TECHNOLOGIES FOR STORAGE CLUSTER REBUILD SERVICE TRAFFIC MANAGEMENT

Information

  • Patent Application
  • 20200021492
  • Publication Number
    20200021492
  • Date Filed
    September 23, 2019
    5 years ago
  • Date Published
    January 16, 2020
    5 years ago
Abstract
Technologies for storage cluster quality of service (QoS) management include multiple compute devices in communication via a storage network. A controller node monitors network traffic of the storage cluster. The network traffic includes a replication traffic class and a rebuild traffic class. The controller node determines whether burst bandwidth is required by the storage cluster and, if so, applies a group policy indicative of burst bandwidth to the storage cluster. The group policy may be applied to an end to end path of the storage cluster. Applying the group policy may include setting one or more bits or fields of an overlay network header of network traffic of the storage cluster. Other embodiments are described and claimed.
Description
BACKGROUND

Data centers and other distributed computing systems may include disaggregated components, such as pooled storage devices, pooled compute devices, and pooled acceleration devices. Typical data centers may define a limited number of types of networks, including management networks, tenant networks, storage service networks, accelerator service networks, and network services. Typical storage networks may have a static network bandwidth allocation that is shared between all storage services, including client replication traffic and rebuild traffic.





BRIEF DESCRIPTION OF THE DRAWINGS

The concepts described herein are illustrated by way of example and not by way of limitation in the accompanying figures. For simplicity and clarity of illustration, elements illustrated in the figures are not necessarily drawn to scale. Where considered appropriate, reference labels have been repeated among the figures to indicate corresponding or analogous elements.



FIG. 1 is a simplified diagram of at least one embodiment of a data center for executing workloads with disaggregated resources;



FIG. 2 is a simplified diagram of at least one embodiment of a pod that may be included in the data center of FIG. 1;



FIG. 3 is a perspective view of at least one embodiment of a rack that may be included in the pod of FIG. 2;



FIG. 4 is a side elevation view of the rack of FIG. 3;



FIG. 5 is a perspective view of the rack of FIG. 3 having a sled mounted therein;



FIG. 6 is a is a simplified block diagram of at least one embodiment of a top side of the sled of FIG. 5;



FIG. 7 is a simplified block diagram of at least one embodiment of a bottom side of the sled of FIG. 6;



FIG. 8 is a simplified block diagram of at least one embodiment of a compute sled usable in the data center of FIG. 1;



FIG. 9 is a top perspective view of at least one embodiment of the compute sled of FIG. 8;



FIG. 10 is a simplified block diagram of at least one embodiment of an accelerator sled usable in the data center of FIG. 1;



FIG. 11 is a top perspective view of at least one embodiment of the accelerator sled of FIG. 10;



FIG. 12 is a simplified block diagram of at least one embodiment of a storage sled usable in the data center of FIG. 1;



FIG. 13 is a top perspective view of at least one embodiment of the storage sled of FIG. 12;



FIG. 14 is a simplified block diagram of at least one embodiment of a memory sled usable in the data center of FIG. 1; and



FIG. 15 is a simplified block diagram of a system that may be established within the data center of FIG. 1 to execute workloads with managed nodes composed of disaggregated resources.



FIG. 16 is a simplified block diagram of at least one embodiment of a system for storage cluster quality of service management;



FIG. 17 is a simplified flow diagram of at least one embodiment of a method for storage cluster quality of service management that may be executed by a compute device of FIG. 16;



FIG. 18 is a simplified flow diagram of at least one embodiment of a method for burst bandwidth determination that may be executed by a compute device of FIG. 16;



FIG. 19 is a simplified flow diagram of at least one embodiment of a method for applying group QoS policies that may be executed by a compute device of FIG. 16;



FIG. 20 is a schematic diagram of a group-based storage policy that may be used by the system of FIG. 16;



FIG. 21 is a schematic diagram of at least one embodiment of a packet header that may be used by the system of FIG. 16; and



FIG. 22 is a schematic diagram of at least one other embodiment of a packet header that may be used by the system of FIG. 16.





DETAILED DESCRIPTION OF THE DRAWINGS

While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will be described herein in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives consistent with the present disclosure and the appended claims.


References in the specification to “one embodiment,” “an embodiment,” “an illustrative embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may or may not necessarily include that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. Additionally, it should be appreciated that items included in a list in the form of “at least one A, B, and C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C). Similarly, items listed in the form of “at least one of A, B, or C” can mean (A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C).


