Techniques for providing a replacement valve and transseptal communication

Abstract
A method is provided, including (1) identifying the subject as having mitral valve regurgitation; (2) during a medical procedure, in response to identifying the subject as having mitral valve regurgitation, implanting a prosthetic valve at a mitral valve site of the heart; and (3) during the same medical procedure, implanting a therapeutic septal device at a septum of the heart. Other embodiments are also described.
Description
FIELD OF THE INVENTION

Some applications of the present invention relate in general to cardiac implants. More specifically, some applications of the present invention relate to techniques for implanting cardiac implants in a complementary manner.


BACKGROUND

Ischemic heart disease causes regurgitation of a heart valve by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the valve annulus.


Dilation of the annulus of the valve prevents the valve leaflets from fully coapting when the valve is closed. Regurgitation of blood from the ventricle into the atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the ventricle secondary to a volume overload and a pressure overload of the atrium.


SUMMARY OF THE INVENTION

For some applications, during a single medical procedure, a prosthetic valve is implanted in the heart of a subject, and a transseptal fenestration is made in the heart. For example, the implantation and fenestration may be performed via the same transapical access point (i.e., made by transapical puncture). Alternatively, the implantation or the fenestration may be performed via the transapical access point, and the other may be performed via transfemoral access. Typically, the procedure is performed on a subject that has been identified as having mitral valve regurgitation.


For some applications, the transseptal fenestration is made in the interatrial septum of the heart. For some applications, the transseptal fenestration is made in the interventricular septum of the heart.


For some applications, the transseptal fenestration is left as-is, as a transseptal shunt. For some applications, a septal device is implanted at (e.g., in) the transseptal fenestration. For some applications, the septal device is a shunt device, which is implanted at the fenestration so as to maintain patency. For some applications, the septal device is a flow-restricting device, such as a valve or a membrane, which is implanted at the fenestration so as to allow limited flow of blood between the right and left sides of the heart. For example, flow may be allowed in only one direction, and/or in response to a blood pressure difference that is greater than a threshold blood pressure difference.


For some applications, the septal device comprises a membrane or a balloon, and is implanted at the fenestration so as to facilitate temporary and reversible changes in the effective volume of the left atrium or left ventricle of the heart, e.g., without allowing mixing of blood between the right and left sides of the heart. For some applications, the septal device comprises a cell that performs a similar function. For example, the cell may slide into and out of the right side of the heart (e.g., the right atrium) in response to the blood pressure difference.


For some applications, the membrane, balloon, and/or cell is implanted in the heart wall, rather than in the septum.


There is therefore provided, in accordance with an application of the present invention, a method for use with a heart of a subject, the method including:


making a transapical puncture into a left ventricle of the heart;


making a transseptal fenestration in the heart;


delivering a prosthetic valve via the transapical puncture and implanting the prosthetic valve at a mitral valve of the heart; and


subsequently to delivering the prosthetic valve and making the transseptal fenestration, closing the transapical puncture.


In an application, the subject has not been identified as suffering from heart failure, and performing the method includes performing the method on the subject that has not been identified as suffering from heart failure.


In an application, making the transseptal fenestration includes making the transseptal fenestration via the transapical puncture.


In an application, making the transseptal fenestration includes making the transseptal fenestration via a transfemoral route.


In an application, making the transseptal fenestration includes making a fenestration in the interventricular septum.


In an application, making the transseptal fenestration includes making a fenestration in the interatrial septum.


In an application, making the transseptal fenestration includes making the transseptal fenestration after implanting the prosthetic valve.


In an application, making the transseptal fenestration includes making the transseptal fenestration before implanting the prosthetic valve.


In an application, the method further includes advancing a distal end of a tube through the transapical puncture, and delivering the prosthetic valve via the transapical puncture includes delivering the prosthetic valve via the tube.


In an application, making the transseptal fenestration includes making the transseptal fenestration via the tube.


In an application, the method further includes implanting a shunt device into the transseptal fenestration.


In an application, the shunt device includes a check valve, and implanting the shunt device includes implanting the shunt device such that the check valve facilitates one-way blood flow from a chamber of the left side of the heart, via the transseptal fenestration, to a chamber of the right side of the heart.


In an application, implanting the shunt device includes implanting a shunt device that is shaped to define a lumen, and includes a membrane that regulates blood flow through the lumen.


In an application, implanting the shunt device includes implanting a shunt device that includes a membrane that (a) has (i) a closed position in which the membrane inhibits blood flow through the lumen, and (ii) an open position in which the inhibiting of the blood flow is reduced, resides in the closed position while a blood pressure difference across the membrane is lower than a threshold blood pressure difference of 4-6 mmHg (e.g., 5 mmHg), and moves from the closed position into the open position in response to the blood pressure difference exceeding the threshold blood pressure difference.


In an application, the membrane moves from the closed position into the open position in response to the blood pressure difference exceeding the threshold blood pressure difference in either direction across the membrane, and implanting the shunt device that includes the membrane includes implanting the shunt device that includes the membrane that moves from the closed position into the open position in response to the blood pressure difference exceeding the threshold blood pressure difference in either direction across the membrane.


In an application, the membrane is transected by intersecting slits, and implanting the shunt device includes implanting the shunt device that includes the membrane that is transected by intersecting slits.


In an application, the method further includes implanting at the transseptal fenestration, a balloon device that includes a balloon having an interior and an opening into the interior, such that (i) the interior is in fluid communication, via the opening, with a chamber of the left side of the heart, and (ii) a greater blood pressure in the chamber of the left side of the heart relative to a blood pressure in a corresponding chamber of the right side of the heart inflates the balloon such that the balloon reversibly expands into the corresponding chamber of the right side of the heart.


In an application, the balloon is elastic, and implanting the balloon device includes implanting the balloon device such that the balloon automatically deflates in response to a reduction in the greater blood pressure in the chamber of the left side of the heart.


In an application, implanting the balloon device includes implanting the balloon such that the balloon inflates only when blood pressure in the chamber of the left side of the heart is more than 4-6 mmHg greater than blood pressure in the chamber of the right side of the heart.


In an application, implanting the balloon device includes sealing the transseptal fenestration with the balloon device.


In an application, the method further includes implanting at the transseptal fenestration, an elastic membrane that elastically expands in response to a difference in blood pressure across the membrane.


In an application, implanting the elastic membrane includes sealing the transseptal fenestration with the elastic membrane.


In an application, the method further includes implanting at the transseptal fenestration, a cell having an interior and an opening into the interior, such that (i) the interior is in fluid communication, via the opening, with a chamber of the left side of the heart, and (ii) a greater blood pressure in the chamber of the left side of the heart relative to a blood pressure in a corresponding chamber of the right side of the heart increases a volume of the interior that is disposed within the corresponding chamber of the right side of the heart.


In an application, the cell includes an elastic membrane, and implanting the cell includes implanting the cell that includes the elastic membrane, such that the elastic membrane elastically expands into the chamber of the right side of the heart in response to the greater blood pressure in the chamber of the left side of the heart.


In an application, the cell is a balloon, and implanting the cell includes implanting the balloon, such that the balloon expands into the chamber of the right side of the heart in response to the greater blood pressure in the chamber of the left side of the heart.


In an application, implanting the cell includes implanting a cell that is slidably mounted in a mount, such that the mount is fixed at the transseptal fenestration, and the cell slides into the chamber of the right side of the heart in response to the greater blood pressure in the chamber of the left side of the heart.


In an application, implanting the cell includes implanting the cell such that the volume of the interior that is disposed within the corresponding chamber of the right side of the heart increases only when the blood pressure in the chamber of the left side of the heart is greater than the blood pressure in the chamber of the right side of the heart by more than a threshold difference of 4-6 mmHg.


There is further provided, in accordance with an application of the present invention, a method including for use with a heart of a subject:


identifying the subject as having mitral valve regurgitation;


during a medical procedure, in response to identifying the subject as having mitral valve regurgitation, implanting a prosthetic valve at a mitral valve site of the heart; and


during the same medical procedure, implanting a shunt device at a septum of the heart.


In an application, implanting the prosthetic valve and implanting the shunt device include implanting the prosthetic valve and implanting the shunt device in the absence of an identification of the subject as having heart failure.


In an application, the septum is an interatrial septum of the heart, and implanting the shunt device at the septum includes implanting the shunt device at the interatrial septum.


In an application, the septum is an interventricular septum of the heart, and implanting the shunt device at the septum includes implanting the shunt device at the interventricular septum.


In an application, the subject is an adult subject, and the method is performed on the adult subject.


There is further provided, in accordance with an application of the present invention, a method including for use with a heart of a subject:


identifying the subject as having mitral valve regurgitation;


during a medical procedure, in response to identifying the subject as having mitral valve regurgitation, implanting a prosthetic valve at a mitral valve site of the heart; and


during the same medical procedure, implanting a septal device at a septum of the heart.


In an application, implanting the prosthetic valve and implanting the septal device include implanting the prosthetic valve and implanting the septal device in the absence of an identification of the subject as having heart failure.


In an application, the septum is an interatrial septum of the heart, and implanting the septal device at the septum includes implanting the septal device at the interatrial septum.


In an application, the septum is an interventricular septum of the heart, and implanting the septal device at the septum includes implanting the septal device at the interventricular septum.


In an application, the subject is an adult subject, and the method is performed on the adult subject.


The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-F are schematic illustrations of a method for use with a heart of a subject, in accordance with some applications of the invention;



FIGS. 2A-F are schematic illustrations of a method for use with heart of a subject, in accordance with some applications of the invention;



FIGS. 3A-B are schematic illustrations of a method for use with heart of a subject, in accordance with some applications of the invention;



FIGS. 4, 5, 6, 7 and 8 are schematic illustrations of respective septal devices that may be implanted at the transseptal fenestration, in accordance with some applications of the invention; and



FIGS. 9 and 10 are schematic illustrations of septal devices implanted in the heart wall, in accordance with an application of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS

Reference is made to FIGS. 1A-F, which are schematic illustrations of a method for use with a heart 20 of a subject, in accordance with some applications of the invention. Heart 20 has a left atrium 22 and a left ventricle 24 (the left side of the heart), and a right atrium 26 and a right ventricle 28 (the right side of the heart).


