Conventionally, small form factor devices, such as handheld electronic devices, have a display arrangement that includes various layers. The various layers usually include at least a display technology layer, and may additionally include a sensing arrangement and/or a cover window disposed over the display technology layer. By way of example, the display technology layer may include or pertain to a Liquid Crystal Display (LCD) that includes a Liquid Crystal Module (LCM). The LCM generally includes an upper glass sheet and a lower glass sheet that sandwich a liquid crystal layer therebetween. The sensing arrangement may be a touch sensing arrangement such as those used to create a touch screen. For example, a capacitive sensing touch screen can include substantially transparent sensing points or nodes dispersed about a sheet of glass (or plastic). In addition, the cover window, which is typically designed as the outer protective barrier of the layer stack.
The cover window, or glass cover, for a small form factor device can be made of plastic or glass. Plastic is durable but susceptible to being scratched. Glass is scratch resistant, but brittle. In general, the thicker the glass, the stronger it is. Unfortunately, however, the glass cover is often relatively thin, and may be a relatively weak component of the device structure especially at its edges. For example, the glass cover may be susceptible to damage when the portable electronic device is stressed in an abusive manner. Chemically strengthening has been used to strengthen glass. While this has generally worked well, there is a continuing need to provide ways to strengthen the glass covers.
The invention relates generally to increasing the strength of glass. The glass having increased strength can be thin yet be sufficiently strong to be suitable for use in electronic devices, such as portable electronic devices.
Embodiments of the invention can relate to apparatus, systems and methods for improving strength of a thin glass member for an electronic device. In one embodiment, the glass member has improved strength by forming its edges with a predetermined geometry. In another embodiment, the glass member can be strengthened at its edges by not only forming its edges with a predetermined geometry but also by a chemical strengthening process. The use of predetermined geometry for the edges of the glass member can also enhance the effectiveness of the chemical strengthening process. The glass member can be not only thin but also adequately strong to limit susceptibility to damage.
In one example, the glass member may be an outer surface of an electronic device. The glass member may for example correspond to a glass cover that helps form part of a display area of an electronic device (i.e., situated in front of a display either as a separate part or integrated within the display. Alternatively or additionally, the glass member may form a part of the housing. For example, it may form an outer surface other than in the display area.
The apparatus, systems and methods for improving strength of thin glass are especially suitable for glass covers, or displays (e.g., LCD displays), assembled in small form factor electronic devices such as handheld electronic devices (e.g., mobile phones, media players, personal digital assistants, remote controls, etc.). The glass can be thin in these small form factor embodiments, such as less than 3 mm, or more particularly between 0.5 and 2.5 mm. The apparatus, systems and methods can also be used for glass covers or displays for other devices including, but not limited to including, relatively larger form factor electronic devices (e.g., portable computers, tablet computers, displays, monitors, televisions, etc.). The glass can also be thin in these larger form factor embodiments, such as less than 5 mm, or more particularly between 0.5 and 3 mm.
The invention can be implemented in numerous ways, including as a method, system, device, or apparatus. Several embodiments of the invention are discussed below.
As a consumer electronic product, one embodiment can, for example, include at least: a housing having a front surface, a back surface and side surfaces; electrical components provided at least partially internal to the housing, the electrical components including at least a controller, a memory, and a display, the display being provided at or adjacent the front surface of the housing; and a cover glass provided at or over the front surface of the housing such that it is provided over the display. The cover glass can be strengthened by having edges of the glass cover correspond to a predetermined edge geometry and by chemically treating the edges of the glass cover.
As a cover glass member suitable for attachment to a housing for a handheld electronic device, the cover glass member can be produced and strengthened by a process that, for example, can includes at least: forming a plurality of cover glass members, each of the cover glass members being suitably sized to be provided on an exposed surface of the handheld electronic device, each of the cover glass members including edges and at least one non-edge portion; and obtaining a glass sheet, and singulating the glass sheet into a plurality of cover glass members, with each of the cover glass members being suitably sized to be provided on an exposed surface of the handheld electronic device. The process can also include manipulating the edges of each of the cover glass members to correspond to a predetermined edge geometry selected to strengthen the glass covers. Further, the process can include chemically strengthening at least the edges of each of the cover glass members by chemically altering a composition of at least the edges such that the composition of at least the edges differs from a composition of the at least one non-edge portion. In one embodiment, the cover glass members are chemically strengthened by placing them in a chemical solution which can operates to strengthen all surfaces of the cover glass members, including by not limited to the edges.
As a method for producing a glass cover for an exposed surface of a consumer electronic product, one embodiment can, for example, include at least the acts of: obtaining a glass sheet; singulating the glass sheet into a plurality of glass covers, each of the glass covers being suitably sized to be provided on the exposed surface of a consumer electronic product; and manipulating the edges of each of the glass covers to correspond to a predetermined edge geometry. The predetermined edge geometry is selected to strengthen the glass covers. In one embodiment, the method can further include placing the glass covers in an ion solution for a period of time to allow ions in the ion solution to effectively diffuse into the glass covers, thereby chemically strengthening the glass covers.
As a portable electronic device, one embodiment can, for example, include at least: a housing having a front surface, a back surface and side surfaces; electrical components provided at least partially internal to the housing, the electrical components including at least a controller, a memory, and a display, the display being provided at or adjacent the front surface of the housing; and a cover glass provided at or over the front surface of the housing such that it is provided over the display. The cover glass can be strengthened by having edges of the glass cover correspond to a predetermined edge geometry, and in some cases by chemically treating the edges of the glass cover. Also, following the chemical treatment of the edges of the glass cover, the cover glass can have a strength that is substantially uniform across the surface of the cover glass, including the edges.
Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
The invention relates generally to increasing the strength of glass. The glass having increased strength can be thin yet be sufficiently strong to be suitable for use in electronic devices, such as portable electronic devices.
The following detailed description is illustrative only, and is not intended to be in any way limiting. Other embodiments will readily suggest themselves to skilled persons having the benefit of this disclosure. Reference will now be made in detail to implementations as illustrated in the accompanying drawings. The same reference indicators will generally be used throughout the drawings and the following detailed description to refer to the same or like parts. It should be appreciated that the drawings are generally not drawn to scale, and at least some features of the drawings have been exaggerated for ease of illustration.
In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application and business related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
Embodiments of the invention can relate to apparatus, systems and methods for improving strength of a thin glass member for an electronic device. In one embodiment, the glass member has improved strength by forming its edges with a predetermined geometry. In another embodiment, the glass member can be strengthened at its edges by not only forming its edges with a predetermined geometry but also by a chemical strengthening process. The use of predetermined geometry for the edges of the glass member can also enhance the effectiveness of the chemical strengthening process. Advantageously, the glass member can be not only thin but also adequately strong to limit susceptibility to damage.
In one example, the glass member may be an outer surface of an electronic device. The glass member may for example correspond to a glass cover that helps form part of a display area of an electronic device (i.e., situated in front of a display either as a separate part or integrated within the display. Alternatively or additionally, the glass member may form a part of the housing. For example, it may form an outer surface other than in the display area.
