Typical enterprise-level data centers can include several to hundreds of racks or cabinets, with each rack/cabinet housing multiple servers. Each of the various servers of a data center may be communicatively connectable to each other via one or more local networking switches, routers, and/or other interconnecting devices, cables, and/or interfaces. The number of racks and servers of a particular data center, as well as the complexity of the design of the data center, may depend on the intended use of the data center, as well as the quality of service the data center is intended to provide.
Traditional rack systems are self-contained physical support structures that include a number of pre-defined server spaces. A corresponding server may be mounted in each pre-defined server space. Each server may include physical resources and memory devices that interface with one another. Conventional interfaces between physical resources and memory devices may complicate service of the servers and be associated with undesirable maintenance and/or repair costs.
In some data centers, each server may be embodied as a general purpose server capable of servicing different types of workloads. Of course, some servers may have different resources compared to other servers (e.g., more or fewer processor cores). In some cases, some of the servers may be special-purposed servers configured to handle specialized workloads. Each server may include various physical resources, such as processors, memory, and storage devices, depending on the functionality of the particular server. Typically such resources are secured to a printed circuit board substrate housed in a corresponding chassis.
The concepts described herein are illustrated by way of example and not by way of limitation in the accompanying figures. For simplicity and clarity of illustration, elements illustrated in the figures are not necessarily drawn to scale. Where considered appropriate, reference labels have been repeated among the figures to indicate corresponding or analogous elements.
While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will be described herein in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives consistent with the present disclosure and the appended claims.
References in the specification to “one embodiment,” “an embodiment,” “an illustrative embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may or may not necessarily include that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. Additionally, it should be appreciated that items included in a list in the form of “at least one A, B, and C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C). Similarly, items listed in the form of “at least one of A, B, or C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C).
The disclosed embodiments may be implemented, in some cases, in hardware, firmware, software, or any combination thereof. The disclosed embodiments may also be implemented as instructions carried by or stored on a transitory or non-transitory machine-readable (e.g., computer-readable) storage medium, which may be read and executed by one or more processors. A machine-readable storage medium may be embodied as any storage device, mechanism, or other physical structure for storing or transmitting information in a form readable by a machine (e.g., a volatile or non-volatile memory, a media disc, or other media device).
In the drawings, some structural or method features may be shown in specific arrangements and/or orderings. However, it should be appreciated that such specific arrangements and/or orderings may not be required. Rather, in some embodiments, such features may be arranged in a different manner and/or order than shown in the illustrative figures. Additionally, the inclusion of a structural or method feature in a particular figure is not meant to imply that such feature is required in all embodiments and, in some embodiments, may not be included or may be combined with other features.
Referring now to
A data center comprising disaggregated resources, such as data center 100, can be used in a wide variety of contexts, such as enterprise, government, cloud service provider, and communications service provider (e.g., Telco's), as well in a wide variety of sizes, from cloud service provider mega-data centers that consume over 100,000 sq. ft. to single- or multi-rack installations for use in base stations.
The disaggregation of resources to sleds comprised predominantly of a single type of resource (e.g., compute sleds comprising primarily compute resources, memory sleds containing primarily memory resources), and the selective allocation and deallocation of the disaggregated resources to form a managed node assigned to execute a workload improves the operation and resource usage of the data center 100 relative to typical data centers comprised of hyperconverged servers containing compute, memory, storage and perhaps additional resources in a single chassis. For example, because sleds predominantly contain resources of a particular type, resources of a given type can be upgraded independently of other resources. Additionally, because different resources types (processors, storage, accelerators, etc.) typically have different refresh rates, greater resource utilization and reduced total cost of ownership may be achieved. For example, a data center operator can upgrade the processors throughout their facility by only swapping out the compute sleds. In such a case, accelerator and storage resources may not be contemporaneously upgraded and, rather, may be allowed to continue operating until those resources are scheduled for their own refresh. Resource utilization may also increase. For example, if managed nodes are composed based on requirements of the workloads that will be running on them, resources within a node are more likely to be fully utilized. Such utilization may allow for more managed nodes to run in a data center with a given set of resources, or for a data center expected to run a given set of workloads, to be built using fewer resources.
Referring now to
It should be appreciated that each of the other pods 120, 130, 140 (as well as any additional pods of the data center 100) may be similarly structured as, and have components similar to, the pod 110 shown in and described in regard to
Referring now to
In the illustrative embodiments, each sled of the data center 100 is embodied as a chassis-less sled. That is, each sled has a chassis-less circuit board substrate on which physical resources (e.g., processors, memory, accelerators, storage, etc.) are mounted as discussed in more detail below. As such, the rack 240 is configured to receive the chassis-less sleds. For example, each pair 310 of elongated support arms 312 defines a sled slot 320 of the rack 240, which is configured to receive a corresponding chassis-less sled. To do so, each illustrative elongated support arm 312 includes a circuit board guide 330 configured to receive the chassis-less circuit board substrate of the sled. Each circuit board guide 330 is secured to, or otherwise mounted to, a top side 332 of the corresponding elongated support arm 312. For example, in the illustrative embodiment, each circuit board guide 330 is mounted at a distal end of the corresponding elongated support arm 312 relative to the corresponding elongated support post 302, 304. For clarity of the Figures, not every circuit board guide 330 may be referenced in each Figure.
Each circuit board guide 330 includes an inner wall that defines a circuit board slot 380 configured to receive the chassis-less circuit board substrate of a sled 400 when the sled 400 is received in the corresponding sled slot 320 of the rack 240. To do so, as shown in
It should be appreciated that each circuit board guide 330 is dual sided. That is, each circuit board guide 330 includes an inner wall that defines a circuit board slot 380 on each side of the circuit board guide 330. In this way, each circuit board guide 330 can support a chassis-less circuit board substrate on either side. As such, a single additional elongated support post may be added to the rack 240 to turn the rack 240 into a two-rack solution that can hold twice as many sled slots 320 as shown in
In some embodiments, various interconnects may be routed upwardly or downwardly through the elongated support posts 302, 304. To facilitate such routing, each elongated support post 302, 304 includes an inner wall that defines an inner chamber in which interconnects may be located. The interconnects routed through the elongated support posts 302, 304 may be embodied as any type of interconnects including, but not limited to, data or communication interconnects to provide communication connections to each sled slot 320, power interconnects to provide power to each sled slot 320, and/or other types of interconnects.
