The present disclosure generally relates to data processing systems. More specifically, the present disclosure relates to methods, systems and computer program products for analyzing and processing a variety of data for the purpose of determining and quantifying a member's intent and a member's interests in connection with how and why the member interacts with a social networking service.
Online or web-based social networking services provide their members with a mechanism for defining, and memorializing in a digital format, their relationships with other people. This digital representation of real-world relationships is frequently referred to as a social graph. As these social networking services have matured, many of the services have expanded the concept of a social graph to enable users to establish or define relationships or associations with any number of entities and/or objects in much the same way that users define relationships with other people. For instance, with some social networking services and/or with some web-based applications that leverage a social graph that is maintained by a third-party social networking service, users can indicate a relationship or association with a variety of real-world entities and objects (e.g., companies, schools, products and services).
In addition to hosting a vast amount of social graph data, many social networking services maintain a variety of personal information about their members. For instance, with many social networking services, when a user registers to become a member, the member is prompted to provide a variety of personal or biographical information, which may be displayed in a member's personal web page. Such information is commonly referred to as member profile information, or simply “profile information,” and when shown collectively, it is commonly referred to as a member's profile. For instance, with some of the many social networking services in use today, the personal information that is commonly requested and displayed as part of a member's profile includes a person's age or birthdate, gender, interests, contact information, residential address (e.g., home town and/or state), the name of the person's spouse and/or family members, and so forth. With certain social networking services, such as some business or professional network services, a member's personal information may include information commonly included in a professional resume or curriculum vitae, such as information about a person's education, the company at which a person is employed, an industry in which a person is employed, a job title or function, an employment history, skills possessed by a person, professional organizations of which a person is a member, and so on.
As web-based social networking services have evolved, the number and nature of applications and services that leverage these social networking services, and the reasons for why members interact with these applications and services, has increased remarkably. For instance, some members use a social networking service to browse and search member profiles to discover and identify other members who, for one reason or another, are of interest. Other member use social networking services to share information with other members who are in their respective network, as defined by a social graph maintained by the social networking service, or others members of a common group. Accordingly, a social networking service may provide its members with a wide variety of different applications, features and functions that enable members to interact with one another, and discover and consume content. With so many different applications, features and functions being offered, and with different members engaging with different applications, features and functions for different purposes, designing a single interface and experience that will appeal equally to all users becomes an extremely difficult, if not impossible, task.
Some embodiments are illustrated by way of example and not limitation in the FIG's. of the accompanying drawings, in which:
The present disclosure describes methods, systems and computer program products for analyzing and processing data for the purpose of determining member-intent and member-interest scores for members of a social networking service. Once the intent and interest scores for a member are determined, the scores are made available to a wide variety of applications and services, thereby enabling those applications and services to be personalized for the member based on the member's various scores. Although various embodiments of the inventive subject matter are illustrated and described in detail, it will be evident to one skilled in the art that the present invention may be practiced without all of the specific details set forth herein.
Consistent with embodiments of the invention, a computer-based social networking service includes a data processing module, referred to herein as an intent and interest score-generating module (or simply “score-generating module”), that uses a variety of input data (e.g., member profile data, social graph data, and member-activity or behavioral data) to derive various member-intent and member-interest scores for members of the social networking service. In general, a member-intent score is a measure of a member's attitude or desire for certain activities, while a member-interest score represents a more granular level of insight into a particular intent of the member. For example, consider a scenario where a particular member of a social networking service is frequently browsing and searching for various job listings that have been posted to a job listing service provided by, or otherwise associated and integrated with, the social networking service. Based on analysis of the particular member's profile and analysis of the particular member's activities and behavior—that is, how the member has interacted with the various applications and services of the social networking service—the particular member may be assigned a high job-seeker intent score. If the job listings that the member has been browsing and searching for are job listings for jobs in the financial services industry and the information technology industry, then the member may be assigned high member-interest scores for these two particular interests—that is, financial services and information technology. Accordingly, the interest scores capture a more granular level of insight into the particular interests of a member, as those interests relate to a particular intent. Consistent with some embodiments, the score-generating module is designed as an open framework that easily allows integration of different models and algorithms for computing the various intent and interest scores, thereby making it easy for developers to add new models, revise existing models, and perform various tests (e.g., A/B testing) on different versions of similar models.
In the many examples provided below, the specific intent types, as well as the various interest types or categories, may be particularly relevant with respect to a social networking service that is aimed at serving career-oriented members and professionals. However, skilled artisans will readily recognize the general applicability of the inventive subject matter to a wide variety of different types of social networking services, and related applications and services. Moreover, the inventive subject matter is applicable in a variety of applications beyond social networking services.