A transapical puncture is made into left ventricle 24 (FIG. 1A). For some applications, a tube 40 is introduced through the transapical puncture. Via the transapical puncture (e.g., via tube 40), a transseptal fenestration is made in interatrial septum 30 (e.g., in the fossa ovalis) (FIG. 1B). For some applications, a septal device 42 (e.g., a shunt device) is implanted at the transseptal fenestration (FIG. 1C). Subsequently, via the transapical puncture (e.g., via tube 40), a prosthetic valve 44 is delivered (FIG. 1D) and implanted at mitral valve 32 of the subject (FIG. 1E). Subsequently, the transapical puncture is closed (FIG. 1F).


Reference is made to FIGS. 2A-F, which are schematic illustrations of a method for use with heart 20 of a subject, in accordance with some applications of the invention. The method of FIGS. 2A-F is similar to that of FIGS. 1A-F, except that (i) prosthetic valve 44 is delivered and implanted prior to making the transseptal fenestration (FIGS. 2B-C), and (ii) the transseptal fenestration is made (and optionally a septal device 52, such as a shunt device, is implanted) in interventricular septum 34 (FIGS. D-E).


Reference is again made to FIGS. 1A-2F. It is to be noted that the scope of the invention includes making the transseptal fenestration in interventricular septum 34 even when making the transseptal fenestration prior to implantation of prosthetic valve 44. It is also to be noted that the scope of the invention includes implanting prosthetic valve 44 prior to making the transseptal fenestration even for applications in which the transseptal fenestration is made in the interatrial septum.


Reference is made to FIGS. 3A-B, which are schematic illustrations of a method for use with heart 20 of a subject, in accordance with some applications of the invention. The method shown in FIGS. 3A-B is identical to those described with reference to FIGS. 1A-2F hereinabove, except that the transseptal fenestration is made (and optionally, septal device 42 or 52 is implanted) via a transvenous (e.g., transfemoral) route. The transseptal fenestration (and/or the implantation of septal device 42 or 52) may be made before or after prosthetic valve 44 is implanted. FIGS. 3A-B show the transseptal fenestration in interatrial septum 30, but it is to be noted that the scope of the invention includes the transseptal fenestration being in interventricular septum 34, mutatis mutandis).


Reference is again made to FIGS. 1A-3B. For some applications, rather than via transapical puncture, prosthetic valve 44 is implanted via a transatrial puncture (i.e., a puncture through the heart wall into atrium 22). For such applications, the transseptal fenestration may be made via the transatrial puncture or via a different route.


Reference is again made to FIGS. 1A-3B. It is to be noted that prosthetic valve 44 is not delivered to mitral valve 32 via the transseptal fenestration. That is, the transseptal fenestration described herein is not itself required for delivery of the prosthetic valve.


Reference is now made to FIGS. 4-8, which are schematic illustrations of septal devices that may be implanted at the transseptal fenestration, in accordance with some applications of the invention. Hereinabove a shunt device is used as an example of devices 42 and 52. A shunt device is typically used to maintain patency of the transseptal fenestration. For example, and as shown in FIG. 2C, a shunt device may have a tubular portion 54 that is shaped to define a lumen, with flanges 56 (that are typically expandable) that engage the tissue of the septum, and retain the shunt device within the transseptal fenestration. FIGS. 4-8 are other examples of devices that may be implanted in place of device 42 or device 52, mutatis mutandis.



FIG. 4 is a schematic illustration of a septal device 60 that is shaped to define a lumen, and comprises a check valve 62 that facilitates one-way blood flow through the lumen (and thereby through the transseptal fenestration). Device 60 is typically oriented such that the one-way blood flow is from a chamber of the left side of the heart to a chamber of the right side of the heart (e.g., from left atrium 22 to right atrium 26, or from left ventricle 24 to right ventricle 28). Check valve 62 is shown as a leaflet or duckbill valve, but it is to be understood that any suitable check valve known in the art may be used (such as, but not limited to, a ball-and-cage valve or a tilting-disc valve). For some applications (e.g., when check valve 62 is a leaflet or duckbill valve), check valve 62 thereby comprises a membrane (i.e., the leaflets or the duckbill membrane) that regulates blood flow through the lumen of the valve.


Frame A shows a state of device 60 (i.e., closed) when a blood pressure difference across the device (e.g., across valve 62) is less than a threshold blood pressure difference. That is, when blood pressure on the left side of the heart is less than a threshold amount greater than blood pressure on the right side of the heart (e.g., including if the pressure on the left side of the heart is not greater than the pressure on the right side of the heart). Frame B shows a state of device 60 (i.e., open) when the blood pressure difference is greater than the threshold blood pressure difference. For some applications, the threshold blood pressure difference for device 60 is 4-6 mmHg (e.g., 5 mmHg).



FIG. 5 is a schematic illustration of a septal device 70 that comprises a membrane 72 that regulates blood flow through the lumen. Device 70 is thereby similar to device 60. In contrast to device 60, membrane 72 regulates blood flow but in a bidirectional manner. Membrane 72 opens bidirectionally in response to a blood pressure difference that is greater than a threshold blood pressure difference in either direction. Frame A shows a state of device 70 when blood pressure on the left side of the heart is more than the threshold difference greater than pressure on the right side of the heart. Frame C shows the opposite state. Frame B shows a state of device 70 (i.e., closed, thereby inhibiting blood flow through the lumen of the device) when the blood pressure difference across the device (e.g., across membrane 72) is less than the threshold blood pressure difference. For some applications, the threshold blood pressure difference for device 70 is 4-6 mmHg (e.g., 5 mmHg) (in either direction).


For some applications, membrane 72 is transected by intersecting slits 74, which form the membrane into flaps, which flap open and closed as shown.



FIGS. 6 and 7 show septal devices 80 and 90, respectively, which also each comprise a membrane. However, the membranes of these devices do not facilitate blood flow between the left and right sides of the heart. Rather, implantation of these devices seals the transseptal fenestration with the membrane.


Device 80 comprises a membrane 82, and device 90 comprises a membrane 92. Membranes 82 and 92 are similar, are both elastic, and both elastically expand (i.e., stretch) in response to a difference in blood pressure across the membrane. Membrane 92 may be considered to be a balloon (e.g., having an interior 94 even in the absence of a pressure difference across the membrane), whereas membrane 82 is generally planar in the absence of a pressure difference across the membrane. Device 90 has an opening 96 into interior 94, and is implanted such that the interior is in fluid communication, via the opening, with the chamber of the left side of the heart. For both FIG. 6 and FIG. 7, frame A shows a state of the device in the absence of a pressure difference across the membrane, frame B shows a state of the device in the presence of a pressure difference across the membrane, and frame C shows a state of the device in the presence of a larger pressure difference across the membrane.


By elastically expanding, membranes 82 and 92 increase the effective volume of the chamber of the left side of the heart, thereby reducing the blood pressure in that chamber without mixing of blood between the left and right sides of the heart.


It is alternatively possible to describe the balloon of device 90, as being a cell that has an interior 94 and an opening 96 into the interior. Device 90 is implanted such that (i) the interior is in fluid communication, via the opening, with a chamber of the left side of the heart, and (ii) a greater blood pressure in the chamber of the left side of the heart relative to a blood pressure in a corresponding chamber of the right side of the heart increases a volume of interior 94 that is disposed within the corresponding chamber of the right side of the heart. This occurs by membrane 92 elastically expanding into the chamber of the right side of the heart in response to this pressure difference.


For some applications, membrane 82 and/or membrane 92 inflate only when blood pressure in the chamber of the left side of the heart is more than 4-6 mmHg (e.g., 5 mmHg) greater than blood pressure in the chamber of the right side of the heart.


The membrane/balloon of devices 80 and 90 may be biased to automatically contract/deflate in response to a reduction of the difference in blood pressure across the fenestration, even if the blood pressure in the chamber of the right side of the heart does not exceed that of the chamber of the left side of the heart.



FIG. 8 shows a septal device 100 that comprises a cell 102 that is slidably mounted in a mount 108, such that the mount is fixed at the transseptal fenestration, and the cell slides into the chamber of the right side of the heart in response to the greater blood pressure in the chamber of the left side of the heart. Cell 102 has an interior 104 and an opening 106 into the interior, and is implanted such that the interior is in fluid communication, via the opening, with the chamber of the left side of the heart. Frame A shows the cell not protruding (or protruding minimally) into the chamber of the right side of the heart, and frame B shows the cell having slid into the chamber of the right side of the heart. For some applications, cell 102 is biased (e.g., spring-loaded) to automatically slide out of the chamber of the right side of the heart in response to a reduction of the difference in blood pressure across the fenestration, even if the blood pressure in the chamber of the right side of the heart does not exceed that of the chamber of the left side of the heart.


For some applications, cell 102 slides into the chamber of the right side of the heart only when blood pressure in the chamber of the left side of the heart is more than 4-6 mmHg (e.g., 5 mmHg) greater than blood pressure in the chamber of the right side of the heart.


It is hypothesized by the inventors that the implantation of a septal device described hereinabove in addition to the implantation of prosthetic valve 44 improves a likelihood of a successful long-term outcome of the procedure. For example, the septal devices may facilitate reduction of elevated blood pressure in the right side of the heart, should regurgitation through or around prosthetic valve 44 begin to occur subsequently to implantation of the prosthetic valve. Therefore the implantation of such a septal device may be considered to be prophylactic. For some applications of the invention, the methods described hereinabove are performed on a subject (e.g., an adult subject) who does not suffer from and/or has not been identified (e.g., diagnosed) as suffering from heart failure.


Therefore, a method according to some applications of the invention comprises: (i) making a transseptal fenestration in a heart of a subject (e.g., an adult subject) who has not been identified as suffering from heart failure; (2) advancing a shunt device into the heart; and (3) implanting the shunt device at the transseptal fenestration. Similarly, another method according to some applications of the invention comprises: (1) identifying an adult subject as not suffering from heart failure; and (2) subsequently, making a transseptal fenestration in a heart of the subject.


