Embodiments of the present invention relate in general to valve replacement. More specifically, embodiments of the present invention relate to prosthetic valves for replacement of an atrioventricular valve.
Ischemic heart disease causes regurgitation of a heart valve by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the valve annulus.
Dilation of the annulus of the valve prevents the valve leaflets from fully coapting when the valve is closed. Regurgitation of blood from the ventricle into the atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the ventricle secondary to a volume overload and a pressure overload of the atrium.
For some applications of the present invention, one or more guide members (e.g., wires, sutures, or strings) is configured to be anchored to respective commissures of a native atrioventricular valve of a patient, and each guide member facilitates the advancement therealong of respective commissural anchors. The commissural anchors are shaped so as to define a plurality of barbs or prongs which are expandable to restrict proximal movement of the anchors following their deployment. The guide members facilitate advancement of a collapsible prosthetic valve support (e.g., a skirt) which serves as a base for and receives a collapsible prosthetic mitral valve which is subsequently coupled to the support. The support comprises a proximal annular element, or ring, and a distal cylindrical element. The cylindrical element is configured to push aside and press against the native leaflets of the native valve, and the proximal annular element is shaped so as to define one or more holes for sliding the valve support along the one or more guide members. The proximal annular element is configured to be positioned along the annulus of the native valve.
The collapsible prosthetic valve is configured for implantation in and/or at least partial replacement (e.g., full replacement) of the native atrioventricular valve of the patient, such as a native mitral valve or a native tricuspid valve. The valve support and the prosthetic valve are configured to assume collapsed states for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters. For some applications, the valve support and the prosthetic valve are implanted during an open-heart procedure.
The prosthetic valve support is shaped so as to define a downstream skirt. The downstream skirt is configured to be placed at native valve, such that the downstream skirt passes through the orifice of the native valve and extends toward, and, typically partially into, a ventricle. The downstream skirt typically additionally pushes aside and presses against the native leaflets of the native valve, which are left in place during and after implantation of the prosthetic valve support and/or the prosthetic valve.
The proximal annular element has upper and lower surfaces. For some applications of the present invention, one or more, e.g., a plurality of, tissue anchors are coupled to the lower surface and facilitate anchoring of the proximal annular element to the annulus of the native valve. For some applications, the one or more anchors comprise at least first and second commissural anchors that are configured to be implanted at or in the vicinity of the commissures of the native valve.
The cylindrical element of the valve support has first and second ends and a cylindrical body disposed between the first and second ends. The first end of the cylindrical element is coupled to the annular element while the second end defines a free end of the cylindrical element. For some applications of the present invention, the cylindrical element of the valve support is invertible such that (1) during a first period, the second end and the cylindrical body of the cylindrical element are disposed above the annular element (e.g., in the atrium of the heart), and (2) during a second period, the second end and the cylindrical body of the cylindrical element are disposed below the annular element (e.g., in the ventricle of the heart).
For some applications, techniques are applied to facilitate sealing of the interface between the valve support and the native valve, and/or the interface between the prosthetic valve and the native valve. For example, a sealing balloon may be placed on a valve-facing, lower side of the annular element of the valve support, the sealing balloon being configured to be inflated such that the balloon seals the interface between the valve support and the native valve. Alternatively or additionally, commissural helices are wrapped around chordae tendineae of the patient in order to facilitate sealing of the valve commissures around the valve support and/or around the valve. Further alternatively or additionally, the valve commissures are grasped by grasping elements that act in order to facilitate sealing of the commissures around the valve support and/or around the valve. For some applications, one or more of the aforementioned sealing elements facilitates anchoring of the prosthetic valve to the native valve in addition to facilitating sealing.
For some applications, the prosthetic valve comprises a wire frame, and a sealing material (such as latex) is disposed on the outer surface of the wire frame so as to form webbing between at least some of the struts of the wire frame, and to provide sealing between the wire frame and the native valve.
For some applications, an invertible prosthetic valve support is used to support a prosthetic valve. Typically, a sealing element is disposed circumferentially around a surface of the invertible prosthetic valve support that is initially an inner surface of the invertible prosthetic valve support. The invertible prosthetic valve support is anchored to the native valve, and is subsequently inverted. Subsequent to the inversion of the invertible prosthetic valve support, the sealing element is disposed on the outer surface of the invertible prosthetic valve support and acts to seal the interface between the outer surface and the native valve.
There is therefore provided, in accordance with some applications of the present invention, apparatus, including:
one or more valve support guide members configured to be delivered to one or more commissures of a native atrioventricular valve of a patient;
a prosthetic valve support configured to be advanced toward the native valve along the one or more valve support guide members and placed at the native valve;
a prosthetic valve configured to be coupled to the valve support; and
one or more sealing elements configured to facilitate sealing of an interface between the prosthetic valve support and the native valve.
For some applications, the sealing element includes a balloon disposed circumferentially around an outer surface of the prosthetic valve support.
For some applications, the sealing element includes one or more helices that are configured to facilitate sealing of commissures of the native valve with respect to the valve support by being wrapped around chordae tendineae of the native valve.
For some applications, the sealing element includes grasping elements that are configured to facilitate sealing of commissures of the native valve with respect to the valve support by grasping the commissures.
For some applications, the sealing element is configured to facilitate anchoring of the support to the native valve.
For some applications, the valve support is collapsible for transcatheter delivery and expandable to contact the native atrioventricular valve.
For some applications, the prosthetic valve includes two or more prosthetic leaflets.
For some applications, the native atrioventricular valve includes a mitral valve, and the prosthetic valve includes three prosthetic leaflets.
For some applications, the valve support guide members are removable from the patient following coupling of the prosthetic valve to the valve support.
For some applications, the valve support is shaped so as to define a distal portion which is configured to push aside, at least in part, native leaflets of the valve of the patient.
For some applications, the valve support is shaped so as to define one or more holes, the one or more holes being configured to facilitate slidable passage therethrough of a respective one of the one or more valve support guide members.
For some applications, the one or more valve support guide members includes one valve support guide member that is looped through first and second commissures of the atrioventricular valve in a manner in which a looped portion of the valve support guide member is disposed in a ventricle of the patient and first and second free ends of the valve support guide member are accessible from a site outside a body of the patient.
For some applications, the apparatus further includes:
a guide wire configured to be advanced, via the native atrioventricular valve, into a ventricle of the patient, and coupled to an inner wall of the patient's ventricle; and
a valve support guide member tube coupled to the guide wire,
and a distal portion of the valve support guide member is configured to loop through the valve support guide member tube, such that, in response to the valve support guide member being pushed distally, portions of the valve support guide member are pushed to respective commissures of the native valve.
For some applications, the prosthetic valve is shaped so as to define one or more protrusions configured to ensnare one or more native leaflets of the native valve of the patient.
For some applications, the protrusions are disposed in a sinusoidal configuration such that the protrusions conform with a saddle shape of the patient's native annulus.
For some applications, the protrusions are configured to prevent the native leaflets from interfering with a left ventricular outflow tract of the patient, by sandwiching the leaflets between the protrusions and the prosthetic valve support.