With some embodiments, the score-generating module derives or generates for each member of the social networking service an intent score for each of several intent types or categories. For example, as illustrated in the intent and interest model hierarchy presented in
Referring again to
Generally, the input data with which the score-generating module determines or derives the member-intent and member-interest scores can be classified as being one of three different types of data. First, the data may be what is referred to as member profile data. Member profile data is personal data associated with a specific member (e.g., a registered user) of the social networking service, and is in essence a digital representation of a person's identity. Accordingly, member profile data typically consists of biographical information, including a person's name, birthdate, age, geographical location of residence, and so forth. With some social networking services, member profile data may also include a variety of education and career-oriented information commonly found in a resume or curriculum vitae. For instance, member profile data may include information about the schools (high school, college, university, graduate school, technical or vocational school, etc.) that a member has attended, or from which a member has graduated. Similarly, a member may indicate the concentration(s) of his or her academic studies, including any degrees or diplomas earned. In addition to information about a member's formal education, a member may include as part of his or her member profile, information about various positions of employment (e.g., job titles) that the member has previously held or currently holds, the name of any companies at which the member was or is currently employed, industries in which the member has been, or is, employed, any special achievements or rewards that the member has obtained, and/or any skills that the member has acquired or obtained. In some instances, a member may specify that he or she possesses various skills. Other members may take action to endorse a member generally, or some specific portion of a member's profile, such as the skills a member indicates that he or she possesses. Accordingly, skills and endorsement are also part of a member profile. Of course, a wide variety of other information may also be part of a member's member profile.
With some embodiments, member profile data includes not only the information that is explicitly provided by a member, but also a number of derived or computed attributes or components. For example, a member may not explicitly specify his or her tenure at his or her current position of employment, or his or her seniority level within a company or overall career. Nonetheless, based on the information that the member does provide, his or her tenure or seniority level may be inferred—that is, computed or derived from the available information. In yet another example, a member may not specify a particular industry in which the member is employed. However, using information about the company at which the member is employed, the specific industry may be inferred. Additionally, various member profile attributes may be pre-processed for the purpose of normalizing and/or standardizing certain member profile attributes, thereby enabling more meaningful analysis and comparisons to be performed. For example, a member-provided profile attribute specifying a member's job title in free text form may be standardized by mapping the member-provided job title to a corresponding standardized job title, based on various other factors, such as the industry of the company at which the member is employed. In many instances, the same or a similar job title may be used in different industries, such that the actual skills and responsibilities of two members are very different, despite those members having the same job title (e.g., consider the title, “analyst,” in the financial services industry, and information technology industry.) By standardizing the job titles of the members, more meaningful analysis and comparisons can be achieved.
With some embodiments, various computed or derived profile attributes may be automatically made part of a member's member profile with or without the member's explicit acknowledgment. In some instances, one or more attributes or components of a member's profile may not be viewable by the member and/or any other members. For instance, while many member-provided profile attributes or components may be viewable by the public, or persons within the member's social network, depending upon the particular access privileges or settings established by the member, in some instances, various attributes or components of a member's profile may not be viewable by others. For instance, a derived member profile attribute indicating a member's seniority level may not be viewable by the member or any other members.
Another type of data that is available to the score-generating module for use as input data and from which the score-generating module can determine or derive the various intent and interest scores is referred to generally as social graph data. Generally, social graph data is data identifying or otherwise indicating the relationships and associations that a member has with other members, and other entities (e.g., companies, schools, groups, etc.) represented in a social graph maintained by the social networking service. For example, consistent with some embodiments, a social graph is implemented with a specialized graph data structure in which various entities (e.g., people, companies, schools, government institutions, non-profits, and other organizations) are represented as nodes connected by edges, where the edges have different types representing the various associations and/or relationships between the different entities. Although other techniques may be used, with some embodiments the social graph data structure is implemented with a special type of database known as a graph database. Accordingly, if a member is employed at a particular company, this particular association will be reflected in the social graph. Similarly, when a member joins a particular online group hosted by the social networking service, or hosted by a third-party service provider, the member's membership in the group may be reflected in the social graph data.