Reference is now made to FIGS. 9 and 10, which are schematic illustrations of a device 110 and a device 120 implanted in the heart wall, in accordance with an application of the invention. For some applications, devices that reversibly increase the effective volume of the chamber of the left side of the heart are implanted in the heart wall, rather than (as described hereinabove for devices 80, 90 and 100) at a transseptal fenestration. FIG. 9 shows device 110 implanted in the wall of left atrium 22, and FIG. 10 shows device 120 implanted in the wall of left ventricle 24. Devices 110 and 120 may be similar in structure and function (if not dimension) to devices 80, 90 or 100, mutatis mutandis.


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. A method for use with a heart of a subject, comprising: identifying the subject as having mitral valve regurgitation;during a medical procedure, in response to identifying the subject as having mitral valve regurgitation, implanting a prosthetic valve at a mitral valve site of the heart; andduring the same medical procedure, implanting a shunt including a check valve at a septum of the heart such that the check valve facilitates one-way blood flow from a chamber of a left side of the heart, via the shunt, to a chamber of a right side of the heart.
  • 2. The method according to claim 1, wherein implanting the prosthetic valve and implanting the shunt respectively comprise implanting the prosthetic valve and implanting the shunt in an absence of an identification of the subject as having heart failure.
  • 3. The method according to claim 1, wherein the septum is an interatrial septum of the heart, and wherein implanting the shunt at the septum comprises implanting the shunt at the interatrial septum.
  • 4. The method according to claim 1, wherein the septum is an interventricular septum of the heart, and wherein implanting the shunt at the septum comprises implanting the shunt at the interventricular septum.
  • 5. The method according to claim 1, wherein the subject is an adult subject, and wherein the method is performed on the adult subject.
  • 6. The method according to claim 1, further comprising making a fenestration in the septum of the heart, and delivering the prosthetic valve transfemorally to the heart and through the fenestration to the mitral valve site, and wherein implanting the shunt comprises implanting the shunt in the fenestration.
  • 7. The method according to claim 6, further comprising transfemorally delivering the shunt to the septum.
  • 8. The method according to claim 6, wherein making the fenestration comprises making the fenestration transfemorally.
  • 9. The method according to claim 1, further comprising transapically making a fenestration in the septum of the heart, wherein implanting the shunt comprises implanting the shunt in the fenestration.
  • 10. The method according to claim 1, further comprising transapically delivering the prosthetic valve to the mitral valve site.
  • 11. The method according to claim 1, wherein implanting the shunt comprises implanting the shunt after implanting the prosthetic valve.
  • 12. The method according to claim 1, wherein implanting the shunt comprises implanting the shunt before implanting the prosthetic valve.
  • 13. A method for use with a heart of a subject, comprising: identifying the subject as having mitral valve regurgitation;during a medical procedure, in response to identifying the subject as having mitral valve regurgitation, implanting a prosthetic valve at a mitral valve site of the heart; andduring the same medical procedure, implanting a shunt at a septum of the heart, the shunt being shaped to define a lumen and including a membrane that regulates blood flow through the lumen, wherein:the membrane: has a closed position in which the membrane inhibits blood flow through the lumen, and an open position in which the inhibiting of the blood flow by the membrane is reduced,resides in the closed position while a blood pressure difference across the membrane is lower than a threshold blood pressure difference,moves from the closed position into the open position in response to the blood pressure difference exceeding the threshold blood pressure difference, andis configured such that the threshold blood pressure difference is 4-6 mmHg, andimplanting the shunt that is shaped to define the lumen and includes the membrane comprises implanting the shunt that is shaped to define the lumen and includes the membrane that: has the closed position and the open position,resides in the closed position while the blood pressure difference across the membrane is lower than the threshold blood pressure difference,moves from the closed position into the open position in response to the blood pressure difference exceeding the threshold blood pressure difference, andis configured such that the threshold blood pressure difference is 4-6 mmHg.
  • 14. The method according to claim 13, wherein the membrane is configured to move from the closed position into the open position in response to the blood pressure difference exceeding the threshold blood pressure difference in either direction across the membrane, and wherein implanting the shunt that includes the membrane comprises implanting the shunt that includes the membrane that is configured to move from the closed position into the open position in response to the blood pressure difference exceeding the threshold blood pressure difference in either direction across the membrane.
  • 15. The method according to claim 13, wherein the membrane is transected by intersecting slits, and wherein implanting the shunt comprises implanting the shunt that includes the membrane that is transected by intersecting slits.
  • 16. The method according to claim 13, wherein implanting the prosthetic valve and implanting the shunt respectively comprise implanting the prosthetic valve and implanting the shunt in an absence of an identification of the subject as having heart failure.
  • 17. The method according to claim 13, wherein the septum is an interatrial septum of the heart, and wherein implanting the shunt at the septum comprises implanting the shunt at the interatrial septum.
  • 18. The method according to claim 13, wherein the septum is an interventricular septum of the heart, and wherein implanting the shunt at the septum comprises implanting the shunt at the interventricular septum.
  • 19. The method according to claim 13, wherein the subject is an adult subject, and wherein the method is performed on the adult subject.
  • 20. The method according to claim 13, further comprising making a fenestration in the septum of the heart, and delivering the prosthetic valve transfemorally to the heart and through the fenestration to the mitral valve site, and wherein implanting the shunt comprises implanting the shunt in the fenestration.
  • 21. The method according to claim 20, further comprising transfemorally delivering the shunt to the septum.
  • 22. The method according to claim 20, wherein making the fenestration comprises making the fenestration transfemorally.
  • 23. The method according to claim 13, further comprising transapically making a fenestration in the septum of the heart, wherein implanting the shunt comprises implanting the shunt in the fenestration.
  • 24. The method according to claim 13, further comprising transapically delivering the prosthetic valve to the mitral valve site.
  • 25. The method according to claim 13, wherein implanting the shunt comprises implanting the shunt after implanting the prosthetic valve.
  • 26. The method according to claim 13, wherein implanting the shunt comprises implanting the shunt before implanting the prosthetic valve.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation of U.S. Ser. No. 15/433,547 to Hariton et al., filed Feb. 15, 2017, and entitled “Techniques for providing a replacement valve and transseptal communication,” which is now U.S. Pat. No. 10,531,866, and which claims the benefit of U.S. Provisional application 62/295,701 to Hariton et al., filed Feb. 16, 2016, and entitled “Techniques for providing a replacement valve and transseptal communication.” Each of the above is incorporated herein by reference.