The apparatus, systems and methods for improving strength of thin glass are especially suitable for glass covers, or displays (e.g., LCD displays), assembled in small form factor electronic devices such as handheld electronic devices (e.g., mobile phones, media players, personal digital assistants, remote controls, etc.). The glass can be thin in these small form factor embodiments, such as less than 3 mm, or more particularly between 0.5 and 2.5 mm. The apparatus, systems and methods can also be used for glass covers or displays for other devices including, but not limited to including, relatively larger form factor electronic devices (e.g., portable computers, tablet computers, displays, monitors, televisions, etc.). The glass can also be thin in these larger form factor embodiments, such as less than 5 mm, or more particularly between 0.5 and 3 mm.
By forming edges of a glass cover with a predetermined geometry and providing chemical strengthening to the glass cover, stress at the vicinity of the edges of the glass cover can be reduced. As a result, the edges are less susceptible to uncontrolled cracking or breaking when subjected to significant abnormal forces, such as a drop event.
In one embodiment, forming of the edges to correspond to a particular predetermined geometry and providing chemical strengthening can cause compression in the vicinity of the edges of the glass cover to be enhanced (while reducing stress at the vicinity of the edges). The glass cover can thereby be made stronger by imposing the particular predetermined geometry to the edges of the glass cover. In one embodiment, surfaces, e.g., edges, of the glass cover can be chemically strengthened. In one embodiment, the edge geometry is configured to reduce or smooth out sharp transitions, such as corners. In one embodiment, the edge geometry can yield a smoothed corner, where for example a corner between a first surface and a second surface such as for example top/bottom surface and a side surface that is substantially perpendicular can be rendered less sharp. This may for example be accomplished by transitioning one surface to the other with a curve. By way of example, the corner can be rounded. For example, sharp edges, such as corners, can be desharpened or smoothed to create a more continuous transition from one surface to another. For example, an edge between a first surface (e.g., top or bottom surface) and a second surface (e.g., side surface) that might be perpendicular thereto can be desharpened. As another example, transition between a top surface to a side surface or between a bottom surface and a side surface can be desharpened or smoothed.
In one embodiment, a glass cover can extend to the edge of a housing of an electronic device without a protective bezel or other barrier. In one embodiment, the glass cover can include a bezel that surrounds its edges. In either cases, the edges are stronger by creating a specific edge geometry and/or chemical strengthening. The glass cover can be provided over or integrated with a display, such as a Liquid Crystal Display (LCD) display.
Embodiments are discussed below with reference to
Electronic device 100 can include housing 102 that serves as the outer surface for electronic device 100. Electrical components (not shown) are disposed within housing 102. The electrical components can include a controller (or processor), memory, battery, and a display (e.g., LCD display). Display area 104 is disposed within housing 102 of electronic device 100. Electronic device 100 can include a full view or substantially full view display area 104 that consumes a majority if not all of the front surface of electronic device 100. Display area 104 may be embodied in a variety of ways. In one example, display area 104 consists of at least a display such as a flat panel display and more particularly an LCD display. Additionally, electronic device 100 has cover glass 106 provided over display area 104. Cover glass 106 server as an external surface, i.e., top surface, for electronic device 100. Cover glass 106 can be clear or transparent so that display area 104 can be viewed through cover glass 106. Cover glass 106 also resist scratching and therefore provide a substantially scratch-resistance surface for the top surface of housing 102 for electronic device 100.
Display area 104 may alternatively or additionally include a touch sensing device positioned over a display screen. For example, display area 104 may include one or more glass layers having capacitive sensing points distributed thereon. Each of these components can be separate layers or they may be integrated into one or more stacks. In one embodiment, cover glass 106 can act as the outer most layer of display area 104.
Any component of electronic 100 is susceptible to breakage if used in an abusive manner. For example, cover glass 106 can be a weak point of electronic device 100 in terms of strength against bending and damage if dropped. As a result, cover glass 106 can be susceptible to damage when electronic device 100 is stressed as for example in a drop event. By way of example, stress to cover glass 106 can result in damage, such as cracks or breaks. This problem is exacerbated in view of the continuing need to make things smaller and therefore thinner because thinner glass offers less strength.
Further, as shown in
First, the glass material for cover glass 106 can be selected from available glass that is stronger. For example, alumino silicate glass is one suitable choice for the glass material for cover glass 106. Other examples of glass materials include, but are not limited to including, soda lime, borosilicate, and the like.
Second, the glass material can be formed into an appropriate size, such as, for example, by singulating and/or machining. As an example, a sheet of the glass material can be cut into a plurality of individual cover glass pieces. The cover glass pieces can, for example, be suitably sized to fit on the top surface of housing 102 for electronic device 100.
In one embodiment, the edges of the cover glass pieces can be configured to correspond to a particular predetermined geometry. By forming (e.g., machining) the edges of the cover glass pieces to correspond to the particular predetermined geometry, the cover glass pieces become stronger and thus less susceptible to damage. Examples of suitable predetermined geometries for the edges (also known as edge geometries) of the cover glass pieces are discussed below. In one embodiment, the forming (e.g., machining) of the edges to correspond to a particular predetermined geometry can cause compressive stress at the edges to be more uniform. In other words, the compressive stress profile can be managed such that compressive minimum does not deviate much from the average compressive stress. Also, to the extent there is a minimum compressive stress, the predetermined geometry can serve to position the compressive minimum subsurface (i.e., slightly inward) from the edges. In one example, the edge geometry can include soft or gradual transitions from one surface to the other, as for example at interface between a first surface that is perpendicular to a second surface. Here, sharp corners or edges can be curved or otherwise smoothed such that they are less sharp. By rounding or smoothing the sharp corners or edges, as provided by the predetermined geometry, the cover glass pieces can become more receptive to more uniform chemical strengthening.
Third, the cover glass pieces can be chemically treated for further strengthening. One suitable chemical treatment is to place the cover glass pieces in a chemical bath containing Alkali metal ions for a period of time (e.g., several hours) at an elevated temperature. The chemical treatment can desirably result in higher compression stresses at the surface of the cover glass pieces. The depth of the compressive layer being formed can vary with the characteristics of the glass used and the specific chemical treatment. For example, the depth of the compressive layer being formed can, in some embodiments, range from a depth of the compressive layer can be about 10 micrometers for soda lime glass to a depth of about 100 micrometers for alumino silicate glass. More generally, the depth of the compressive layer can be from 10-90 micrometers for soda lime glass or alumino silicate glass. However, it should be understood that the depth of the compressive layer can vary depending on specific chemical treatment applied to the glass.
The surface of the cover glass pieces includes the edges of the cover glass pieces. The higher compression stresses may be the result of ion exchange at or near the surface of the cover glass.
