. Aug 2009 A1
20090198175 Say et al. Aug 2009 A1
20090203964 Shimizu et al. Aug 2009 A1
20090203971 Sciarappa Aug 2009 A1
20090203972 Heneghan Aug 2009 A1
20090203978 Say et al. Aug 2009 A1
20090204265 Hackett Aug 2009 A1
20090210164 Say et al. Aug 2009 A1
20090216101 Say et al. Aug 2009 A1
20090216102 Say et al. Aug 2009 A1
20090227204 Robertson et al. Sep 2009 A1
20090227876 Tran Sep 2009 A1
20090227940 Say et al. Sep 2009 A1
20090227941 Say et al. Sep 2009 A1
20090227988 Wood et al. Sep 2009 A1
20090228214 Say et al. Sep 2009 A1
20090231125 Baldus Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090243833 Huang Oct 2009 A1
20090253960 Takenaka et al. Oct 2009 A1
20090256702 Robertson Oct 2009 A1
20090260212 Schmett et al. Oct 2009 A1
20090264714 Chou Oct 2009 A1
20090264964 Abrahamson Oct 2009 A1
20090265186 Tarassenko et al. Oct 2009 A1
20090273467 Elixmann Nov 2009 A1
20090281539 Selig Nov 2009 A1
20090295548 Ronkka Dec 2009 A1
20090296677 Mahany Dec 2009 A1
20090303920 Mahany Dec 2009 A1
20090306633 Trovato et al. Dec 2009 A1
20090312619 Say et al. Dec 2009 A1
20090318303 Delamarche et al. Dec 2009 A1
20090318761 Rabinovitz Dec 2009 A1
20090318779 Tran Dec 2009 A1
20090318783 Rohde Dec 2009 A1
20090318793 Datta Dec 2009 A1
20100001841 Cardullo Jan 2010 A1
20100010330 Rankers et al. Jan 2010 A1
20100033324 Shimizu et al. Feb 2010 A1
20100049004 Edman et al. Feb 2010 A1
20100049006 Magar Feb 2010 A1
20100049012 Dijksman et al. Feb 2010 A1
20100049069 Tarassenko et al. Feb 2010 A1
20100056878 Partin Mar 2010 A1
20100056891 Say et al. Mar 2010 A1
20100056939 Tarassenko et al. Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100062709 Kato Mar 2010 A1
20100063438 Bengtsson Mar 2010 A1
20100063841 D'Ambrosia et al. Mar 2010 A1
20100069002 Rong Mar 2010 A1
20100069717 Hafezi et al. Mar 2010 A1
20100099967 Say et al. Apr 2010 A1
20100099968 Say et al. Apr 2010 A1
20100099969 Say et al. Apr 2010 A1
20100100077 Rush Apr 2010 A1
20100100078 Say et al. Apr 2010 A1
20100106001 Say et al. Apr 2010 A1
20100118853 Godfrey May 2010 A1
20100139672 Kroll et al. Jun 2010 A1
20100168659 Say et al. Jul 2010 A1
20100179398 Say et al. Jul 2010 A1
20100191073 Tarassenko et al. Jul 2010 A1
20100210299 Gorbachov Aug 2010 A1
20100222652 Cho Sep 2010 A1
20100228113 Solosko Sep 2010 A1
20100233026 Ismagliov et al. Sep 2010 A1
20100234706 Gilland Sep 2010 A1
20100234715 Shin Sep 2010 A1
20100234914 Shen Sep 2010 A1
20100245091 Singh Sep 2010 A1
20100249881 Corndorf Sep 2010 A1
20100256461 Mohamedali Oct 2010 A1
20100259543 Tarassenko et al. Oct 2010 A1
20100268048 Say et al. Oct 2010 A1
20100268049 Say et al. Oct 2010 A1
20100268050 Say et al. Oct 2010 A1
20100274111 Say et al. Oct 2010 A1
20100280345 Say et al. Nov 2010 A1
20100280346 Say et al. Nov 2010 A1
20100295694 Kauffman et al. Nov 2010 A1
20100297640 Kumar et al. Nov 2010 A1
20100298650 Moon et al. Nov 2010 A1