US Referenced Citations (927)
Number Name Date Kind
3874388 King et al. Apr 1975 A
4222126 Boretos et al. Sep 1980 A
4261342 Aranguren Duo Apr 1981 A
4340091 Skelton et al. Jul 1982 A
4423525 Vallana et al. Jan 1984 A
4853986 Allen Aug 1989 A
4892541 Alonso Jan 1990 A
4972494 White et al. Nov 1990 A
5108420 Marks Apr 1992 A
5314473 Godin May 1994 A
5405378 Strecker Apr 1995 A
5443500 Sigwart Aug 1995 A
5607444 Lam Mar 1997 A
5607470 Milo Mar 1997 A
5647857 Anderson et al. Jul 1997 A
5713948 Uflacker Feb 1998 A
5716417 Girard et al. Feb 1998 A
5741297 Simon Apr 1998 A
5765682 Bley et al. Jun 1998 A
5868777 Lam Feb 1999 A
5873906 Lau et al. Feb 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5980565 Jayaraman Nov 1999 A
6010530 Goicoechea Jan 2000 A
6019787 Richard et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6074417 Peredo Jun 2000 A
6113612 Swanson et al. Sep 2000 A
6120534 Ruiz Sep 2000 A
6126686 Badylak et al. Oct 2000 A
6152937 Peterson et al. Nov 2000 A
6165183 Kuehn et al. Dec 2000 A
6165210 Lau et al. Dec 2000 A
6187020 Zegdi et al. Feb 2001 B1
6193745 Fogarty et al. Feb 2001 B1
6264700 Kilcoyne et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6334873 Lane et al. Jan 2002 B1
6346074 Roth Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352561 Leopold et al. Mar 2002 B1
6391036 Berg et al. May 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6409755 Vrba Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6428550 Vargas et al. Aug 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6511491 Grudem et al. Jan 2003 B2
6530952 Vesely Mar 2003 B2
6540782 Snyders Apr 2003 B1
6551350 Thornton et al. Apr 2003 B1
6558396 Inoue May 2003 B1
6558418 Carpentier et al. May 2003 B2
6602263 Swanson et al. Aug 2003 B1
6616675 Evard et al. Sep 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6669724 Park et al. Dec 2003 B2
6699256 Logan et al. Mar 2004 B1
6716244 Klaco Apr 2004 B2
6719781 Kim Apr 2004 B1
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764518 Godin Jul 2004 B2
6767362 Schreck Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6830585 Artof et al. Dec 2004 B1
6830638 Boylan et al. Dec 2004 B2
6926715 Hauck et al. Aug 2005 B1
6951571 Srivastava et al. Oct 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
7011681 Vesely Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7041132 Quijano et al. May 2006 B2
7077861 Spence Jul 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7172625 Shu et al. Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7261686 Couvillon, Jr. Aug 2007 B2
7288097 Séguin Oct 2007 B2
7288111 Holloway et al. Oct 2007 B1
7316716 Egan Jan 2008 B2
7329279 Haug et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7351256 Hojeibane et al. Apr 2008 B2
7374573 Gabbay May 2008 B2
7404824 Webler et al. Jul 2008 B1
7422603 Lane Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445630 Lashinski et al. Nov 2008 B2
7455677 Vargas et al. Nov 2008 B2
7455688 Furst et al. Nov 2008 B2
7462162 Phan et al. Dec 2008 B2
7481838 Carpenter et al. Jan 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513909 Lane et al. Apr 2009 B2
7527646 Randert et al. May 2009 B2
7556632 Zadno Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7585321 Cribier Sep 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632302 Vreeman et al. Dec 2009 B2
7635329 Goldfarb et al. Dec 2009 B2
7648528 Styrc Jan 2010 B2
7655015 Goldfarb et al. Feb 2010 B2
7682380 Thornton et al. Mar 2010 B2
7708775 Rowe et al. May 2010 B2
7717955 Lane et al. May 2010 B2
7731741 Eidenschink Jun 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7758595 Allen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7771467 Svensson Aug 2010 B2
7771469 Liddicoat Aug 2010 B2
7776083 Vesely Aug 2010 B2
7780726 Seguin Aug 2010 B2
7799069 Bailey et al. Sep 2010 B2
7803181 Furst et al. Sep 2010 B2
7811296 Goldfarb et al. Oct 2010 B2
7837645 Bessler et al. Nov 2010 B2
7837727 Goetz et al. Nov 2010 B2
7842081 Yadin Nov 2010 B2
7850725 Vardi et al. Dec 2010 B2
7871432 Bergin Jan 2011 B2
7871436 Ryan et al. Jan 2011 B2
7887583 Macoviak Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7914544 Nguyen et al. Mar 2011 B2
7914569 Nguyen et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7947072 Yang et al. May 2011 B2
7947075 Goetz et al. May 2011 B2
7955375 Agnew Jun 2011 B2
7955377 Melsheimer Jun 2011 B2
7955384 Rafiee et al. Jun 2011 B2
7967833 Sterman et al. Jun 2011 B2
7967857 Lane Jun 2011 B2
7981151 Rowe Jul 2011 B2
7981153 Fogarty et al. Jul 2011 B2
7992567 Hirotsuka et al. Aug 2011 B2
7993393 Carpentier et al. Aug 2011 B2
8002825 Letac et al. Aug 2011 B2
8016877 Seguin et al. Sep 2011 B2
8016882 Macoviak et al. Sep 2011 B2
8021420 Dolan Sep 2011 B2
8021421 Fogarty et al. Sep 2011 B2
8029518 Goldfarb et al. Oct 2011 B2
8029557 Sobrino-Serrano et al. Oct 2011 B2
8029564 Johnson et al. Oct 2011 B2
8034104 Carpentier et al. Oct 2011 B2
8038720 Wallace et al. Oct 2011 B2
8043360 McNamara et al. Oct 2011 B2
8048138 Sullivan et al. Nov 2011 B2
8048140 Purdy Nov 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8052741 Bruszewski et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8057532 Hoffman Nov 2011 B2
8057540 Letac et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070708 Rottenberg et al. Dec 2011 B2
8070800 Lock et al. Dec 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8070804 Hyde et al. Dec 2011 B2
8075611 Millwee et al. Dec 2011 B2
8080054 Rowe Dec 2011 B2
8083793 Lane et al. Dec 2011 B2
D652927 Braido et al. Jan 2012 S
D653341 Braido et al. Jan 2012 S
8092518 Schreck Jan 2012 B2
8092520 Quadri Jan 2012 B2
8092521 Figulla et al. Jan 2012 B2
8105377 Liddicoat Jan 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8136218 Millwee et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8142492 Forster et al. Mar 2012 B2
8142494 Rahdert et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8142497 Friedman Mar 2012 B2
8147504 Ino et al. Apr 2012 B2
8157852 Bloom et al. Apr 2012 B2
8157853 Laske et al. Apr 2012 B2
8157860 McNamara et al. Apr 2012 B2
8163014 Lane et al. Apr 2012 B2
D660433 Braido et al. May 2012 S
D660967 Braido et al. May 2012 S
8167894 Miles et al. May 2012 B2
8167932 Bourang et al. May 2012 B2
8167935 McGuckin, Jr. et al. May 2012 B2
8172896 McNamara et al. May 2012 B2
8177836 Lee et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8211169 Lane et al. Jul 2012 B2
8216256 Raschdorf, Jr. et al. Jul 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8221492 Case et al. Jul 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8231670 Salahieh et al. Jul 2012 B2
8235933 Keren et al. Aug 2012 B2
8236045 Benichou et al. Aug 2012 B2
8236049 Rowe et al. Aug 2012 B2
8252042 McNamara et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8257390 Carley et al. Sep 2012 B2
8267988 Hamer et al. Sep 2012 B2
8277501 Chalekian et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8298280 Yadin et al. Oct 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308798 Pintor et al. Nov 2012 B2
8317853 Agnew Nov 2012 B2
8317855 Gregorich et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8337541 Quadri et al. Dec 2012 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8403983 Quadri et al. Mar 2013 B2
8408214 Spenser Apr 2013 B2
8414644 Quadri et al. Apr 2013 B2
8430934 Das Apr 2013 B2
8449599 Chau et al. May 2013 B2
8449625 Campbell et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460372 McNamara et al. Jun 2013 B2
8474460 Barrett et al. Jul 2013 B2
8500821 Sobrino-Serrano et al. Aug 2013 B2
8545544 Spenser et al. Oct 2013 B2
8562672 Bonhoeffer et al. Oct 2013 B2
8568475 Nguyen et al. Oct 2013 B2
8579964 Lane et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8591460 Wilson et al. Nov 2013 B2
8628569 Benichou et al. Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8652203 Quadri et al. Feb 2014 B2
8657872 Seguin Feb 2014 B2
8673020 Sobrino-Serrano et al. Mar 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8696611 Nitzan et al. Apr 2014 B2
8696742 Pintor et al. Apr 2014 B2
8728155 Montorfano et al. May 2014 B2
8740962 Finch et al. Jun 2014 B2
8784472 Eidenschink Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8840664 Krapetian et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8870950 Hacohen Oct 2014 B2
8876800 Behan Nov 2014 B2
8882697 Celermajer et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8906083 Obermiller et al. Dec 2014 B2
8932343 Alkhatib et al. Jan 2015 B2
8961595 Alkhatib Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986375 Garde et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
8998982 Richter et al. Apr 2015 B2
9005155 Sugimoto Apr 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
D730520 Braido et al. May 2015 S
D730521 Braido et al. May 2015 S
9023100 Quadri et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
D732666 Nguyen et al. Jun 2015 S
9050188 Schweich, Jr. et al. Jun 2015 B2
9060858 Thornton et al. Jun 2015 B2
9072603 Tuval et al. Jul 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125740 Morriss et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9173659 Bodewadt et al. Nov 2015 B2
9226839 Kariniemi et al. Jan 2016 B1
9232995 Kovalsky et al. Jan 2016 B2
9241790 Lane et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9277994 Miller et al. Mar 2016 B2
9277995 Celermajer et al. Mar 2016 B2
9301836 Buchbinder et al. Apr 2016 B2
D755384 Pesce et al. May 2016 S
9326852 Spenser May 2016 B2
9326876 Acosta et al. May 2016 B2
9345573 Nyuli et al. May 2016 B2
9387078 Gross et al. Jul 2016 B2
9421098 Gifford, III et al. Aug 2016 B2
9427303 Liddy et al. Aug 2016 B2
9439757 Wallace et al. Sep 2016 B2
9463102 Kelly Oct 2016 B2
9474638 Robinson et al. Oct 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9492273 Wallace et al. Nov 2016 B2
9498314 Kim et al. Nov 2016 B2
