The present disclosure relates generally to semiconductor memory devices and, more particularly, to techniques for providing a source line (SL) plane in a semiconductor memory device.
There is a continuing trend to employ and/or fabricate advanced integrated circuits using techniques, materials, and devices that improve performance, reduce circuit area, reduce leakage current, and enhance overall scaling. Semiconductor-on-insulator (SOI) is a material which may be used to fabricate such integrated circuits. Integrated circuits fabricated with such a material are known as SOI devices and may include, for example, partially depleted (PD) devices, fully depleted (FD) devices, multiple gate devices (for example, double or triple gate), and Fin-FET devices.
One example of an SOI device is a semiconductor memory device. Such a semiconductor memory device may include an electrically floating body in which electrical charges may be stored. The electrical charges stored in the electrically floating body may represent a logic high or binary “1” data state or a logic low or binary “0” data state.
Various techniques may be employed to read data from and/or write data to a semiconductor memory device having an electrically floating body. In one conventional technique, a semiconductor memory device having a memory cell with a memory transistor may be read by applying a bias to a drain region of the memory transistor, as well as a bias to a gate of the memory transistor that is above a threshold voltage of the memory transistor. As such, conventional reading techniques may sense an amount of channel current provided/generated in response to the application of the bias to the gate of the memory transistor to determine a state of the memory cell. For example, an electrically floating body region of the memory cell may have two or more different current conditions/states corresponding to two or more different logical states (e.g., two different current conditions/states corresponding to two different logic states: binary “0” data state and binary “1” data state).
Also, conventional writing techniques for semiconductor memory devices having memory cells with N-Channel type memory transistors typically result in an excess of majority charge carriers in electrically floating body regions of the memory transistors by channel impact ionization or by band-to-band tunneling (gate-induced drain leakage “GIDL”). The majority charge carriers may be removed via drain side hole removal, source side hole removal, or drain and source hole removal, for example, using back gate pulsing.
Often, conventional reading and writing techniques may utilize a large number of voltage drivers (for example, a voltage driver per source line (SL)) which may occupy a large amount of area on a circuit board or die. Also, pulsing between positive and negative gate biases during read and write operations may reduce a net quantity of charge carriers in an electrically floating body region of a memory transistor in a semiconductor memory device, which, in turn, may gradually reduce, or even eliminate, a net charge representing data stored in the memory transistor. In the event that a negative voltage is applied to a gate of a memory transistor, thereby causing a negative gate bias, a channel of minority charge carriers beneath the gate may be eliminated. However, some of the minority charge carriers may remain “trapped” in interface defects. Some of the trapped minority charge carriers may recombine with majority charge carriers, which may be attracted to the gate, and a net charge associated with majority charge carriers located in the electrically floating body region may decrease over time. This phenomenon may be characterized as charge pumping, which may be problematic because the net quantity of charge carriers may be reduced in the memory transistor, which, in turn, may gradually reduce, or even eliminate, a net charge representing data stored in the memory transistor.
In view of the foregoing, it may be understood that there may be significant problems and shortcomings associated with reading from and/or writing to electrically floating body semiconductor memory devices using conventional reading/writing techniques.
Techniques for providing a source line (SL) plane are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for providing a source line plane. The apparatus may comprise a source line plane coupled to at least one constant voltage source. The apparatus may also comprise a plurality of memory cells arranged in an array of rows and columns, each memory cell including one or more memory transistors. Each of the one or more memory transistors may comprise a first region coupled to the source line plane, a second region coupled to a bit line, a body region disposed between the first region and the second region, wherein the body region may be electrically floating, and a gate coupled to a word line and spaced apart from, and capacitively coupled to, the body region.
In accordance with other aspects of this particular exemplary embodiment, the at least one constant voltage source may provide at least one connection to ground.
In accordance with yet another aspect of this particular exemplary embodiment, the at least one constant voltage source may provide at least one internal ground connection associated with the plurality of memory cells.
In accordance with still another aspect of this particular exemplary embodiment, the at least one constant voltage source may provide at least one external ground connection coupled to the plurality of memory cells.
In accordance with further aspects of this particular exemplary embodiment, the at least one constant voltage source may provide a connection to at least one voltage potential.
In accordance with other aspects of this particular exemplary embodiment, the at least one constant voltage source may provide at least one internal voltage potential associated with the plurality of memory cells.
In accordance with further aspects of this particular exemplary embodiment, the at least one constant voltage source may provide at least one external voltage potential coupled to the plurality of memory cells.
In accordance with additional aspects of this particular exemplary embodiment, the source line plane may comprise a plurality of source lines coupled to the plurality of memory cells.
In accordance with yet another aspect of this particular exemplary embodiment, the first region may be coupled to the source line plane via a source line.
In accordance with additional aspects of this particular exemplary embodiment, the plurality of memory cells may be arranged in a plurality of sub-arrays of rows and columns.
In accordance with other aspects of this particular exemplary embodiment, the source line plane may be associated with each of the plurality of sub-arrays of memory cells.
In accordance with further aspects of this particular exemplary embodiment, the source line plane may be a comprehensive source line plane based at least in part on its association with the each of the plurality of sub-arrays of memory cells.
In accordance with other aspects of this particular exemplary embodiment, the comprehensive source line plane may be coupled to the at least one constant voltage source.
In accordance with further aspects of this particular exemplary embodiment, the source line plane may be at least one of a source line grid and a source line plate.
In accordance with additional aspects of this particular exemplary embodiment, the source line plane may include a plurality of sub-layers of at least one of a source line grid and a source line plate.
In another particular exemplary embodiment, the techniques may be realized as a method for providing a source line plane. The method may comprise coupling a source line plane to at least one constant voltage source. The method may also comprise arranging a plurality of memory cells in an array of rows and columns, each memory cell including one or more memory transistors. Each of the one or more memory transistors may comprise a first region coupled to the source line plane, a second region coupled to a bit line, a body region disposed between the first region and the second region, wherein the body region is electrically floating, and a gate coupled to a word line and spaced apart from, and capacitively coupled to, the body region.
In accordance with other aspects of this particular exemplary embodiment, the at least one constant voltage source may provide at least one connection to ground.
In accordance with further aspects of this particular exemplary embodiment, the at least one constant voltage source may provide a connection to at least one voltage potential.
In accordance with additional aspects of this particular exemplary embodiment, the source line plane may comprise a plurality of source lines coupled to the plurality of memory cells.
In accordance with yet another aspect of this particular exemplary embodiment, the first region may be coupled to the source line plane via a source line.
In accordance with still another aspect of this particular exemplary embodiment, the at least one constant voltage source may be at least one internal voltage source associated with the plurality of memory cells.
In accordance with further aspects of this particular exemplary embodiment, the at least one constant voltage source may be at least one external voltage source coupled to the plurality of memory cells.
In accordance with additional aspects of this particular exemplary embodiment, the plurality of memory cells may be arranged in a plurality of sub-arrays of rows and columns.
In accordance with another aspect of this particular exemplary embodiment, the source line plane may be associated with each of the plurality of sub-arrays of memory cells.