The disclosed embodiments may be implemented, in some cases, in hardware, firmware, software, or any combination thereof. The disclosed embodiments may also be implemented as instructions carried by or stored on a transitory or non-transitory machine-readable (e.g., computer-readable) storage medium, which may be read and executed by one or more processors. A machine-readable storage medium may be embodied as any storage device, mechanism, or other physical structure for storing or transmitting information in a form readable by a machine (e.g., a volatile or non-volatile memory, a media disc, or other media device).


In the drawings, some structural or method features may be shown in specific arrangements and/or orderings. However, it should be appreciated that such specific arrangements and/or orderings may not be required. Rather, in some embodiments, such features may be arranged in a different manner and/or order than shown in the illustrative figures. Additionally, the inclusion of a structural or method feature in a particular figure is not meant to imply that such feature is required in all embodiments and, in some embodiments, may not be included or may be combined with other features.


Referring now to FIG. 1, a data center 100 in which disaggregated resources may cooperatively execute one or more workloads (e.g., applications on behalf of customers) includes multiple pods 110, 120, 130, 140, each of which includes one or more rows of racks. Of course, although data center 100 is shown with multiple pods, in some embodiments, the data center 100 may be embodied as a single pod. As described in more detail herein, each rack houses multiple sleds, each of which may be primarily equipped with a particular type of resource (e.g., memory devices, data storage devices, accelerator devices, general purpose processors), i.e., resources that can be logically coupled to form a composed node, which can act as, for example, a server. In the illustrative embodiment, the sleds in each pod 110, 120, 130, 140 are connected to multiple pod switches (e.g., switches that route data communications to and from sleds within the pod). The pod switches, in turn, connect with spine switches 150 that switch communications among pods (e.g., the pods 110, 120, 130, 140) in the data center 100. In some embodiments, the sleds may be connected with a fabric using Intel Omni-Path technology. In other embodiments, the sleds may be connected with other fabrics, such as InfiniBand or Ethernet. As described in more detail herein, resources within sleds in the data center 100 may be allocated to a group (referred to herein as a “managed node”) containing resources from one or more sleds to be collectively utilized in the execution of a workload. The workload can execute as if the resources belonging to the managed node were located on the same sled. The resources in a managed node may belong to sleds belonging to different racks, and even to different pods 110, 120, 130, 140. As such, some resources of a single sled may be allocated to one managed node while other resources of the same sled are allocated to a different managed node (e.g., one processor assigned to one managed node and another processor of the same sled assigned to a different managed node).


A data center comprising disaggregated resources, such as data center 100, can be used in a wide variety of contexts, such as enterprise, government, cloud service provider, and communications service provider (e.g., Telco's), as well in a wide variety of sizes, from cloud service provider mega-data centers that consume over 100,000 sq. ft. to single- or multi-rack installations for use in base stations.


The disaggregation of resources to sleds comprised predominantly of a single type of resource (e.g., compute sleds comprising primarily compute resources, memory sleds containing primarily memory resources), and the selective allocation and deallocation of the disaggregated resources to form a managed node assigned to execute a workload improves the operation and resource usage of the data center 100 relative to typical data centers comprised of hyperconverged servers containing compute, memory, storage and perhaps additional resources in a single chassis. For example, because sleds predominantly contain resources of a particular type, resources of a given type can be upgraded independently of other resources. Additionally, because different resources types (processors, storage, accelerators, etc.) typically have different refresh rates, greater resource utilization and reduced total cost of ownership may be achieved. For example, a data center operator can upgrade the processors throughout their facility by only swapping out the compute sleds. In such a case, accelerator and storage resources may not be contemporaneously upgraded and, rather, may be allowed to continue operating until those resources are scheduled for their own refresh. Resource utilization may also increase. For example, if managed nodes are composed based on requirements of the workloads that will be running on them, resources within a node are more likely to be fully utilized. Such utilization may allow for more managed nodes to run in a data center with a given set of resources, or for a data center expected to run a given set of workloads, to be built using fewer resources.