Small form factor devices, such as handheld electronic devices, typically include a display region (e.g., display area 104) that includes various layers. The various layers may include at least a display, and may additionally include a sensing arrangement disposed over (or integrated with) the display. In some cases, the layers may be stacked and adjacent one another, and may even be laminated thereby forming a single unit. In other cases, at least some of the layers are spatially separated and not directly adjacent. For example, the sensing arrangement may be disposed above the display such that there is a gap therebetween. By way of example, the display may include a Liquid Crystal Display (LCD) that includes a Liquid Crystal Module (LCM). The LCM generally includes at least an upper glass sheet and a lower glass sheet that at least partially sandwich a liquid crystal layer therebetween. The sensing arrangement may be a touch sensing arrangement such as those used to create a touch screen. For example, a capacitive sensing touch screen can include substantially transparent sensing points or nodes dispersed about a sheet of glass (or plastic). A cover glass can serve as the outer protective barrier for the display region. The cover glass is typically adjacent the display region but can also be integrated with the display region, such as another layer (outer protective layer) therefor.
Glass cover process 200 can initially obtain 202 a glass sheet. The glass sheet is, for example, alumino silicate glass. The glass sheet can then be processed to singulate 204 the glass sheet into individualized glass covers. The glass covers are, for example, used on consumer electronic products, such as electronic device 100 illustrated in
Next, the edges of the individual glass covers can be manipulated 206 to have a predetermined geometry so as to strengthen the glass covers. Manipulation 206 of the edges can cause the edges to take the shape of the predetermined geometry. For example, manipulation 206 can machine, grind, cut, etch, scribe, mold, slump or otherwise form the edges of the glass covers into the predetermined geometry. The edges can also be polished.
Additionally, the individual glass covers can be chemically strengthened 208. In one embodiment, the glass cover can be placed in a chemical bath to allow chemical strengthening to occur. In this type of chemical strengthening, an ion exchange process occurs at the surface of the glass covers which serves to increase compressive stress at the surfaces, including the edges.
Thereafter, the glass covers can be attached 210 to corresponding consumer electronic products. The glass covers can form an outer surface of the corresponding consumer electronic product (e.g., top surface of a housing). Once attached 210, the edges of the glass covers can be exposed. Although the edges of the glass covers can be exposed, the edges can be further protected. As one example, the edges of the glass covers can be recessed (e.g., along one or more axes) from the outer sides of a housing for the consumer electronic product. As another example, the edges of the glass covers can be protected by additional material placed around or adjacent the edges of the cover glasses. The glass covers can be attached 210 in a variety of ways, including adhesive, bonding, or mechanical devices (e.g., snaps, screws, etc.). In some embodiments, the glass covers can also have a display module (e.g., LCM) attached. Following attachment 210 of the glass covers to the consumer electronic products, glass cover process 200 can end.
Although manipulation 206 of the edges of the glass covers can manipulate 206 all of the edges of the glass covers, it should be noted that not all of the edges need to be manipulated 206. In other words, depending on the particular embodiment or design, manipulation 206 can be imposed on only one or more of the edges of the glass covers. For a given edge, all or a portion of the edge can be manipulated into a predetermined geometry. Also, different edges can be manipulated 206 differently (i.e., different edges can have different geometries). Also, some edges can a predetermined geometry while other edges can remain sharp. Over a given edge being manipulated 206, the predetermined geometry can also vary, such as with a complex curve (e.g., s-curve).
Singulation 204 of the glass sheet into individual glass covers can be performed in a manner that reduces microcracks and/or stress concentrations at the edges, thereby increasing overall strength. The singulation technique used can vary and can be dependent on the thickness of the glass sheet. In one embodiment, the glass sheet is singulated using a laser scribe process. In another embodiment, the glass sheet is singulated using a mechanical scribing technique, such as where a mechanical cutting wheel may be used.
In general, the predetermined edge geometries illustrated in
Besides the rounding of the edges illustrated in
In
As previously discussed, glass covers can be used as an outer surface of portions of a housing for electronic devices, e.g., handheld electronic devices. A handheld electronic device may, for example, function as a media player, phone, internet browser, email unit or some combination of two or more of such. A handheld electronic device generally includes a housing and a display area. With reference to
Cover window 604 may generally be arranged or embodied in a variety of ways. By way of example, cover window 604 may be configured as a protective glass piece that is positioned over an underlying display (e.g., display assembly 606) such as a flat panel display (e.g., LCD) or touch screen display (e.g., LCD and a touch layer). Alternatively, cover window 604 may effectively be integrated with a display, i.e., glass window may be formed as at least a portion of a display. Additionally, cover window 604 may be substantially integrated with a touch sensing device such as a touch layer associated with a touch screen. In some cases, cover window 604 can serve as the outer most layer of the display.
Cover window 704 is primarily transparent so that display assembly 706 is visible through cover window 704. Display assembly 706 can, for example, be positioned adjacent cover window 704. Housing 702 can also contain internal electrical components besides the display assembly, such as a controller (processor), memory, communications circuitry, etc. Display assembly 706 can, for example, include a LCD module. By way of example, display assembly 706 may include a Liquid Crystal Display (LCD) that includes a Liquid Crystal Module (LCM). In one embodiment, cover window 704 is integrally formed with the LCM. Housing 702 can also include an opening 708 for containing the internal electrical components to provide electronic device 700 with electronic capabilities.
The front surface of electronic device 700 can also include user interface control 708 (e.g., click wheel control). In this embodiment, cover window 704 does not cover the entire front surface of electronic device 700. Electronic device 700 essentially includes a partial display area that covers a portion of the front surface.
Cover window 704 may generally be arranged or embodied in a variety of ways. By way of example, cover window 704 may be configured as a protective glass piece that is positioned over an underlying display (e.g., display assembly 706) such as a flat panel display (e.g., LCD) or touch screen display (e.g., LCD and a touch layer). Alternatively, cover window 704 may effectively be integrated with a display, i.e., glass window may be formed as at least a portion of a display. Additionally, cover window 704 may be substantially integrated with a touch sensing device such as a touch layer associated with a touch screen. In some cases, cover window 704 can serve as the outer most layer of the display.
As noted above, the electronic device can be a handheld electronic device or a portable electronic device. The invention can serve to enable a glass cover to be not only thin but also adequately strong. Since handheld electronic devices and portable electronic devices are mobile, they are potentially subjected to various different impact events and stresses that stationary devices are not subjected to. As such, the invention is well suited for implementation of glass surfaces for handheld electronic device or a portable electronic device that are designed to be thin.
The strengthened glass, e.g., glass covers or cover windows, is particularly useful for thin glass applications. For example, the thickness of a glass cover being strengthen can be between about 0.5-2.5 mm. In other embodiments, the strengthening is suitable for glass products whose thickness is less than about 2 mm, or even thinner than about 1 mm, or still even thinner than about 0.6 mm.