9498332 Hacohen et al. Nov 2016 B2
9554897 Lane et al. Jan 2017 B2
9554899 Granada et al. Jan 2017 B2
9561103 Granada et al. Feb 2017 B2
9566152 Schweich, Jr. et al. Feb 2017 B2
9629715 Nitzan et al. Apr 2017 B2
9629716 Seguin Apr 2017 B2
9649480 Sugimoto et al. May 2017 B2
9681948 Levi et al. Jun 2017 B2
9681952 Hacohen et al. Jun 2017 B2
9707382 Nitzan et al. Jul 2017 B2
9713696 Yacoby et al. Jul 2017 B2
9717591 Chau et al. Aug 2017 B2
9743932 Amplatz et al. Aug 2017 B2
9763657 Hacohen et al. Sep 2017 B2
9763817 Roeder Sep 2017 B2
9770256 Cohen et al. Sep 2017 B2
9788941 Hacohen Oct 2017 B2
9895226 Harari et al. Feb 2018 B1
9987132 Hariton et al. Jun 2018 B1
10076415 Metchik et al. Sep 2018 B1
10105222 Metchik et al. Oct 2018 B1
10111751 Metchik et al. Oct 2018 B1
10123873 Metchik et al. Nov 2018 B1
10130475 Metchik et al. Nov 2018 B1
10136993 Metchik et al. Nov 2018 B1
10143552 Wallace et al. Dec 2018 B2
10149761 Granada et al. Dec 2018 B2
10154906 Granada et al. Dec 2018 B2
10159570 Metchik et al. Dec 2018 B1
10182908 Tubishevitz et al. Jan 2019 B2
10226341 Gross Mar 2019 B2
10231837 Metchik et al. Mar 2019 B1
10238493 Metchik et al. Mar 2019 B1
10245143 Gross et al. Apr 2019 B2
10245144 Metchik et al. Apr 2019 B1
10322020 Lam et al. Jun 2019 B2
10376361 Gross et al. Aug 2019 B2
10507108 Delgado et al. Dec 2019 B2
10507109 Metchik et al. Dec 2019 B2
10512456 Hacohen et al. Dec 2019 B2
10517719 Miller et al. Dec 2019 B2
10524792 Hernandez et al. Jan 2020 B2
10575948 Iamberger et al. Mar 2020 B2
10595992 Chambers Mar 2020 B2
10595997 Metchik et al. Mar 2020 B2
10610358 Vidlund et al. Apr 2020 B2
10646342 Marr et al. May 2020 B1
10702385 Hacohen et al. Jul 2020 B2
10813760 Metchik et al. Oct 2020 B2
10820998 Marr et al. Nov 2020 B2
10842627 Delgado et al. Nov 2020 B2
10874514 Dixon et al. Dec 2020 B2
10888644 Ratz et al. Jan 2021 B2
10905552 Dixon et al. Feb 2021 B2
10905554 Cao Feb 2021 B2
10918483 Metchik et al. Feb 2021 B2
10945844 McCann et al. Mar 2021 B2
10993809 McCann et al. May 2021 B2
11083582 McCann et al. Aug 2021 B2
11147672 McCann et al. Oct 2021 B2
20010002445 Vesely May 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010056295 Solem Dec 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020032481 Gabbay Mar 2002 A1
20020099436 Thornton et al. Jul 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020177894 Acosta et al. Nov 2002 A1
20030036791 Philipp et al. Feb 2003 A1
20030060875 Wittens Mar 2003 A1
20030069635 Cartledge et al. Apr 2003 A1
20030074052 Besselink Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030158578 Pantages et al. Aug 2003 A1
20040010272 Manetakis et al. Jan 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040039414 Carley et al. Feb 2004 A1
20040093060 Seguin et al. May 2004 A1
20040122503 Campbell et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040133267 Lane Jul 2004 A1
20040143315 Bruun et al. Jul 2004 A1
20040176839 Huynh et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040210244 Vargas et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040249433 Freitag Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050021056 St. Goar et al. Jan 2005 A1
20050027305 Shiu et al. Feb 2005 A1
20050027348 Case et al. Feb 2005 A1
20050038494 Eidenschink Feb 2005 A1
20050055086 Stobie Mar 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050080430 Wright, Jr. et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050149160 McFerran Jul 2005 A1
20050154443 Linder et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050234508 Cummins et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251251 Cribier Nov 2005 A1
20050256566 Gabbay Nov 2005 A1
20050267573 Macoviak et al. Dec 2005 A9
20060004439 Spenser et al. Jan 2006 A1
20060004469 Sokel Jan 2006 A1
20060015171 Armstrong Jan 2006 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060041189 Vancaillie Feb 2006 A1
20060047297 Case Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060089627 Burnett et al. Apr 2006 A1
20060111773 Rittgers et al. May 2006 A1
20060116750 Hebert et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060155357 Melsheimer Jul 2006 A1
20060173700 Quinn Aug 2006 A1
20060178740 Stacchino et al. Aug 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060190036 Wendel et al. Aug 2006 A1
20060190038 Carley et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060201519 Frazier et al. Sep 2006 A1
20060212111 Case et al. Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247680 Amplatz et al. Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060271171 McQuinn et al. Nov 2006 A1
20060282150 Olson et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070027528 Agnew Feb 2007 A1
20070027549 Godin Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070038295 Case et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070055340 Pryor Mar 2007 A1
20070056346 Spenser et al. Mar 2007 A1
20070078510 Ryan Apr 2007 A1
20070112422 Dehdashtian May 2007 A1
20070118151 Davidson May 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070173932 Cali et al. Jul 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070198077 Cully et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070213810 Newhauser et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225759 Thommen et al. Sep 2007 A1
20070233186 Meng Oct 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070239272 Navia et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20080004688 Spenser et al. Jan 2008 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080077235 Kirson Mar 2008 A1
20080082083 Forde et al. Apr 2008 A1
20080082159 Tseng et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080086164 Rowe Apr 2008 A1
20080086204 Rankin Apr 2008 A1
20080091261 Long et al. Apr 2008 A1
20080097595 Gabbay Apr 2008 A1
20080132989 Snow et al. Jun 2008 A1
20080140003 Bei et al. Jun 2008 A1
20080147182 Righini et al. Jun 2008 A1
20080161910 Revuelta et al. Jul 2008 A1
20080167705 Agnew Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080188929 Schreck Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234814 Salahieh et al. Sep 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255580 Hoffman et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080269879 Sathe et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080294234 Hartley et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090036966 O'Connor et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099554 Forster et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090112159 Slattery et al. Apr 2009 A1
20090125098 Chuter May 2009 A1
20090157175 Benichou Jun 2009 A1
20090171363 Chocron Jul 2009 A1
20090177278 Spence Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090222081 Linder et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090264859 Mas Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090299449 Styrc Dec 2009 A1
20090306768 Quadri Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100022823 Goldfarb et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100023120 Holecek et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100069852 Kelley Mar 2010 A1
20100076548 Konno Mar 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100114299 Ben Muvhar et al. May 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
20100160958 Clark Jun 2010 A1
20100161036 Pintor et al. Jun 2010 A1
20100161042 Maisano et al. Jun 2010 A1
20100174363 Castro Jul 2010 A1
20100179643 Shalev Jul 2010 A1
20100179648 Richter et al. Jul 2010 A1
20100179649 Richter et al. Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100222810 DeBeer et al. Sep 2010 A1
20100228285 Miles et al. Sep 2010 A1
20100234940 Dolan Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249917 Zhang Sep 2010 A1
20100256737 Pollock et al. Oct 2010 A1
20100262232 Annest Oct 2010 A1
20100280603 Maisano et al. Nov 2010 A1
20100280606 Naor Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100324595 Linder et al. Dec 2010 A1
20100331971 Keranen et al. Dec 2010 A1
20110004227 Goldfarb et al. Jan 2011 A1
20110004296 Lutter et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110015731 Carpentier et al. Jan 2011 A1
20110022165 Oba et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110040374 Goetz et al. Feb 2011 A1
20110040375 Letac et al. Feb 2011 A1
20110046662 Moszner et al. Feb 2011 A1
20110054466 Rothstein et al. Mar 2011 A1
20110054596 Taylor Mar 2011 A1
20110054598 Johnson Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110077730 Fenster Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087322 Letac et al. Apr 2011 A1
20110093063 Schreck Apr 2011 A1
20110106247 Miller et al. May 2011 A1
20110112625 Ben-Muvhar et al. May 2011 A1
20110112632 Chau et al. May 2011 A1
20110118830 Liddicoat et al. May 2011 A1
20110125257 Seguin et al. May 2011 A1
20110125258 Centola May 2011 A1
20110137326 Bachman Jun 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137409 Yang et al. Jun 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144742 Madrid et al. Jun 2011 A1
20110166636 Rowe Jul 2011 A1
20110172784 Richter et al. Jul 2011 A1
20110178597 Navia et al. Jul 2011 A9
20110184510 Maisano et al. Jul 2011 A1
20110190877 Lane et al. Aug 2011 A1
20110190879 Bobo et al. Aug 2011 A1
20110202076 Richter et al. Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110208293 Tabor Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110213459 Garrison et al. Sep 2011 A1
20110213461 Seguin et al. Sep 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110218620 Meiri et al. Sep 2011 A1
20110224785 Hacohen Sep 2011 A1
20110238159 Guyenot et al. Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110245917 Savage et al. Oct 2011 A1
20110251675 Dwork Oct 2011 A1
20110251676 Sweeney et al. Oct 2011 A1
20110251678 Eidenschink et al. Oct 2011 A1
20110251679 Wiemeyer et al. Oct 2011 A1