Referring now to FIG. 2, the pod 110, in the illustrative embodiment, includes a set of rows 200, 210, 220, 230 of racks 240. Each rack 240 may house multiple sleds (e.g., sixteen sleds) and provide power and data connections to the housed sleds, as described in more detail herein. In the illustrative embodiment, the racks in each row 200, 210, 220, 230 are connected to multiple pod switches 250, 260. The pod switch 250 includes a set of ports 252 to which the sleds of the racks of the pod 110 are connected and another set of ports 254 that connect the pod 110 to the spine switches 150 to provide connectivity to other pods in the data center 100. Similarly, the pod switch 260 includes a set of ports 262 to which the sleds of the racks of the pod 110 are connected and a set of ports 264 that connect the pod 110 to the spine switches 150. As such, the use of the pair of switches 250, 260 provides an amount of redundancy to the pod 110. For example, if either of the switches 250, 260 fails, the sleds in the pod 110 may still maintain data communication with the remainder of the data center 100 (e.g., sleds of other pods) through the other switch 250, 260. Furthermore, in the illustrative embodiment, the switches 150, 250, 260 may be embodied as dual-mode optical switches, capable of routing both Ethernet protocol communications carrying Internet Protocol (IP) packets and communications according to a second, high-performance link-layer protocol (e.g., Intel's Omni-Path Architecture's, InfiniBand, PCI Express) via optical signaling media of an optical fabric.


It should be appreciated that each of the other pods 120, 130, 140 (as well as any additional pods of the data center 100) may be similarly structured as, and have components similar to, the pod 110 shown in and described in regard to FIG. 2 (e.g., each pod may have rows of racks housing multiple sleds as described above). Additionally, while two pod switches 250, 260 are shown, it should be understood that in other embodiments, each pod 110, 120, 130, 140 may be connected to a different number of pod switches, providing even more failover capacity. Of course, in other embodiments, pods may be arranged differently than the rows-of-racks configuration shown in FIGS. 1-2. For example, a pod may be embodied as multiple sets of racks in which each set of racks is arranged radially, i.e., the racks are equidistant from a center switch.


Referring now to FIGS. 3-5, each illustrative rack 240 of the data center 100 includes two elongated support posts 302, 304, which are arranged vertically. For example, the elongated support posts 302, 304 may extend upwardly from a floor of the data center 100 when deployed. The rack 240 also includes one or more horizontal pairs 310 of elongated support arms 312 (identified in FIG. 3 via a dashed ellipse) configured to support a sled of the data center 100 as discussed below. One elongated support arm 312 of the pair of elongated support arms 312 extends outwardly from the elongated support post 302 and the other elongated support arm 312 extends outwardly from the elongated support post 304.


In the illustrative embodiments, each sled of the data center 100 is embodied as a chassis-less sled. That is, each sled has a chassis-less circuit board substrate on which physical resources (e.g., processors, memory, accelerators, storage, etc.) are mounted as discussed in more detail below. As such, the rack 240 is configured to receive the chassis-less sleds. For example, each pair 310 of elongated support arms 312 defines a sled slot 320 of the rack 240, which is configured to receive a corresponding chassis-less sled. To do so, each illustrative elongated support arm 312 includes a circuit board guide 330 configured to receive the chassis-less circuit board substrate of the sled. Each circuit board guide 330 is secured to, or otherwise mounted to, a top side 332 of the corresponding elongated support arm 312. For example, in the illustrative embodiment, each circuit board guide 330 is mounted at a distal end of the corresponding elongated support arm 312 relative to the corresponding elongated support post 302, 304. For clarity of the Figures, not every circuit board guide 330 may be referenced in each Figure.


Each circuit board guide 330 includes an inner wall that defines a circuit board slot 380 configured to receive the chassis-less circuit board substrate of a sled 400 when the sled 400 is received in the corresponding sled slot 320 of the rack 240. To do so, as shown in FIG. 4, a user (or robot) aligns the chassis-less circuit board substrate of an illustrative chassis-less sled 400 to a sled slot 320. The user, or robot, may then slide the chassis-less circuit board substrate forward into the sled slot 320 such that each side edge 414 of the chassis-less circuit board substrate is received in a corresponding circuit board slot 380 of the circuit board guides 330 of the pair 310 of elongated support arms 312 that define the corresponding sled slot 320 as shown in FIG. 4. By having robotically accessible and robotically manipulable sleds comprising disaggregated resources, each type of resource can be upgraded independently of each other and at their own optimized refresh rate. Furthermore, the sleds are configured to blindly mate with power and data communication cables in each rack 240, enhancing their ability to be quickly removed, upgraded, reinstalled, and/or replaced. As such, in some embodiments, the data center 100 may operate (e.g., execute workloads, undergo maintenance and/or upgrades, etc.) without human involvement on the data center floor. In other embodiments, a human may facilitate one or more maintenance or upgrade operations in the data center 100.