20100298668 Hafezi et al. Nov 2010 A1
20100298730 Tarassenko et al. Nov 2010 A1
20100312188 Robertson et al. Dec 2010 A1
20100312580 Tarassenko et al. Dec 2010 A1
20110009715 O'Reilly et al. Jan 2011 A1
20110054265 Hafezi et al. Mar 2011 A1
20110065983 Hafezi et al. Mar 2011 A1
20110077660 Janik et al. Mar 2011 A1
20110105864 Robertson et al. May 2011 A1
20110124983 Kroll et al. May 2011 A1
20110224912 Bhavaraju et al. Sep 2011 A1
20110230732 Edman et al. Sep 2011 A1
20120016231 Westmoreland Jan 2012 A1
20120059257 Duck et al. Mar 2012 A1
20120062371 Radivojevic et al. Mar 2012 A1
20120116359 Hafezi et al. May 2012 A1
20120245043 England Sep 2012 A1
20120299723 Hafezi et al. Nov 2012 A1
20130030366 Robertson et al. Jan 2013 A1
20130129869 Hafezi et al. May 2013 A1
20130144132 Hafezi et al. Jun 2013 A1
20150059922 Thompson et al. Mar 2015 A1
20150080677 Thompson et al. Mar 2015 A1
20150080678 Frank et al. Mar 2015 A1
20150080679 Frank et al. Mar 2015 A1
20150080680 Zdeblick et al. Mar 2015 A1
20150112243 Hafezi et al. Apr 2015 A1
20150127737 Thompson et al. May 2015 A1
20150127738 Thompson et al. May 2015 A1
20150150480 Zdeblick et al. Jun 2015 A1
20150173646 Berkman et al. Jun 2015 A1
20150223751 Zdeblick et al. Aug 2015 A1
20150230729 Zdeblick et al. Aug 2015 A1
20150248833 Arne et al. Sep 2015 A1
Foreign Referenced Citations (151)
Number Date Country
10313005 Oct 2004 DE
0344939 Dec 1989 EP
1246356 Oct 2002 EP
1534054 May 2005 EP
1702553 Sep 2006 EP
1244308 Dec 2007 EP
2143369 Jan 2010 EP
61072712 Apr 1986 JP
05-228128 Sep 1993 JP
2000-506410 May 2000 JP
2002263185 Sep 2002 JP
2002282219 Oct 2002 JP
2003050867 Feb 2003 JP
2004-313242 Nov 2004 JP
2005-073886 Mar 2005 JP
2005-087552 Apr 2005 JP
2005-304880 Apr 2005 JP
2005124708 May 2005 JP
2005514966 May 2005 JP
2005343515 Dec 2005 JP
2006006377 Jan 2006 JP
2006509574 Mar 2006 JP
2007-313340 Dec 2007 JP
2009514870 Apr 2009 JP
2009528909 Aug 2009 JP
2006077523 Jul 2006 KR
200406192 May 2004 TW
200916136 Apr 2009 TW
WO8802237 Apr 1988 WO
WO9221307 Dec 1992 WO
WO9308734 May 1993 WO
WO9319667 Oct 1993 WO
WO9401165 Jan 1994 WO
WO9739963 Oct 1997 WO
WO9843537 Oct 1998 WO
WO9937290 Jul 1999 WO
WO9959465 Nov 1999 WO
WO0033246 Jun 2000 WO
WO0147466 Jul 2001 WO
WO0174011 Oct 2001 WO
WO0180731 Nov 2001 WO
WO0245489 Jun 2002 WO
WO02058330 Jul 2002 WO
WO02062276 Aug 2002 WO
WO02087681 Nov 2002 WO
WO02095351 Nov 2002 WO
WO03005877 Jan 2003 WO
WO03050643 Jun 2003 WO
WO03068061 Aug 2003 WO
WO2004014225 Feb 2004 WO
WO2004019172 Mar 2004 WO
WO2004039256 May 2004 WO
WO2004066833 Aug 2004 WO
WO2004066834 Aug 2004 WO
WO2004066903 Aug 2004 WO
WO2004068881 Aug 2004 WO
WO2004075032 Sep 2004 WO
WO2004109316 Dec 2004 WO
WO2005011237 Feb 2005 WO
WO2005020023 Mar 2005 WO
WO2005024687 Mar 2005 WO
WO2005041438 May 2005 WO
WO2005047837 May 2005 WO
WO2005051166 Jun 2005 WO
WO2005053517 Jun 2005 WO
WO2005083621 Sep 2005 WO
WO2005110238 Nov 2005 WO
WO2006021932 Mar 2006 WO