The techniques for strengthening glass, e.g., glass covers or cover windows, are particularly useful for edges of glass that are rounded by a predetermined edge geometry having a predetermined edge radius (or predetermined curvature) of at least 10% of the thickness applied to the corners of the edges of the glass. In other embodiments, the predetermined edge radius can be between 20% to 50% of the thickness of the glass. A predetermined edge radius of 50% can also be considered a continuous curvature (or fully rounded), one example of which is illustrated in
In one embodiment, the size of the glass cover depends on the size of the associated electronic device. For example, with handheld electronic devices, the size of the glass cover is often not more than five (5) inches (about 12.7 cm) diagonal. As another example, for portable electronic devices, such as smaller portable computers or tablet computers, the size of the glass cover is often between four (4) (about 10.2 cm) to twelve (12) inches (about 30.5 cm) diagonal. As still another example, for portable electronic devices, such as full size portable computers, displays or monitors, the size of the glass cover is often between ten (10) (about 25.4 cm) to twenty (20) inches (about 50.8 cm) diagonal or even larger.
However, it should be appreciated that in some cases with larger screen sizes, the thickness of the glass layers may need to be greater. The thickness of the glass layers may need to be increased to maintain planarity of the larger glass layers. While the displays can still remain relatively thin, the minimum thickness may increase with increasing screen size. For example, the minimum thickness of the glass cover can correspond to about 0.4 mm for small handheld electronic devices, about 0.6 mm for smaller portable computers or tablet computers, about 1.0 mm or more for full size portable computers, displays or monitors, again depending on the size of the screen. The thickness of the glass cover can, however, depend on the application, structure and/or the size of an electronic device.
As discussed above, glass cover or, more generally, a glass piece may be chemically treated such that surfaces of the glass are effectively strengthened (e.g., strengthened in a more uniform manner). Through such strengthening, glass pieces can be made stronger so that thinner glass pieces can be used with consumer electronic device. Thinner glass with sufficient strength allows for consumer electronic device to become thinner.
In step 804, the glass piece can be placed on a rack. The rack is typically configured to support the glass piece, as well as other glass pieces, during chemical treatment. Once the glass piece is placed on the rack, the rack can be submerged in a heated ion bath in step 806. The heated ion bath may generally be a bath which includes a concentration of ions (e.g., Alkali metal ions, such as Lithium, Cesium or Potassium). It should be appreciated that the concentration of ions in the bath may vary, as varying the concentration of ions allows compression stresses on surfaces of the glass to be controlled. The heated ion bath may be heated to any suitable temperature to facilitate ion exchange.
After the rack is submerged in the heated ion bath, an ion exchange is allowed to occur in step 808 between the ion bath and the glass piece held on the rack. A diffusion exchange occurs between the glass piece, which generally includes Na+ ions, and the ion bath. During the diffusion exchange, Alkali metal ions, which are larger than Na+ ions, effectively replace the Na+ ions in the glass piece. In general, the Na+ ions near surface areas of the glass piece may be replaced by the Alkali ions, while Na+ ions are essentially not replaced by Alkali ions in portions of the glass which are not surface areas. As a result of the Alkali ions replacing Na+ ions in the glass piece, a compressive layer is effectively generated near the surface of the glass piece. The Na+ ions which have been displaced from the glass piece by the Alkali metal ions become a part of the ion solution.
A determination can be made in step 810 as to whether a period of time for submerging the rack in the heated ion bath has ended. It should be appreciated that the amount of time that a rack is to be submerged may vary widely depending on implementation. Typically, the longer a rack is submerged, i.e., the higher the exchange time for Alkali metal ions and Na+ ions, the deeper the depth of the chemically strengthened layer. For example, with thickness of the glass sheet being on the order of 1 mm, the chemical processing (i.e., ion exchange) provided in the ion bath can be provide into the surfaces of the glass pieces 10 micrometers or more. For example, if the glass pieces are formed from soda lime glass, the depth of the compression layer due to the ion exchange can be about 10 microns. As another example, if the glass pieces are formed from alumino silicate glass, the depth of the compression layer due to the ion exchange can range from about 50 microns to 100 microns.
If the determination in step 810 is that the period of time for submerging the rack in the heated ion bath has not ended, then process 800 flow can return to step 817 in which the chemical reaction is allowed to continue to occur between the ion bath and the glass piece. Alternatively, if it is determined that the period of time for submersion has ended, then the rack can be removed from the ion bath in step 812. Upon removing the rack from the ion bath, the glass piece may be removed from the rack in step 814, and the process 800 of chemically treating surfaces of a glass piece can be completed. However, if desired, the glass piece can be polished. Polishing can, for example, remove any haze or residue on the glass piece following the chemical treatment.
A glass cover which has undergone a chemical strengthening process generally includes a chemically strengthened layer, as previously mentioned.
Chemically strengthened layer 928 has a thickness (y) which may vary depending upon the requirements of a particular system in which glass cover 900 is to be utilized. Non-chemically strengthened portion 926 generally includes Na+ ions 934 but no Alkali metal ions 936. A chemical strengthening process causes chemically strengthened layer 928 to be formed such that chemically strengthened layer 928 includes both Na+ ions 934 and Alkali metal ions 936. In one embodiment, chemically strengthened layer 928 may be such that an outer portion of chemically strengthened layer 928 includes substantially more Na+ ions 934 than an underlying portion of chemically strengthened layer 928 which includes both Na+ ions 934 and Alkali metal ions 936
The concentration of Alkali metal ions in an ion bath may be varied while a glass cover is soaking in the ion bath. In other words, the concentration of Alkali metal ions in a ion bath may be maintained substantially constant, may be increased, and/or may be decreased while a glass cover is submerged in the ion bath without departing from the spirit or the scope of the present invention. For example, as Alkali metal ions displace Na+ ions in the glass, the Na+ ions become part of the ion bath. Hence, the concentration of Alkali metal ions in the ion bath may change unless additional Alkali metal ions are added into the ion bath.
Compressive stress at the edges of glass member desirable since it makes the glass member stronger.
The amount of compressive stress reduction amounts for the rounded edges illustrated in
Strength (or overall strength) of a glass member can be a flexural strength that can be measured. For example, a four-point bending test can be performed in accordance with ASTM Standard C158-02: Standard Test Methods for Strength of Glass by Flexure.
It should also be noted that different edge profiles can yield different flaws at different depths from the edge when being formed. Most flaws appear at transitions, such as between curved radius and a straight surface. The edge profiles that are formed or processed to have a cleaner edge finish (or less surface roughness), e.g., with polishing, can yield smaller flaws.
The techniques described herein can make edges of glass substantially stronger, which can be of particular importance as the glass gets thinner. The predetermined geometry with the rounded edges can, for example, yield edges of glass substantially stronger. With the predetermined geometry at the edges having been provided with significant edge radius (e.g., at least 20% of its thickness), the chemical strengthening that is provided can be more uniform such that the edges are able to be strengthened as other surfaces of the glass. As an example, with use of the predetermined geometry having the rounded edges shown in
The techniques describe herein may be applied to glass surfaces used by any of a variety of electronic devices including but not limited handheld electronic devices, portable electronic devices and substantially stationary electronic devices. Examples of these include any known consumer electronic device that includes a display. By way of example, and not by way of limitation, the electronic device may correspond to media players, mobile phones (e.g., cellular phones), PDAs, remote controls, notebooks, tablet PCs, monitors, all in one computers and the like.