The rack 240, in the illustrative embodiment, includes a support platform on which a corresponding optical data connector (not shown) is mounted. Each optical data connector is associated with a corresponding sled slot 320 and is configured to mate with an optical data connector of a corresponding sled 400 when the sled 400 is received in the corresponding sled slot 320. In some embodiments, optical connections between components (e.g., sleds, racks, and switches) in the data center 100 are made with a blind mate optical connection. For example, a door on each cable may prevent dust from contaminating the fiber inside the cable. In the process of connecting to a blind mate optical connector mechanism, the door is pushed open when the end of the cable approaches or enters the connector mechanism. Subsequently, the optical fiber inside the cable may enter a gel within the connector mechanism and the optical fiber of one cable comes into contact with the optical fiber of another cable within the gel inside the connector mechanism.
The illustrative rack 240 also includes a fan array 370 coupled to the cross-support arms of the rack 240. The fan array 370 includes one or more rows of cooling fans 372, which are aligned in a horizontal line between the elongated support posts 302, 304. In the illustrative embodiment, the fan array 370 includes a row of cooling fans 372 for each sled slot 320 of the rack 240. As discussed above, each sled 400 does not include any on-board cooling system in the illustrative embodiment and, as such, the fan array 370 provides cooling for each sled 400 received in the rack 240. Each rack 240, in the illustrative embodiment, also includes a power supply associated with each sled slot 320. Each power supply is secured to one of the elongated support arms 312 of the pair 310 of elongated support arms 312 that define the corresponding sled slot 320. For example, the rack 240 may include a power supply coupled or secured to each elongated support arm 312 extending from the elongated support post 302. Each power supply includes a power connector configured to mate with a power connector of the sled 400 when the sled 400 is received in the corresponding sled slot 320. In the illustrative embodiment, the sled 400 does not include any on-board power supply and, as such, the power supplies provided in the rack 240 supply power to corresponding sleds 400 when mounted to the rack 240. Each power supply is configured to satisfy the power requirements for its associated sled, which can vary from sled to sled. Additionally, the power supplies provided in the rack 240 can operate independent of each other. That is, within a single rack, a first power supply providing power to a compute sled can provide power levels that are different than power levels supplied by a second power supply providing power to an accelerator sled. The power supplies may be controllable at the sled level or rack level, and may be controlled locally by components on the associated sled or remotely, such as by another sled or an orchestrator.
Referring now to
As discussed above, the illustrative sled 400 includes a chassis-less circuit board substrate 602, which supports various physical resources (e.g., electrical components) mounted thereon. It should be appreciated that the circuit board substrate 602 is “chassis-less” in that the sled 400 does not include a housing or enclosure. Rather, the chassis-less circuit board substrate 602 is open to the local environment. The chassis-less circuit board substrate 602 may be formed from any material capable of supporting the various electrical components mounted thereon. For example, in an illustrative embodiment, the chassis-less circuit board substrate 602 is formed from an FR-4 glass-reinforced epoxy laminate material. Of course, other materials may be used to form the chassis-less circuit board substrate 602 in other embodiments.
As discussed in more detail below, the chassis-less circuit board substrate 602 includes multiple features that improve the thermal cooling characteristics of the various electrical components mounted on the chassis-less circuit board substrate 602. As discussed, the chassis-less circuit board substrate 602 does not include a housing or enclosure, which may improve the airflow over the electrical components of the sled 400 by reducing those structures that may inhibit air flow. For example, because the chassis-less circuit board substrate 602 is not positioned in an individual housing or enclosure, there is no vertically-arranged backplane (e.g., a backplate of the chassis) attached to the chassis-less circuit board substrate 602, which could inhibit air flow across the electrical components. Additionally, the chassis-less circuit board substrate 602 has a geometric shape configured to reduce the length of the airflow path across the electrical components mounted to the chassis-less circuit board substrate 602. For example, the illustrative chassis-less circuit board substrate 602 has a width 604 that is greater than a depth 606 of the chassis-less circuit board substrate 602. In one particular embodiment, for example, the chassis-less circuit board substrate 602 has a width of about 21 inches and a depth of about 9 inches, compared to a typical server that has a width of about 17 inches and a depth of about 39 inches. As such, an airflow path 608 that extends from a front edge 610 of the chassis-less circuit board substrate 602 toward a rear edge 612 has a shorter distance relative to typical servers, which may improve the thermal cooling characteristics of the sled 400. Furthermore, although not illustrated in
As discussed above, the illustrative sled 400 includes one or more physical resources 620 mounted to a top side 650 of the chassis-less circuit board substrate 602. Although two physical resources 620 are shown in
The sled 400 also includes one or more additional physical resources 630 mounted to the top side 650 of the chassis-less circuit board substrate 602. In the illustrative embodiment, the additional physical resources include a network interface controller (NIC) as discussed in more detail below. Of course, depending on the type and functionality of the sled 400, the physical resources 630 may include additional or other electrical components, circuits, and/or devices in other embodiments.
The physical resources 620 are communicatively coupled to the physical resources 630 via an input/output (I/O) subsystem 622. The I/O subsystem 622 may be embodied as circuitry and/or components to facilitate input/output operations with the physical resources 620, the physical resources 630, and/or other components of the sled 400. For example, the I/O subsystem 622 may be embodied as, or otherwise include, memory controller hubs, input/output control hubs, integrated sensor hubs, firmware devices, communication links (e.g., point-to-point links, bus links, wires, cables, waveguides, light guides, printed circuit board traces, etc.), and/or other components and subsystems to facilitate the input/output operations. In the illustrative embodiment, the I/O subsystem 622 is embodied as, or otherwise includes, a double data rate 4 (DDR4) data bus or a DDR5 data bus.
In some embodiments, the sled 400 may also include a resource-to-resource interconnect 624. The resource-to-resource interconnect 624 may be embodied as any type of communication interconnect capable of facilitating resource-to-resource communications. In the illustrative embodiment, the resource-to-resource interconnect 624 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the resource-to-resource interconnect 624 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to resource-to-resource communications.