For some applications, the valve support includes:
a first end that is configured to be placed on an atrial side of a native atrioventricular valve of a patient; and
a second end that is configured, during a first period, to be disposed inside the patient's atrium, above the first end of the valve support,
the valve support being at least partially invertible in a manner in which, during a second period, the second end of the valve support is disposed at least partially inside a ventricle of the patient, below the first end of the valve support.
For some applications, the valve support includes an annular element and a generally cylindrical element coupled to the annular element, the generally cylindrical element being configured to push aside native leaflets of the native valve, and the cylindrical element has first and second ends and a cylindrical body that is disposed between the first and second ends.
For some applications, the sealing element includes a balloon disposed underneath the annular element and configured to facilitate sealing of an interface between the annular element and the native valve.
For some applications, the apparatus further includes one or more prosthetic valve guide members, the prosthetic valve guide members being configured to facilitate advancement of the prosthetic valve therealong and toward the valve support.
For some applications:
the first end of the cylindrical element is coupled to the annular element,
during a first period, the second end of the cylindrical element is disposed above the annular element in a manner in which the body of the cylindrical element is disposed above the annular element, and
the cylindrical element is invertible in a manner in which, during a second period, the second end of the cylindrical element is disposed below the annular element and the body of the cylindrical element is disposed below the annular element.
For some applications:
during the first period, the second end of the cylindrical element is disposed in an atrium of a heart of the patient and the annular element is positioned along an annulus of the native valve,
the prosthetic valve is advanceable along the one or more prosthetic valve guide members into a ventricle of the heart of the patient, and
in response to advancement of the prosthetic valve into the ventricle, the one or more prosthetic valve guide members are pulled into the ventricle and pull the second end and the body of the cylindrical element into the ventricle to invert the cylindrical element.
There is further provided, in accordance with some applications of the present invention, apparatus, including:
a prosthetic valve support configured to be advanced toward a native atrioventricular valve of a patient and placed at the native valve;
a prosthetic valve configured to be coupled to the valve support, the prosthetic valve being shaped so as to define first and second sets of one or more protrusions, each set of protrusions configured to ensnare a respective native leaflet of the native valve of the patient, the first set of protrusions being disposed within a first circumferential arc with respect to a longitudinal axis of the prosthetic valve, on a first side of a distal end of the prosthetic valve, the second set of protrusions being disposed within a second circumferential arc with respect to the longitudinal axis of the prosthetic valve, on a second side of the distal end of the prosthetic valve, the first and second sets being disposed so as to provide first and second gaps therebetween at the distal end of the prosthetic valve, at least one of the gaps having a circumferential arc of at least 20 degrees; and
one or more valve guide members configured to be delivered to one or more commissures of the native valve, and to guide the valve such that the first and second circumferential arcs are aligned with respective leaflets of the native valve and such that the first and second gaps are aligned with respective commissures of the native valve.
For some applications, the at least one of the gaps has a circumferential arc of at least 60 degrees.
For some applications, the first circumferential arc defines an angle of between 25 degrees and 90 degrees about the longitudinal axis of the prosthetic valve.
For some applications, the second circumferential arc defines an angle of between 25 degrees and 90 degrees about the longitudinal axis of the prosthetic valve.
For some applications, the first circumferential arc defines an angle of between 45 degrees and 75 degrees about the longitudinal axis of the prosthetic valve.
For some applications, the second circumferential arc defines an angle of between 45 degrees and 75 degrees about the longitudinal axis of the prosthetic valve.
There is additionally provided, in accordance with some applications of the present invention, a method, including:
determining an area defined by an annulus of a native atrioventricular valve of a patient;
selecting a prosthetic valve to be placed in the native valve by determining that the valve defines a cross-sectional area that is less than 90% of the area defined by the annulus; and
deploying the prosthetic valve at the native valve,
the selecting of the prosthetic valve facilitating sealing of the native valve with respect to the prosthetic valve by facilitating closing of leaflets of the native valve around the prosthetic valve, upon deployment of the prosthetic valve.
For some applications, selecting the prosthetic valve includes selecting a prosthetic valve having a material disposed on an outer surface thereof.
For some applications, selecting the prosthetic valve includes selecting a prosthetic valve having a material that prevents tissue growth disposed on an outer surface thereof.
For some applications, selecting the prosthetic valve includes selecting a prosthetic valve having a material that promotes tissue growth disposed on an outer surface thereof.
For some applications, selecting the prosthetic valve to be placed in the native valve includes determining that the valve defines a cross-sectional area that is less than 80% of the area defined by the annulus.
For some applications, selecting the prosthetic valve to be placed in the native valve includes determining that the valve defines a cross-sectional area that is less than 60% of the area defined by the annulus.
There is further provided, in accordance with some applications of the present invention, apparatus including:
a valve support for receiving a prosthetic valve, the valve support including:
For some applications, the valve support includes a flexible wireframe covered by a fabric.
For some applications, the valve support is collapsible for transcatheter delivery and expandable to contact the native atrioventricular valve.
For some applications, the valve support defines a surface that is an inner surface of the valve support during the first period, and an outer surface of the valve support during the second period, and the apparatus further includes a sealing material that is disposed on the surface, such that during the second period the sealing material facilitates sealing between the valve support and the native valve.
For some applications, the first end includes a coupling element configured to couple the valve support to tissue of the native valve on the atrial side of the native valve.
For some applications, the first end is shaped to define barbs that are configured to couple the valve support to tissue of the native valve on the atrial side of the native valve
For some applications, the valve support includes:
an annular element configured to be positioned along a native annulus of the native atrioventricular valve; and
a flexible generally cylindrical element configured to be positioned in the native atrioventricular valve of the patient and to push aside native leaflets of the native valve, the first end of the cylindrical element defining the first end of the valve support, and the first end of the cylindrical element being coupled to the annular element.
For some applications, the apparatus further includes one or more valve support guide members configured to be delivered to one or more commissures of the native atrioventricular valve of the patient, and the one or more valve support guide members are configured to facilitate advancement of the valve support toward the native valve.
For some applications, the valve support is shaped so as to define one or more holes, the one or more holes configured to facilitate slidable passage therethrough of a respective one of the one or more valve support guide members.
For some applications, the one or more valve support guide members includes one valve support guide member that is looped through first and second commissures of the atrioventricular valve in a manner in which a looped portion of the valve support guide member is disposed in a ventricle of the patient and first and second free ends of the valve support guide member are accessible from a site outside a body of the patient.
For some applications, the apparatus further includes:
a guide wire configured to be advanced, via the native atrioventricular valve, into a ventricle of the patient, and coupled to an inner wall of the patient's ventricle; and
a valve support guide member tube coupled to the guide wire,
and a distal portion of the valve support guide member is configured to loop through the valve support guide member tube, such that, in response to the valve support guide member being pushed distally, portions of the valve support guide member are pushed to respective commissures of the native valve.
For some applications, the apparatus further includes one or more prosthetic valve guide members reversibly couplable to the cylindrical element in a vicinity of the second end of the cylindrical element, the prosthetic valve guide members being configured to facilitate advancement of the prosthetic valve therealong and toward the valve support.