20110251680 Tran et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110251683 Tabor Oct 2011 A1
20110257721 Tabor Oct 2011 A1
20110257729 Spenser et al. Oct 2011 A1
20110257736 Marquez et al. Oct 2011 A1
20110257737 Fogarty et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110264198 Murray, III et al. Oct 2011 A1
20110264199 Tran et al. Oct 2011 A1
20110264200 Tran et al. Oct 2011 A1
20110264201 Yeung et al. Oct 2011 A1
20110264202 Murray, III et al. Oct 2011 A1
20110264203 Dwork et al. Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110264208 Duffy et al. Oct 2011 A1
20110270276 Rothstein et al. Nov 2011 A1
20110271967 Mortier et al. Nov 2011 A1
20110282438 Drews et al. Nov 2011 A1
20110282439 Thill et al. Nov 2011 A1
20110282440 Cao et al. Nov 2011 A1
20110283514 Fogarty et al. Nov 2011 A1
20110288632 White Nov 2011 A1
20110288634 Tuval et al. Nov 2011 A1
20110295354 Bueche et al. Dec 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110301688 Dolan Dec 2011 A1
20110301701 Padala et al. Dec 2011 A1
20110301702 Rust et al. Dec 2011 A1
20110306916 Nitzan Dec 2011 A1
20110307049 Kao Dec 2011 A1
20110313452 Carley et al. Dec 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120022633 Olson et al. Jan 2012 A1
20120022637 Ben-Muvhar Jan 2012 A1
20120022639 Hacohen et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120041547 Duffy et al. Feb 2012 A1
20120041551 Spenser et al. Feb 2012 A1
20120046738 Lau et al. Feb 2012 A1
20120046742 Tuval et al. Feb 2012 A1
20120053676 Ku et al. Mar 2012 A1
20120053682 Kovalsky et al. Mar 2012 A1
20120053688 Fogarty et al. Mar 2012 A1
20120059454 Millwee et al. Mar 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120078237 Wang et al. Mar 2012 A1
20120078353 Quadri et al. Mar 2012 A1
20120078357 Conklin Mar 2012 A1
20120083832 Delaloye et al. Apr 2012 A1
20120083839 Letac et al. Apr 2012 A1
20120083879 Eberhardt et al. Apr 2012 A1
20120089223 Nguyen et al. Apr 2012 A1
20120101570 Tuval et al. Apr 2012 A1
20120101571 Thambar Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120123511 Brown May 2012 A1
20120123530 Carpentier et al. May 2012 A1
20120130301 McNamara et al. May 2012 A1
20120130473 Norris et al. May 2012 A1
20120130474 Buckley May 2012 A1
20120130475 Shaw May 2012 A1
20120136434 Carpentier et al. May 2012 A1
20120150218 Sandgren et al. Jun 2012 A1
20120165915 Melsheimer et al. Jun 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120197292 Chin-Chen et al. Aug 2012 A1
20120265296 McNamara et al. Oct 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20120296360 Norris et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120300063 Majkrzak et al. Nov 2012 A1
20120310328 Olson et al. Dec 2012 A1
20120323316 Chau et al. Dec 2012 A1
20120330408 Hillukka et al. Dec 2012 A1
20130006347 McHugo Jan 2013 A1
20130018450 Hunt Jan 2013 A1
20130018458 Yohanan et al. Jan 2013 A1
20130035759 Gross et al. Feb 2013 A1
20130041451 Patterson et al. Feb 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130066342 Dell et al. Mar 2013 A1
20130079872 Gallagher Mar 2013 A1
20130116780 Miller et al. May 2013 A1
20130123896 Bloss et al. May 2013 A1
20130123900 Eblacas et al. May 2013 A1
20130150945 Crawford et al. Jun 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130158647 Norris et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130166022 Conklin Jun 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130172992 Gross et al. Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130211501 Buckley et al. Aug 2013 A1
20130245742 Norris Sep 2013 A1
20130253643 Rolando et al. Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Clague et al. Oct 2013 A1
20130274870 Lombardi et al. Oct 2013 A1
20130281988 Magnin et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130289711 Liddy et al. Oct 2013 A1
20130289740 Liddy et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130325114 McLean et al. Dec 2013 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140018911 Zhou et al. Jan 2014 A1
20140031928 Murphy et al. Jan 2014 A1
20140046430 Shaw Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140067050 Costello et al. Mar 2014 A1
20140081376 Burkart et al. Mar 2014 A1
20140106951 Brandon Apr 2014 A1
20140120287 Jacoby et al. May 2014 A1
20140121749 Roeder May 2014 A1
20140121763 Duffy et al. May 2014 A1
20140135894 Norris et al. May 2014 A1
20140135895 Andress et al. May 2014 A1
20140142681 Norris May 2014 A1
20140148891 Johnson May 2014 A1
20140163449 Rottenberg et al. Jun 2014 A1
20140172069 Roeder et al. Jun 2014 A1
20140172082 Bruchman et al. Jun 2014 A1
20140188210 Beard et al. Jul 2014 A1
20140188221 Chung et al. Jul 2014 A1
20140194971 McNamara Jul 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140249622 Carmi et al. Sep 2014 A1
20140257461 Robinson et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140257476 Montorfano et al. Sep 2014 A1
20140277045 Fazio et al. Sep 2014 A1
20140277054 McNamara et al. Sep 2014 A1
20140277358 Slazas Sep 2014 A1
20140277409 Bortlein et al. Sep 2014 A1
20140277418 Miller Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140336744 Tani et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140350565 Yacoby et al. Nov 2014 A1
20140358222 Gorman, III Dec 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140379065 Johnson et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150018944 O'Connell et al. Jan 2015 A1
20150032205 Matheny Jan 2015 A1
20150045880 Hacohen Feb 2015 A1
20150045881 Lim Feb 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150119796 Finch Apr 2015 A1
20150119970 Nakayama et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150148731 McNamara et al. May 2015 A1
20150157457 Hacohen Jun 2015 A1
20150164640 McLean et al. Jun 2015 A1
20150173896 Richter et al. Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150196393 Vidlund Jul 2015 A1
20150216661 Hacohen et al. Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150245908 Nitzan et al. Sep 2015 A1
20150245934 Lombardi et al. Sep 2015 A1
20150272730 Melnick et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282964 Beard et al. Oct 2015 A1
20150320556 Levi et al. Nov 2015 A1
20150327994 Morriss et al. Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150351904 Cooper et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20160022423 McNamara et al. Jan 2016 A1
20160022970 Forcucci et al. Jan 2016 A1
20160030169 Shahriari Feb 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160089482 Siegenthaler Mar 2016 A1
20160100939 Armstrong et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160120550 McNamara et al. May 2016 A1
20160125160 Heneghan et al. May 2016 A1
20160166381 Sugimoto et al. Jun 2016 A1
20160175095 Dienno et al. Jun 2016 A1
20160213473 Hacohen et al. Jul 2016 A1
20160228247 Maimon et al. Aug 2016 A1
20160242902 Morriss et al. Aug 2016 A1
20160270911 Ganesan et al. Sep 2016 A1
20160296330 Hacohen Oct 2016 A1
20160310268 Oba et al. Oct 2016 A1
20160310274 Gross et al. Oct 2016 A1
20160317301 Quadri et al. Nov 2016 A1
20160324633 Gross et al. Nov 2016 A1
20160324640 Gifford, III et al. Nov 2016 A1
20160331526 Schweich, Jr. et al. Nov 2016 A1
20160331527 Vidlund et al. Nov 2016 A1
20160338706 Rowe Nov 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20160374801 Jimenez et al. Dec 2016 A1
20170042678 Ganesan et al. Feb 2017 A1
20170049435 Sauer et al. Feb 2017 A1
20170056166 Ratz et al. Mar 2017 A1
20170056171 Cooper et al. Mar 2017 A1
20170065407 Hacohen et al. Mar 2017 A1
20170065411 Grundeman et al. Mar 2017 A1
20170113026 Finch Apr 2017 A1
20170128205 Tamir et al. May 2017 A1
20170128705 Forcucci et al. May 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170196692 Kirk et al. Jul 2017 A1
20170209264 Chau et al. Jul 2017 A1
20170216026 Quill et al. Aug 2017 A1
20170224323 Rowe Aug 2017 A1
20170231757 Gassler Aug 2017 A1
20170231759 Geist et al. Aug 2017 A1
20170231760 Lane et al. Aug 2017 A1
20170239048 Goldfarb et al. Aug 2017 A1
20170333183 Backus Nov 2017 A1
20170333187 Hariton et al. Nov 2017 A1
20180000580 Wallace et al. Jan 2018 A1
20180028215 Cohen Feb 2018 A1
20180049873 Manash et al. Feb 2018 A1
20180055628 Patel et al. Mar 2018 A1
20180055630 Patel et al. Mar 2018 A1
20180098850 Rafiee et al. Apr 2018 A1
20180125644 Conklin May 2018 A1
20180153687 Hariton et al. Jun 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180177594 Patel et al. Jun 2018 A1
20180214263 Rolando et al. Aug 2018 A1
20180250147 Syed Sep 2018 A1
20180296341 Noe et al. Oct 2018 A1
20180360457 Ellis et al. Dec 2018 A1
20190167423 Hariton et al. Jun 2019 A1
20190192295 Spence et al. Jun 2019 A1
20190336280 Naor Nov 2019 A1
20200000449 Goldfarb et al. Jan 2020 A1
20200030098 Delgado et al. Jan 2020 A1
20200054335 Hemandez et al. Feb 2020 A1
20200113677 McCann et al. Apr 2020 A1
20200113689 McCann et al. Apr 2020 A1
20200113692 McCann et al. Apr 2020 A1
20200138567 Marr et al. May 2020 A1
20200163761 Hariton et al. May 2020 A1
20200214832 Metchik et al. Jul 2020 A1
20200237512 McCann et al. Jul 2020 A1
20200246136 Marr et al. Aug 2020 A1
20200246140 Hariton et al. Aug 2020 A1
20200253600 Darabian Aug 2020 A1
20200261094 Goldfarb et al. Aug 2020 A1
20200315786 Metchik et al. Oct 2020 A1
20200337842 Metchik et al. Oct 2020 A1
20210093449 Hariton et al. Apr 2021 A1
20210113331 Quadri et al. Apr 2021 A1
Foreign Referenced Citations (78)
Number Date Country
2822801 Aug 2006 CA
103974674 Aug 2014 CN
0170262 Feb 1986 EP
1264582 Dec 2002 EP
1768630 Jan 2015 EP
S53152790 Dec 1978 JP
20010046894 Jun 2001 KR
9843557 Oct 1998 WO
9930647 Jun 1999 WO
0047139 Aug 2000 WO
0162189 Aug 2001 WO
0182832 Nov 2001 WO
0187190 Nov 2001 WO
2003020179 Mar 2003 WO
2005107650 Nov 2005 WO
2006007401 Jan 2006 WO
2006054930 May 2006 WO
2006086434 Aug 2006 WO
2006116558 Nov 2006 WO
2006128193 Nov 2006 WO