The sled 400 also includes a power connector 640 configured to mate with a corresponding power connector of the rack 240 when the sled 400 is mounted in the corresponding rack 240. The sled 400 receives power from a power supply of the rack 240 via the power connector 640 to supply power to the various electrical components of the sled 400. That is, the sled 400 does not include any local power supply (i.e., an on-board power supply) to provide power to the electrical components of the sled 400. The exclusion of a local or on-board power supply facilitates the reduction in the overall footprint of the chassis-less circuit board substrate 602, which may increase the thermal cooling characteristics of the various electrical components mounted on the chassis-less circuit board substrate 602 as discussed above. In some embodiments, voltage regulators are placed on a bottom side 750 (see
In some embodiments, the sled 400 may also include mounting features 642 configured to mate with a mounting arm, or other structure, of a robot to facilitate the placement of the sled 600 in a rack 240 by the robot. The mounting features 642 may be embodied as any type of physical structures that allow the robot to grasp the sled 400 without damaging the chassis-less circuit board substrate 602 or the electrical components mounted thereto. For example, in some embodiments, the mounting features 642 may be embodied as non-conductive pads attached to the chassis-less circuit board substrate 602. In other embodiments, the mounting features may be embodied as brackets, braces, or other similar structures attached to the chassis-less circuit board substrate 602. The particular number, shape, size, and/or make-up of the mounting feature 642 may depend on the design of the robot configured to manage the sled 400.
Referring now to
The memory devices 720 may be embodied as any type of memory device capable of storing data for the physical resources 620 during operation of the sled 400, such as any type of volatile (e.g., dynamic random access memory (DRAM), etc.) or non-volatile memory. Volatile memory may be a storage medium that requires power to maintain the state of data stored by the medium. Non-limiting examples of volatile memory may include various types of random access memory (RAM), such as dynamic random access memory (DRAM) or static random access memory (SRAM). One particular type of DRAM that may be used in a memory module is synchronous dynamic random access memory (SDRAM). In particular embodiments, DRAM of a memory component may comply with a standard promulgated by JEDEC, such as JESD79F for DDR SDRAM, JESD79-2F for DDR2 SDRAM, JESD79-3F for DDR3 SDRAM, JESD79-4A for DDR4 SDRAM, JESD209 for Low Power DDR (LPDDR), JESD209-2 for LPDDR2, JESD209-3 for LPDDR3, and JESD209-4 for LPDDR4. Such standards (and similar standards) may be referred to as DDR-based standards and communication interfaces of the storage devices that implement such standards may be referred to as DDR-based interfaces.
In one embodiment, the memory device is a block addressable memory device, such as those based on NAND or NOR technologies. A memory device may also include next-generation nonvolatile devices, such as Intel 3D XPoint™ memory or other byte addressable write-in-place nonvolatile memory devices. In one embodiment, the memory device may be or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM), a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM), or spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thyristor based memory device, or a combination of any of the above, or other memory. The memory device may refer to the die itself and/or to a packaged memory product. In some embodiments, the memory device may comprise a transistor-less stackable cross point architecture in which memory cells sit at the intersection of word lines and bit lines and are individually addressable and in which bit storage is based on a change in bulk resistance.
Referring now to
In the illustrative compute sled 800, the physical resources 620 are embodied as processors 820. Although only two processors 820 are shown in
In some embodiments, the compute sled 800 may also include a processor-to-processor interconnect 842. Similar to the resource-to-resource interconnect 624 of the sled 400 discussed above, the processor-to-processor interconnect 842 may be embodied as any type of communication interconnect capable of facilitating processor-to-processor interconnect 842 communications. In the illustrative embodiment, the processor-to-processor interconnect 842 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the processor-to-processor interconnect 842 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to processor-to-processor communications.
The compute sled 800 also includes a communication circuit 830. The illustrative communication circuit 830 includes a network interface controller (NIC) 832, which may also be referred to as a host fabric interface (HFI). The NIC 832 may be embodied as, or otherwise include, any type of integrated circuit, discrete circuits, controller chips, chipsets, add-in-boards, daughtercards, network interface cards, or other devices that may be used by the compute sled 800 to connect with another compute device (e.g., with other sleds 400). In some embodiments, the NIC 832 may be embodied as part of a system-on-a-chip (SoC) that includes one or more processors, or included on a multichip package that also contains one or more processors. In some embodiments, the NIC 832 may include a local processor (not shown) and/or a local memory (not shown) that are both local to the NIC 832. In such embodiments, the local processor of the NIC 832 may be capable of performing one or more of the functions of the processors 820. Additionally or alternatively, in such embodiments, the local memory of the NIC 832 may be integrated into one or more components of the compute sled at the board level, socket level, chip level, and/or other levels.
The communication circuit 830 is communicatively coupled to an optical data connector 834. The optical data connector 834 is configured to mate with a corresponding optical data connector of the rack 240 when the compute sled 800 is mounted in the rack 240. Illustratively, the optical data connector 834 includes a plurality of optical fibers which lead from a mating surface of the optical data connector 834 to an optical transceiver 836. The optical transceiver 836 is configured to convert incoming optical signals from the rack-side optical data connector to electrical signals and to convert electrical signals to outgoing optical signals to the rack-side optical data connector. Although shown as forming part of the optical data connector 834 in the illustrative embodiment, the optical transceiver 836 may form a portion of the communication circuit 830 in other embodiments.
In some embodiments, the compute sled 800 may also include an expansion connector 840. In such embodiments, the expansion connector 840 is configured to mate with a corresponding connector of an expansion chassis-less circuit board substrate to provide additional physical resources to the compute sled 800. The additional physical resources may be used, for example, by the processors 820 during operation of the compute sled 800. The expansion chassis-less circuit board substrate may be substantially similar to the chassis-less circuit board substrate 602 discussed above and may include various electrical components mounted thereto. The particular electrical components mounted to the expansion chassis-less circuit board substrate may depend on the intended functionality of the expansion chassis-less circuit board substrate. For example, the expansion chassis-less circuit board substrate may provide additional compute resources, memory resources, and/or storage resources. As such, the additional physical resources of the expansion chassis-less circuit board substrate may include, but is not limited to, processors, memory devices, storage devices, and/or accelerator circuits including, for example, field programmable gate arrays (FPGA), application-specific integrated circuits (ASICs), security co-processors, graphics processing units (GPUs), machine learning circuits, or other specialized processors, controllers, devices, and/or circuits.
Referring now to
As discussed above, the individual processors 820 and communication circuit 830 are mounted to the top side 650 of the chassis-less circuit board substrate 602 such that no two heat-producing, electrical components shadow each other. In the illustrative embodiment, the processors 820 and communication circuit 830 are mounted in corresponding locations on the top side 650 of the chassis-less circuit board substrate 602 such that no two of those physical resources are linearly in-line with others along the direction of the airflow path 608. It should be appreciated that, although the optical data connector 834 is in-line with the communication circuit 830, the optical data connector 834 produces no or nominal heat during operation.