For some applications, the apparatus further includes the prosthetic valve, and the prosthetic valve is couplable to the valve support.
For some applications:
during the first period, the second end of the cylindrical element is disposed in an atrium of a heart of the patient and the annular element is positioned along an annulus of the native valve,
the prosthetic valve is advanceable along the one or more prosthetic valve guide members into a ventricle of the heart of the patient, and
in response to advancement of the prosthetic valve into the ventricle, the one or more prosthetic valve guide members are pulled into the ventricle and pull the second end of the cylindrical element into the ventricle to invert the cylindrical element.
For some applications, the apparatus further includes one or more sealing elements configured to facilitate sealing of an interface between the prosthetic valve support and the native valve.
For some applications, the sealing element includes a balloon disposed circumferentially around a surface of the prosthetic valve support.
For some applications, the sealing element includes one or more helices that are configured to facilitate sealing of commissures of the native valve with respect to the valve support by being wrapped around chordae tendineae of the native valve.
For some applications, the sealing element includes grasping elements that are configured to facilitate sealing of commissures of the native valve with respect to the valve support by grasping the commissures.
For some applications, the sealing element is configured to facilitate anchoring of the support to the native valve.
For some applications, the apparatus further includes the prosthetic valve, and the prosthetic valve is couplable to the valve support.
For some applications, the prosthetic valve is collapsible for transcatheter delivery and expandable when exposed from within a delivery catheter.
For some applications, the prosthetic valve includes two or more prosthetic leaflets.
For some applications, the native atrioventricular valve includes a mitral valve, and the prosthetic valve includes three prosthetic leaflets.
For some applications, the prosthetic valve is shaped so as to define one or more protrusions configured to ensnare one or more native leaflets of the native valve of the patient.
For some applications, the protrusions are disposed in a sinusoidal configuration such that the protrusions conform with a saddle shape of the patient's native annulus.
For some applications, the protrusions are configured to prevent the native leaflets from interfering with a left ventricular outflow tract of the patient, by sandwiching the leaflets between the protrusions and the prosthetic valve support.
There is further provided, in accordance with some applications of the present invention, apparatus, including:
a guide wire configured to be advanced into a patient's ventricle via a native atrioventricular valve of the patient, and coupled to an inner wall of the patient's ventricle;
a valve support guide member tube coupled to the guide wire;
a valve support guide member, a distal portion of the valve support guide member looping through the valve support guide member tube, such that, in response to the valve support guide member being pushed distally, portions of the valve support guide member are pushed to respective commissures of the native valve;
a prosthetic valve support configured to be advanced toward the commissures of the native valve along the valve support guide member portions; and
a prosthetic valve configured to be coupled to the valve support.
For some applications, first and second free ends of the valve support guide member are accessible from a site outside a body of the patient.
For some applications, the valve support includes:
an annular element configured to be positioned along a native annulus of the native atrioventricular valve; and
a generally cylindrical element configured to be positioned in the native atrioventricular valve of the patient and to push aside native leaflets of the native valve, the cylindrical element being coupled to the annular element, at a first end of the cylindrical element.
For some applications, the valve support is shaped so as to define one or more holes, the one or more holes configured to facilitate slidable passage therethrough of respective portions of the portions of the valve support guide member.
For some applications, the guide member is configured to facilitate advancement of the prosthetic valve therealong and toward the valve support.
For some applications, the prosthetic valve is collapsible for transcatheter delivery and expandable when exposed from within a delivery catheter.
For some applications, the prosthetic valve includes two or more prosthetic leaflets.
For some applications, the native atrioventricular valve includes a mitral valve, and the prosthetic valve includes three prosthetic leaflets.
For some applications, the guide member is removable from the patient following the coupling of the prosthetic valve to the valve support.
For some applications, the prosthetic valve is shaped so as to define one or more protrusions configured to ensnare one or more native leaflets of the native valve of the patient.
For some applications, the protrusions are disposed in a sinusoidal configuration such that the protrusions conform with a saddle shape of the patient's native annulus.
For some applications, the protrusions are configured to prevent the native leaflets from interfering with a left ventricular outflow tract of the patient, by sandwiching the leaflets between the protrusions and the prosthetic valve support.
For some applications, the apparatus further includes one or more sealing elements configured to facilitate sealing of an interface between the prosthetic valve support and the native valve.
For some applications, the sealing element includes a balloon disposed circumferentially around a surface of the prosthetic valve support.
For some applications, the sealing element includes one or more helices that are configured to facilitate sealing of commissures of the native valve with respect to the valve support by being wrapped around chordae tendineae of the native valve.
For some applications, the sealing element includes grasping elements that are configured to facilitate sealing of commissures of the native valve with respect to the valve support by grasping the commissures.
For some applications, the sealing element is configured to facilitate anchoring of the support to the native valve.
There is additionally provided, in accordance with some applications of the present invention, apparatus, including:
one or more valve guide members configured to be delivered to one or more commissures of a native atrioventricular valve of a patient;
a prosthetic valve configured to be advanced to be advanced toward the native valve along the one or more valve guide members and placed at the native valve at least the one or more commissures; and
one or more proximally-facing grasping elements that are configured to facilitate sealing of commissures of the native valve with respect to the valve by:
For some applications, the grasping elements include two surfaces that are hingedly coupled to one another, and that are configured to facilitate the sealing of the commissures of the native valve with respect to the prosthetic valve by being closed about the hinge with respect to one another.
There is further provided, in accordance with some applications of the present invention, a method, including:
advancing one or more valve support guide members toward one or more commissures of a native atrioventricular valve of a patient;
placing a prosthetic valve support at the native atrioventricular valve by advancing the valve support along the one or more valve support guide members;
coupling a prosthetic valve to the prosthetic valve support; and
facilitating sealing of an interface between the prosthetic valve support and the native valve by deploying a sealing element in a vicinity of the interface.
There is additionally provided, in accordance with some applications of the present invention, a method including:
placing a first end of a prosthetic valve support on an atrial side of a native atrioventricular valve of a patient, such that a second end of the valve support is disposed, during a first period, inside the patient's atrium, above the first end of the valve support; and
subsequent to the placing of the valve support, inverting at least a portion of the valve support such that, during a second period, the second end of the valve support is disposed at least partially inside a ventricle of the patient, below the first end of the valve support.
There is additionally provided, in accordance with some applications of the present invention, a method, including:
advancing a guide wire, via a native atrioventricular valve, into a ventricle of the patient, a valve support guide member tube being coupled to the guide wire;
coupling a distal end of the guide wire to an inner wall of the patient's ventricle; and
causing portions of a valve support guide member to be pushed to respective commissures of the native valve, by pushing the guide member distally, a distal portion of the valve support guide member looping through the valve support guide member tube;
advancing a prosthetic valve support toward the commissures of the native valve along the valve support guide member portions; and
coupling a prosthetic valve to the valve support.