In accordance with other aspects of this particular exemplary embodiment, the source line plane may be a comprehensive source line plane based at least in part on its association with the each of the plurality of sub-arrays of memory cells.
In accordance with further aspects of this particular exemplary embodiment, the comprehensive source line plane may be coupled to the at least one constant voltage source.
The present disclosure will now be described in more detail with reference to exemplary embodiments thereof as shown in the accompanying drawings. While the present disclosure is described below with reference to exemplary embodiments, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.
In order to facilitate a fuller understanding of the present disclosure, reference is now made to the accompanying drawings, in which like elements are referenced with like numerals. These drawings should not be construed as limiting the present disclosure, but are intended to be exemplary only.
There are many embodiments described and illustrated herein. In one aspect, the present disclosure is directed to a combination of reading/writing methods which comprise providing a source line (SL) plane with at least one constant voltage source. The at least one constant voltage source may provide a relatively high voltage or a relatively low voltage when reading from and/or writing to memory cells and may eliminate individual and/or grouped source line (SL) drivers.
Referring to
Referring to
Data may be written into a selected memory cell 12 of the semiconductor memory device array 10 by applying suitable control signals to a selected word line 28, a selected source line 30, and/or a selected bit line 32. The memory cell 12 may exhibit (1) a first data state which is representative of a first amount of charge carriers 34 in the electrically floating body region 18 of the memory transistor 14, and (2) a second data state which is representative of a second amount of charge carriers 34 in the electrically floating body region 18 of the memory transistor 14. Additional data states are also possible.
The semiconductor memory device array 10 may further include data write circuitry (not shown), coupled to the selected memory cell 12, to apply (i) first write control signals to the memory cell 12 to write the first data state therein and (ii) second write control signals to the memory cell 12 to write the second data state therein. In response to the first write control signals applied to the selected memory cell 12, the memory transistor 14 may generate a first transistor current which may substantially provide a first amount of charge carriers 34 present in the electrically floating body region 18 of the memory transistor 14. In this case, charge carriers 34 may accumulate in or may be emitted/ejected from the electrically floating body region 18. As discussed above, a data state may be defined by an amount of charge carriers 34 present in the electrically floating body region 18. For example, the amount of charge carriers 34 present in the electrically floating body region 18 may represent a logic high (i.e., binary “1” data state) or a logic low (i.e., binary “0” data state). Additional data states are also possible.
The first write control signals may include a signal applied to the gate 16 and a signal applied to the source region 20, wherein the signal applied to the source region 20 may include a first voltage potential having a first amplitude and a second voltage potential having a second amplitude. In another exemplary embodiment, the first write control signals may include a signal applied to the gate 16 and a signal applied to the drain region 22, wherein the signal applied to the drain region 22 may include a third voltage potential having a third amplitude and a fourth voltage potential having a fourth amplitude.
Also, the second write signals may include a signal applied to the gate 16, a signal applied to the source region 20, and a signal applied to the drain region 22. The signal applied to the drain region 22 may include a block voltage potential to prevent the first data state from being written into the memory transistor 14.
Referring to
As shown in
The semiconductor memory device array 10 may further include data sense circuitry (not shown), coupled to the memory cell 12, to sense a data state of the memory cell 12. More specifically, in response to read control signals applied to the memory cell 12, the memory cell 12 may generate a second transistor current that is representative of a data state of the memory cell 12. The data sense circuitry may determine a data state of the memory cell 12 based at least substantially on the second transistor current (e.g., for a binary “1” data state) or a lack of the second transistor current (e.g., for a binary “0” data state).
The read control signals may include signals applied to the gate 16, source region 20, and drain region 22 to cause, force, and/or induce the second transistor current, which is representative of a data state of the memory cell 12. The read control signals applied to the gate 16, source region 20, and drain region 22 may include a positive voltage or a negative voltage. One or more of the read control signals may include a constant or unchanging voltage amplitude.
Referring to
In an exemplary embodiment, the data write and sense circuitry 36 may include a plurality of data sense amplifier circuitry 44 (e.g., 44a-44x) and a plurality of reference current and/or voltage input circuitry 46 (e.g., 46a-46x). Each data sense amplifier circuitry 44 may receive at least one bit line (BL) 32 and the output of reference current and/or voltage generator circuitry 40 (for example, a current or voltage reference signal) via a corresponding reference current and/or voltage input circuitry 46. For example, each data sense amplifier circuitry 44 may be a cross-coupled type of sense amplifier to detect, determine, sense, and/or sample a data state of a memory cell 12. Each data sense amplifier circuitry 44 may detect a data state of one or more memory cells 12 (e.g., along bit lines 32a-32x (BL)) by comparing voltages or currents on a bit line (BL) 32 with voltages or currents of the output of the reference current and/or voltage generator circuitry 40. Also, a predetermined voltage may be applied to the bit lines 32 (BL) based at least in part on a data state determined by the data sense amplifier circuitry 44 to write-back the data state into memory cell 12.
The data sense amplifier circuitry 44 may employ voltage and/or current sensing circuitry and/or techniques. In an exemplary embodiment, the data sense amplifier circuitry 44 may employ a current sensing circuitry and/or techniques, the data sense amplifier circuitry 44 may compare current from the selected memory cell 12 to a reference current from the reference current and/or voltage input circuitry 46, for example, the current of one or more reference cells. From that comparison, it may be determined whether memory cell 12 contains a logic high (binary “1” data state, relatively more majority charge carriers 34 contained within the body region 18) or a logic low (binary “0” data state, relatively less majority charge carriers 34 contained within the body region 18). In another exemplary embodiment, the data sense amplifier circuitry 44 may employ a voltage sensing circuitry and/or techniques, the data sense amplifier circuitry 44 may compare voltage from the selected memory cell 12 to a reference voltage from the reference current and/or voltage input circuitry 46, for example, the voltage of one or more reference cells. From that comparison, it may be determined whether memory cell 12 contains a logic high (binary “1” data state, relatively more majority charge carriers 34 contained within the body region 18) or a logic low (binary “0” data state, relatively less majority charge carriers 34 contained within the body region 18). It may be appreciated by one having ordinary skill in the art that any type or form of data write and sense circuitry 36 (including one or more sense amplifiers, using voltage or current sensing techniques, to sense data stored in memory cells 12) may be employed to read data stored in memory cells 12 and/or write data to memory cells 12.
The memory cell selection and control circuitry 38 may select and/or enable one or more predetermined memory cells 12 to facilitate reading data therefrom and/or writing data thereto by applying control signals on one or more word lines 28 (WL) and/or source lines 30 (SL). The memory cell selection and control circuitry 38 may generate such control signals using address signals, for example, row address signals. Moreover, memory cell selection and control circuitry 38 may include a word line decoder and/or driver (not shown). For example, memory cell selection and control circuitry 38 may include one or more different control/selection techniques (and circuitry therefor) to implement memory cell selection techniques. Such techniques, and circuitry therefor, are well known to those skilled in the art. Notably, all such control/selection techniques, and circuitry therefor, whether now known or later developed, are intended to fall within the scope of the present disclosures.