WO2006027586 Mar 2006 WO
WO2006028347 Mar 2006 WO
WO2006055892 May 2006 WO
WO2006055956 May 2006 WO
WO2006075016 Jul 2006 WO
WO2006100620 Sep 2006 WO
WO2006116718 Nov 2006 WO
WO2006127355 Nov 2006 WO
WO2007001724 Jan 2007 WO
WO2007001742 Jan 2007 WO
WO2007013952 Feb 2007 WO
WO2007014084 Feb 2007 WO
WO2007014527 Feb 2007 WO
WO2007021496 Feb 2007 WO
WO2007027660 Mar 2007 WO
WO2007028035 Mar 2007 WO
WO2007036687 Apr 2007 WO
WO2007036741 Apr 2007 WO
WO2007036746 Apr 2007 WO
WO2007040878 Apr 2007 WO
WO2007067054 Jun 2007 WO
WO2007071180 Jun 2007 WO
WO2007096810 Aug 2007 WO
WO2007101141 Sep 2007 WO
WO2007115087 Oct 2007 WO
WO2007120946 Oct 2007 WO
WO2007127316 Nov 2007 WO
WO2007127879 Nov 2007 WO
WO2007128165 Nov 2007 WO
WO2007130491 Nov 2007 WO
WO2007143535 Dec 2007 WO
WO2007149546 Dec 2007 WO
WO2006104843 Jan 2008 WO
WO2008008281 Jan 2008 WO
WO2008012700 Jan 2008 WO
WO2008030482 Mar 2008 WO
WO2008052136 May 2008 WO
WO2008063626 May 2008 WO
WO2008066617 Jun 2008 WO
WO2008076464 Jun 2008 WO
WO2008089232 Jul 2008 WO
WO2008091683 Jul 2008 WO
WO2008095183 Aug 2008 WO
WO2008097652 Aug 2008 WO
WO2008101107 Aug 2008 WO
WO2008112577 Sep 2008 WO
WO2008112578 Sep 2008 WO
WO2008120156 Oct 2008 WO
WO2008133394 Nov 2008 WO
WO2008134185 Nov 2008 WO
WO2008150633 Dec 2008 WO
WO2009000447 Dec 2008 WO
WO2009001108 Dec 2008 WO
WO2009006615 Jan 2009 WO
WO2009029453 Mar 2009 WO
WO2009031149 Mar 2009 WO
WO2009036334 Mar 2009 WO
WO2009051829 Apr 2009 WO
WO2009051830 Apr 2009 WO
WO2009063377 May 2009 WO
WO2009081348 Jul 2009 WO
WO2009111664 Sep 2009 WO
WO2009146082 Dec 2009 WO
WO0100085 Jan 2010 WO
WO2010009100 Jan 2010 WO
WO2010011833 Jan 2010 WO
WO2010019778 Feb 2010 WO
WO2010057049 May 2010 WO
WO2010080765 Jul 2010 WO
WO2010080843 Jul 2010 WO
WO2010107563 Sep 2010 WO
WO2010129288 Nov 2010 WO
WO2010132331 Nov 2010 WO
WO2010135516 Nov 2010 WO
WO2011068963 Jun 2011 WO
WO2011133799 Oct 2011 WO
WO2011159336 Dec 2011 WO
WO2011159337 Dec 2011 WO
WO2011159338 Dec 2011 WO
WO2011159339 Dec 2011 WO
WO2015112603 Jul 2015 WO
WO2015112604 Jul 2015 WO
WO2015119911 Aug 2015 WO
Non-Patent Literature Citations (73)
Entry
Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med (2007) vol. 1, No. 1, Issue 1, 12pp.
“ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. For Gastrointestinal Endoscopy (2006) vol. 63, No. 4; 7 pp.
Aydin et al., “Design and implementation considerations for an advanced wireless interface in miniaturized integrated sensor Microsystems” Sch. of Eng. & Electron., Edinburgh Univ., UK; (2003); abstract.
Barrie, Heidelberg pH capsule gastric analysis. Texbook of Natural Medicine, (1992), Pizzorno, Murray & Barrie.
Bohidar et al., “Dielectric Behavior of Gelatin Solutions and Gels” Colloid Polym Sci (1998) 276:81-86.
Brock, “Smart Medicine: The Application of Auto-ID Technology to Healthcare” Auto-ID Labs (2002) http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-010.pdf.