There is further provided, in accordance with some applications of the present invention, a method, including:
advancing one or more valve guide members toward one or more commissures of a native atrioventricular valve of a patient;
placing a prosthetic valve at the native atrioventricular valve by advancing the valve along the one or more valve guide members; and
facilitating sealing of commissures of the native valve with respect to the valve by:
The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:
Reference is now made to
For some applications, guide members 21a and 21b comprise guide wires having a diameter of 0.035 inches.
The transcatheter procedure typically begins with the advancing of a semi-rigid guide wire into a right atrium 4 of the patient. The semi-rigid guide wire provides a guide for the subsequent advancement of a sheath 25 therealong and into the right atrium. Once sheath 25 has entered the right atrium, the semi-rigid guide wire is retracted from the patient's body. Sheath 25 typically comprises a 13-20 F sheath, although the size may be selected as appropriate for a given patient. Sheath 25 is advanced through vasculature into the right atrium using a suitable point of origin typically determined for a given patient. For example:
In some applications of the present invention, sheath is advanced through the inferior vena cava of the patient and into the right atrium using a suitable point of origin typically determined for a given patient.
Sheath 25 is advanced distally until sheath 25 reaches the interatrial septum. For some applications, a resilient needle and a dilator (not shown) are advanced through the sheath and into the heart. In order to advance the sheath transseptally into the left atrium, the dilator is advanced to the septum, and the needle is pushed from within the dilator and is allowed to puncture the septum to create an opening that facilitates passage of the dilator and subsequently the sheath therethrough and into the left atrium. The dilator is passed through the hole in the septum created by the needle. Typically, the dilator is shaped to define a hollow shaft for passage along the needle, and the hollow shaft is shaped to define a tapered distal end. This tapered distal end is first advanced through the hole created by the needle. The hole is enlarged when the gradually increasing diameter of the distal end of the dilator is pushed through the hole in the septum.
The advancement of sheath 25 through the septum and into the left atrium is followed by the extraction of the dilator and the needle from within sheath 25.
As shown in
Anchors 30a and 30b, ribbed crimping structures 34, and the distal ends of surrounding sheaths 26a and 26b are advanced into ventricle 6. Subsequently, anchors 30a and 30b are pushed distally from within sheaths 26a and 26b, (or sheaths 26a and 26b are pulled proximally with respect to anchors 30a and 30b) to expose anchors 30a and 30b. As anchors 30a and 30b are exposed from within sheaths 26a and 26b, prongs 32 are free to expand, as shown in
As shown in
For some applications, following the anchoring of anchors 30a and 30b to commissures 8 and 10, respectively, guide members 21a and 21b are removed from the body of the patient.
Reference is now made to
It is to be noted that support 40 is slid along lumens 27a and 27b by way of illustration and not limitation. That is, for some applications, following the anchoring of anchors 30a and 30b to commissures 8 and 10, respectively, guide members 21a and 21b are not removed from the body of the patient, but rather lumens 27a and 27b are removed (e.g., by being decoupled from crimping structures 34) leaving behind anchors 30a and 30b and guide members 21a and 21b. Guide members 21a and 21b may then be threaded through holes 46a and 46b, respectively, and support 40 is slid along guide members 21a and 21b. In such a manner, guide members 21a and 21b function as valve support guide members.
Support 40 comprises a collapsible flexible support frame 48, which is at least partially covered by a covering 49. Support 40 is configured to be placed at native valve 5, such that cylindrical element 42 passes through the orifice of the native valve and extends towards, and, typically partially into, ventricle 6 (as shown in
For some applications, collapsible support frame 48 comprises a stent, which comprises a plurality of struts. The struts may comprise, for example, a metal such as nitinol or stainless steel. For some applications, frame comprises a flexible metal, e.g., nitinol, which facilitates compression of support 40 within a delivery sheath or overtube 50. For some applications, covering 49 comprises a fabric, such as a woven fabric, e.g., Dacron. Covering 49 is typically configured to cover at least a portion of cylindrical element 42, and at least a portion of annular element 44. The covering may comprise a single piece, or a plurality of pieces sewn together.
As shown in
In
Responsively to the placement of valve support 40 at native valve 5, cylindrical element 42 is positioned partially within ventricle 6 and native leaflets 12 and 14 of native valve 5 are pushed aside.
As shown in section A-A, ribbed crimping structures 34 are shaped so as to define a plurality of male couplings. Locking crimping elements 64a and 64b each comprise a cylindrical element having an inner lumen that is shaped so as to surround a respective ribbed crimping structure 34. Each inner lumen of locking crimping elements 64a and 64b is shaped so as to define female couplings to receive the male couplings of ribbed crimping structure 34. The female couplings of locking crimping element 64 are directioned such that they facilitate distal advancement of locking crimping element 64 while restricting proximal advancement of locking crimping element 64. When the female couplings of locking crimping element 64 receive the male couplings of ribbed crimping structure 34, valve support 40 is locked in place from an atrial surface of valve 5. It is to be noted that for some applications, ribbed crimping elements 34 comprise female couplings, and locking crimping elements 64 comprise male couplings.
Reference is now made to
Following the placement of support 40 at annulus 11, pushing elements 52a and 52b and sheath or overtube 50 are removed from the body of the patient, leaving behind lumens 27a and 27b, as shown in
As shown in
Following the partial deployment of valve 80 in ventricle 6, overtube 70 is pulled proximally to pull valve 80 proximally such that cylindrical element 42 of valve support 40 surrounds a proximal portion of prosthetic valve 80. Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 40 responsively to radial forces acted upon valve support 40 by prosthetic valve 80.
Valve 80 comprises a plurality of distal protrusions (e.g., snares). When valve 80 is pulled proximally, as described hereinabove, protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve. By the ensnaring of the native leaflets, protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 40. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve. The scope of the present invention includes using any sort of protrusions (e.g., hooks) that protrude from the distal end of the main frame of prosthetic valve 80 and that are configured such that the native valve is sandwiched between the protrusions and valve support 40. Typically, the protrusions cause sandwiching of the native valve leaflets, such that the leaflets do not interfere with the left ventricular outflow tract (LVOT).
For some applications, during the procedure, the prosthetic valve is pulled back proximally with respect to valve support, as described hereinabove. The prosthetic valve is pulled back to a position with respect to valve support that is such that protrusions 84 prevent the native leaflets from interfering with the LVOT, by sandwiching the native leaflets between the protrusions and the valve support. The prosthetic valve is then deployed at this position.
For some applications, protrusions are disposed on the valve on the sides of the valve that are adjacent to the anterior and posterior leaflets of the native valve, and the valve does not includes protrusions on the portions of the valve that are adjacent to the commissures of the native valve, as described with reference to
Additionally, as shown in
Prosthetic valve 80 is configured for implantation in and/or at least partial replacement of a native atrioventricular valve 5 of the patient, such as a native mitral valve or a native tricuspid valve. Prosthetic valve 80 is configured to assume a collapsed state for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters.
Reference is now made to
Reference is now made to
Reference is now made to
Commissural helices 100a and 100b are typically placed at commissures 8 and 10 in a generally similar technique to that described with reference to anchors 30a and 30b. Typically, each helix 30a and 30b is reversibly coupled to a respective delivery lumen 27a and 27b. As described above, each delivery lumen 27 slides around a respective guide member 21, and a respective surrounding sheath 26a and 26b surrounds each delivery lumen 27a and 27b.