It should be appreciated that each circuit board guide 330 is dual sided. That is, each circuit board guide 330 includes an inner wall that defines a circuit board slot 380 on each side of the circuit board guide 330. In this way, each circuit board guide 330 can support a chassis-less circuit board substrate on either side. As such, a single additional elongated support post may be added to the rack 240 to turn the rack 240 into a two-rack solution that can hold twice as many sled slots 320 as shown in FIG. 3. The illustrative rack 240 includes seven pairs 310 of elongated support arms 312 that define a corresponding seven sled slots 320, each configured to receive and support a corresponding sled 400 as discussed above. Of course, in other embodiments, the rack 240 may include additional or fewer pairs 310 of elongated support arms 312 (i.e., additional or fewer sled slots 320). It should be appreciated that because the sled 400 is chassis-less, the sled 400 may have an overall height that is different than typical servers. As such, in some embodiments, the height of each sled slot 320 may be shorter than the height of a typical server (e.g., shorter than a single rank unit, “1U”). That is, the vertical distance between each pair 310 of elongated support arms 312 may be less than a standard rack unit “1U.” Additionally, due to the relative decrease in height of the sled slots 320, the overall height of the rack 240 in some embodiments may be shorter than the height of traditional rack enclosures. For example, in some embodiments, each of the elongated support posts 302, 304 may have a length of six feet or less. Again, in other embodiments, the rack 240 may have different dimensions. For example, in some embodiments, the vertical distance between each pair 310 of elongated support arms 312 may be greater than a standard rack until “1U”. In such embodiments, the increased vertical distance between the sleds allows for larger heat sinks to be attached to the physical resources and for larger fans to be used (e.g., in the fan array 370 described below) for cooling each sled, which in turn can allow the physical resources to operate at increased power levels. Further, it should be appreciated that the rack 240 does not include any walls, enclosures, or the like. Rather, the rack 240 is an enclosure-less rack that is opened to the local environment. Of course, in some cases, an end plate may be attached to one of the elongated support posts 302, 304 in those situations in which the rack 240 forms an end-of-row rack in the data center 100.


In some embodiments, various interconnects may be routed upwardly or downwardly through the elongated support posts 302, 304. To facilitate such routing, each elongated support post 302, 304 includes an inner wall that defines an inner chamber in which interconnects may be located. The interconnects routed through the elongated support posts 302, 304 may be embodied as any type of interconnects including, but not limited to, data or communication interconnects to provide communication connections to each sled slot 320, power interconnects to provide power to each sled slot 320, and/or other types of interconnects.


The rack 240, in the illustrative embodiment, includes a support platform on which a corresponding optical data connector (not shown) is mounted. Each optical data connector is associated with a corresponding sled slot 320 and is configured to mate with an optical data connector of a corresponding sled 400 when the sled 400 is received in the corresponding sled slot 320. In some embodiments, optical connections between components (e.g., sleds, racks, and switches) in the data center 100 are made with a blind mate optical connection. For example, a door on each cable may prevent dust from contaminating the fiber inside the cable. In the process of connecting to a blind mate optical connector mechanism, the door is pushed open when the end of the cable approaches or enters the connector mechanism. Subsequently, the optical fiber inside the cable may enter a gel within the connector mechanism and the optical fiber of one cable comes into contact with the optical fiber of another cable within the gel inside the connector mechanism.


The illustrative rack 240 also includes a fan array 370 coupled to the cross-support arms of the rack 240. The fan array 370 includes one or more rows of cooling fans 372, which are aligned in a horizontal line between the elongated support posts 302, 304. In the illustrative embodiment, the fan array 370 includes a row of cooling fans 372 for each sled slot 320 of the rack 240. As discussed above, each sled 400 does not include any on-board cooling system in the illustrative embodiment and, as such, the fan array 370 provides cooling for each sled 400 received in the rack 240. Each rack 240, in the illustrative embodiment, also includes a power supply associated with each sled slot 320. Each power supply is secured to one of the elongated support arms 312 of the pair 310 of elongated support arms 312 that define the corresponding sled slot 320. For example, the rack 240 may include a power supply coupled or secured to each elongated support arm 312 extending from the elongated support post 302. Each power supply includes a power connector configured to mate with a power connector of the sled 400 when the sled 400 is received in the corresponding sled slot 320. In the illustrative embodiment, the sled 400 does not include any on-board power supply and, as such, the power supplies provided in the rack 240 supply power to corresponding sleds 400 when mounted to the rack 240. Each power supply is configured to satisfy the power requirements for its associated sled, which can vary from sled to sled. Additionally, the power supplies provided in the rack 240 can operate independent of each other. That is, within a single rack, a first power supply providing power to a compute sled can provide power levels that are different than power levels supplied by a second power supply providing power to an accelerator sled. The power supplies may be controllable at the sled level or rack level, and may be controlled locally by components on the associated sled or remotely, such as by another sled or an orchestrator.