2008013915 Jan 2008 WO
2008103722 Aug 2008 WO
2009033469 Mar 2009 WO
2009053497 Apr 2009 WO
2009091509 Jul 2009 WO
2010006627 Jan 2010 WO
2010037141 Apr 2010 WO
2010045297 Apr 2010 WO
2010057262 May 2010 WO
2010073246 Jul 2010 WO
2010081033 Jul 2010 WO
2010121076 Oct 2010 WO
2011025972 Mar 2011 WO
2011069048 Jun 2011 WO
2011106137 Sep 2011 WO
2011111047 Sep 2011 WO
2011137531 Nov 2011 WO
2011143263 Nov 2011 WO
2011154942 Dec 2011 WO
2012011108 Jan 2012 WO
2012036740 Mar 2012 WO
2012048035 Apr 2012 WO
2012127309 Sep 2012 WO
2012177942 Dec 2012 WO
2013021374 Feb 2013 WO
2013021375 Feb 2013 WO
2013059747 Apr 2013 WO
2013078497 Jun 2013 WO
2013114214 Aug 2013 WO
2013128436 Sep 2013 WO
2013175468 Nov 2013 WO
2014076696 May 2014 WO
2014115149 Jul 2014 WO
2014145338 Sep 2014 WO
2014164364 Oct 2014 WO
2014194178 Dec 2014 WO
2016016899 Feb 2016 WO
2016113743 Jul 2016 WO
2016125160 Aug 2016 WO
2017223486 Dec 2017 WO
2018025260 Feb 2018 WO
2018025263 Feb 2018 WO
2018029680 Feb 2018 WO
2018039631 Mar 2018 WO
2018106837 Jun 2018 WO
2018112429 Jun 2018 WO
2018118717 Jun 2018 WO
2018131042 Jul 2018 WO
2018131043 Jul 2018 WO
2019026059 Feb 2019 WO
2019027507 Feb 2019 WO
2019030753 Feb 2019 WO
2019077595 Apr 2019 WO
2019116369 Jun 2019 WO
2019138400 Jul 2019 WO
2019202579 Oct 2019 WO
2020058972 Mar 2020 WO
2020167677 Aug 2020 WO
Non-Patent Literature Citations (169)
Entry
Poirier et al. A novel repair for patients with atriaventricular septal defect requiring reoperation for left atrioventricular valve regurgitation. Eurpoean Journal of Cardio-thoracic Surgery, 18 (2008) 54-61 (Year: 2008).
Ando et al. Iatrogenic Ventricular Septal Defect Following Transcatheter Aortic Valve Replacement: A Systematic Review. Heart, Lung and Circulation (2016) 25, 968-974 (Year: 2016).
Urena et al. Transseptal Transcatheter Mitral Valve Replacement Using Balloon-Expandable Transcatheter Heart Valves. JACC: Cardiovascular Interventions. vol. 10, No. 19 (2017). 1905-1919 (Year: 2017).
Extended European Search Report dated Sep. 26, 2018; Appln. No. 18186784.7.
The First Chinese Office Action dated Nov. 5, 2018; Appln. No. 201680008328.5.
Invitation to pay additional fees dated Oct. 11, 2018; PCT/IL2018/050725.
USPTO NFOA dated Dec. 4, 2018 in connection with U.S. Appl. No. 16/045,059.
USPTO NOA dated Sep. 25, 2018 in connection with U.S. Appl. No. 15/188,507.
An International Preliminary Report on Patentability dated Oct. 20, 2020, which issued during the prosecution of Applicant's PCT/IL2019/050142.
An Office Action dated Oct. 5, 2020, which issued during the prosecution of Canadian Patent Application No. 2,973,940.
Notice of Allowance dated Nov. 19, 2020, which issued during the prosecution of U.S. Appl. No. 16/318,025.
An Office Action dated Sep. 24, 2020, which issued during the prosecution of U.S. Appl. No. 16/811,732.
An Office Action summarized English translation and Search Report dated Nov. 25, 2020, which issued during the prosecution of Chinese Patent Application No. 201910449820.1.
An Office Action dated Nov. 30, 2020, which issued during the prosecution of U.S. Appl. No. 16/138,129.
An Office Action dated Jun. 6, 2018, which issued during the prosecution of UK Patent Application No. 1720803.4.
An Office Action dated Jun. 18, 2018, which issued during the prosecution of UK Patent Application No. 1800399.6.
An International Search Report and a Written Opinion both dated Jun. 20, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050024.
USPTO AA dated Apr. 2, 2018 in connection with U.S. Appl. No. 14/763,004.
USPTO RR dated May 4, 2018 in connection with U.S. Appl. No. 15/872,501.
USPTO NFOA dated Jul. 26, 2018 in connection with U.S. Appl. No. 15/872,501.
USPTO NOA dated Apr. 20, 2018 in connection with U.S. Appl. No. 15/878,206.
USPTO NFOA dated Apr. 20, 2018 in connection with U.S. Appl. No. 15/886,517.
USPTO NFOA dated Aug. 9, 2018 in connection with U.S. Appl. No. 15/899,858.
USPTO NFOA dated Aug. 9, 2018 in connection with U.S. Appl. No. 15/002,403.
USPTO NFOA dated Jun. 28, 2018 in connection with U.S. Appl. No. 29/635,658.
USPTO NFOA dated Jun. 28, 2018 in connection with U.S. Appl. No. 29/635,661.
USPTO FOA dated Feb. 10, 2014 in connection with U.S. Appl. No. 13/033,852.
USPTO FOA dated Feb. 15, 2013 in connection with U.S. Appl. No. 12/840,463.
USPTO FOA dated Mar. 25, 2015 in connection with U.S. Appl. No. 12/840,463.
USPTO FOA dated May 23, 2014 in connection with U.S. Appl. No. 13/412,814.
USPTO FOA dated Jul. 18, 2013 in connection with U.S. Appl. No. 13/044,694.
USPTO FOA dated Jul. 23, 2013 in connection with U.S. Appl. No. 12/961,721.
USPTO NFOA dated Jan. 21, 2016 in connection with U.S. Appl. No. 14/237,264.
USPTO NFOA dated Feb. 6, 2013 in connection with U.S. Appl. No. 13/412,814.
USPTO NFOA dated May 15, 2013 in connection with U.S. Appl. No. 12/583,979.
USPTO NFOA dated May 29, 2012 in connection with U.S. Appl. No. 12/840,463.
USPTO NFOA dated Jun. 4, 2014 in connection with U.S. Appl. No. 12/840,463.
USPTO NFOA dated Jun. 17, 2014 in connection with U.S. Appl. No. 12/961,721.
USPTO NFOA dated Jun. 30, 2015 in connection with U.S. Appl. No. 14/522,987.
USPTO NFOA dated Jul. 2, 2014 in connection with U.S. Appl. No. 13/811,308.
USPTO NFOA dated Jul. 3, 2014 in connection with U.S. Appl. No. 13/033,852.
USPTO NFOA dated Aug. 2, 2013 in connection with U.S. Appl. No. 13/033,852.
USPTO NFOA dated Sep. 12, 2013 in connection with U.S. Appl. No. 13/412,814.
USPTO NFOA dated Sep. 19, 2014 in connection with U.S. Appl. No. 13/044,694.
USPTO NFOA dated Nov. 8, 2013 in connection with U.S. Appl. No. 12/840,463.
USPTO NFOA dated Nov. 23, 2012 in connection with U.S. Appl. No. 13/033,852.
USPTO NFOA dated Nov. 27, 2015 in connection with U.S. Appl. No. 14/626,267.
USPTO NFOA dated Nov. 28, 2012 in connection with U.S. Appl. No. 12/961,721.
USPTO NFOA dated Dec. 10, 2015 in connection with U.S. Appl. No. 14/237,258.
USPTO NFOA dated Dec. 31, 2012 in connection with U.S. Appl. No. 13/044,694.
USPTO NOA mailed Apr. 8, 2016 in connection with U.S. Appl. No. 14/237,258.
USPTO NOA mailed May 5, 2015 in connection with U.S. Appl. No. 12/840,463.
USPTO NOA mailed Aug. 15, 2014 in connection with U.S. Appl. No. 13/412,814.
USPTO RR dated Jan. 20, 2016 in connection with U.S. Appl. No. 14/161,921.
USPTO RR dated Feb. 3, 2014 in connection with U.S. Appl. No. 13/811,308.
USPTO RR dated Jul. 2, 2012 in connection with U.S. Appl. No. 13/033,852.
USPTO RR dated Aug. 13, 2012 in connection with U.S. Appl. No. 13/044,694.
USPTO RR dated Aug. 14, 2012 in connection with U.S. Appl. No. 12/961,721.
USPTO Suppl. NOA dated May 10, 2016 in connection with U.S. Appl. No. 14/237,258.
USPTO Suppl. NOA dated May 20, 2016 in connection with U.S. Appl. No. 14/237,258.
An International Search Report and a Written Opinion both dated May 13, 2019, which issued during the prosecution of Applicant's PCT/IL2018/051350.
An International Search Report and a Written Opinion both dated Apr. 5, 2019, which issued during the prosecution of Applicant's PCT/IL2019/050142.
An International Search Report and a Written Opinion both dated Jan. 25, 2019, which issued during the prosecution of Applicant's PCT/IL2018/051122.
An International Search Report and a Written Opinion both dated Dec. 5, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050725.
An International Preliminary Report on Patentability dated Feb. 12, 2019, which issued during the prosecution of Applicant's PCT/IL2017/050873.
An International Preliminary Report on Patentability dated Feb. 5, 2019, which issued during the prosecution of Applicant's PCT/IL2017/050849.
An Office Action dated Mar. 25, 2019, which issued during the prosecution of European Patent Application No. 14710060.6.
An Office Action dated Oct. 25, 2018, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Mar. 4, 2019, which issued during the prosecution of U.S. Appl. No. 14/763,004.
An Office Action dated Jan. 9, 2019, which issued during the prosecution of U.S. Appl. No. 15/329,920.
An Office Action dated Jan. 30, 2019, which issued during the prosecution of US Patent Application No. 15/872,501.
An Office Action dated Feb. 5, 2019, which issued during the prosecution of U.S. Appl. No. 15/899,858.
An Office Action dated May 23, 2019, which issued during the prosecution of U.S. Appl. No. 15/668,659.
An Office Action dated May 1, 2019, which issued during the prosecution of U.S. Appl. No. 15/691,032.
An International Search Report and a Written Opinion both dated Nov. 9, 2018, which issued during the prosecution of Applicant's PCT/IL2018/050869.
Extended European Search Report dated Feb. 18, 2015; Appln. 12821522.5.
Alexander S. Geha, et al; “Replacement of Degenerated Mitral and Aortic Bioprostheses Without Explantation”, Ann. Thorac Surg. Jun. 2001; 72, pp. 1509-1514.
Dominique Himbert; “Mitral Regurgitation and Stenosis from Bioprosthesis and Annuloplasty Failure: Transcatheter approaches and outcomes”, Cardiovascular Research Foundation, 24 pages, Oct. 28, 2013.
Frank Langer, et al.; “RING plus STRING: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation”, J. Thorac Cardiovasc Surg. 133:247-9, Jan. 2007.
Frank Langer, et al; “RING+STRING Successful Repair Technique for Ischemic Mitral Regurgitation With Severe Leaflet Tethering”, Circulation 120[suppl 1]: S85-S91, Sep. 2009.
John G Webb, et al; “Transcatheter Valve-in-Valve Implantation for Failed Bioprosthetic Heart Valves”, Circulation, Apr. 2010; 121: 1848-1857.
J. Jansen, et al; “Detachable shape-memory sewing ring for heart valves”, Artificial Organs, 16:294-297, 1992 (an abstract).
Invitation to Pay Additional Fees; dated Jun. 12, 2014; PCT/IL2014/050087.
IPRP issued Dec. 2, 2013; PCT/IL2011/000582.
IPRP issued Sep. 11, 2012; PCT/IL2011/000231.
IPRP issued Feb. 11, 2014; PCT/IL2012/000292.
IPRP issued Feb. 11, 2014; PCT/IL2012/000293.