Commissural helices 100a and 100b (optionally, ribbed crimping structures 34), and the distal ends of surrounding sheaths 26a and 26b are advanced into ventricle 6. The helices are pushed out of the distal ends of surrounding sheaths 26a and 26b. Subsequently, the helices are rotated proximally such that the helices wrap around at least some chordae tendineae 102 of the patient. Following the advancement of the helices out of sheaths 26a and 26b, the sheaths are extracted. For some applications the helices are conical helices (as shown), and the wider end of the conical helix is disposed at the proximal end of the helix.
Subsequent to the placement of commissural helices 100a and 100b around the chordae tendineae, prosthetic valve support 40 is placed at annulus 11, in accordance with the techniques described hereinabove, and as shown in
Typically, commissural helices 100a and 100b facilitate sealing of native commissures 8 and 10, thereby reducing retrograde blood flow via the commissures, relative to retrograde blood flow in the absence of the helices. Further typically, the sealing of the native commissures facilitates anchoring of the prosthetic valve support to native valve 5.
Reference is now made to
Subsequent to the placement of grasping elements 106a and 106b distally to native commissures 8 and 10, prosthetic valve 80 is advanced toward native valve 5, as shown in
Typically, grasping elements 106a and 106b facilitate sealing of native commissures 8 and 10, thereby reducing retrograde blood flow via the commissures, relative to retrograde blood flow in the absence of the grasping elements. Further typically, the sealing of the native commissures facilitates anchoring of the prosthetic valve to native valve 5.
Although not shown, for some applications, prosthetic valve support 40 is used in addition to grasping elements 106a and 106b, in order to anchor prosthetic valve 80 to native valve 5. For some applications, the grasping elements are used to anchor and/or provide sealing for prosthetic valve support 40 (instead of, or in addition to, being used to anchor prosthetic valve 80, as shown). For such applications, generally similar techniques are used to those described with respect to the use of the grasping elements for anchoring the prosthetic valve, mutatis mutandis.
Reference is now made to
Reference is now made to
For some applications, an anchor 302 is advanced toward the vicinity of apex 304 of heart 2, via sheath 25, and is anchored to the vicinity of the apex, as shown in
As shown in
Subsequent to the placement of valve support 40 at the native valve, prosthetic atrioventricular valve 80 is coupled to valve support 40. For some applications, pushing elements 52a and 52b continue to push the valve support against the native valve, during the coupling of the prosthetic valve to the valve support. As described hereinabove, overtube 70 is advanced into ventricle 6, as shown in
As described hereinabove, valve 80 comprises a plurality of distal protrusions 84. When valve 80 is pulled proximally, as described hereinabove, protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve. By the ensnaring of the native leaflets, protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 40. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve.
Subsequent to the placement of the prosthetic valve at the native valve, sheath 25, overtube 70, pushing elements 52a and 52b, guide member 21, anchor 302, and guidewire 306 are removed from the patient's body, as shown in
Reference is now made to
Valve support 140 comprises an annular element 144 (that is identical to annular element 44 described hereinabove) and a cylindrical element 142. Cylindrical element 142 has a first end 150, a second end 152, and a cylindrical body 153 disposed between first and second ends 150 and 152. Cylindrical element 142 is attached to annular element 144 at first end 150 of cylindrical element 142.
During and following implantation of support 140 at annulus 11, as shown in
The configuration of valve support 140 as shown in
Reference is now made to
During a typical procedure, anchor 302 is advanced toward the vicinity of apex 304 of heart 2, via sheath 25, and is anchored to the vicinity of the apex, as shown in
Subsequent to the anchoring of first end 310 of prosthetic valve support 300 to native valve tissue (as shown in
Reference is now made to
The deployment of prosthetic valve 80 is generally similar to the techniques described hereinabove with reference to
As described hereinabove, for some applications, valve 80 comprises a plurality of distal protrusions 84. When valve 80 is pulled proximally, protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve. By the ensnaring of the native leaflets, protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 300. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve.
Additionally, as shown in
Subsequent to the coupling of valve 80 to valve support 300, overtube 70, distal and proximal tensioning elements 308 and 311, and wires 309 are removed from the patient's body, via sheath 25. Typically, wires 309 are cut, in order to facilitate the removal of the wires from the patient's body. Guidewire 306 and anchor 302 are removed from the patient's body by detaching the anchor from apex 304, and withdrawing the anchor and the guidewire, via sheath 25.
Reference is now made to
For some applications, in order to facilitate the sealing of the native valve around the outer surface of the prosthetic valve, a material is placed on the outer surface of the prosthetic valve in order to provide a sealing interface between the prosthetic valve and the native valve. For example, a smooth material that prevents tissue growth (e.g., polytetrafluoroethylene (PTFE), and/or pericardium) may be placed on the outer surface of the prosthetic valve. Alternatively or additionally, a material that facilitates tissue growth (such as dacron) may be placed on the outer surface of the prosthetic valve, in order to (a) act as a sealing interface between the native valve and the prosthetic valve, and (b) facilitate tissue growth around the prosthetic valve to facilitate anchoring and/or sealing of the prosthetic valve.
Reference is now made to
For some applications, a first set of protrusions 84 from the distal end of prosthetic valve 80 are disposed the within a first circumferential arc with respect to a longitudinal axis of the prosthetic valve, on a first side of the distal end of the prosthetic valve, the first side of the distal end being configured to be placed adjacent to the anterior leaflet of the native valve. A second set of protrusions are disposed the within a second circumferential arc with respect to a longitudinal axis of the prosthetic valve, on a second side of the distal end of the prosthetic valve, the second side of the distal end being configured to be placed adjacent to the posterior leaflet of the native valve.
The first and second sets of protrusions are disposed so as to provide first and second gaps therebetween at the distal end of the prosthetic valve. Typically, at least one of the gaps between the two sets of protrusions has a circumferential arc of at least 20 degrees (e.g., at least 60 degrees, or at least 100 degrees), and/or less than 180 degrees (e.g., less than 140 degrees), e.g., 60-180 degrees, or 100-140 degrees. Further typically, one or both of the first and second circumferential arcs defines an angle of at least 25 degrees (e.g., at least 45 degrees), and/or less than 90 degrees (e.g., less than 75 degrees), e.g., 25-90 degrees, or 45-75 degrees.
Valve guide members (e.g., guide members 21a and 21b, and/or delivery lumen 27a and 27b, as described hereinabove) are delivered to commissures of the native valve, and guide the valve such that the first and second circumferential arc are aligned with respective leaflets of the native valve and such that the first and second gaps are aligned with respective commissures of the native valve.