In an exemplary embodiment, the semiconductor memory device 300 may implement a two step write operation whereby all memory cells 12 of a given row are written to a predetermined data state by first executing a “clear” operation, whereby all of the memory cells 12 of the given row may be written to a logic low (binary “0” data state), and thereafter selected memory cells 12 of the given row may be selectively written to the predetermined data state (e.g., a logic high (binary “1” data state)). In another exemplary embodiment, all memory cells 12 of a given row are written to a predetermined data state by first executing a “clear” operation, whereby all of the memory cells 12 of the given row may be written to a logic high (binary “1” data state), and thereafter selected memory cells 12 of the given row may be selectively written to the predetermined data state (e.g., a logic low (binary “0” data state)). In still another exemplary embodiment, a one step write operation may be implemented, whereby selective memory cells 12 of a given row are selectively written to either a logic high (binary “1” data state) or a logic low (binary “0” data state) without first implementing a “clear” operation.
The semiconductor memory device 300 may employ any of the exemplary writing, holding, and/or reading techniques described herein. Moreover, exemplary voltage values for each of the control signals for a given operation (for example, writing, holding or reading) may be employed in the semiconductor memory device 300 according to exemplary embodiments of the present disclosure.
The memory transistors 14 may comprise N-channel, P-channel, and/or both types of transistors. For example, the memory transistors 14 may be made from an SOI material/substrate or a bulk-type material/substrate. Also, the memory transistors 14 may comprise non-planar transistors, such as, vertical pillar transistors, cylindrical thin-pillar transistors, vertical gated access transistor, fin field effect transistors (FETs), multi-gate field effect transistors (MuGFETs), multiple independent gate field effect transistors (MIGFETs) and/or other multi-gate transistors. Indeed, circuitry that is peripheral to the memory array (for example, sense amplifiers or comparators, row and column address decoders, as well as line drivers (not illustrated herein)) may include P-channel and/or N-channel type transistors. In the event that P-channel type transistors are employed as memory transistors 14 in the memory cells 12, suitable write and read voltages (for example, negative voltages) may be well known to those skilled in the art in light of this disclosure. Accordingly, for sake of brevity, these discussions will not be repeated.
Referring to
At this point it should be noted that the source line (SL) plane may have a large surface area in order to accumulate a large amount of charge. Because a large amount of charge may accumulate in the source line (SL) plane, more current may be drawn from the source line (SL) plane with minimal voltage drop across the source line (SL) plane.
In an exemplary embodiment, the constant power source 402 may apply a voltage potential to the plurality of source lines 30 of the sub-array of memory cells 12 via the source line (SL) plane. The constant power source 402 may be a constant current (DC) source and/or a constant voltage source (e.g., battery). For example, the constant power source 402 may apply a voltage potential of approximately 2.0V to 3.0V to the plurality of source lines 30 (SL) of the sub-array of memory cells 12 via the source line (SL) plane. It may be appreciated by one skilled in the art that one or more factors may determine different voltage potentials that may be applied by the constant power source 402. For example, a voltage potential applied by the constant power source 402 to the source line (SL) plane of the sub-array of memory cells 12 may be based at least in part on an amount of stress associated the memory transistors 14 may tolerate. In an exemplary embodiment, the constant power source 402 may apply approximately 3.0V to the source region 20 of a memory transistor 14 of a memory cell 12 via an associated source line (SL) plane while approximately −1.5V may be applied to the gate 16 of the memory transistor 14 via an associated word line 28 (WL). Thus, the voltage potential differential between the source region 20 and the gate 16 (e.g., approximately 4.5V) may cause stress on the memory transistor 14 of the memory cell 12. The memory transistor 14 of the memory cell 12 may be fabricated to withstand the stress caused by the voltage potential differential between the source region 20 and the gate 16. Therefore, a voltage potential applied by the constant power source 402 may be determined by an amount of stress the memory transistor 14 may tolerate (e.g., determined by a fabrication method).
In another exemplary embodiment, the constant power source 402 may couple a reference point voltage potential to the source line (SL) plane of the sub-array of memory cells 12. For example, the constant power source 402 may apply a reference voltage potential of approximately 0V to the source line (SL) plane of the sub-array of memory cells 12. As such, the constant power source 402 may be a ground voltage potential and/or an earth voltage potential that is coupled to the plurality of source lines (SL) 30 of the sub-array of memory cells 12 via the source line (SL) plane. In an exemplary embodiment, the source line (SL) plane of the sub-array of memory cells 12 may be coupled to a ground/earth potential, and a bit line (BL) driver (not shown) may apply a high voltage potential (e.g., 3.0V) or a low voltage potential (e.g., 0V) to the drain region 22 of a memory transistor 14 in order to perform one or more operations (e.g., write, read, refresh, and/or inhibit).
As illustrated in
In an exemplary embodiment, a memory cell 12 in the sub-array of memory cells 12 may be written to using a two step operation wherein a first predetermined data state may be written to a given row of memory cells 12 by first executing a “clear” operation (in this exemplary embodiment, a selected row 28i and/or all of the memory cells 12 of the given row may be written or programmed to a logic low (binary “0” date state)), and thereafter, a second predetermined data state may be written to selected memory cells 12 (i.e., a selective write operation to the second predetermined data state). The “clear” operation may be performed by writing a first predetermined data state to each memory cell 12 of the given row (in this exemplary embodiment, the first predetermined data state may be a logic low (binary “0” data state)) using the inventive technique described above. In another exemplary embodiment, a first predetermined data state may be written to a given row of memory cells 12 by first executing a “clear” operation (in this exemplary embodiment, a selected row 28i and/or all of the memory cells 12 of the given row may be written or programmed to a logic high (binary “1” date state)), and thereafter a second predetermined data state may be written to selected memory cells (i.e., a selective write operation to the second predetermined data state).
In particular, the memory transistor 14 of each memory cell 12 of a given row (e.g., memory cells 12a-12d) may be controlled to store a majority charge carrier concentration in the electrically floating body region 18 of the transistor 14, which corresponds to a logic low (binary “0” data state). For example, control signals to implement a “clear” operation may be applied to the gate 16, the source region 20, and the drain region 22 of the memory transistor 14 of each memory cell 12 of a given row (e.g., memory cells 12a-12d). In an exemplary embodiment, the “clear” operation may include applying (i) 0V to the gate 16, (ii) 0V to the source region 20 (e.g., the source line (SL) plane is coupled to a ground/earth), and (iii) 2.0V to the drain region 22 of the memory transistor 14. In another exemplary embodiment, the “clear” operation may include applying (i) 0V to the gate 16, (ii) 2.5V to the source region 20 (e.g., the source line (SL) plane is coupled a voltage potential), and (iii) 0.3V to 0.5V to the drain region 22 of the memory transistor 14. In response, the same logic state (e.g., a logic low (binary “0” data state)) may be stored in the memory cells 12a-12d and the state of the memory cells 12a-12d may be “cleared”. In other exemplary embodiments, a “write reset” operation may be performed when the source line (SL) plane is coupled to a low constant voltage source. For example, a “write reset” operation may include applying (i) 2.5V to the gate 16, (ii) 0.0V to the source region 20 (e.g., the source line plane is coupled a low voltage potential), and (iii) 0.0V to the drain region 22 of the memory transistor 14.