The memory devices 720 of the compute sled 800 are mounted to the bottom side 750 of the of the chassis-less circuit board substrate 602 as discussed above in regard to the sled 400. Although mounted to the bottom side 750, the memory devices 720 are communicatively coupled to the processors 820 located on the top side 650 via the I/O subsystem 622. Because the chassis-less circuit board substrate 602 is embodied as a double-sided circuit board, the memory devices 720 and the processors 820 may be communicatively coupled by one or more vias, connectors, or other mechanisms extending through the chassis-less circuit board substrate 602. Of course, each processor 820 may be communicatively coupled to a different set of one or more memory devices 720 in some embodiments. Alternatively, in other embodiments, each processor 820 may be communicatively coupled to each memory device 720. In some embodiments, the memory devices 720 may be mounted to one or more memory mezzanines on the bottom side of the chassis-less circuit board substrate 602 and may interconnect with a corresponding processor 820 through a ball-grid array.
Each of the processors 820 includes a heatsink 850 secured thereto. Due to the mounting of the memory devices 720 to the bottom side 750 of the chassis-less circuit board substrate 602 (as well as the vertical spacing of the sleds 400 in the corresponding rack 240), the top side 650 of the chassis-less circuit board substrate 602 includes additional “free” area or space that facilitates the use of heatsinks 850 having a larger size relative to traditional heatsinks used in typical servers. Additionally, due to the improved thermal cooling characteristics of the chassis-less circuit board substrate 602, none of the processor heatsinks 850 include cooling fans attached thereto. That is, each of the heatsinks 850 is embodied as a fan-less heatsink. In some embodiments, the heat sinks 850 mounted atop the processors 820 may overlap with the heat sink attached to the communication circuit 830 in the direction of the airflow path 608 due to their increased size, as illustratively suggested by
Referring now to
In the illustrative accelerator sled 1000, the physical resources 620 are embodied as accelerator circuits 1020. Although only two accelerator circuits 1020 are shown in
In some embodiments, the accelerator sled 1000 may also include an accelerator-to-accelerator interconnect 1042. Similar to the resource-to-resource interconnect 624 of the sled 600 discussed above, the accelerator-to-accelerator interconnect 1042 may be embodied as any type of communication interconnect capable of facilitating accelerator-to-accelerator communications. In the illustrative embodiment, the accelerator-to-accelerator interconnect 1042 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the accelerator-to-accelerator interconnect 1042 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to processor-to-processor communications. In some embodiments, the accelerator circuits 1020 may be daisy-chained with a primary accelerator circuit 1020 connected to the NIC 832 and memory 720 through the I/O subsystem 622 and a secondary accelerator circuit 1020 connected to the NIC 832 and memory 720 through a primary accelerator circuit 1020.
Referring now to
Referring now to
In the illustrative storage sled 1200, the physical resources 620 are embodied as storage controllers 1220. Although only two storage controllers 1220 are shown in
In some embodiments, the storage sled 1200 may also include a controller-to-controller interconnect 1242. Similar to the resource-to-resource interconnect 624 of the sled 400 discussed above, the controller-to-controller interconnect 1242 may be embodied as any type of communication interconnect capable of facilitating controller-to-controller communications. In the illustrative embodiment, the controller-to-controller interconnect 1242 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the controller-to-controller interconnect 1242 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to processor-to-processor communications.
Referring now to
The storage cage 1252 illustratively includes sixteen mounting slots 1256 and is capable of mounting and storing sixteen solid state drives 1254. Of course, the storage cage 1252 may be configured to store additional or fewer solid state drives 1254 in other embodiments. Additionally, in the illustrative embodiment, the solid state drivers are mounted vertically in the storage cage 1252, but may be mounted in the storage cage 1252 in a different orientation in other embodiments. Each solid state drive 1254 may be embodied as any type of data storage device capable of storing long term data. To do so, the solid state drives 1254 may include volatile and non-volatile memory devices discussed above.
As shown in
As discussed above, the individual storage controllers 1220 and the communication circuit 830 are mounted to the top side 650 of the chassis-less circuit board substrate 602 such that no two heat-producing, electrical components shadow each other. For example, the storage controllers 1220 and the communication circuit 830 are mounted in corresponding locations on the top side 650 of the chassis-less circuit board substrate 602 such that no two of those electrical components are linearly in-line with each other along the direction of the airflow path 608.
The memory devices 720 of the storage sled 1200 are mounted to the bottom side 750 of the of the chassis-less circuit board substrate 602 as discussed above in regard to the sled 400. Although mounted to the bottom side 750, the memory devices 720 are communicatively coupled to the storage controllers 1220 located on the top side 650 via the I/O subsystem 622. Again, because the chassis-less circuit board substrate 602 is embodied as a double-sided circuit board, the memory devices 720 and the storage controllers 1220 may be communicatively coupled by one or more vias, connectors, or other mechanisms extending through the chassis-less circuit board substrate 602. Each of the storage controllers 1220 includes a heatsink 1270 secured thereto. As discussed above, due to the improved thermal cooling characteristics of the chassis-less circuit board substrate 602 of the storage sled 1200, none of the heatsinks 1270 include cooling fans attached thereto. That is, each of the heatsinks 1270 is embodied as a fan-less heatsink.
Referring now to
In the illustrative memory sled 1400, the physical resources 620 are embodied as memory controllers 1420. Although only two memory controllers 1420 are shown in
In some embodiments, the memory sled 1400 may also include a controller-to-controller interconnect 1442. Similar to the resource-to-resource interconnect 624 of the sled 400 discussed above, the controller-to-controller interconnect 1442 may be embodied as any type of communication interconnect capable of facilitating controller-to-controller communications. In the illustrative embodiment, the controller-to-controller interconnect 1442 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the controller-to-controller interconnect 1442 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to processor-to-processor communications. As such, in some embodiments, a memory controller 1420 may access, through the controller-to-controller interconnect 1442, memory that is within the memory set 1432 associated with another memory controller 1420. In some embodiments, a scalable memory controller is made of multiple smaller memory controllers, referred to herein as “chiplets”, on a memory sled (e.g., the memory sled 1400). The chiplets may be interconnected (e.g., using EMIB (Embedded Multi-Die Interconnect Bridge)). The combined chiplet memory controller may scale up to a relatively large number of memory controllers and I/O ports, (e.g., up to 16 memory channels). In some embodiments, the memory controllers 1420 may implement a memory interleave (e.g., one memory address is mapped to the memory set 1430, the next memory address is mapped to the memory set 1432, and the third address is mapped to the memory set 1430, etc.). The interleaving may be managed within the memory controllers 1420, or from CPU sockets (e.g., of the compute sled 800) across network links to the memory sets 1430, 1432, and may improve the latency associated with performing memory access operations as compared to accessing contiguous memory addresses from the same memory device.