Reference is now made to
Reference is now made to
The systems described herein are advanced toward valve in a transcatheter procedure, as shown. It is to be noted, however, that the systems described herein may be advanced using any suitable procedure, e.g., minimally-invasive or open-heart. It is to be further noted that valve supports and prosthetic valves herein may be used to replace native mitral valves or native tricuspid valves.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
The present application is a continuation-in-part of U.S. Ser. No. 12/840,463 to Hacohen, filed Jul. 21, 2010, entitled “Guide wires with commissural anchors to advance a prosthetic valve,” which published as US 2012/0022639, and which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4261342 | Aranguren Duo | Apr 1981 | A |
5108420 | Marks | Apr 1992 | A |
5607444 | Lam | Mar 1997 | A |
5607470 | Milo | Mar 1997 | A |
5868777 | Lam | Feb 1999 | A |
6074417 | Peredo | Jun 2000 | A |
6113612 | Swanson et al. | Sep 2000 | A |
6120534 | Ruiz | Sep 2000 | A |
6152937 | Peterson et al. | Nov 2000 | A |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6391036 | Berg et al. | May 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6409755 | Vrba | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6428550 | Vargas et al. | Aug 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6511491 | Grudem et al. | Jan 2003 | B2 |
6530952 | Vesely | Mar 2003 | B2 |
6540782 | Snyders | Apr 2003 | B1 |
6558418 | Carpentier et al. | May 2003 | B2 |
6602263 | Swanson et al. | Aug 2003 | B1 |
6616675 | Evard et al. | Sep 2003 | B1 |
6699256 | Logan et al. | Mar 2004 | B1 |
6716244 | Klaco | Apr 2004 | B2 |
6719781 | Kim | Apr 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6830585 | Artof et al. | Dec 2004 | B1 |
6830638 | Boylan et al. | Dec 2004 | B2 |
6960217 | Bolduc | Nov 2005 | B2 |
6964684 | Ortiz et al. | Nov 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7041132 | Quijano et al. | May 2006 | B2 |
7077861 | Spence | Jul 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7288111 | Holloway et al. | Oct 2007 | B1 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7404824 | Webler et al. | Jul 2008 | B1 |
7422603 | Lane | Sep 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7445630 | Lashinski et al. | Nov 2008 | B2 |
7455677 | Vargas et al. | Nov 2008 | B2 |
7455688 | Furst et al. | Nov 2008 | B2 |
7462162 | Phan et al. | Dec 2008 | B2 |
7481838 | Carpentier et al. | Jan 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7527646 | Rahdert et al. | May 2009 | B2 |
7582111 | Krolik et al. | Sep 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7632302 | Vreeman et al. | Dec 2009 | B2 |
7717955 | Lane et al. | May 2010 | B2 |
7731741 | Eidenschink | Jun 2010 | B2 |
7771467 | Svensson | Aug 2010 | B2 |
7771469 | Liddicoat | Aug 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7799069 | Bailey et al. | Sep 2010 | B2 |
7803181 | Furst et al. | Sep 2010 | B2 |
7837727 | Goetz et al. | Nov 2010 | B2 |
7842081 | Yadin | Nov 2010 | B2 |
7850725 | Vardi et al. | Dec 2010 | B2 |
7871432 | Bergin | Jan 2011 | B2 |
7871436 | Ryan et al. | Jan 2011 | B2 |
7887583 | Macoviak | Feb 2011 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7896915 | Guyenot et al. | Mar 2011 | B2 |
7914544 | Nguyen et al. | Mar 2011 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7947072 | Yang et al. | May 2011 | B2 |
7947075 | Goetz et al. | May 2011 | B2 |
7955375 | Agnew | Jun 2011 | B2 |
7955384 | Rafiee et al. | Jun 2011 | B2 |
7967833 | Sterman et al. | Jun 2011 | B2 |
7967857 | Lane | Jun 2011 | B2 |
7981151 | Rowe | Jul 2011 | B2 |
7981153 | Fogarty et al. | Jul 2011 | B2 |
7992567 | Hirotsuka et al. | Aug 2011 | B2 |
7993393 | Carpentier et al. | Aug 2011 | B2 |
8002825 | Letac et al. | Aug 2011 | B2 |
8016877 | Seguin et al. | Sep 2011 | B2 |
8016882 | Macoviak et al. | Sep 2011 | B2 |
8021420 | Dolan | Sep 2011 | B2 |
8021421 | Fogarty et al. | Sep 2011 | B2 |
8029564 | Johnson et al. | Oct 2011 | B2 |
8034104 | Carpentier et al. | Oct 2011 | B2 |
8043360 | McNamara et al. | Oct 2011 | B2 |
8048140 | Purdy | Nov 2011 | B2 |
8048153 | Salahieh et al. | Nov 2011 | B2 |
8052741 | Bruszewski et al. | Nov 2011 | B2 |
8057532 | Hoffman | Nov 2011 | B2 |
8057540 | Letac et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8062359 | Marquez et al. | Nov 2011 | B2 |
8070708 | Rottenberg et al. | Dec 2011 | B2 |
8070800 | Lock et al. | Dec 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8070804 | Hyde et al. | Dec 2011 | B2 |
8075611 | Millwee et al. | Dec 2011 | B2 |
8080054 | Rowe | Dec 2011 | B2 |
8092518 | Schreck | Jan 2012 | B2 |
8092520 | Quadri | Jan 2012 | B2 |
8092521 | Figulla et al. | Jan 2012 | B2 |
8105377 | Liddicoat | Jan 2012 | B2 |
8118866 | Herrmann et al. | Feb 2012 | B2 |
8136218 | Millwee et al. | Mar 2012 | B2 |
8137398 | Tuval et al. | Mar 2012 | B2 |
8142492 | Forster et al. | Mar 2012 | B2 |
8142494 | Rahdert et al. | Mar 2012 | B2 |
8142496 | Berreklouw | Mar 2012 | B2 |
8142497 | Friedman | Mar 2012 | B2 |
8147504 | Ino et al. | Apr 2012 | B2 |
8157852 | Bloom et al. | Apr 2012 | B2 |
8157853 | Laske et al. | Apr 2012 | B2 |
8157860 | McNamara et al. | Apr 2012 | B2 |
8163014 | Lane et al. | Apr 2012 | B2 |
8167894 | Miles et al. | May 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8167935 | McGuckin, Jr. et al. | May 2012 | B2 |
8172896 | McNamara et al. | May 2012 | B2 |
8177836 | Lee et al. | May 2012 | B2 |
8182528 | Salahieh et al. | May 2012 | B2 |
8211169 | Lane et al. | Jul 2012 | B2 |
8221492 | Case et al. | Jul 2012 | B2 |
8221493 | Boyle et al. | Jul 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
8231670 | Salahieh et al. | Jul 2012 | B2 |
8236045 | Benichou et al. | Aug 2012 | B2 |
8236049 | Rowe et al. | Aug 2012 | B2 |
8252042 | McNamara et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8252052 | Salahieh et al. | Aug 2012 | B2 |
8257390 | Carley et al. | Sep 2012 | B2 |