ISR and WO mailed Dec. 5, 2011; PCT/IL11/00582.
ISR and WO mailed Mar. 17, 2014; PCT/IL13/50937.
ISR and WO mailed Oct. 13, 2011; PCT/IL11/00231.
ISR and WO mailed Feb. 6, 2013; PCT/IL2012/000292.
ISR and WO mailed Feb. 6, 2013; PCT/IL2012/000293.
ISR and WO mailed Sep. 4, 2014; PCT/IL2014/050087.
ISR and WO mailed Oct. 27, 2015; PCT/IL2015/050792.
Sündermann, Simon H., et al. “Feasibility of the Engager™ aortic transcatheter valve system using a flexible over-the-wire design.” European Journal of Cardio-Thoracic Surgery 42.4 (2012): e48-e52.
Serruys, P. W., Piazza, N., Cribier, A., Webb, J., Laborde, J. C., & de Jaegere, P. (Eds.). (2009). Transcatheter aortic valve implantation: tips and tricks to avoid failure. CRC Press.—Screenshots from Google Books downloaded from: https://books.google.co.il/books?id=FLzLBQAAQBAJ&lpg=PA198&ots—soqWrDH-y_&dq=%20%22Edwards%20SAPIEN%22&lr&pg=PA20#y=onepage&q=%22Edwards%20SAPIEN%22&f=false ; Downloaded on Jun. 18, 2020.
Notice of Allowance dated May 7, 2020, which issued during the prosecution of U.S. Appl. No. 16/637,166.
An Office Action dated Aug. 7, 2020, which issued during the prosecution of U.S. Appl. No. 15/668,659.
Tchetche, D. and Nicolas M. Van Mieghem: “New-generation TAVI devices: description and specifications” EuroIntervention, 2014, No. 10:U90-U100.
An International Search Report and a Written Opinion both dated Jun. 24, 2020, which issued during the prosecution of of Applicant's PCT/IL2019/051398.
Symetis S.A.: “ACURATE neo™ Aortic Bioprosthesis for Implantation using the ACURATE neo™ TA Transapical Delivery System in Patients with Severe Aortic Stenosis,” Clinical Investigation Plan, Protocol No. 2015-01, Vs. No. 2, 2015:1-76.
Notice of Allowance dated Sep. 10, 2020, which issued during the prosecution of U.S. Appl. No. 15/600,190.
An Office Action dated Jul. 29, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
Notice of Allowance dated Aug. 26, 2020, which issued during the prosecution of U.S. Appl. No. 16/269,328.
An Office Action dated Jul. 14, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
Notice of Allowance dated Aug. 28, 2020, which issued during the prosecution of U.S. Appl. No. 16/324,339.
An Office Action summarized English translation and Search Report dated Jul. 3, 2020, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
Notice of Allowance dated Jul. 29, 2020, which issued during the prosecution of U.S. Appl. No. 16/132,937.
USPTO NFOA dated Oct. 23, 2017 in connection with U.S. Appl. No. 14/763,004.
USPTO FOA dated Jan. 17, 2018 in connection with U.S. Appl. No. 14/763,004.
USPTO NFOA dated Feb. 7, 2018 in connection with U.S. Appl. No. 15/197,069.
USPTO NFOA dated Dec. 7, 2017 in connection with U.S. Appl. No. 15/213,791.
Interview Summary dated Feb. 8, 2018 in connection with U.S. Appl. No. 15/213,791.
USPTO NFOA dated Jan. 5, 2018 in connection with U.S. Appl. No. 15/541,783.
USPTO NFOA dated Feb. 2, 2018 in connection with U.S. Appl. No. 15/329,920.
Invitation to pay additional fees dated Jan. 2, 2018; PCT/IL2017/050849.
Invitation to pay additional fees dated Sep. 29, 2017 PCT/IL2017/050873.
Extended European Search Report dated Jun. 29, 2017; Appln. 11809374.9.
An Office Action dated Dec. 24, 2020, which issued during the prosecution of U.S. Appl. No. 16/144,054.
An Office Action dated Feb. 2, 2021, which issued during the prosecution of U.S. Appl. No. 16/811,732.
An Office Action dated Jan. 13, 2021, which issued during the prosecution of European Patent Application No. 15751089.2.
An Office Action together with an English summary dated Mar. 3, 2021, which issued during the prosecution of Chinese Patent Application No. 201780047391.4.
Petition for Inter Partes Review of U.S. Pat. No. 10,226,341 and Exhibits 1001-1013— dated Dec. 29, 2020.
Declaration of Dr. Ivan Vesely, Ph.D. In Support of Petition for Inter Partes Review of U.S. Pat. No. 10,226,341—dated Dec. 17, 2020.
Fucci, C., et al. “Improved results with mitral valve repair using new surgical techniques.” European journal of cardio-thoracic surgery 9.11 (1995): 621-627.
Maisano, F. et al. “The edge-to-edge technique: a simplified method to correct mitral insufficiency.” European joumal of cardio-thoracic surgery 13.3 (1998): 240-246.
Declaration of Ivan Vesely, Ph.D., in Support of Petition for Inter Partesreview of U.S. Pat. No. 7,563,267—dated May 29, 2019.
U.S. Appl. No. 60/128,690, filed Apr. 9, 1999.
Batista, Randas JV, et al. “Partial left ventriculectomy to treat end-stage heart disease.” The Annals of thoracic surgery 64.3 (1997): 634-638.
Beall Jr, Arthur C., et al. “Clinical experience with a dacron velour-covered teflon-disc mitral-valve prosthesis.” The Annals of thoracic surgery 5.5 (1968): 402-410.
Mitral Valve Academic Research Consortium. “Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 1: Clinical Trial Design Principles A Consensus Document from the Mitral Valve Academic Research Consortium.” Journal of the American College of Cardiology 66.3 (2015): 278-307.
Kalbacher, D., et al. “1000 MitraClip™ procedures: Lessons learnt from the largest single-centre experience worldwide.” (2019): 3137-3139.
U.S. Appl. No. 60/613,867, filed Sep. 27, 2004.
Patent Trial and Appeal Board Decision Granting Institution in U.S. Pat. No. 10,226,341—dated Jul. 20, 2021.
European Search Report dated Jun. 10, 2021 which issued during the prosecution of Applicant's European App No. 21157988.3.
An International Search Report and a Written Opinion both dated Jul. 12, 2021, which issued during the prosecution of Applicant's PCT/IL2021/050132.
An Office Action dated Sep. 9, 2021, which issued during the prosecution of U.S. Appl. No. 16/768,909.
An Office Action dated Sep. 15, 2021, which issued during the prosecution of U.S. Appl. No. 16/135,599.
Notice of Allowance dated Oct. 14, 2021, which issued during the prosecution of U.S. Appl. No. 16/680,739.
An Office Action dated Oct. 21, 2021, which issued during the prosecution of U.S. Appl. No. 17/335,845.
European Search Report dated Oct. 11, 2021 which issued during the prosecution of Applicant's European App No. 21176010.3.
Fann, James I., et al. “Beating heart catheter-based edge-to-edge mitral valve procedure in a porcine model: efficacy and healing response.” Circulation 110.8 (2004): 988-993.
Feldman, Ted, et al. “Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort.” Journal of the American College of Cardiology 54.8 (2009): 686-694.
IPR2021-00383 Patent Owner's Contingent Motion to Amend Under 37 C.F.R. §42.121 dated Oct. 13, 2021.
IPR2021-00383 Patent Owner's Response Pursuant to 37 C.F.R. § 42.120 dated Oct. 13, 2021.
IPR2021-00383 Second Declaration of Dr. Michael Sacks dated Oct. 13, 2021.
An Office Action dated Oct. 21, 2021, which issued during the prosecution of U.S. Appl. No. 17/306,231.
Maisano, Francesco, et al. “The evolution from surgery to percutaneous mitral valve interventions: the role of the edge-to-edge technique.” Journal of the American College of Cardiology 58.21 (2011): 2174-2182.
IPR2021-00383 Deposition of Dr. Ivan Vesely, dated Sep. 22, 2021.
Cardiovalve Exhibit 2009—Percutaneous Mitral Leaflet Repair: MitraClip® Therapy for Mitral Regurgitation (2012).
Feldman, Ted, et al. “Percutaneous mitral valve repair using the edge-to-edge technique: six-month results of the EVEREST Phase I Clinical Trial.” Journal of the American College of Cardiology 46.11 (2005): 2134-2140.
An Office Action summarized English translation and Search Report dated Oct. 8, 2021, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
An Office Action dated Nov. 4, 2021, which issued during the prosecution of U.S. Appl. No. 17/366,711.
An Office Action summarized English translation and Search Report dated Aug. 12, 2021, which issued during the prosecution of Chinese Patent Application No. 201880058940.2.
An Office Action dated May 4, 2021, which issued during the prosecution of U.S. Appl. No. 16/636,204.
Notice of Allowance dated May 17, 2021, which issued during the prosecution of U.S. Appl. No. 16/138,129.
Petition for Inter Partes Review of U.S. Pat. No. 10,702,385—dated Jun. 4, 2021.
Declaration of Ivan Vesely, Ph.D. In Support of Petition for Inter Partes Review of U.S. Pat. No. 10,702,385—dated Jun. 4, 2021.
An English summary of an Official Action dated Mar. 29, 2021, which issued during the prosecution of Chinese Patent Application No. 201780061210.3.
An International Search Report and a Written Opinion both dated Jan. 28, 2020, which issued during the prosecution of Applicant's PCT/IL2019/051031.
An International Preliminary Report on Patentability dated Mar. 9, 2021, which issued during the prosecution of Applicant's PCT/IL2019/051031.
Notice of Allowance dated Jun. 4, 2021, which issued during the prosecution of U.S. Appl. No. 16/802,353.
An Office Action dated May 12, 2021, which issued during the prosecution of Canadian Patent Application No. 2,973,940.
An Office Action dated Aug. 18, 2021, which issued during the prosecution of U.S. Appl. No. 17/210,183.
IPR2021-00383 Petitioners' Authorized Reply to Patent Owner's Preliminary Response dated May 27, 2021.
Exhibit 1014—Transcript of proceedings held May 20, 2021 (Edwards Lifesciences vs. Cardiovalve).
Exhibit 1015—Facilitate, Meriam-Webster.com, https://www.merriamwebster.com/dictionary/facilitate (visited May 26, 2021).
An Invitation to pay additional fees dated May 19, 2021, which issued during the prosecution of Applicant's PCT/IL2021/050132.
Patent Owner's Authorized Surreply to Petitioner's Reply to Patent Owner's Preliminary Response dated Jun. 4, 2021 (Edwards Lifesciences vs. Cardiovalve).
Related Publications (1)
Number Date Country
20200315789 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62295701 Feb 2016 US
Continuations (1)
Number Date Country
Parent 15433547 Feb 2017 US
Child 16738516 US