Further, in some embodiments, the memory sled 1400 may be connected to one or more other sleds 400 (e.g., in the same rack 240 or an adjacent rack 240) through a waveguide, using the waveguide connector 1480. In the illustrative embodiment, the waveguides are 64 millimeter waveguides that provide 16 Rx (i.e., receive) lanes and 16 Tx (i.e., transmit) lanes. Each lane, in the illustrative embodiment, is either 16 GHz or 32 GHz. In other embodiments, the frequencies may be different. Using a waveguide may provide high throughput access to the memory pool (e.g., the memory sets 1430, 1432) to another sled (e.g., a sled 400 in the same rack 240 or an adjacent rack 240 as the memory sled 1400) without adding to the load on the optical data connector 834.
Referring now to
Additionally, in some embodiments, the orchestrator server 1520 may identify trends in the resource utilization of the workload (e.g., the application 1532), such as by identifying phases of execution (e.g., time periods in which different operations, each having different resource utilizations characteristics, are performed) of the workload (e.g., the application 1532) and pre-emptively identifying available resources in the data center 100 and allocating them to the managed node 1570 (e.g., within a predefined time period of the associated phase beginning). In some embodiments, the orchestrator server 1520 may model performance based on various latencies and a distribution scheme to place workloads among compute sleds and other resources (e.g., accelerator sleds, memory sleds, storage sleds) in the data center 100. For example, the orchestrator server 1520 may utilize a model that accounts for the performance of resources on the sleds 400 (e.g., FPGA performance, memory access latency, etc.) and the performance (e.g., congestion, latency, bandwidth) of the path through the network to the resource (e.g., FPGA). As such, the orchestrator server 1520 may determine which resource(s) should be used with which workloads based on the total latency associated with each potential resource available in the data center 100 (e.g., the latency associated with the performance of the resource itself in addition to the latency associated with the path through the network between the compute sled executing the workload and the sled 400 on which the resource is located).
In some embodiments, the orchestrator server 1520 may generate a map of heat generation in the data center 100 using telemetry data (e.g., temperatures, fan speeds, etc.) reported from the sleds 400 and allocate resources to managed nodes as a function of the map of heat generation and predicted heat generation associated with different workloads, to maintain a target temperature and heat distribution in the data center 100. Additionally or alternatively, in some embodiments, the orchestrator server 1520 may organize received telemetry data into a hierarchical model that is indicative of a relationship between the managed nodes (e.g., a spatial relationship such as the physical locations of the resources of the managed nodes within the data center 100 and/or a functional relationship, such as groupings of the managed nodes by the customers the managed nodes provide services for, the types of functions typically performed by the managed nodes, managed nodes that typically share or exchange workloads among each other, etc.). Based on differences in the physical locations and resources in the managed nodes, a given workload may exhibit different resource utilizations (e.g., cause a different internal temperature, use a different percentage of processor or memory capacity) across the resources of different managed nodes. The orchestrator server 1520 may determine the differences based on the telemetry data stored in the hierarchical model and factor the differences into a prediction of future resource utilization of a workload if the workload is reassigned from one managed node to another managed node, to accurately balance resource utilization in the data center 100.
To reduce the computational load on the orchestrator server 1520 and the data transfer load on the network, in some embodiments, the orchestrator server 1520 may send self-test information to the sleds 400 to enable each sled 400 to locally (e.g., on the sled 400) determine whether telemetry data generated by the sled 400 satisfies one or more conditions (e.g., an available capacity that satisfies a predefined threshold, a temperature that satisfies a predefined threshold, etc.). Each sled 400 may then report back a simplified result (e.g., yes or no) to the orchestrator server 1520, which the orchestrator server 1520 may utilize in determining the allocation of resources to managed nodes.
Referring now to
Similarly to processor 820 described above, each of the processors 1602 may be embodied as any type of compute device or circuit capable of performing various tasks such as compute functions and/or controlling the functions of the sled 400 depending on, for example, the type or intended functionality of the sled 400. For example, as discussed in more detail below, the processors 1602 may be embodied as high-power processors in embodiments in which the sled 400 is embodied as a compute sled, as accelerator co-processors or circuits in embodiments in which the sled 400 is embodied as an accelerator sled, and/or storage controllers in embodiments in which the sled 400 is embodied as a storage sled. Again, depending on the type or intended functionality of the sled 400, the sled 400 may include one or more additional components, such as, but not limited to, a communication circuit having a network interface controller, physical resources in addition to those discussed above, an input/output (I/O) subsystem, a power connector, and one or more data storage drives.
The power circuitry devices 1622 may be embodied as, or otherwise include, any type of electronic components or devices for managing power. For example, in the illustrative embodiments, the power circuitry devices 1622 include voltage regulators and/or similar power control devices to supply a regulated power to the processors 1602 based on a supplied power.
Each of the memory devices 1642 may be embodied as any type of memory device capable of storing data for the processors 1602 during operation of the sled 400. For example, in the illustrative embodiments, the memory devices 1642 are embodied as dual in-line memory modules (DIMMs), which may support DDR, DDR2, DDR3, DDR4, or DDR5 random access memory (RAM). Of course, in other embodiments, the memory devices 1642 may utilize other memory technologies, including volatile and/or non-volatile memory. For example, types of volatile memory may include, but are not limited to, data rate synchronous dynamic RAM (DDR SDRAM), static random-access memory (SRAM), thyristor RAM (T-RAM) or zero-capacitor RAM (Z-RAM). Types of non-volatile memory may include byte or block addressable types of non-volatile memory. The byte or block addressable types of non-volatile memory may include, but are not limited to, 3-dimensional (3-D) cross-point memory, memory that uses chalcogenide phase change material (e.g., chalcogenide glass), multi-threshold level NAND flash memory, NOR flash memory, single or multi-level phase change memory (PCM), resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, or spin transfer torque MRAM (STT-MRAM), or a combination of any of the above, or other non-volatile memory types.
Each of the processor mezzanine boards 1600, the power mezzanine boards 1620, and the memory mezzanine boards 1640 may be formed from any suitable material capable of supporting the corresponding physical resources. For example, each of the processor mezzanine boards 1600, the power mezzanine boards 1620, and the memory mezzanine boards 1640 may be formed from a glass-reinforced epoxy laminate material such as FR-4. Of course, other materials may be used to form the mezzanine boards 1600, 1620, 1640.