This also references: (i) U.S. Provisional Patent Application No. 61/247,493, filed Sep. 30, 2009 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices”, which hereby incorporated herein by reference in its entirety; (ii) U.S. patent application Ser. No. 12/193,001, filed Aug. 16, 2008, entitled “METHODS AND SYSTEMS FOR STRENGTHENING LCD MODULES”, which is hereby incorporated by reference herein; (iii) U.S. patent application Ser. No. 12/172,073, filed Jul. 11, 2008, entitled “METHODS AND SYSTEMS FOR INTEGRALLY TRAPPING A GLASS INSERT IN A METAL BEZEL”, which is hereby incorporated by reference herein; (iv) U.S. Provisional Patent Application No. 61/247,493, filed Sep. 30, 2010 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices”, which is herein incorporated by reference.
The various aspects, features, embodiments or implementations of the invention described above can be used alone or in various combinations.
Although only a few embodiments of the present invention have been described, it should be understood that the present invention may be embodied in many other specific forms without departing from the spirit or the scope of the present invention. By way of example, the steps associated with the methods of the present invention may vary widely. Steps may be added, removed, altered, combined, and reordered without departing from the spirit of the scope of the invention. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
While this specification contains many specifics, these should not be construed as limitations on the scope of the disclosure or of what may be claimed, but rather as descriptions of features specific to particular embodiment of the disclosure. Certain features that are described in the context of separate embodiments can also be implemented in combination. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
This application is a continuation of U.S. application Ser. No. 12/895,372, filed Sep. 30, 2010 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices,” which is hereby incorporated herein by reference, which in turn is a continuation-in-part application of International Application No, PCT/US2010/025979, filed Mar. 2, 2010 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices”, which hereby incorporated herein by reference in its entirety, which in turn claims priority to U.S. Provisional Patent Application No. 61/156,803, filed Mar. 2, 2009 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices”, which hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2643020 | Dalton | Jun 1953 | A |
3415637 | Glynn | Dec 1968 | A |
3441398 | Hess | Apr 1969 | A |
3467508 | Loukes et al. | Sep 1969 | A |
3498773 | Due et al. | Mar 1970 | A |
3558415 | Rieser et al. | Jan 1971 | A |
3607172 | Poole et al. | Sep 1971 | A |
3619240 | Toussaint et al. | Nov 1971 | A |
3626723 | Plumat | Dec 1971 | A |
3652244 | Plumat | Mar 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3798013 | Hasegawa et al. | Mar 1974 | A |
3843472 | Toussaint et al. | Oct 1974 | A |
3857689 | Koizumi et al. | Dec 1974 | A |
3926605 | Kunkle | Dec 1975 | A |
3951707 | Kurtz et al. | Apr 1976 | A |
4015045 | Rinehart | Mar 1977 | A |
4052184 | Anderson | Oct 1977 | A |
4119760 | Rinehart | Oct 1978 | A |
4156755 | Rinehart | May 1979 | A |
4165228 | Ebata et al. | Aug 1979 | A |
4178082 | Ganswein et al. | Dec 1979 | A |
4212919 | Hoda | Jul 1980 | A |
4218230 | Hogan | Aug 1980 | A |
4346601 | France | Aug 1982 | A |
4353649 | Kishii | Oct 1982 | A |
4425810 | Simon et al. | Jan 1984 | A |
4537820 | Nowobliski et al. | Aug 1985 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4733973 | Machak et al. | Mar 1988 | A |
4842629 | Clemens et al. | Jun 1989 | A |
4844724 | Sakai et al. | Jul 1989 | A |
4846868 | Aratani | Jul 1989 | A |
4849002 | Rapp | Jul 1989 | A |
4872896 | LaCourse et al. | Oct 1989 | A |
4911743 | Bagby | Mar 1990 | A |
4937129 | Yamazaki | Jun 1990 | A |
4957364 | Chesler | Sep 1990 | A |
4959548 | Kupperman et al. | Sep 1990 | A |
4983197 | Froning et al. | Jan 1991 | A |
4986130 | Engelhaupt et al. | Jan 1991 | A |
5041173 | Shikata et al. | Aug 1991 | A |
5104435 | Oikawa et al. | Apr 1992 | A |
5129934 | Koss | Jul 1992 | A |
5157746 | Tobita et al. | Oct 1992 | A |
5160523 | Honkanen et al. | Nov 1992 | A |
5254149 | Hashemi et al. | Oct 1993 | A |
5269888 | Morasca | Dec 1993 | A |
5281303 | Beguin et al. | Jan 1994 | A |
5369267 | Johnson et al. | Nov 1994 | A |
5399435 | Ando | Mar 1995 | A |
5411563 | Yeh | May 1995 | A |
5437193 | Schleitweiler et al. | Aug 1995 | A |
5445871 | Murase et al. | Aug 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5525138 | Hashemi et al. | Jun 1996 | A |
5625154 | Matsuhiro et al. | Apr 1997 | A |
5654057 | Kitayama | Aug 1997 | A |
5725625 | Kitayama et al. | Mar 1998 | A |
5733622 | Starcke et al. | Mar 1998 | A |
5766493 | Shin | Jun 1998 | A |
5780371 | Rifqi et al. | Jul 1998 | A |
5816225 | Koch et al. | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5826601 | Muraoka et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5930047 | Gunz et al. | Jul 1999 | A |
5953094 | Matsuoka et al. | Sep 1999 | A |
5985014 | Ueda et al. | Nov 1999 | A |
6050870 | Suginoya et al. | Apr 2000 | A |
6114039 | Rifqui | Sep 2000 | A |