8277501 | Chalekian et al. | Oct 2012 | B2 |
8287591 | Keidar et al. | Oct 2012 | B2 |
8298280 | Yadin et al. | Oct 2012 | B2 |
8308798 | Pintor et al. | Nov 2012 | B2 |
8317853 | Agnew | Nov 2012 | B2 |
8317855 | Gregorich et al. | Nov 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8328868 | Paul et al. | Dec 2012 | B2 |
8343174 | Goldfarb et al. | Jan 2013 | B2 |
8430934 | Das | Apr 2013 | B2 |
8449625 | Campbell et al. | May 2013 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
8696742 | Pintor et al. | Apr 2014 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20030036791 | Philipp et al. | Feb 2003 | A1 |
20030074052 | Besselink | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030158578 | Pantages et al. | Aug 2003 | A1 |
20040039414 | Carley et al. | Feb 2004 | A1 |
20040093060 | Seguin et al. | May 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040176839 | Huynh et al. | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040210244 | Vargas et al. | Oct 2004 | A1 |
20040225354 | Allen et al. | Nov 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050055086 | Stobie | Mar 2005 | A1 |
20050075731 | Artof et al. | Apr 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050143809 | Salahieh | Jun 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050234508 | Cummins et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050251251 | Cribier | Nov 2005 | A1 |
20050267573 | Macoviak et al. | Dec 2005 | A9 |
20060047297 | Case | Mar 2006 | A1 |
20060178740 | Stacchino et al. | Aug 2006 | A1 |
20060190036 | Wendel et al. | Aug 2006 | A1 |
20060190038 | Carley et al. | Aug 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20060201519 | Frazier et al. | Sep 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20060247680 | Amplatz et al. | Nov 2006 | A1 |
20060253191 | Salahieh et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060271171 | McQuinn et al. | Nov 2006 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070038295 | Case et al. | Feb 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070173932 | Cali et al. | Jul 2007 | A1 |
20070198097 | Zegdi | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070225759 | Thommen et al. | Sep 2007 | A1 |
20070225760 | Moszner et al. | Sep 2007 | A1 |
20070233186 | Meng | Oct 2007 | A1 |
20070233237 | Krivoruchko | Oct 2007 | A1 |
20070239272 | Navia et al. | Oct 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20080004688 | Spenser et al. | Jan 2008 | A1 |
20080004697 | Lichtenstein et al. | Jan 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080077235 | Kirson | Mar 2008 | A1 |
20080086164 | Rowe | Apr 2008 | A1 |
20080086204 | Rankin | Apr 2008 | A1 |
20080167714 | St. Goar et al. | Jul 2008 | A1 |
20080195200 | Vidlund et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090054969 | Salahieh et al. | Feb 2009 | A1 |
20090099650 | Bolduc et al. | Apr 2009 | A1 |
20090177278 | Spence | Jul 2009 | A1 |
20090210052 | Forster et al. | Aug 2009 | A1 |
20090264994 | Saadat | Oct 2009 | A1 |
20090306768 | Quadri | Dec 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100023117 | Yoganathan et al. | Jan 2010 | A1 |
20100036479 | Hill et al. | Feb 2010 | A1 |
20100076548 | Konno | Mar 2010 | A1 |
20100114299 | Ben Muvhar et al. | May 2010 | A1 |
20100131054 | Tuval et al. | May 2010 | A1 |
20100137979 | Tuval et al. | Jun 2010 | A1 |
20100160958 | Clark | Jun 2010 | A1 |
20100161036 | Pintor et al. | Jun 2010 | A1 |
20100161042 | Maisano et al. | Jun 2010 | A1 |
20100174363 | Castro | Jul 2010 | A1 |
20100179643 | Shalev | Jul 2010 | A1 |
20100179648 | Richter et al. | Jul 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100222810 | DeBeer et al. | Sep 2010 | A1 |
20100228285 | Miles et al. | Sep 2010 | A1 |
20100234940 | Dolan | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100249917 | Zhang | Sep 2010 | A1 |
20100262232 | Annest | Oct 2010 | A1 |
20100280606 | Naor | Nov 2010 | A1 |
20100324595 | Linder et al. | Dec 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110015731 | Carpentier et al. | Jan 2011 | A1 |
20110022165 | Oba et al. | Jan 2011 | A1 |
20110040375 | Letac et al. | Feb 2011 | A1 |
20110046662 | Moszner et al. | Feb 2011 | A1 |
20110054466 | Rothstein et al. | Mar 2011 | A1 |
20110054596 | Taylor | Mar 2011 | A1 |
20110054598 | Johnson | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087322 | Letac et al. | Apr 2011 | A1 |
20110093063 | Schreck | Apr 2011 | A1 |
20110106247 | Miller et al. | May 2011 | A1 |
20110112625 | Ben-Muvhar et al. | May 2011 | A1 |
20110112632 | Chau et al. | May 2011 | A1 |
20110118830 | Liddicoat et al. | May 2011 | A1 |
20110125257 | Seguin et al. | May 2011 | A1 |
20110125258 | Centola | May 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110137409 | Yang et al. | Jun 2011 | A1 |
20110137410 | Hacohen | Jun 2011 | A1 |
20110166636 | Rowe | Jul 2011 | A1 |
20110172784 | Richter et al. | Jul 2011 | A1 |
20110178597 | Navia et al. | Jul 2011 | A9 |
20110190877 | Lane et al. | Aug 2011 | A1 |
20110190879 | Bobo et al. | Aug 2011 | A1 |
20110202076 | Richter | Aug 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110208293 | Tabor | Aug 2011 | A1 |
20110208298 | Tuval et al. | Aug 2011 | A1 |
20110213461 | Seguin et al. | Sep 2011 | A1 |
20110218619 | Benichou et al. | Sep 2011 | A1 |
20110218620 | Meiri et al. | Sep 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110245917 | Savage et al. | Oct 2011 | A1 |
20110251675 | Dwork | Oct 2011 | A1 |
20110251676 | Sweeney et al. | Oct 2011 | A1 |
20110251679 | Wiemeyer et al. | Oct 2011 | A1 |
20110251680 | Tran et al. | Oct 2011 | A1 |
20110251682 | Murray, III et al. | Oct 2011 | A1 |
20110251683 | Tabor | Oct 2011 | A1 |
20110257721 | Tabor | Oct 2011 | A1 |
20110257729 | Spenser et al. | Oct 2011 | A1 |
20110257736 | Marquez et al. | Oct 2011 | A1 |
20110257737 | Fogarty et al. | Oct 2011 | A1 |
20110264191 | Rothstein | Oct 2011 | A1 |
20110264196 | Savage et al. | Oct 2011 | A1 |
20110264198 | Murray, III et al. | Oct 2011 | A1 |