Carlson et al., “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects” Physiological Measurement (1999) 20(1): 53.
Coury, L. “Conductance Measurement Part 1: Theory”; Current Separations, 18:3 (1999) p. 91-96.
Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastoenterology (2008) vol. 22, Issue 5, pp. 813-837.
Dhar et al., “Electroless nickel plated contacts on porous silicon” Appl. Phys. Lett. 68 (10) pp. 1392-1393 (1996).
Eldek A., “Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications” Progress in Electromagnetics Research PIER 59, 1-15 (2006).
Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band- Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference (2008); http://www.asic.fh-offenburg.de/downloads/ePille/IFIP—IEEE—Dubai—Conference.pdf.
Ferguson et al., “Dialectric Constant Studies III Aqueous Gelatin Solutions” J. Chem. Phys. 2, 94 (1934) p. 94-98.
Furse C. M., “Dipole Antennas” J. Webster (ed). Wiley Encyclopedia of Electrical and Electronics Engineering (1999) p. 575-581.
Gaglani S. “Put Your Phone, or Skin, on Vibrate” MedGadget (2012) http://medgadget.com/2012/03/put-your-phone-or-skin-on-vibrate.html 8pp.
Gilson, D.R. “Molecular dynamics simulation of dipole interactions”, Department of Physics, Hull University, Dec. (2002), p. 1-43.
Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochure—Global—GMB-0118-01.pdf; 4pp.
Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng. (2007) 54(12): 2231-6; abstract.
Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek (2010) 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html.
Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16.
Hoeksma, J. “New ‘smart pill’ to track adherence” E-Health-Insider (2010) http://www.e-health-insider.com/news/5910/new—‘smart—pill’—monitors—medicines.
Hoover et al., “Rx for health: Engineers design pill that signals it has been swallowed” University of Florida News (2010) 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/.
ISFET—Ion Sensitive Field-Effect Transistor; MICROSENS S.A. pdf document. First cited by Examiner in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp.
Intromedic, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfo.asp).
Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good for Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp.
Kamada K., “Electrophoretic deposition assisted by soluble anode” Materials Letters 57 (2003) 2348-2351.
Kendle, Earl R. and Morris, Larry A., “Preliminary Studies in the Development of a Gastric Battery for Fish” (1964). Nebraska Game and Parks Commission White Papers, Conference Presentations, & Manuscripts. Paper 22. p. 1-6.
Kim et al., “A Semi-Interpenetrating Network System for a Polymer Membrane”; Eur. Polym. J. vol. 33 No. 7; pp. 1009-1014 (1997).
Li, P-Y, et al. “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143 (2008) p. 41-48.
MacKay et al., “Radio Telemetering from within the Body” Inside Information is Revealed by Tiny Transmitters that can be Swallowed or Implanted in Man or Animal Science (1991) 1196-1202; 134; American Association for the Advancement of Science, Washington D.C.
MacKay et al., “Endoradiosonde” Nature, (1957) 1239-1240, 179 Nature Publishing Group.
McKenzie et al., “Validation of a new telemetric core temperature monitor” J. Therm. Biol. (2004) 29(7-8):605-11.
Melanson, “Walkers swallow RFID pills for science” Engadget (2008); http://www.engadget.com/2008/07/29/walkers-swallow-rfid-pills-for-science/.
Minimitter Co. Inc. “Actiheart” Traditional 510(k) Summary. Sep. 27, 2005.
Minimitter Co. Inc. Noninvasive technology to help your studies succeed. Mini Mitter.com Mar. 31, 2009.
Mini Mitter Co, Inc. 510(k) Premarket Notification Mini-Logger for Diagnostic Spirometer. Sep. 21, 1999.
Mini Mitter Co, Inc. 510(k) Premarket Notification for VitalSense. Apr. 22, 2004.
Minimitter Co. Inc. VitalSense Integrated Physiological Monitoring System. Product Description. (2005).
Minimitter Co. Inc. VitalSense Wireless Vital Signs Monitoring. Temperatures.com Mar. 31, 2009.
Mojaverian et al., “Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition” Gastroenterology (1985) 89:(2): 392-7.
NPL—AntennaBasics.pdf, Radio Antennae, http://www.erikdeman.de/html/sail018h.htm; (2008) 3pp.