6120908 | Papanu et al. | Sep 2000 | A |
6166915 | Lake et al. | Dec 2000 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6245313 | Suzuki et al. | Jun 2001 | B1 |
6287674 | Verlinden et al. | Sep 2001 | B1 |
6307590 | Yoshida | Oct 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6325704 | Brown et al. | Dec 2001 | B1 |
6327011 | Kim | Dec 2001 | B2 |
6350664 | Haji et al. | Feb 2002 | B1 |
6393180 | Farries et al. | May 2002 | B1 |
6429840 | Sekiguchi | Aug 2002 | B1 |
6437867 | Zeylikovich et al. | Aug 2002 | B2 |
6516634 | Green et al. | Feb 2003 | B1 |
6521862 | Brannon | Feb 2003 | B1 |
6551673 | Yamamoto et al. | Apr 2003 | B1 |
6621542 | Aruga | Sep 2003 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6710797 | McNelley | Mar 2004 | B1 |
6718612 | Bajorek | Apr 2004 | B2 |
6769274 | Cho et al. | Aug 2004 | B2 |
6772610 | Albrand et al. | Aug 2004 | B1 |
6810688 | Duisit et al. | Nov 2004 | B1 |
6936741 | Munnig et al. | Aug 2005 | B2 |
6955971 | Ghyselen et al. | Oct 2005 | B2 |
6996324 | Hiraka et al. | Feb 2006 | B2 |
7012700 | De Groot et al. | Mar 2006 | B2 |
7013709 | Hajduk et al. | Mar 2006 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7070837 | Ross | Jul 2006 | B2 |
7166531 | van Den Hoek et al. | Jan 2007 | B1 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7461564 | Glaesemann | Dec 2008 | B2 |
7558054 | Prest et al. | Jul 2009 | B1 |
7626807 | Hsu | Dec 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7810355 | Feinstein et al. | Oct 2010 | B2 |
7872644 | Hong et al. | Jan 2011 | B2 |
7918019 | Chang et al. | Apr 2011 | B2 |
8013834 | Kim | Sep 2011 | B2 |
8110268 | Hegemier et al. | Feb 2012 | B2 |
8111248 | Lee et al. | Feb 2012 | B2 |
8312743 | Pun et al. | Nov 2012 | B2 |
8391010 | Rothkopf | Mar 2013 | B2 |
8393175 | Kohli et al. | Mar 2013 | B2 |
8551283 | Pakula et al. | Oct 2013 | B2 |
8673163 | Zhong | Mar 2014 | B2 |
8684613 | Weber et al. | Apr 2014 | B2 |
8824140 | Prest | Sep 2014 | B2 |
9128666 | Werner | Sep 2015 | B2 |
20020035853 | Brown et al. | Mar 2002 | A1 |
20020105793 | Oda | Aug 2002 | A1 |
20020155302 | Smith et al. | Oct 2002 | A1 |
20020157199 | Piltingsrud | Oct 2002 | A1 |
20030024274 | Cho et al. | Feb 2003 | A1 |
20030057183 | Cho et al. | Mar 2003 | A1 |
20030077453 | Oaku et al. | Apr 2003 | A1 |
20030234771 | Mulligan et al. | Dec 2003 | A1 |
20040051944 | Stark | Mar 2004 | A1 |
20040119701 | Mulligan et al. | Jun 2004 | A1 |
20040137828 | Takashashi et al. | Jul 2004 | A1 |
20040142118 | Takechi | Jul 2004 | A1 |
20040163414 | Eto et al. | Aug 2004 | A1 |
20050020193 | Allaire | Jan 2005 | A1 |
20050058423 | Brinkmann et al. | Mar 2005 | A1 |
20050105071 | Ishii | May 2005 | A1 |
20050135724 | Helvajian et al. | Jun 2005 | A1 |
20050174525 | Tsuboi | Aug 2005 | A1 |
20050193772 | Davidson et al. | Sep 2005 | A1 |
20050221044 | Gaume | Oct 2005 | A1 |
20050245165 | Harada et al. | Nov 2005 | A1 |
20050259438 | Mizutani | Nov 2005 | A1 |
20050285991 | Yamazaki | Dec 2005 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060055936 | Yun et al. | Mar 2006 | A1 |
20060063351 | Jain | Mar 2006 | A1 |
20060070694 | Rehfeld et al. | Apr 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060197753 | Hotelling et al. | Sep 2006 | A1 |
20060227331 | Wollmer et al. | Oct 2006 | A1 |
20060238695 | Miyamoto | Oct 2006 | A1 |
20060250559 | Bocko et al. | Nov 2006 | A1 |
20060268528 | Zadeksky et al. | Nov 2006 | A1 |
20060292822 | Xie | Dec 2006 | A1 |
20070003796 | Isono et al. | Jan 2007 | A1 |
20070013822 | Kawata et al. | Jan 2007 | A1 |
20070029519 | Kikuyama et al. | Feb 2007 | A1 |
20070030436 | Sasabayashi | Feb 2007 | A1 |
20070039353 | Kamiya | Feb 2007 | A1 |
20070046200 | Fu et al. | Mar 2007 | A1 |
20070063876 | Wong | Mar 2007 | A1 |
20070089827 | Funatsu | Apr 2007 | A1 |
20070122542 | Halsey et al. | May 2007 | A1 |
20070132737 | Mulligan et al. | Jun 2007 | A1 |
20070196578 | Karp et al. | Aug 2007 | A1 |
20070236618 | Magg et al. | Oct 2007 | A1 |
20080020919 | Murata | Jan 2008 | A1 |
20080026260 | Kawai | Jan 2008 | A1 |
20080074028 | Ozolins et al. | Mar 2008 | A1 |
20080094716 | Ushiro et al. | Apr 2008 | A1 |
20080135175 | Higuchi | Jun 2008 | A1 |
20080158181 | Hamblin et al. | Jul 2008 | A1 |
20080202167 | Cavallaro et al. | Aug 2008 | A1 |
20080230177 | Crouser et al. | Sep 2008 | A1 |
20080243321 | Walser et al. | Oct 2008 | A1 |
20080261057 | Slobodin | Oct 2008 | A1 |
20080264176 | Bertrand et al. | Oct 2008 | A1 |
20080286548 | Ellison et al. | Nov 2008 | A1 |
20090046240 | Bolton | Feb 2009 | A1 |
20090067141 | Dabov et al. | Mar 2009 | A1 |
20090091551 | Hotelling et al. | Apr 2009 | A1 |
20090096937 | Bauer et al. | Apr 2009 | A1 |
20090153729 | Hiltunen et al. | Jun 2009 | A1 |
20090162703 | Kawai | Jun 2009 | A1 |
20090197048 | Amin et al. | Aug 2009 | A1 |
20090197088 | Murata et al. | Aug 2009 | A1 |
20090202808 | Glaesemann et al. | Aug 2009 | A1 |
20090220761 | Dejneka et al. | Sep 2009 | A1 |
20090257189 | Wang et al. | Oct 2009 | A1 |
20090294420 | Abramov et al. | Dec 2009 | A1 |
20090324899 | Feinstein et al. | Dec 2009 | A1 |
20090324939 | Feinstein et al. | Dec 2009 | A1 |
20100009154 | Allan et al. | Jan 2010 | A1 |
20100024484 | Kashima | Feb 2010 | A1 |
20100028607 | Lee et al. | Feb 2010 | A1 |