Thereafter, the second predetermined logic state may be written to selected memory cells 12 of a given row. For example, the second predetermined logic state may be written to the memory transistors 14 of certain memory cells 12 of a given row in order to store the second predetermined logic state in the memory cells 12. For example, a logic high (binary “1” data state) may be written to memory cells 12a and 12d (as shown in the selected row 28i), via an impact ionization effect and/or avalanche multiplication, by applying (i) 0V to the gate (via word line 28i), (ii) 0V to the source region 20 (via source line plane 30i coupled to a ground/earth), and (iii) 2.5V to the drain region (via bit lines 32j and 32j+3). Specifically, such control signals may generate or provide a bipolar current in the electrically floating body region 18 of the memory transistors 14 of memory cells 12a and 12d. The bipolar current may cause or produce impact ionization and/or avalanche multiplication in the electrically floating body region 18 of the memory transistors 14 of memory cells 12a and 12d. In this way, an excess of majority charge carriers may be provided and stored in the electrically floating body region 18 of the memory transistors 14 of memory cells 12a and 12d, which corresponds to a logic high (binary “1” data state).
In an exemplary embodiment, memory cells 12b and 12c (as shown in selected row 28i) may be maintained at a logic low (binary “0” data state) by applying a voltage to inhibit impact ionization in the drain regions 22 of memory cells 12b and 12c. For example, applying 0V to the drain regions 22 of memory cells 12b and 12c (via bit lines 32j+1 and 32j+2) may inhibit impact ionization in memory cells 12b and 12c during the selective write operation for memory cells 12a and 12d.
A selected row of memory cells 12 may be read by applying read control signals to an associated word line (WL) 28 and an associated source line (SL) 30 and sensing a signal (voltage and/or current) on associated bit lines (BL) 32. In an exemplary embodiment, memory cells 12a-12d (e.g., as shown in the selected row 28i) may be read by applying to each respective memory transistor 14 (i) 0V to the gate 16 (via word line 28i), (ii) 0V to the source region 20 (via the source line (SL) plane coupled to the constant power source 402), and (iii) 2.5V to the drain region 22 (via associated bit lines 32). The data write and sense circuitry 36 may read the data state of the memory cells 12a-12d by sensing the response to the read control signals applied to word line 28i, source line 30, and bit line 32. In response to the read control signals, the memory cells 12a-12d may generate a bipolar transistor current which may be representative of the data state of the memory cells 12a-12d. For example, memory cells 12a and 12d (which were earlier written to a logic high (binary “1” data state)), in response to the read control signals, may generate a bipolar transistor current which is considerably larger than a channel current. In contrast, in memory cells 12b and 12c (which were earlier programmed to a logic low (binary “0” data state)), such read control signals induce, cause, and/or produce little to no bipolar transistor current (for example, a considerable, substantial, or sufficiently measurable bipolar transistor current). The data write and sense circuitry 36 senses the data state (e.g., via a cross-coupled sense amplifier) using primarily and/or based substantially on the bipolar transistor current.
Thus, in response to the read control signals, the memory transistor 14 of each memory cell 12a-12d may generate a bipolar transistor current which is representative of the data state stored therein. The data write and sense circuitry 36 may determine the data states of memory cells 12a-12h based substantially on the bipolar transistor current induced, caused, and/or produced in response to the read control signals. In another exemplary embodiment, the data write and sense circuitry 36 may compare a reference voltage with the bipolar transistor current/voltage induced, caused, and/or produced in response to the read control signals. Thereafter, the data write and sense circuitry 36 may determine the data states of memory cells 12-12h based substantially on the reference voltage.
In another exemplary embodiment, temporally varying control signals may be implemented to write a logic low (binary “0” data state), including a voltage applied to the gate 16 (Vgw“0”), a voltage applied to the source 20 (Vsw“0”), and a voltage applied to the drain region 22 (Vdw“0” shown by the dotted line). For example, a source voltage (Vsw“0”) of approximately 0V may be applied to the source region 20 (via, for example, the source line plane coupled to a ground/earth) and a drain voltage of approximately 2.0V may be applied to the drain region 22 (Vdw“0” shown by the dotted line), may be applied before a gate voltage (Vgw“0”) of approximately 0.5V is applied to the gate 16, or simultaneously thereto, or after the gate voltage (Vgw“0”) is applied to the gate 16. Particularly, the drain voltage (Vdw“0” shown by the dotted line) may include an amplitude which may be insufficient to maintain a bipolar current that is suitable for writing a logic high (binary “1” data state) to the memory cell 12 to. From a relative timing perspective, it may be preferred that the drain voltage (Vdw“0” shown by the dotted line) may extend beyond/after or continue beyond the conclusion of the gate voltage (Vgw“0”), or extend beyond/after or continue beyond the time the gate voltage (Vgw“0”) is reduced. For example, majority charge carriers 34 may be generated in the electrically floating body region 18 via a bipolar current and majority charge carriers 34 may accumulate (and be stored) in a portion of the electrically floating body region 18 of the memory transistor 14 of the memory cell 12 near the gate dielectric 17 (which is disposed between the gate 16 and the electrically floating body region 18).
In another exemplary embodiment, temporally varying control signals may be implemented to a write logic low (binary “0” data state), including a voltage applied to the gate 16 (Vgw“0”), a voltage applied to the source 20 (Vsw“0”), and a voltage applied to the drain region 22 (Vdw“0” shown by the dotted line). For example, a source voltage (Vsw“0”) of approximately 2.5V may be applied to the source region 20 (via, for example, the source line plane coupled to a voltage potential) and a drain voltage of approximately 0.5V may be applied to the drain region 22 (Vdw“0” shown by the dotted line), may be applied before a gate voltage (Vgw“0”) of approximately 0.5V is applied to the gate 16, or simultaneously thereto, or after the gate voltage (Vgw“0”) is applied to the gate 16. Particularly, the drain voltage (Vdw“0” shown by the dotted line) may include an amplitude which may be insufficient to maintain a bipolar current that is suitable for writing a logic high (binary “1” data state) to the memory cell 12 to. From a relative timing perspective, it may be preferred that the drain voltage (Vdw“0” shown by the dotted line) may extend beyond/after or continue beyond the conclusion of the gate voltage (Vgw“0”), or extend beyond/after or continue beyond the time the gate voltage (Vgw“0”) is reduced. For example, majority charge carriers 34 may be generated in the electrically floating body region 18 via a bipolar current and majority charge carriers 34 may accumulate (and be stored) in a portion of the electrically floating body region 18 of the memory transistor 14 of the memory cell 12 near the gate dielectric 17 (which is disposed between the gate 16 and the electrically floating body region 18).
In an exemplary embodiment, during the read operation, a bipolar current may be generated in memory cells 12 storing a logic high (binary “1” data state) and little to no bipolar current may be generated in memory cells 12 storing a logic low (binary “0” data state). The data state may be determined primarily by, sensed substantially using, and/or based substantially on the bipolar transistor current that is responsive to the read control signals and significantly less by an interface channel current component, which is less significant and/or negligible relatively to the bipolar component.