O'Brien et al., “The Production and Characterization of Chemically Reactive Porous Coatings of Zirconium Via Unbalanced Magnetron Sputtering” Surface and Coatings Technology (1996) 86-87; 200-206.
“RFID “pill” monitors marchers” RFID News (2008) http://www.rfidnews.org/2008/07/23/rfid-pill-monitors-marchers/.
Rolison et al., “Electrically conductive oxide aerogels: new materials in electrochemistry” J. Mater. Chem. (2001) 1, 963-980.
Roulstone, et al., “Studies on Polymer Latex Films: I. A study of latex film morphology” Polymer International 24 (1991) pp. 87-94.
Sanduleanu et al., “Octave tunable, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE MTT-S International Microwave Symposium Digest 545-8.
Santini, J.T. et al, “Microchips as controlled drug delivery-devices”, Agnew. Chem. Int. Ed. (2000), vol. 39, p. 2396-2407.
“SensiVida minimally invasive clinical systems” Investor Presentation Oct. 2009 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf.
Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6 (2002), p. 329-334.
Shin et al., “A Simple Route to Metal Nanodots and Nanoporous Metal Films”; Nano Letters, vol. 2, No. 9 (2002) pp. 933-936.
Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, (2010).; http://www.cumminscollege.org/downloads/electronics—and—telecommunication/Newsletters/Current%20Newsletters.pdf; First cited in third party client search conducted by Patent Eagle Search May 18, 2010 (2010).
“Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintextiles.com/articles/208.php; 2pp. (2009).
“The SmartPill Wireless Motility Capsule” Smartpill, The Measure of GI Health; (2010) http://www.smartpillcorp.com/index.cfm?pagepath=Products/The—SmartPill—Capsule&id=17814.
Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31.
Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346 (2007).
Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal (2010) Apr. 27th; http://www.rfidjournal.com/article/view/7560/1 3pp.
Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, Springer Berlin Heidelberg (2008) 21-30.
Tatbul et al., “Confidence-based data management for personal area sensor networks” ACM International Conference Proceeding Series (2004) 72.
Tierney, M.J. et al “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, p. 2005-2006.
Trutag, Technologies, Inc., Spectral Microtags for Authentication and Anti-Counterfeiting; “Product Authentication and Brand Protection Solutions”; http://www.trutags.com/; downloaded Feb. 12, 2013; 1 pp.
Walkey, “MOSFET Structure and Processing”; 97.398* Physical Electronics Lecture 20.
Watson, et al., “Determination of the relationship between the pH and conductivity of gastric juice” Physiol Meas. 17 (1996) pp. 21-27.
Whipple, Fred L.; “Endoradiosonde,” Nature, Jun. 1957, 1239-1240.
Winter, J. et al. “The material properties of gelatin gels”; USA Ballistic Research Laboratories, Mar. 1975, p. 1-157.
Wongmanerod et al., “Determination of pore size distribution and surface area of thin porous silicon layers by spectroscopic ellipsometry” Applied Surface Science 172 (2001) 117-125.
Xiaoming et al., “A telemedicine system for wireless home healthcare based on bluetooth and the internet” Telemedicine Journal and e-health (2004) 10(S2): S110-6.
Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52.
Yao et al., “Low Power Digital Communication in Implantable Devices Using Volume Conduction of Biological Tissues” Proceedings of the 28th IEEE, EMBS Annual International Conference, Aug. 30-Sep. 3 2006.
Zimmerman, “Personal Area Networks: Near-field intrabody communication” IBM Systems Journal (1996) 35 (3-4):609-17.
Description of ePatch Technology Platform for ECG and EMG, located it http://www.madebydelta.com/imported/images/DELTA—Web/documents/ME/ePatch—ECG—EMG.pdf, Dated Sep. 2, 2010.
Zworkin, “A Radio Pill” Nature, (1957) 898, 179 Nature Publishing Group.
Philips Respironics Products, Noninvasive Technology to Help Your Studies Succeed. 510 (k) Permanent Notification for Vital Sense. Apr. 22, 2004; http/minimitter.com/products.cfm.
Wang, X. et al “Resistance to Tracking and Erosion of Silicone Rubber Material under Various Types of Precipitation”, Jpn. J. Appl. Phys. vol. 38 (1999) pp. 5170-5175.
Related Publications (1)
Number Date Country
20150164746 A1 Jun 2015 US
Provisional Applications (1)
Number Date Country
61674851 Jul 2012 US