20110264199 | Tran et al. | Oct 2011 | A1 |
20110264200 | Tran et al. | Oct 2011 | A1 |
20110264201 | Yeung et al. | Oct 2011 | A1 |
20110264202 | Murray, III et al. | Oct 2011 | A1 |
20110264203 | Dwork et al. | Oct 2011 | A1 |
20110264206 | Tabor | Oct 2011 | A1 |
20110264208 | Duffy et al. | Oct 2011 | A1 |
20110270276 | Rothstein et al. | Nov 2011 | A1 |
20110271967 | Mortier et al. | Nov 2011 | A1 |
20110282438 | Drews et al. | Nov 2011 | A1 |
20110283514 | Fogarty et al. | Nov 2011 | A1 |
20110288634 | Tuval et al. | Nov 2011 | A1 |
20110301688 | Dolan | Dec 2011 | A1 |
20110301702 | Rust et al. | Dec 2011 | A1 |
20110313452 | Carley et al. | Dec 2011 | A1 |
20110319989 | Lane et al. | Dec 2011 | A1 |
20110319991 | Hariton et al. | Dec 2011 | A1 |
20120010694 | Lutter et al. | Jan 2012 | A1 |
20120022633 | Olson et al. | Jan 2012 | A1 |
20120022637 | Ben-Muvhar | Jan 2012 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120035703 | Lutter et al. | Feb 2012 | A1 |
20120035713 | Lutter et al. | Feb 2012 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120041547 | Duffy et al. | Feb 2012 | A1 |
20120041551 | Spenser et al. | Feb 2012 | A1 |
20120046738 | Lau et al. | Feb 2012 | A1 |
20120046742 | Tuval et al. | Feb 2012 | A1 |
20120053682 | Kovalsky et al. | Mar 2012 | A1 |
20120053688 | Fogarty et al. | Mar 2012 | A1 |
20120059454 | Millwee et al. | Mar 2012 | A1 |
20120078353 | Quadri et al. | Mar 2012 | A1 |
20120078357 | Conklin | Mar 2012 | A1 |
20120083832 | Delaloye et al. | Apr 2012 | A1 |
20120083839 | Letac et al. | Apr 2012 | A1 |
20120083879 | Eberhardt et al. | Apr 2012 | A1 |
20120089223 | Nguyen et al. | Apr 2012 | A1 |
20120101570 | Tuval et al. | Apr 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120123530 | Carpentier et al. | May 2012 | A1 |
20120136434 | Carpentier et al. | May 2012 | A1 |
20120150218 | Sandgren et al. | Jun 2012 | A1 |
20120197292 | Chin-Chen et al. | Aug 2012 | A1 |
20120283824 | Lutter et al. | Nov 2012 | A1 |
20120290062 | McNamara et al. | Nov 2012 | A1 |
20120310328 | Olson et al. | Dec 2012 | A1 |
20120323316 | Chau et al. | Dec 2012 | A1 |
20130035759 | Gross et al. | Feb 2013 | A1 |
20130261737 | Costello | Oct 2013 | A1 |
20130304197 | Buchbinder et al. | Nov 2013 | A1 |
20130325114 | McLean et al. | Dec 2013 | A1 |
20140005778 | Buchbinder et al. | Jan 2014 | A1 |
20140052237 | Lane et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
1 264 582 | Dec 2002 | EP |
9930647 | Jun 1999 | WO |
0047139 | Aug 2000 | WO |
0162189 | Aug 2001 | WO |
2006054930 | May 2006 | WO |
2008013915 | Jan 2008 | WO |
2009033469 | Mar 2009 | WO |
2009053497 | Apr 2009 | WO |
2010006627 | Jan 2010 | WO |
2010073246 | Jul 2010 | WO |
2011106137 | Sep 2011 | WO |
2011111047 | Sep 2011 | WO |
2011143263 | Nov 2011 | WO |
2012011108 | Jan 2012 | WO |
2013021374 | Feb 2013 | WO |
2013021375 | Feb 2013 | WO |
2013078497 | Jun 2013 | WO |
Entry |
---|
An International Search Report and a Written Opinion both dated Oct. 113, 2011 which issued during the prosecution of Applicant's PCT/IL11/00231. |
Alexander Geha et al; “Replacement of Degenerated Mitral and Aortic Bioprostheses Without Explanation”, Ann. Thoracic Surgery 2001; 72:1509-1514; Accepted for publication Jun. 1, 2001. |
John G. Webb, et al; “Transcatheter Valve-in-Valve Implantation for Failed Bioprosthetic Heart Valves”, Circulation 2010; 121; 1848-1857; originally published online Apr. 12, 2010. |
Alexander S. Geha, et al; “Replacement of Degenerated Mitral and Aortic Bioprostheses Without Explanation”, The Annals of thoracic Surgery, vol. 72, Issue 5, Nov. 2001, pp. 1509-1514. |
F. Langer, et al; “Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation”, The Journal of Thoracic and Cardiovascular Surgery, (Exact Date Not Given), 133, pp. 247-249. |
F. Langer, et al; “Ring+String: Successful Repair Technique for Ischemic Mitral Regurgitation With Severe Leaflet Tethering”. |
John G. Webb, et al; “Transcatheter Valve-In-Valve Implantation for Failed Bioprosthetic Heart Valves”, Circulation, Journal of The American Heart Association, Apr. 27, 2010, vol. 121, No. 16, 11 pages. |
Josef Jansen, et al; “Detachable shape-memory sewing ring for heart valves”, Artificial Organs, vol. 16, Issue 3, pp. 294-297, Jun. 1992. |
USPTO NFOA mailed May 29, 2012 in connection with U.S. Appl. No. 12/840,463. |
ISR & Written Opinion dated Dec. 5, 2011 issued during prosecution of PCT/IL11/00582. |
ISR & Written opinion dated Feb. 6, 2013; PCT/IL12/00292. |
ISR & Written Opinion dated Feb. 6, 2013; PCT/IL12/00293. |
USPTO NFOA dated Nov. 28, 2012 in connection with U.S. Appl. No. 12/961,721. |
USPTO NFOA dated Dec. 31, 2012 in connection with U.S. Appl. No. 13/044,694. |
USPTO NFOA dated Feb. 6, 2013 in connection with U.S. Appl. No. 13/412,814. |
USPTO FOA dated Feb. 15, 2013 in connection with U.S. Appl. No. 12/840,463. |
USPTO NFOA dated Sep. 12, 2013 in connection with U.S. Appl. No. 13/412,814. |
An Office Action dated Jul. 18, 2013, which issued during the prosecution of U.S. Appl. No. 13/044,694. |
An Office Action dated Jul. 23, 2013, which issued during the prosecution of U.S. Appl. No. 12/961,721. |
International Search Report and Written Opinion dated Sep. 4, 2014 PCT/IL2014/050087. |
USPTO NFOA dated Sep. 19, 2014 in connection with U.S. Appl. No. 13/044,694. |
Dominique Himbert MD; “Mitral Regurgitation and Stenosis from Bioprosthesis and Annuloplasty Failure: Transcather Approaches and Outcomes”, Presentation made Oct. 28, 2013, 24 pages. |
Invitation to Pay Additional Fees dated Jun. 12, 2014 issued during prosecution of PCT/IL2014/050087. |
USPTO NFOA dated Jun. 17, 2014 in connection with U.S. Appl. No. 12/961,721. |
USPTO NFOA dated Jul. 2, 2014 in connection with U.S. Appl. No. 13/811,308. |
USPTO FOA dated May 23, 2014 in connection with U.S. Appl. No. 13/412,814. |
Number | Date | Country | |
---|---|---|---|
20120022640 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12840463 | Jul 2010 | US |
Child | 13033852 | US |