The writing and reading techniques described herein may be employed in conjunction with a plurality of memory cells 12 arranged in an array of memory cells. A memory array implementing the structure and techniques of the present disclosure may include a plurality of memory cells 12 having a common source line (SL) for each row of memory cells 12. Exemplary layouts and configurations (including exemplary control signal voltage values) are shown, in accordance to one or more exemplary embodiments of the present disclosure, each consisting of control signal waveforms and exemplary array voltages during one-step writing and reading.
Accordingly, the voltage levels to implement the write and read operations as described herein are merely exemplary. The indicated voltage levels may be relative or absolute. Alternatively, the voltages indicated may be relative in that, for example, each voltage level may be increased or decreased by a given voltage amount (e.g., each voltage may be increased or decreased by 0.5V, 1.0V and 2.0V) whether one or more of the voltages (e.g., the source region voltage, the drain region voltage, or the gate voltage) become or are positive and negative.
Referring to
In an exemplary embodiment, the constant power source 902 may apply a voltage potential to the source line (SL) plane of the sub-array of memory cells 12 of the semiconductor memory device array 900A. For example, the constant power source 902 may apply a voltage potential of approximately 2.0V to 3.0V to the source line (SL) plane of the sub-array of the semiconductor memory device array 900A. It may be appreciated by one skilled in the art that one or more factors may determine different voltage potentials that may be applied by the constant power source 902. For example, a voltage potential applied by the constant power source 902 to the source line (SL) plane of the sub-array memory cells 12 of the semiconductor memory device array 900A may be based at least in part on an amount of stress associated memory transistors 14 of the sub-array of the memory cells 12 may tolerate. In an exemplary embodiment, the constant power source 902 may apply approximately 3.0V to the source region 20 of a memory transistor 14 of a memory cell 12 via an associated source line (SL) plane, while approximately −1.5V may be applied to the gate 16 of the memory transistor 14 of the memory cell 12 via an associated word line 28 (WL). The voltage potential differential (e.g., approximately 4.5V) between the source region 20 and the gate 16 may cause stress on the memory transistor 14 of the memory cell 12. The memory transistor 14 of the memory cell 12 may be fabricated to withstand the stress caused by the voltage potential differential between the source region 20 and the gate 16. Therefore, a voltage potential applied by the constant power source 902 may be determined by an amount of stress the memory transistor 14 may tolerate (e.g., determined by a fabrication method).
In another exemplary embodiment, the constant power source 902 may apply a relatively low voltage potential to the source line (SL) plane of the sub-array memory cells 12 of the semiconductor memory device array 900A. For example, the constant power source 902 may apply a voltage potential of approximately 0V to the source line (SL) plane of the sub-array of memory cells 12 of the semiconductor memory device array 900A. As such, the constant power source 402 may be a ground voltage potential and/or an earth voltage potential that is coupled to the plurality of source lines (SL) 30 of the sub-array of memory cells 12 via the source line (SL) plane. In an exemplary embodiment, the source line (SL) plane of the sub-array of memory cells 12 of the semiconductor memory device array 900A may be coupled to a ground/earth potential, and a bit line (BL) driver (not shown) may apply a high voltage potential (e.g., 3.0V) or a low voltage potential (e.g., 0V) to the drain region 22 of a memory transistor 14 in order to perform one or more operations (e.g., write, read, refresh, and/or inhibit).
As illustrated in
An example (including exemplary control signal voltage values) according to certain aspects of the present disclosure may be also shown that comprises control signal waveforms and exemplary array voltages during a writing operation and/or a reading operation. For example, temporally varying control signals to implement a write operation may include (i) a voltage (Vsw) applied to the source region 20 via an associated source line 30 (SL), (ii) a voltage (Vgw) applied to the gate 16 via an associated word line 28 (WL), and (iii) a voltage (Vdw) applied to the drain region 22 via an associated bit line 32 (BL) (as shown in
Referring to
Data may be written into and/or read from a selected memory cell 12 by applying suitable control signals to a selected word line (WL) 28, a selected source line (SL) 30, and/or a selected bit line (BL) 32. As illustrated in
In an exemplary embodiment, the source line (SL) plane 1102 may be a comprehensive source line (SL) plane (e.g., a single metal plate) coupling source lines (SL) of the plurality of memory cells 12 of the semiconductor memory device 1100. For example, the comprehensive source line (SL) plane may comprise a plurality layers of a sub-source line (SL) plane. The comprehensive source line (SL) plane may be made from a solid piece of material and/or a grid comprised of vertical and/or horizontal source lines (SL). Also, the source line (SL) plane 1102 may be an auxiliary source line (SL) plane coupling source lines (SL) of a sub-array of memory cells 12 of the semiconductor memory device 1100. It may be appreciated by one skilled in the art that the size (e.g., number of rows and columns) of the sub-array of memory cells 12 having the source line (SL) plane 1102 may vary. For example, the sub-array of memory cells 12 may include, but is not limited to, eight rows by eight columns, sixteen rows by sixteen columns, thirty-two rows by thirty-two columns, sixty-four rows by sixty-four columns, etc.
At this point it should be noted that providing a source line (SL) plane in accordance with the present disclosure as described above may involve the processing of input data and the generation of output data to some extent. This input data processing and output data generation may be implemented in hardware or software. For example, specific electronic components may be employed in a design circuit or similar or related circuitry for implementing the functions associated with providing a source line (SL) plane in accordance with the present disclosure as described above. Alternatively, one or more processors operating in accordance with instructions may implement the functions associated with providing a source lines (SL) plane in accordance with the present disclosure as described above. If such is the case, it is within the scope of the present disclosure that such instructions may be stored on one or more processor readable media (e.g., a magnetic disk or other storage medium), or transmitted to one or more processors via one or more signals embodied in one or more carrier waves.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Further, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present disclosure as described herein.