20100035038 | Barefoot et al. | Feb 2010 | A1 |
20100053632 | Alphonse et al. | Mar 2010 | A1 |
20100062284 | Watanabe et al. | Mar 2010 | A1 |
20100119846 | Sawada | May 2010 | A1 |
20100137031 | Griffin et al. | Jun 2010 | A1 |
20100154992 | Feinstein et al. | Jun 2010 | A1 |
20100167059 | Hasimoto et al. | Jul 2010 | A1 |
20100171920 | Nishiyama | Jul 2010 | A1 |
20100179044 | Sellier et al. | Jul 2010 | A1 |
20100199227 | Xiao | Aug 2010 | A1 |
20100206008 | Harvey et al. | Aug 2010 | A1 |
20100210442 | Abramov | Aug 2010 | A1 |
20100215862 | Gomez et al. | Aug 2010 | A1 |
20100216514 | Smoyer et al. | Aug 2010 | A1 |
20100224767 | Kawano et al. | Sep 2010 | A1 |
20100265188 | Chang et al. | Oct 2010 | A1 |
20100279067 | Sabia et al. | Nov 2010 | A1 |
20100279068 | Cook | Nov 2010 | A1 |
20100285272 | Koval | Nov 2010 | A1 |
20100285275 | Baca et al. | Nov 2010 | A1 |
20100296027 | Matsuhira et al. | Nov 2010 | A1 |
20100315570 | Mathew et al. | Dec 2010 | A1 |
20100321305 | Chang et al. | Dec 2010 | A1 |
20110003619 | Fujii | Jan 2011 | A1 |
20110012873 | Prest et al. | Jan 2011 | A1 |
20110019123 | Prest et al. | Jan 2011 | A1 |
20110019354 | Prest et al. | Jan 2011 | A1 |
20110030209 | Chang et al. | Feb 2011 | A1 |
20110050657 | Yamada | Mar 2011 | A1 |
20110063550 | Gettemy et al. | Mar 2011 | A1 |
20110067447 | Prest et al. | Mar 2011 | A1 |
20110072856 | Davidson et al. | Mar 2011 | A1 |
20110102346 | Orsley et al. | May 2011 | A1 |
20110159321 | Eda et al. | Jun 2011 | A1 |
20110164372 | McClure et al. | Jul 2011 | A1 |
20110182084 | Tomlinson | Jul 2011 | A1 |
20110186345 | Pakula et al. | Aug 2011 | A1 |
20110188846 | Sorg | Aug 2011 | A1 |
20110199687 | Sellier et al. | Aug 2011 | A1 |
20110205399 | Gao | Aug 2011 | A1 |
20110248152 | Svajda et al. | Oct 2011 | A1 |
20110255000 | Weber et al. | Oct 2011 | A1 |
20110255250 | Dinh | Oct 2011 | A1 |
20110267833 | Verrat-Debailleul et al. | Nov 2011 | A1 |
20110279383 | Wilson et al. | Nov 2011 | A1 |
20110300908 | Grespan et al. | Dec 2011 | A1 |
20120018323 | Johnson et al. | Jan 2012 | A1 |
20120027399 | Yeates | Feb 2012 | A1 |
20120052302 | Matusick | Mar 2012 | A1 |
20120099113 | de Boer et al. | Apr 2012 | A1 |
20120105400 | Mathew et al. | May 2012 | A1 |
20120118628 | Pakula et al. | May 2012 | A1 |
20120135195 | Glaesemann et al. | May 2012 | A1 |
20120136259 | Milner et al. | May 2012 | A1 |
20120151760 | Steijner | Jun 2012 | A1 |
20120188743 | Wilson et al. | Jul 2012 | A1 |
20120196071 | Cornejo et al. | Aug 2012 | A1 |
20120202040 | Barefoot et al. | Aug 2012 | A1 |
20120236477 | Weber et al. | Sep 2012 | A1 |
20120236526 | Weber et al. | Sep 2012 | A1 |
20120281381 | Sanford | Nov 2012 | A1 |
20120328843 | Cleary et al. | Dec 2012 | A1 |
20130071601 | Bibl et al. | Mar 2013 | A1 |
20130083506 | Wright et al. | Apr 2013 | A1 |
20130182259 | Brezinski et al. | Jul 2013 | A1 |
20130213565 | Lee et al. | Aug 2013 | A1 |
20140176779 | Weber et al. | Jun 2014 | A1 |
20140202985 | Fujii | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
283 630 | Oct 1970 | AT |
1277090 | Dec 2000 | CN |
1369449 | Sep 2002 | CN |
1694589 | Nov 2005 | CN |
101025502 | Aug 2007 | CN |
101206314 | Jun 2008 | CN |
101225698 | Jul 2008 | CN |
101523275 | Feb 2009 | CN |
101465892 | Jun 2009 | CN |
102117104 | Jul 2011 | CN |
102131357 | Jul 2011 | CN |
101267509 | Aug 2011 | CN |
1322339 | Nov 2011 | CN |
202799425 | Mar 2013 | CN |
103958423 | Jul 2014 | CN |
1496586 | Jun 1969 | DE |
17 71 268 | Dec 1971 | DE |
32 12 612 | Oct 1983 | DE |
103 22 350 | Dec 2004 | DE |
1038663 | Sep 2000 | EP |
1206422 | Nov 2002 | EP |
1592073 | Nov 2005 | EP |
1593658 | Nov 2005 | EP |
2025556 | Feb 2009 | EP |
2036867 | Mar 2009 | EP |
2075237 | Jul 2009 | EP |
2196870 | Jun 2010 | EP |
2233447 | Sep 2010 | EP |
2483216 | Aug 2012 | EP |
2635540 | Sep 2013 | EP |
2797627 | Feb 2001 | FR |
2801302 | May 2001 | FR |
1048580 | Jun 1963 | GB |
1 346 747 | Feb 1974 | GB |
S48-006925 | Mar 1973 | JP |
55031944 | Mar 1980 | JP |
55067529 | May 1980 | JP |
55-95645 | Jul 1980 | JP |
S55136979 | Oct 1980 | JP |
55 144450 | Nov 1980 | JP |
S59013638 | Jan 1984 | JP |
59037451 | Feb 1984 | JP |
6066696 | Apr 1985 | JP |
S61097147 | May 1986 | JP |
63 060129 | Mar 1988 | JP |
S63106617 | May 1988 | JP |
63222234 | Sep 1988 | JP |
5-32431 | Feb 1993 | JP |
05249422 | Sep 1993 | JP |
6242260 | Sep 1994 | JP |
H07050144 | Feb 1995 | JP |
H08274054 | Oct 1996 | JP |
52031757 | Mar 1997 | JP |
H09073072 | Mar 1997 | JP |
H09507206 | Jul 1997 | JP |
09-312245 | Dec 1997 | JP |
H11281501 | Oct 1999 | JP |
2000086261 | Mar 2000 | JP |
2000-163031 | Jun 2000 | JP |
2002003895 | Jul 2000 | JP |
2001083887 | Mar 2001 | JP |
2002003895 | Jan 2002 | JP |
2002160932 | Jun 2002 | JP |
2002-342033 | Nov 2002 | JP |
2002338283 | Nov 2002 | JP |
2003502257 | Jan 2003 | JP |
2003146705 | May 2003 | JP |
2004094256 | Mar 2004 | JP |
2004259402 | Sep 2004 | JP |
2004292247 | Oct 2004 | JP |
A2004339019 | Dec 2004 | JP |
2005-162549 | Jun 2005 | JP |
2005140901 | Jun 2005 | JP |
2005156766 | Jun 2005 | JP |
2005353592 | Dec 2005 | JP |
A2000348338 | Dec 2005 | JP |
2007099557 | Apr 2007 | JP |
2008-001590 | Jan 2008 | JP |
2008007360 | Jan 2008 | JP |
2008-066126 | Mar 2008 | JP |