Analysis of social graph data may signal a member's intentions, and therefore may be used to derive a score representing a particular type of intent for a member. For instance, with some embodiments, by analyzing certain social graph data, the score-generating module can identify certain signals that are highly suggestive of active job-seeking activity. For example, members who are actively seeking jobs may be more likely to follow other members of the social networking service, or establish new connections with other members in a very concentrated or shortened time span—particularly other members who are job recruiters, or who are associated with a job recruiting function. Similarly, members who are actively seeking jobs may be more likely to follow certain companies at which there are open job positions matching the member's skills, or having the same job title as currently held by the member. Members who are actively seeking jobs may be more likely to join certain online groups—particularly those groups that exist primarily to aid job seekers. Accordingly, by analyzing social graph data to identify the entities with which a member is establishing associations or connections, and the timing and frequency of the activity, the job-seeking intentions of a member may be inferred, and used in the derivation of a metric representing the member's job-seeking intent.
With some embodiments, the number of connections that a member has may provide some insight into the likelihood that the member will establish new connections, and thus be useful in representing a connector intent score. Some other examples of how social graph data are used to derive a metric representing a particular type of intent involve analyzing the activity of other members that belong to, or are otherwise associated with, some entity with which the particular member is also associated. For instance, if the social graph information indicates that an unusually large number of employees of a particular company have recently departed, this may reflect an underlying issue with the vitality of the company, and thus be reflected in the particular member's job-seeking score. In particular, if the social graph data indicates that a large number of people have recently left the company at which the particular member is employed, this will have the effect of increasing the job-seeker scores for members of the social networking service who are employed at the company. Similarly, if the social graph data indicates a recent surge in the overall number of employees at a particular company, this may reflect desirability of the members to work at the company, and thus decrease the job-seeker intent score of current employees of the company. With some embodiments, the activity of other members who are similarly associated with a particular entity may also have an effect on member's intent score. For instance, if an unusually high number of employees at a particular company are actively submitting search queries to a job-related search engine, actively communicating via the social networking service with other members who are job recruiters, and/or actively submitting job applications for employment positions at other companies, these activities of other members in the particular member's social graph may have an effect on the particular member's job-seeker intent score. Of course, similar analysis may be performed for any one of the other intent scores.
Finally, a third type of input data that may be used by the score-generating module to determine the intent and interest scores for a member is data referred to herein as member-activity and/or behavioral data. Member-activity and behavioral data is data obtained by monitoring and tracking the interactions that a member has with various applications, services and/or content that are provided by, or, integrated or otherwise associated with, the social networking service. For example, a social networking service may provide any number and variety of applications and/or services with which a member interacts. Similarly, a variety of third-party applications and services may leverage various aspects of the social networking service, for example, via one or more application programming interfaces (APIs). A few examples of such applications or services include: search engine applications and services, content sharing and recommendation applications (e.g., photos, videos, music, hyperlinks, slideshow presentations, articles, etc.), job posting and job recommendation applications and services, calendar management applications and services, contact management and address book applications and services, candidate recruiting applications and services, travel and itinerary planning applications and services, and many more. For any one of the aforementioned applications, interactions may be detected via any number of channels.
Each of these applications and/or services may have a variety of interfaces via which a member can interact with the application or service. For example, when a member selects various links or content on a web page, these interactions may be detected and logged, along with the time at which the interactions occurred, and various contextual information about the interactions, to include a type, category or some other classification of the subject matter to which the interactions relate. In addition to interacting via a web page, various other interactions may be detected and logged, to include interactions with an application or service via a mobile application, as well as email and other messaging applications. Accordingly, both the type of interaction (e.g., search performed, page viewed, job listing viewed) and the subject matter of the content with which the interaction occurred provide insight into both the member's intent and interests.
By detecting how and when members interact with such applications and services, relevant data signals can be inferred from the data and used as input to the score-generating module in deriving one or more intent scores, and/or interest scores. For example, with some embodiments, a social networking service may provide or be associated with one or more job posting and job recommendation applications or services. The frequency and nature of interactions that a member has with the various content modules of the job posting and recommendation applications and services may be used to infer a member's job-seeking intent score or recruiting intent score. Similarly, the nature of the particular content with which a member interacts may be used in determining an interest score.
The application logic layer includes various application server modules 14, which, in conjunction with the user interface module(s) 12, generates various user interfaces (e.g., web pages) with data retrieved from various data sources in the data layer. With some embodiments, individual application server modules 14 are used to implement the functionality associated with various applications and/or services provided by the social networking service.