This patent application claims priority to U.S. Provisional Patent Application No. 61/153,437, filed Feb. 18, 2009, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3439214 | Kabell | Apr 1969 | A |
3997799 | Baker | Dec 1976 | A |
4032947 | Kesel et al. | Jun 1977 | A |
4250569 | Sasaki et al. | Feb 1981 | A |
4262340 | Sasaki et al. | Apr 1981 | A |
4298962 | Hamano et al. | Nov 1981 | A |
4371955 | Sasaki | Feb 1983 | A |
4527181 | Sasaki | Jul 1985 | A |
4630089 | Sasaki et al. | Dec 1986 | A |
4658377 | McElroy | Apr 1987 | A |
4791610 | Takemae | Dec 1988 | A |
4807195 | Busch et al. | Feb 1989 | A |
4954989 | Auberton-Herve et al. | Sep 1990 | A |
4979014 | Hieda et al. | Dec 1990 | A |
5010524 | Fifield et al. | Apr 1991 | A |
5144390 | Matloubian | Sep 1992 | A |
5164805 | Lee | Nov 1992 | A |
5258635 | Nitayama et al. | Nov 1993 | A |
5313432 | Lin et al. | May 1994 | A |
5315541 | Harari et al. | May 1994 | A |
5350938 | Matsukawa | Sep 1994 | A |
5355330 | Hisamoto et al. | Oct 1994 | A |
5388068 | Ghoshal et al. | Feb 1995 | A |
5397726 | Bergemont et al. | Mar 1995 | A |
5432730 | Shubat et al. | Jul 1995 | A |
5446299 | Acovic et al. | Aug 1995 | A |
5448513 | Hu et al. | Sep 1995 | A |
5466625 | Hsieh et al. | Nov 1995 | A |
5489792 | Hu et al. | Feb 1996 | A |
5506436 | Hayashi et al. | Apr 1996 | A |
5515383 | Katoozi | May 1996 | A |
5526307 | Yiu et al. | Jun 1996 | A |
5528062 | Hsieh et al. | Jun 1996 | A |
5568356 | Schwartz | Oct 1996 | A |
5583808 | Brahmbhatt | Dec 1996 | A |
5593912 | Rajeevakumar | Jan 1997 | A |
5606188 | Bronner et al. | Feb 1997 | A |
5608250 | Kalnitsky | Mar 1997 | A |
5627092 | Alsmeier et al. | May 1997 | A |
5631186 | Park et al. | May 1997 | A |
5677867 | Hazani | Oct 1997 | A |
5696718 | Hartmann | Dec 1997 | A |
5740099 | Tanigawa | Apr 1998 | A |
5754469 | Hung et al. | May 1998 | A |
5774411 | Hsieh et al. | Jun 1998 | A |
5778243 | Aipperspach et al. | Jul 1998 | A |
5780906 | Wu et al. | Jul 1998 | A |
5784311 | Assaderaghi et al. | Jul 1998 | A |
5798968 | Lee et al. | Aug 1998 | A |
5811283 | Sun | Sep 1998 | A |
5847411 | Morii | Dec 1998 | A |
5877978 | Morishita et al. | Mar 1999 | A |
5886376 | Acovic et al. | Mar 1999 | A |
5886385 | Arisumi et al. | Mar 1999 | A |
5897351 | Forbes | Apr 1999 | A |
5929479 | Oyama | Jul 1999 | A |
5930648 | Yang | Jul 1999 | A |
5936265 | Koga | Aug 1999 | A |
5939745 | Park et al. | Aug 1999 | A |
5943258 | Houston et al. | Aug 1999 | A |
5943581 | Lu et al. | Aug 1999 | A |
5960265 | Acovic et al. | Sep 1999 | A |
5968840 | Park et al. | Oct 1999 | A |
5977578 | Tang | Nov 1999 | A |
5982003 | Hu et al. | Nov 1999 | A |
5986914 | McClure | Nov 1999 | A |
6018172 | Hidada et al. | Jan 2000 | A |
6048756 | Lee et al. | Apr 2000 | A |
6081443 | Morishita | Jun 2000 | A |
6096598 | Furukawa et al. | Aug 2000 | A |
6097056 | Hsu et al. | Aug 2000 | A |
6097624 | Chung et al. | Aug 2000 | A |
6111778 | MacDonald et al. | Aug 2000 | A |
6121077 | Hu et al. | Sep 2000 | A |
6133597 | Li et al. | Oct 2000 | A |
6157216 | Lattimore et al. | Dec 2000 | A |
6171923 | Chi et al. | Jan 2001 | B1 |
6177300 | Houston et al. | Jan 2001 | B1 |
6177698 | Gruening et al. | Jan 2001 | B1 |
6177708 | Kuang et al. | Jan 2001 | B1 |
6214694 | Leobandung et al. | Apr 2001 | B1 |
6222217 | Kunikiyo | Apr 2001 | B1 |
6225158 | Furukawa et al. | May 2001 | B1 |
6245613 | Hsu et al. | Jun 2001 | B1 |
6252281 | Yamamoto et al. | Jun 2001 | B1 |
6262935 | Parris et al. | Jul 2001 | B1 |
6292424 | Ohsawa | Sep 2001 | B1 |
6297090 | Kim | Oct 2001 | B1 |
6300649 | Hu et al. | Oct 2001 | B1 |
6320227 | Lee et al. | Nov 2001 | B1 |
6333532 | Davari et al. | Dec 2001 | B1 |
6333866 | Ogata | Dec 2001 | B1 |
6350653 | Adkisson et al. | Feb 2002 | B1 |
6351426 | Ohsawa | Feb 2002 | B1 |
6359802 | Lu et al. | Mar 2002 | B1 |
6384445 | Hidaka et al. | May 2002 | B1 |
6391658 | Gates et al. | May 2002 | B1 |
6403435 | Kang et al. | Jun 2002 | B1 |
6421269 | Somasekhar et al. | Jul 2002 | B1 |
6424011 | Assaderaghi et al. | Jul 2002 | B1 |
6424016 | Houston | Jul 2002 | B1 |
6429477 | Mandelman et al. | Aug 2002 | B1 |
6432769 | Fukuda et al. | Aug 2002 | B1 |
6440872 | Mandelman et al. | Aug 2002 | B1 |
6441435 | Chan | Aug 2002 | B1 |
6441436 | Wu et al. | Aug 2002 | B1 |
6466511 | Fujita et al. | Oct 2002 | B2 |
6479862 | King et al. | Nov 2002 | B1 |
6480407 | Keeth | Nov 2002 | B1 |
6492211 | Divakaruni et al. | Dec 2002 | B1 |
6518105 | Yang et al. | Feb 2003 | B1 |
6531754 | Nagano et al. | Mar 2003 | B1 |
6537871 | Forbes | Mar 2003 | B2 |
6538916 | Ohsawa | Mar 2003 | B2 |
6544837 | Divakauni et al. | Apr 2003 | B1 |
6548848 | Horiguchi et al. | Apr 2003 | B2 |
6549450 | Hsu et al. | Apr 2003 | B1 |
6552398 | Hsu et al. | Apr 2003 | B2 |
6552932 | Cernea | Apr 2003 | B1 |
6556477 | Hsu et al. | Apr 2003 | B2 |
6560142 | Ando | May 2003 | B1 |
6563733 | Liu et al. | May 2003 | B2 |
6566177 | Radens et al. | May 2003 | B1 |