2008063166 | Mar 2008 | JP |
2008192194 | Aug 2008 | JP |
2008195602 | Aug 2008 | JP |
A2008-216938 | Sep 2008 | JP |
A2008-306149 | Dec 2008 | JP |
2009167086 | Jul 2009 | JP |
2009230341 | Oct 2009 | JP |
2009234856 | Oct 2009 | JP |
2010 064943 | Mar 2010 | JP |
2010060908 | Mar 2010 | JP |
2010116276 | May 2010 | JP |
3162733 | Aug 2010 | JP |
2010195600 | Sep 2010 | JP |
2010237493 | Oct 2010 | JP |
2011-032124 | Feb 2011 | JP |
2011032140 | Feb 2011 | JP |
2011158799 | Aug 2011 | JP |
2011-527661 | Nov 2011 | JP |
A 2011-231009 | Nov 2011 | JP |
2013537723 | Oct 2013 | JP |
102006005920 | Jan 2006 | KR |
1020100019526 | Feb 2010 | KR |
10-2011-0030919 | Mar 2011 | KR |
201007521 | Feb 2010 | TW |
201235744 | Sep 2012 | TW |
WO 0047529 | Aug 2000 | WO |
WO 0242838 | May 2002 | WO |
WO2004014109 | Feb 2004 | WO |
WO2004061806 | Jul 2004 | WO |
WO 2004106253 | Dec 2004 | WO |
WO2007089054 | Aug 2007 | WO |
WO 2008044694 | Apr 2008 | WO |
WO 2008143999 | Nov 2008 | WO |
WO 2009003029 | Dec 2008 | WO |
WO 2009010315 | Jan 2009 | WO |
WO2009078406 | Jun 2009 | WO |
WO 2009099615 | Aug 2009 | WO |
WO2009102326 | Aug 2009 | WO |
WO 2009125133 | Oct 2009 | WO |
WO 2010005578 | Jan 2010 | WO |
WO 2010014163 | Feb 2010 | WO |
WO 2010019829 | Feb 2010 | WO |
WO2010027565 | Mar 2010 | WO |
WO 2010080988 | Jul 2010 | WO |
WO2010101961 | Sep 2010 | WO |
WO2011008433 | Jan 2011 | WO |
WO 2011041484 | Apr 2011 | WO |
WO 2012015960 | Feb 2012 | WO |
WO2012027220 | Mar 2012 | WO |
WO 2012106280 | Aug 2012 | WO |
WO 2013106242 | Jul 2013 | WO |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2010/050823, dated Jan. 5, 2011. |
Chemically Strengthened Glass, Wikipedia, Apr. 19, 2009, http://en/wikipedia.org/w/index.php?title=Chemically_strengthened_glass&oldid=284794988. |
Wikipedia: “Iphone 4”, www.wikipedia.org, retrieved Oct. 31, 2011, 15 pgs. |
“Toward Making Smart Phone Touch-Screens More Glare and Smudge Resistant”, e! Science News, http://eciencenews.com/articles/2009/08/19toward.making smart.phone.touch.screens.more.glare.and.smudge.resistant, Aug. 19, 2009, 1 pg. |
Arun K. Varshneya, Chemical Strengthening of Glass: Lessons Learned and Yet to be Learned International Journal of Applied Glass Science, 2010, 1, 2, pp. 131-142. |
Office Action for Japanese Patent Application No. 2011-553057, dated May 20, 2013. |
Aben “Laboratory of Photoelasticity”, Institute of Cybernetics at TTU, www.ioc.ee/res/photo.html, Oct. 5, 2000. |
Forooghian et al., Investigative Ophthalmology & Visual Science; Oct. 2008, vol. 49, No. 10. |
Examination Report for EP Application No. 10709119.1, dated Feb. 8, 2013. |
Office Action for U.S. Appl. No. 12/895,393, dated May 22, 2013. |
“iPhone 4”, Wikipedia, Jan. 4, 2012, 17 pgs. |
Mehrl et al., “Designer's Noticebook: Proximity Detection IR LED and Optical Crosstalk”, http://ams.com/eng/content/view/download/145137, Aug. 1, 2011, 5 pages. |
Office Action for Chinese Patent Application No. 201080016127.2, dated Sep. 17, 2013. |
Office Action for U.S. Appl. No. 12/895,393, dated Oct. 18, 2013. |
Office Action for Japanese Patent Application No. 2012-532298, dated Nov. 1, 2013. |
Office Action for Great Britain Patent Application No. GB1016457.2, dated Dec. 4, 2013. |
Notice of Preliminary Rejection for Korean Patent Application No. 10-2012-7011023, dated Dec. 26, 2013. |
Saxer et al., “High-Speed Fiber-Based Polarization-sensitive optical coherence tomography of in vivo human skin”, Optics Letters, vol. 25, No. 18, Sep. 15, 2000, pp. 1355-1357. |
Examination Report for UK Patent Application No. 1016457.2, dated Feb. 28, 2014. |
Ohkuma, “Development of a Manufacturing Process of a Thin, Lightweight LCD Cell”, Department of Cell Process Development, IBM, Japan, Section 13.4, 2000. |
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, Apr. 1985, pp. 21-25. |
Rubine, “The Automatic Recognition of Gestures”, CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages. |
Rubine, “Combining Gestures and Direct Manipulation”, CHI'92, May 1992, pp. 659-660. |
Westerman, “Hand Tracking, Finger Identification and Chronic Manipulation of a Multi-Touch Surface”, A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in Electrical Engineering, Spring 1999, 364 pages. |
First Office Action for Chinese Patent Application No. 201080051738.0, dated Feb. 24, 2014. |
Final Rejection for Japanese Patent Application No. 2011-553057, dated Feb. 10, 2014. |
Office Action for U.S. Appl. No. 12/895,372, dated Apr. 4, 2014. |
Karlsson et al., “The Technology of Chemical Glass Strengthening—a review”, Apr. 2010, Glass Technology, European Journal of Glass Science and Technology A., vol. 51, No. 2, pp. 41-54. |
Second Office Action for Chinese Patent Application No. 20108006127.2, dated Jun. 6, 2014. |
Second Office Action for Chinese Patent Application No. 201080051738.0, dated Sep. 17, 2014. |
Kingery et al., “Introduction to Ceramics,” 2nd Edition, John Wiley & Sons, pp. 792, 833-844, 1976. |
Number | Date | Country | |
---|---|---|---|
20150116919 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61156803 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12895372 | Sep 2010 | US |
Child | 14586716 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2010/025979 | Mar 2010 | US |
Child | 12895372 | US |