In various embodiments, the power mezzanine board 1620 and/or the memory mezzanine board 1640 may be electrically coupled to a corresponding processor mezzanine board 1600 by vias established in the chassis-less circuit board substrate 602. To do so, one, some, or all of the processor mezzanine board 1600, the power mezzanine board 1620, and/or the memory mezzanine board 1640 may be soldered to the chassis-less circuit board substrate 602 (or to another mezzanine board as discussed below) with use of a ball grid array (BGA), a reflow grid array (RGA), a land grid array (LGA), or other grid array or connector. The use of BGA, RGA, and/or similar grid arrays supports package removal and replacement to address failures of corresponding components.
It should be appreciated that by moving physical resources from the chassis-less circuit board substrate 602 to dedicated mezzanine boards and using vias defined in the chassis-less circuit board substrate 602 to electrically connect the various mezzanine boards 1600, 1620, 1640 may reduce the use of large numbers of high-density, high speed traces on or within the chassis-less circuit board substrate 602. The mezzanine boards 1600, 1620, 1640 provide additional real-estate on the chassis-less circuit board substrate 602. By moving dedicated circuits to corresponding mezzanine boards (e.g., the power regulation circuitry to the power mezzanine board 1620 and the memory to the memory mezzanine board 1640), the corresponding mezzanine boards can be designed for the corresponding task. For example, the power mezzanine board 1620 can be designed with large traces to support increased power handling and, as such, may not require multi-layer floods. Additionally, the use of grid arrays (BGA, RGA, LGA, etc.) on the mezzanine boards 1600, 1620, 1640 allow for the corresponding landing pads (or connectors) to be defined on the chassis-less circuit board substrate 602 directly over or attached to a corresponding via through the chassis-less circuit board substrate 602, which reduces the need for any route breakouts.
It should be appreciated that the use of the grid arrays and vias reduces signal propagation distance and impedance between traces on the chassis-less circuit board substrate 602. With regard to the power mezzanine board 1620, this reduction in signal propagation distance and reduction in impedance may result in a reduction in wasted power and improve the power regulation response of the power circuitry devices 1622 to current changes (reduced inductance). With regard to the memory mezzanine boards 1640, the routing on the memory mezzanine board 1640 may be configured so as to improve cost and performance of the memory array (e.g., DRAM array), while reducing the signal distance to the corresponding processor 1602 without overly impeding the processor thermal solution.
Referring now to
Similar to the processor mezzanine board 1600, the power mezzanine board 1620 includes a power grid array 1802 as shown in
Referring now to
Referring now to
Each landing pad (or other connector) of the landing pad array 2300 electrically connected to the power grid array 1702 of the grid array 1700 is also electrically connected to a via 2310 defined through the chassis-less circuit board substrate 602. Each via 2310 is also electrically connected to a corresponding landing pad of a landing pad array 2302 defined on the bottom side 750 of the chassis-less circuit board substrate 602. Additionally, the power grid array 1802 of the power mezzanine board 1620 is electrically connected to the landing pad array 2302. That is, each “ball” or other structure of the grid array 1700 is soldered to a corresponding land pad of the landing pad array 2302. Any suitable soldering process may be used to electrically connect the grid array 1802 to the landing pad array 2302.
It should be appreciated that each of the vias 2310 defined through the the chassis-less circuit board substrate 602 may include connectors embedded therein. Such connectors may be embodied as any type of connector capable of facilitating electrical connection including, but not limited to pogo pins, a beryllium-copper (BECU) coils, and conductive elastomers.
In use, the power circuitry devices 1622 of the power mezzanine board 1620 regulate and provide power to the processor 1602. The power is provided directly to the processor 1602 through the grid array 1802, the landing pad array 2302, the vias 2310, the landing pad array 2300, and the grid array 1700. In this way, the power regulation devices are segregated to the power mezzanine board 1620 and the power path is reduced, which may reduce noise, improve power delivery, and improve power efficiency.
In some embodiments, as shown in
Referring now to
As shown in
Additionally, as shown in
In use, the processor 1602 may access the memory devices 1642 of the memory mezzanine board 1640 through the grid array 1700, the landing pad array 2300, the vias 2310, the landing pad array 2704, and the I/O grid array 2004 of the memory mezzanine board 1640. In this way, the signal traces and path are segregated onto the memory mezzanine board, which may improve signal noise and losses.
Referring now to
Each landing pad (or other connector) of the landing pad array 2300 that is electrically connected to the power grid array 1702 of the grid array 1700 is also electrically connected to a via 2310 defined through the chassis-less circuit board substrate 602. Each via 2310 is also electrically connected to a corresponding landing pad of the landing pad array 2302 defined on the bottom side 750 of the chassis-less circuit board substrate 602. Additionally, the power grid array 1802 of the power mezzanine board 1620 is electrically connected to the landing pad array 2302. That is, each “ball” or other structure of the grid array 1700 is soldered to a corresponding land pad of the landing pad array 2302. Again, any suitable soldering process may be used to electrically connect the grid array 1802 to the landing pad array 2302.
The processor mezzanine board 1600 also includes a pair of landing pad arrays 3000 defined on the top side 1604 and toward a corresponding lateral side of the processor mezzanine board 1600. The I/O grid array 2002 of a corresponding memory mezzanine board 1620 is electrically secured (e.g., soldered) to each landing pad array 3000. That is, each “ball” or other structure of the I/O grid array 2002 is soldered to a corresponding land pad of the landing pad array 3002. Again, any suitable soldering process may be used to electrically connect the I/O grid array 2002 to the landing pad array 3002.
In some embodiments, as shown in
Referring now to
Referring now to
As shown in
The uncore 3512 may be embodied as any component or set of components that perform any activity or function carried out by the CPU package 3402 that is not performed by a core of CPU package 3402. For example, the uncore 3512 may implement functionality such as a QuickPath Interconnect, a level 3 (L3) cache usage, a snoop agent pipeline, a memory controller, and a Thunderbolt controller.
The individual components of the CPU package 3402 may be embodied as a single die or as a multi-chip package. In the illustrative embodiment, the CPU package 3402 defines the base set of features for a range of compute devices, which may be enhanced or added to via the CPU physical resources 3412 included on the CPU substrate 3404 as discussed below. In such embodiments, the number of stockkeeping units (SKUs) of CPU packages 3402 for a range of compute devices may be reduced. Of course, in other embodiments, different CPU packages 3402 may have different features and/or components (e.g., a different number of cores 3510, different uncore 3512 capabilities, etc.)
