The present invention relates generally to radio frequency integrated circuits, and particularly to connecting radio frequency integrated circuits to millimeter wave antennas.
The 60 Giga Hertz (GHz) band is an unlicensed band which features a large amount of bandwidth allowing a very high volume of information to be transmitted wirelessly. As a result, multiple applications, that require transmission of a large amount of data, can be developed to allow wireless communication around the 60 GHz band. Examples for such applications include, but are not limited to, a wireless high definition TV (HDTV), a wireless docking station, a wireless Gigabit Ethernet, and many others.
In order to facilitate such applications there is a need to develop integrated circuits (ICs), such as amplifiers, mixers, and radio frequency (RF) analog circuits that operate in the 60 GHz frequency band. Such circuits should be fabricated as a chip that can be assembled on a printed circuit board (PCB). In addition, there is a need to develop low-cost and high-performance millimeter wave antennas to enable the integration of 60 GHz communication applications in consumer electronics products.
One of the requirements of millimeter wave antennas is minimal energy loss, to achieve maximum power antenna gain. Most of the energy is lost due to the connection between an antenna and an integrated circuit (IC), or chip, processing the RF signals to be transmitted or received. With the aim to minimize energy loss, prior art approaches suggest mounting millimeter wave antennas directly on the surface of a PCB using, for example, a surface mount technology (SMT). A SMT is a method for constructing electronic circuits in which the components are mounted directly onto the surface of a PCB.
One type of millimeter wave antenna suitable for the 60 GHz band is the on-chip dipole antenna. An exemplary diagram of on-chip dipole antenna 100 is shown in
The on-chip dipole antenna 100 is not feasible for commercial uses due to its inefficiency. For example, experiments show that the simulated antenna radiation efficiency is approximately 16 percent. In addition, the maximum transmit power of the antenna at 60 GHz is approximately −20 dBi. This is due to the substrate and connection losses.
Another technique for mounting an antenna onto a PCB is known as the low temperature co-fired ceramic (LTCC) process. The LTCC is a complex process that allows on-chip connection to an antenna. Particularly, a unit produced using this process is a compact multilayer three-dimensional design allowing other components to be combined within a miniature surface-mount package, and eliminating the need for many external components. However, the LTCC process is very costly, and therefore is not feasible for commercial uses.
It would be therefore advantageous to provide an efficient and low-cost solution for connecting millimeter wave antennas and ICs onto PCBs.
Embodiments of the invention are particularly pointed out and distinctly claimed at the conclusion of the specification in the claims. The foregoing and other objects, features and advantages of exemplary embodiments of the invention will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
Certain embodiments of the invention include a printed circuit board (PCB) assembled to include at least one millimeter wave antenna and a radio frequency integrated circuit (RF IC). The PCB comprises a square-shaped cavity in the PCB, wherein one of the edges of the cavity is substantially parallel to connecting pins of the at least one millimeter wave antenna; a RF IC placed in the cavity, wherein one side of the RF IC including RF pads is substantially at the edge of the cavity that is substantially parallel to the connecting pins; and traces connecting the RF pads and the connecting pins, wherein the connection between the at least one millimeter wave antenna and the RF IC shortens the length of the traces.
Certain embodiments of the invention also include method for mounting a millimeter wave antenna and a radio frequency integrated circuit (RF IC) onto a printed circuit board (PCB). The method comprises forming a square-shaped cavity in the PCB wherein one of edges of the cavity is substantially parallel to connecting pins of the millimeter wave antenna, wherein the millimeter wave antenna is printed on a first substrate layer of the PCB; placing the RF IC in the cavity by positioning one side of the RF IC including RF pads substantially at the edge of the cavity that is substantially parallel to the connecting pins; and bonding the RF pads and the connecting pins.
Certain embodiments of the invention further include a quasi-omni printed dipole antenna. The antenna comprises two dipole strips printed on a first substrate layer of a printed circuit board (PCB); a transmission line printed on the first substrate layer and between the two dipole strips; and a cavity directly under the two dipole strips, wherein a perimeter of the cavity is substantially the same as the perimeter of the two dipole strips and a depth of the cavity is a number of substrate layers of the PCB under the first substrate layer.
The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features and advantages of the invention will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
Certain embodiments of the invention include a method for mounting a millimeter wave antenna and a RF IC onto a PCB. Certain embodiments of the method reduce the energy lost on the connection between these two circuits. Other embodiments of the invention include a quasi-omnidirectional (omni) millimeter wave antenna, and a method of manufacture. Certain embodiments of the invention enable a mass production of low-cost and high performance RF devices that can be utilized in millimeter wave bands including, but not limited to, 60 GHz and 77 GHz.
In accordance with certain principles of the invention the length of the traces 240 (or wires) connecting the RF IC 210 to the antenna 220 is minimized, thereby minimizing the energy lost on this connection. With this aim, the RF IC 210 is placed in a cavity trimmed down in the PCB 230. The depth of the cavity is substantially the same as the height of the RF IC 210, thus the upper surface of the RF IC 210 is at the same level as the surface of the PCB 230. Specifically, as the PCB 230 is multilayer, the depth of the cavity is one or more substrate layers being cut out the PCB 230. In addition, in order to ensure the possible shortest traces 240, the RF IC 210 is placed in the cavity in such way that the IC's 210 side having RF pads 250 is located at an edge of the cavity. In accordance with an embodiment of the invention the RF IC 210 is in a form of a die (i.e., unpackaged IC).
Another embodiment of the invention includes a quasi-omni printed antenna that provides 180 degrees beamwidth (on the A-z plane). An exemplary radiation pattern on the A-z plane of the disclosed quasi-omni printed antenna is shown in
In accordance with another embodiment of the invention two quasi-omni printed antennas 500 are used to achieve spectrum coverage of 360 degrees in transmission or reception of radio signals. As illustrated in
While the present invention has been described at some length and with some particularity with respect to the several described embodiments, it is not intended that it should be limited to any such particulars or embodiments or any particular embodiment, but it is to be construed with references to the appended claims so as to provide the broadest possible interpretation of such claims in view of the prior art and, therefore, to effectively encompass the intended scope of the invention. Furthermore, the foregoing describes the invention in terms of embodiments foreseen by the inventor for which an enabling description was available, notwithstanding that insubstantial modifications of the invention, not presently foreseen, may nonetheless represent equivalents thereto. The word “substantially” is used based on the nature of the invention, in order to accommodate the minor variations that may be appropriate as understood by one of ordinary skill in the art to describe the invention with precision appropriate to the technology.
This application claims the benefit of U.S. provisional application No. 61/086,924 filed on Aug. 7, 2008, the contents of which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61086924 | Aug 2008 | US |