As shown in
Once registered, a member may invite other members, or be invited by other members, to connect via the social networking service. A “connection” may require a bi-lateral agreement by the members, such that both members acknowledge the establishment of the connection. Similarly, with some embodiments, a member may elect to “follow” another member. In contrast to establishing a connection, the concept of “following” another member typically is a unilateral operation, and at least with some embodiments, does not require acknowledgement or approval by the member that is being followed. When one member follows another, the member who is following may receive status updates (e.g., in an activity or content stream) or other messages published by the member being followed, or relating to various activities undertaken by the member being followed. Similarly, when a member follows an organization, the member becomes eligible to receive messages or status updates published on behalf of the organization. For instance, messages or status updates published on behalf of an organization that a member is following will appear in the member's personalized data feed, commonly referred to as an activity stream or content stream. In any case, the various associations and relationships that the members establish with other members, or with other entities and objects, are stored and maintained within the social graph, shown in
As members interact with the various applications, services and content made available via the social networking service, the members' interactions and behavior (e.g., content viewed, links or buttons selected, messages responded to, etc.) may be tracked and information concerning the member's activities and behavior may be logged or stored, for example, as indicated in
As illustrated in
Although not shown, with some embodiments, the social networking system 10 provides an application programming interface (API) module via which applications and services can access various data and services provided or maintained by the social networking service. For example, using an API, an application may be able to request one or more intent and interest scores for a particular member identified by a member identifier. Such applications may be browser-based applications, or may be operating system-specific. In particular, some applications may reside and execute (at least partially) on one or more mobile devices (e.g., phone, or tablet computing devices) with a mobile operating system. Furthermore, while in many cases the applications or services that leverage the API may be applications and services that are developed and maintained by the entity operating the social networking service, other than data privacy concerns, nothing prevents the API from being provided to the public or to certain third-parties under special arrangements, thereby making the members' intent and interest scores available to third party applications and services.
Once derived, the set of intent and interest scores are stored in association with a member identifier of a member, as indicated at method operation 46. Finally, at method operation 48, the scores are made available to any number and variety of applications and services, enabling those applications and services to personalize a user experience, particularly the presentation (selection, arrangement, format, and so forth) of various user interface elements, based on the member's intent and interest scores.
The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules or objects that operate to perform one or more operations or functions. The modules and objects referred to herein may, in some example embodiments, comprise processor-implemented modules and/or objects.
Similarly, the methods described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. The performance of certain operations may be distributed among the one or more processors, not only residing within a single machine or computer, but deployed across a number of machines or computers. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or at a server farm), while in other embodiments the processors may be distributed across a number of locations.
The one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or within the context of “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., Application Program Interfaces (APIs)).
The example computer system 1500 includes a processor 1502 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), a main memory 1501 and a static memory 1506, which communicate with each other via a bus 1508. The computer system 1500 may further include a display unit 1510, an alphanumeric input device 1517 (e.g., a keyboard), and a user interface (UI) navigation device 1511 (e.g., a mouse). In one embodiment, the display, input device and cursor control device are a touch screen display. The computer system 1500 may additionally include a storage device 1516 (e.g., drive unit), a signal generation device 1518 (e.g., a speaker), a network interface device 1520, and one or more sensors 1521, such as a global positioning system sensor, compass, accelerometer, or other sensor.
The drive unit 1516 includes a machine-readable medium 1522 on which is stored one or more sets of instructions and data structures (e.g., software 1523) embodying or utilized by any one or more of the methodologies or functions described herein. The software 1523 may also reside, completely or at least partially, within the main memory 1501 and/or within the processor 1502 during execution thereof by the computer system 1500, the main memory 1501 and the processor 1502 also constituting machine-readable media.
While the machine-readable medium 1522 is illustrated in an example embodiment to be a single medium, the term “machine-readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more instructions. The term “machine-readable medium” shall also be taken to include any tangible medium that is capable of storing, encoding or carrying instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention, or that is capable of storing, encoding or carrying data structures utilized by or associated with such instructions. The term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media. Specific examples of machine-readable media include non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
The software 1523 may further be transmitted or received over a communications network 1526 using a transmission medium via the network interface device 1520 utilizing any one of a number of well-known transfer protocols (e.g., HTTP). Examples of communication networks include a local area network (“LAN”), a wide area network (“WAN”), the Internet, mobile telephone networks, Plain Old Telephone (POTS) networks, and wireless data networks (e.g., Wi-Fi® and WiMax® networks). The term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible medium to facilitate communication of such software.
Although an embodiment has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof, show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
The present application claims the benefit of U.S. patent application Ser. No. 13/931,471, filed Jun. 28, 2013, which claims the benefit of priority of U.S. Provisional Patent Application No. 61/770,628, filed on Feb. 28, 2013, both of which applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61770628 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13931471 | Jun 2013 | US |
Child | 13932748 | US |