The CPU substrate 3404 may be embodied as any type of substrate capable of supporting the CPU physical resources 3412 and the CPU package 3402 such as a printed circuit board made from any suitable material, such as an FR-4 glass-reinforced epoxy laminate material. Of course, other materials may be used to form the CPU substrate 3404 in other embodiments. The CPU substrate 3404 is sized to be capable of supporting the CPU package 3402 and the CPU physical resources 3412, which may vary based on the desired features of the CPU substrate 3404 (e.g., on the number of CPU physical resources 3412).
The CPU substrate 3404 includes a mounting region 3410 configured to receive the CPU package 3402. For example, as shown in
Alternatively, in other embodiments, the landing grid array 3602 may be embodied as a CPU connector, such as a land grid array (LGA) connector having a number of connectors to contact corresponding pads of the grid array 3802 of the CPU package 3402. Additionally, in some embodiments, the CPU substrate 3404 may include a securing device 3600 (shown in double dashed line in
It should be appreciated that the use of BGA, RGA, and/or similar grid arrays to couple the CPU package 3402 to the CPU substrate 3404 supports package removal and replacement to address failures of corresponding components. Additionally, it should be appreciated that, in the illustrative embodiment, using a BGA or RGA instead of techniques such as wire bonding may allow for the configurable processor module 3400 to be assembled using relatively inexpensive processes and could be done independent of the complex processes used to create and assemble the CPU package 3402 and the CPU physical resources 3412. At the same time, using a BGA or RGA in the illustrative embodiment instead of techniques such as an LGA and socket may make the integration process less expensive, less sensitive to process variations, and/or the like, even though using a BGA or RGA may be more “permanent” relative to the use of an LGA and socket.
As discussed above, the number and type of CPU physical resources 3412 included on the CPU substrate 3404 may depend on the desired features and functionality of the CPU package 3402. However, it should be appreciated that the presence of the CPU physical resources 3412 on the CPU substrate 3404 may improve the performance of the configurable processor module 3400 by having those CPU physical resources 3412 packed with or otherwise physically close to the CPU package 3402. The CPU physical resources 3412 may be embodied as any type of physical resource (e.g., physical electronic device, circuit, or component) usable by the CPU package 3402 to perform a particular function or otherwise facilitate operations of the CPU package 3402. For example, the CPU physical resources 3412 may be embodied as, or otherwise include high-bandwidth memory, low-bandwidth memory, high-capacity memory, low-capacity memory, volatile memory, non-volatile memory, storage, input/output components, power management integrated circuits (PMICs), communication circuitry such as a network interface circuit (NIC), accelerator circuits or device such as an field programmable gate array (FPGA), and/or other electrical devices or components. In some embodiments, the CPU physical resources 3412 are embodied as a physical resource that is not otherwise available or “exposed” on the primary circuit board substrate (e.g., the chassis-less circuit board substrate 602) to which the configurable processor module 3400 is secured. That is, the CPU package 3402 may include features that are not typically “exposed” on the primary circuit board substrate due to tracing or other space limitations. For example, the CPU package 3402 may include sixteen (16) channels of memory, of which only eight may be typically exposed or otherwise used on a primary circuit board substrate due to spacing challenges. In such an embodiment, the remaining “unused” memory channels may be exposed and utilized on the CPU substrate 3404 by the CPU physical resources 3412 (e.g., memory devices). It should be appreciated that the CPU substrate 3404 may be embodied as customized silicon and the CPU physical resources 3412 may include customized or specialized electronic devices designed and manufactured by a third-party, different from the manufacturer of the CPU package 3402, for example.
The CPU physical resources 3412 may be electrically coupled to the CPU package 3402 via any suitable interconnects. For example, the CPU substrate 3404 may include various electrical traces, bus links, wires, cables, light guides, etc, which may be established on or in the CPU substrate 3404 to electrically couple the CPU physical resources 3412 and the CPU package 3402. Such interconnects may also include vias traversing through he CPU substrate 3404.
As shown in
The CPU substrate connector 3406 includes a mounting region 3420 configured to receive the CPU substrate 3404. To do so, as shown in
As discussed above, the CPU substrate connector 3406 may be mounted to, or otherwise connected to, a primary circuit board substrate such as the chassis-less circuit board substrate 602. To facilitate such connection, the CPU substrate connector 3406 may itself include a grid array 4002 as shown in
It should be appreciated that the configurable nature of the configurable processor module 3400 allows for a variety of manufacturing approaches in the fabrication of the configurable processor module 3400. For example, the configurable processor module 3400 may be assembled at the same location and by the same manufacturer as the CPU package 3402. Alternatively, the configurable processor module 3400 may be assembled from individual components such as a CPU package 3402 and the CPU physical resources 3412 by a third-party manufacturer. Yet further, the configurable processor module 3400 may be assembled from individual components such as a CPU package 3402 and the CPU physical resources 3412 by an end user, such as when the components can be connected to the CPU substrate 3404 without any specialized equipment, such as by using socket connections. It should further be appreciated that the techniques described above may allow for testing each individual component (such as the CPU package 3402 and each CPU physical resources 3412) separately before mounting them on the CPU substrate 3404, which may lead to a lower failure in time (FIT) rate and lower defects per million (DPM) device failure rate.
Referring now to
In block 4104, the CPU substrate 3404 is manufactured. To do so, in block 4106 the particular CPU physical resources 3412 to be included in the configurable processor module 3400 are determined. As discussed above, the selection of the CPU physical resources 3412 may differentiate the features and capabilities of the resulting configurable processor module 3400 from other configurable processor module even though the same CPU package 4102 is used for both modules 3400. For example, one configurable processor module 3400 may include additional channels of memory and corresponding memory devices on the CPU substrate 3404 relative to another configurable processor module 3400, which may include a NIC on the CPU substrate 3404. However, both of those exemplary configurable processor modules 3400 may include the same CPU package 3402.
In block 4108, the CPU substrate 3404 is manufactured including the determined or selected CPU physical resources 3412. To do so, in block 4110, the CPU physical resources 3412 are secured to the CPU substrate 3404 using a suitable connection processor such as a reflow or wave soldering process. As discussed above, the CPU substrate 3404 may be embodied as customized silicon and the CPU physical resources 3412 may include customized or specialized electronic devices designed and manufactured by a third-party, different from the manufacturer of the CPU package 3402, for example. Additionally, as discussed above, the CPU substrate 3404 includes interconnects (e.g., traces, wires, buses, cables, etc.) that electrically connect the CPU physical resource 3402 to other CPU physical resources and/or to the CPU package 3402.