6567330 | Fujita et al. | May 2003 | B2 |
6573566 | Ker et al. | Jun 2003 | B2 |
6574135 | Komatsuzaki | Jun 2003 | B1 |
6590258 | Divakauni et al. | Jul 2003 | B2 |
6590259 | Adkisson et al. | Jul 2003 | B2 |
6617651 | Ohsawa | Sep 2003 | B2 |
6621725 | Ohsawa | Sep 2003 | B2 |
6632723 | Watanabe et al. | Oct 2003 | B2 |
6650565 | Ohsawa | Nov 2003 | B1 |
6653175 | Nemati et al. | Nov 2003 | B1 |
6686624 | Hsu | Feb 2004 | B2 |
6703673 | Houston | Mar 2004 | B2 |
6707118 | Muljono et al. | Mar 2004 | B2 |
6714436 | Burnett et al. | Mar 2004 | B1 |
6721222 | Somasekhar et al. | Apr 2004 | B2 |
6825524 | Ikehashi et al. | Nov 2004 | B1 |
6861689 | Burnett | Mar 2005 | B2 |
6870225 | Bryant et al. | Mar 2005 | B2 |
6882566 | Nejad et al. | Apr 2005 | B2 |
6888770 | Ikehashi | May 2005 | B2 |
6894913 | Yamauchi | May 2005 | B2 |
6897098 | Hareland et al. | May 2005 | B2 |
6903984 | Tang et al. | Jun 2005 | B1 |
6909151 | Hareland et al. | Jun 2005 | B2 |
6912150 | Portmann et al. | Jun 2005 | B2 |
6913964 | Hsu | Jul 2005 | B2 |
6936508 | Visokay et al. | Aug 2005 | B2 |
6969662 | Fazan et al. | Nov 2005 | B2 |
6975536 | Maayan et al. | Dec 2005 | B2 |
6982902 | Gogl et al. | Jan 2006 | B2 |
6987041 | Ohkawa | Jan 2006 | B2 |
7030436 | Forbes | Apr 2006 | B2 |
7037790 | Chang et al. | May 2006 | B2 |
7041538 | Ieong et al. | May 2006 | B2 |
7042765 | Sibigtroth et al. | May 2006 | B2 |
7061806 | Tang et al. | Jun 2006 | B2 |
7085153 | Ferrant et al. | Aug 2006 | B2 |
7085156 | Ferrant et al. | Aug 2006 | B2 |
7170807 | Fazan et al. | Jan 2007 | B2 |
7177175 | Fazan et al. | Feb 2007 | B2 |
7187581 | Ferrant et al. | Mar 2007 | B2 |
7230846 | Keshavarzi et al. | Jun 2007 | B2 |
7233024 | Scheuerlein et al. | Jun 2007 | B2 |
7256459 | Shino | Aug 2007 | B2 |
7301803 | Okhonin et al. | Nov 2007 | B2 |
7301838 | Waller | Nov 2007 | B2 |
7317641 | Scheuerlein | Jan 2008 | B2 |
7324387 | Bergemont et al. | Jan 2008 | B1 |
7335934 | Fazan | Feb 2008 | B2 |
7341904 | Willer | Mar 2008 | B2 |
7416943 | Figura et al. | Aug 2008 | B2 |
7456439 | Horch | Nov 2008 | B1 |
7477540 | Okhonin et al. | Jan 2009 | B2 |
7492632 | Carman | Feb 2009 | B2 |
7517744 | Mathew et al. | Apr 2009 | B2 |
7539041 | Kim et al. | May 2009 | B2 |
7542340 | Fisch et al. | Jun 2009 | B2 |
7542345 | Okhonin et al. | Jun 2009 | B2 |
7545694 | Srinivasa Raghavan et al. | Jun 2009 | B2 |
7606066 | Okhonin et al. | Oct 2009 | B2 |
7696032 | Kim et al. | Apr 2010 | B2 |
20010055859 | Yamada et al. | Dec 2001 | A1 |
20020030214 | Horiguchi | Mar 2002 | A1 |
20020034855 | Horiguchi et al. | Mar 2002 | A1 |
20020036322 | Divakauni et al. | Mar 2002 | A1 |
20020051378 | Ohsawa | May 2002 | A1 |
20020064913 | Adkisson et al. | May 2002 | A1 |
20020070411 | Vermandel et al. | Jun 2002 | A1 |
20020072155 | Liu et al. | Jun 2002 | A1 |
20020076880 | Yamada et al. | Jun 2002 | A1 |
20020086463 | Houston et al. | Jul 2002 | A1 |
20020089038 | Ning | Jul 2002 | A1 |
20020098643 | Kawanaka et al. | Jul 2002 | A1 |
20020110018 | Ohsawa | Aug 2002 | A1 |
20020114191 | Iwata et al. | Aug 2002 | A1 |
20020130341 | Horiguchi et al. | Sep 2002 | A1 |
20020160581 | Watanabe et al. | Oct 2002 | A1 |
20020180069 | Houston | Dec 2002 | A1 |
20030003608 | Arikado et al. | Jan 2003 | A1 |
20030015757 | Ohsawa | Jan 2003 | A1 |
20030035324 | Fujita et al. | Feb 2003 | A1 |
20030042516 | Forbes et al. | Mar 2003 | A1 |
20030047784 | Matsumoto et al. | Mar 2003 | A1 |
20030057487 | Yamada et al. | Mar 2003 | A1 |
20030057490 | Nagano et al. | Mar 2003 | A1 |
20030102497 | Fried et al. | Jun 2003 | A1 |
20030112659 | Ohsawa | Jun 2003 | A1 |
20030123279 | Aipperspach et al. | Jul 2003 | A1 |
20030146474 | Ker et al. | Aug 2003 | A1 |
20030146488 | Nagano et al. | Aug 2003 | A1 |
20030151112 | Yamada et al. | Aug 2003 | A1 |
20030231521 | Ohsawa | Dec 2003 | A1 |
20040021137 | Fazan et al. | Feb 2004 | A1 |
20040021179 | Lee | Feb 2004 | A1 |
20040029335 | Lee et al. | Feb 2004 | A1 |
20040075143 | Bae et al. | Apr 2004 | A1 |
20040108532 | Forbes | Jun 2004 | A1 |
20040188714 | Scheuerlein et al. | Sep 2004 | A1 |
20040217420 | Yeo et al. | Nov 2004 | A1 |
20050001257 | Schloesser et al. | Jan 2005 | A1 |
20050001269 | Hayashi et al. | Jan 2005 | A1 |
20050017240 | Fazan | Jan 2005 | A1 |
20050047240 | Ikehashi et al. | Mar 2005 | A1 |
20050062088 | Houston | Mar 2005 | A1 |
20050063224 | Fazan et al. | Mar 2005 | A1 |
20050064659 | Willer | Mar 2005 | A1 |
20050105342 | Tang et al. | May 2005 | A1 |
20050111255 | Tang et al. | May 2005 | A1 |
20050121710 | Shino | Jun 2005 | A1 |
20050135169 | Somasekhar et al. | Jun 2005 | A1 |
20050141262 | Yamada et al. | Jun 2005 | A1 |
20050141290 | Tang et al. | Jun 2005 | A1 |
20050145886 | Keshavarzi et al. | Jul 2005 | A1 |
20050145935 | Keshavarzi et al. | Jul 2005 | A1 |
20050167751 | Nakajima et al. | Aug 2005 | A1 |
20050189576 | Ohsawa | Sep 2005 | A1 |
20050208716 | Takaura et al. | Sep 2005 | A1 |
20050226070 | Ohsawa | Oct 2005 | A1 |
20050232043 | Ohsawa | Oct 2005 | A1 |
20050242396 | Park et al. | Nov 2005 | A1 |
20050265107 | Tanaka | Dec 2005 | A1 |
20060043484 | Cabral et al. | Mar 2006 | A1 |
20060091462 | Okhonin et al. | May 2006 | A1 |
20060098481 | Okhonin et al. | May 2006 | A1 |
20060126374 | Waller et al. | Jun 2006 | A1 |
20060131650 | Okhonin et al. | Jun 2006 | A1 |
20060223302 | Chang et al. | Oct 2006 | A1 |
20070008811 | Keeth et al. | Jan 2007 | A1 |
20070023833 | Okhonin et al. | Feb 2007 | A1 |
20070045709 | Yang | Mar 2007 | A1 |
20070058427 | Okhonin et al. | Mar 2007 | A1 |
20070064489 | Bauser | Mar 2007 | A1 |
20070085140 | Bassin | Apr 2007 | A1 |
20070097751 | Popoff et al. | May 2007 | A1 |
20070114599 | Hshieh | May 2007 | A1 |
20070133330 | Ohsawa | Jun 2007 | A1 |
20070138524 | Kim et al. | Jun 2007 | A1 |
20070138530 | Okhonin et al. | Jun 2007 | A1 |
20070187751 | Hu et al. | Aug 2007 | A1 |
20070187775 | Okhonin et al. | Aug 2007 | A1 |
20070200176 | Kammler et al. | Aug 2007 | A1 |
20070252205 | Hoentschel et al. | Nov 2007 | A1 |
20070263466 | Morishita et al. | Nov 2007 | A1 |
20070278578 | Yoshida et al. | Dec 2007 | A1 |
20080049486 | Gruening-von Schwerin | Feb 2008 | A1 |
20080083949 | Zhu et al. | Apr 2008 | A1 |
20080099808 | Burnett et al. | May 2008 | A1 |
20080130379 | Ohsawa | Jun 2008 | A1 |
20080133849 | Demi et al. | Jun 2008 | A1 |
20080165577 | Fazan et al. | Jul 2008 | A1 |
20080253179 | Slesazeck | Oct 2008 | A1 |
20080258206 | Hofmann | Oct 2008 | A1 |
20090086535 | Ferrant et al. | Apr 2009 | A1 |
20090121269 | Caillat et al. | May 2009 | A1 |
20090127592 | El-Kareh et al. | May 2009 | A1 |
20090201723 | Okhonin et al. | Aug 2009 | A1 |
20100085813 | Shino | Apr 2010 | A1 |
20100091586 | Carman | Apr 2010 | A1 |
20100110816 | Nautiyal et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
272437 | Jul 1927 | CA |
0 030 856 | Jun 1981 | EP |
0 350 057 | Jan 1990 | EP |
0 354 348 | Feb 1990 | EP |
0 202 515 | Mar 1991 | EP |
0 207 619 | Aug 1991 | EP |
0 175 378 | Nov 1991 | EP |
0 253 631 | Apr 1992 | EP |
0 513 923 | Nov 1992 | EP |
0 300 157 | May 1993 | EP |
0 564 204 | Oct 1993 | EP |
0 579 566 | Jan 1994 | EP |
0 362 961 | Feb 1994 | EP |
0 599 506 | Jun 1994 | EP |
0 359 551 | Dec 1994 | EP |
0 366 882 | May 1995 | EP |
0 465 961 | Aug 1995 | EP |
0 694 977 | Jan 1996 | EP |
0 333 426 | Jul 1996 | EP |
0 727 820 | Aug 1996 | EP |
0 739 097 | Oct 1996 | EP |
0 245 515 | Apr 1997 | EP |
0 788 165 | Aug 1997 | EP |
0 801 427 | Oct 1997 | EP |
0 510 607 | Feb 1998 | EP |
0 537 677 | Aug 1998 | EP |
0 858 109 | Aug 1998 | EP |
0 860 878 | Aug 1998 | EP |
0 869 511 | Oct 1998 | EP |
0 878 804 | Nov 1998 | EP |
0 920 059 | Jun 1999 | EP |
0 924 766 | Jun 1999 | EP |
0 642 173 | Jul 1999 | EP |
0 727 822 | Aug 1999 | EP |
0 933 820 | Aug 1999 | EP |
0 951 072 | Oct 1999 | EP |
0 971 360 | Jan 2000 | EP |
0 980 101 | Feb 2000 | EP |
0 601 590 | Apr 2000 | EP |
0 993 037 | Apr 2000 | EP |
0 836 194 | May 2000 | EP |
0 599 388 | Aug 2000 | EP |
0 689 252 | Aug 2000 | EP |
0 606 758 | Sep 2000 | EP |
0 682 370 | Sep 2000 | EP |
1 073 121 | Jan 2001 | EP |
0 726 601 | Sep 2001 | EP |
0 731 972 | Nov 2001 | EP |
1 162 663 | Dec 2001 | EP |
1 162 744 | Dec 2001 | EP |
1 179 850 | Feb 2002 | EP |
1 180 799 | Feb 2002 | EP |
1 191 596 | Mar 2002 | EP |
1 204 146 | May 2002 | EP |
1 204 147 | May 2002 | EP |
1 209 747 | May 2002 | EP |
0 744 772 | Aug 2002 | EP |
1 233 454 | Aug 2002 | EP |
0 725 402 | Sep 2002 | EP |
1 237 193 | Sep 2002 | EP |
1 241 708 | Sep 2002 | EP |
1 253 634 | Oct 2002 | EP |
0 844 671 | Nov 2002 | EP |
1 280 205 | Jan 2003 | EP |
1 288 955 | Mar 2003 | EP |
2 197 494 | Mar 1974 | FR |
1 414 228 | Nov 1975 | GB |
H04-176163 | Jun 1922 | JP |
S62-007149 | Jan 1987 | JP |
S62-272561 | Nov 1987 | JP |
02-294076 | Dec 1990 | JP |
03-171768 | Jul 1991 | JP |
05-347419 | Dec 1993 | JP |
08-213624 | Aug 1996 | JP |
H08-213624 | Aug 1996 | JP |
08-274277 | Oct 1996 | JP |
H08-316337 | Nov 1996 | JP |
09-046688 | Feb 1997 | JP |
09-082912 | Mar 1997 | JP |
10-242470 | Sep 1998 | JP |
11-087649 | Mar 1999 | JP |
2000-247735 | Aug 2000 | JP |
12-274221 | Sep 2000 | JP |
12-389106 | Dec 2000 | JP |
13-180633 | Jun 2001 | JP |
2002-009081 | Jan 2002 | JP |
2002-083945 | Mar 2002 | JP |
2002-094027 | Mar 2002 | JP |
2002-176154 | Jun 2002 | JP |
2002-246571 | Aug 2002 | JP |
2002-329795 | Nov 2002 | JP |
2002-343886 | Nov 2002 | JP |
2002-353080 | Dec 2002 | JP |
2003-031693 | Jan 2003 | JP |
2003-68877 | Mar 2003 | JP |
2003-086712 | Mar 2003 | JP |
2003-100641 | Apr 2003 | JP |
2003-100900 | Apr 2003 | JP |
2003-132682 | May 2003 | JP |
2003-203967 | Jul 2003 | JP |
2003-243528 | Aug 2003 | JP |
2004-335553 | Nov 2004 | JP |
0124268 | Apr 2001 | WO |
2005008778 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20100210075 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
61153437 | Feb 2009 | US |