In block 4112, the CPU package 3402 is mounted to the CPU substrate 3404. To do so, the CPU package 3402 is secured to the CPU substrate 3404. For example, the grid array 3802 of the CPU package 3402 may be soldered to the landing grid array 3602 of the CPU substrate using a soldering process as discussed above in block 4116. In doing so, in block 4118, the CPU package 3402 is electrically coupled to one or more of the CPU physical resources 3412 via the various interconnects of the CPU substrate 3404.
In block 4120, the CPU substrate 3404 is mounted to the circuit board substrate of the electrical device or component (e.g., the chassis-less circuit board substrate 650 of a sled 400). To do so, the CPU substrate 3404 is secured to the CPU substrate connector 3406 in block 4122. For example, the grid array 3902 of the CPU substrate 3404 may be soldered to the landing grid array 3702 of the CPU substrate connector 3406 using a soldering process as discussed above in block 4124. Additionally, in block 4126, the CPU substrate 3404 may be physically secured to the CPU substrate connector 3406 using the securing device 3700 or other mechanical connector. When the CPU substrate connector 3406 is electrically coupled to the corresponding circuit board substrate, the CPU package 3402 is resultantly electrically coupled to other physical resources of the circuit board substrate (e.g., physical resources of the chassis-less circuit board substrate 650 of a sled 400) via various interconnects of the circuit board substrate in block 4128.
As discussed above, the various manufacturing steps of the method 4100 may be performed by different manufacturers. For example, the manufacturing or fabrication of block 4102 may be performed by a CPU manufacturer, while the manufacture of the CPU substrate of block 4104 is performed by another manufacture. Additionally, the assembly of block 4112 may be performed by the same manufacture as performing block 4104 or may be performed by another entity (e.g., an end user or intermediate manufacturer). Similarly, the assembly of block 4120 may be performed by the same entity as performing blocks 4102, 4104, and/or 4112 or by another entity.
Illustrative examples of the technologies disclosed herein are provided below. An embodiment of the technologies may include any one or more, and any combination of, the examples described below.
Example 1 includes a configurable processor module comprising a central processing unit (CPU) package mounted to a CPU substrate, wherein the CPU package comprises at least one processor core; one or more CPU physical resources mounted to the CPU substrate, wherein each of the CPU physical resources is communicatively coupled to the CPU package via an interconnect of the CPU substrate and usable by the CPU package to facilitate operations of the CPU package, wherein the CPU substrate is configured to be received in a CPU substrate connector of a circuit board substrate.
Example 2 includes the subject matter of Example 1, and wherein the CPU package is mounted to the CPU substrate by a ball grid array.
Example 3 includes the subject matter of any of Examples 1 and 2, and wherein the CPU package is mounted to the CPU substrate by a reflow grid array.
Example 4 includes the subject matter of any of Examples 1-3, and wherein the one or more CPU physical resources comprise a physical resource usable by the CPU package to facilitate operation of the CPU package and not duplicated on the circuit board substrate.
Example 5 includes the subject matter of any of Examples 1-4, and wherein the one or more CPU physical resources comprise a channel of memory not accessible on the circuit board substrate.
Example 6 includes the subject matter of any of Examples 1-5, and wherein the one or more CPU physical resources comprise a memory device.
Example 7 includes the subject matter of any of Examples 1-6, and wherein the one or more CPU physical resources comprises an input/output (I/O) physical resource.
Example 8 includes the subject matter of any of Examples 1-7, and wherein the one or more CPU physical resources comprises a communication circuit.
Example 9 includes the subject matter of any of Examples 1-8, and wherein the one or more CPU physical resources comprises an accelerator device.
Example 10 includes a sled, the sled comprising a circuit board substrate comprising a central processing unit (CPU) substrate connector; a CPU substrate secured to the CPU substrate connector, wherein the CPU substrate comprises one or CPU physical resources; and a CPU package mounted to the CPU substrate, wherein the CPU package comprises at least one processor core, wherein the CPU package is communicatively coupled to the one or more CPU physical resources via a plurality of electrical interconnects of the CPU substrate, wherein each of the one or more CPU physical resources is usable by the CPU package to facilitate a corresponding operation of the CPU package.
Example 11 includes the subject matter of Example 10, and wherein the CPU package is mounted to the CPU substrate by a ball grid array or a reflow grid array.
Example 12 includes the subject matter of any of Examples 10 and 11, and wherein the CPU substrate connector comprises a ball grid array, a reflow grid array, or a land grid array.
Example 13 includes the subject matter of any of Examples 10-12, and wherein the one or more CPU physical resources comprise a physical resource usable by the CPU package to facilitate operation of the CPU package and not duplicated on the circuit board substrate.
Example 14 includes the subject matter of any of Examples 10-13, and wherein the one or more CPU physical resources comprise a channel of memory not accessible on the circuit board substrate.
Example 15 includes the subject matter of any of Examples 10-14, and wherein the one or more CPU physical resources comprise a memory device, an input/output (I/O) physical resource, a communication circuit, or an accelerator device.
Example 16 includes the subject matter of any of Examples 10-15, and wherein the circuit board substrate comprises a main memory communicatively coupled to the CPU package by one or more electrical interconnects of the CPU substrate.
Example 17 includes a method for fabricating a configurable processor module, the method comprising determining one or more physical resources to be included on a central processing unit (CPU) substrate, wherein each of the one or more physical resources is usable by a CPU to facilitate a corresponding operation by the CPU; securing the one or more physical resources to the CPU substrate; mounting a CPU package to the CPU substrate, wherein the CPU package includes at least one processor core and is electrically coupled to the one or more physical resources via an interconnect of the CPU substrate when mounted to the CPU substrate, wherein the CPU substrate is configured to be received in a CPU substrate connector of a circuit board substrate.
Example 18 includes the subject matter of Example 17, and wherein determining the one or more physical resources to be included on the CPU substrate comprises selecting a group of features from a plurality of groups of features for a compute device in which the configurable processor module is to be installed.
Example 19 includes the subject matter of any of Examples 17 and 18, and wherein mounting the CPU package to the CPU substrate comprises mounting the CPU package using a ball grid array.
Example 20 includes the subject matter of any of Examples 17-19, and further including mounting the CPU substrate to a circuit board substrate, wherein mounting the CPU substrate to the circuit board substrate comprises electrically connecting the CPU package to at least one physical resource located on the circuit board substrate.
The present application claims the benefit of U.S. Provisional Patent Application No. 62/599,376, filed Dec. 15, 2017.
Number | Date | Country | |
---|---|---|---|
62599376 | Dec 2017 | US |