Referring now to FIG. 6, the sled 400, in the illustrative embodiment, is configured to be mounted in a corresponding rack 240 of the data center 100 as discussed above. In some embodiments, each sled 400 may be optimized or otherwise configured for performing particular tasks, such as compute tasks, acceleration tasks, data storage tasks, etc. For example, the sled 400 may be embodied as a compute sled 800 as discussed below in regard to FIGS. 8-9, an accelerator sled 1000 as discussed below in regard to FIGS. 10-11, a storage sled 1200 as discussed below in regard to FIGS. 12-13, or as a sled optimized or otherwise configured to perform other specialized tasks, such as a memory sled 1400, discussed below in regard to FIG. 14.


As discussed above, the illustrative sled 400 includes a chassis-less circuit board substrate 602, which supports various physical resources (e.g., electrical components) mounted thereon. It should be appreciated that the circuit board substrate 602 is “chassis-less” in that the sled 400 does not include a housing or enclosure. Rather, the chassis-less circuit board substrate 602 is open to the local environment. The chassis-less circuit board substrate 602 may be formed from any material capable of supporting the various electrical components mounted thereon. For example, in an illustrative embodiment, the chassis-less circuit board substrate 602 is formed from an FR-4 glass-reinforced epoxy laminate material. Of course, other materials may be used to form the chassis-less circuit board substrate 602 in other embodiments.


As discussed in more detail below, the chassis-less circuit board substrate 602 includes multiple features that improve the thermal cooling characteristics of the various electrical components mounted on the chassis-less circuit board substrate 602. As discussed, the chassis-less circuit board substrate 602 does not include a housing or enclosure, which may improve the airflow over the electrical components of the sled 400 by reducing those structures that may inhibit air flow. For example, because the chassis-less circuit board substrate 602 is not positioned in an individual housing or enclosure, there is no vertically-arranged backplane (e.g., a backplate of the chassis) attached to the chassis-less circuit board substrate 602, which could inhibit air flow across the electrical components. Additionally, the chassis-less circuit board substrate 602 has a geometric shape configured to reduce the length of the airflow path across the electrical components mounted to the chassis-less circuit board substrate 602. For example, the illustrative chassis-less circuit board substrate 602 has a width 604 that is greater than a depth 606 of the chassis-less circuit board substrate 602. In one particular embodiment, for example, the chassis-less circuit board substrate 602 has a width of about 21 inches and a depth of about 9 inches, compared to a typical server that has a width of about 17 inches and a depth of about 39 inches. As such, an airflow path 608 that extends from a front edge 610 of the chassis-less circuit board substrate 602 toward a rear edge 612 has a shorter distance relative to typical servers, which may improve the thermal cooling characteristics of the sled 400. Furthermore, although not illustrated in FIG. 6, the various physical resources mounted to the chassis-less circuit board substrate 602 are mounted in corresponding locations such that no two substantively heat-producing electrical components shadow each other as discussed in more detail below. That is, no two electrical components, which produce appreciable heat during operation (i.e., greater than a nominal heat sufficient enough to adversely impact the cooling of another electrical component), are mounted to the chassis-less circuit board substrate 602 linearly in-line with each other along the direction of the airflow path 608 (i.e., along a direction extending from the front edge 610 toward the rear edge 612 of the chassis-less circuit board substrate 602).


As discussed above, the illustrative sled 400 includes one or more physical resources 620 mounted to a top side 650 of the chassis-less circuit board substrate 602. Although two physical resources 620 are shown in FIG. 6, it should be appreciated that the sled 400 may include one, two, or more physical resources 620 in other embodiments. The physical resources 620 may be embodied as any type of processor, controller, or other compute circuit capable of performing various tasks such as compute functions and/or controlling the functions of the sled 400 depending on, for example, the type or intended functionality of the sled 400. For example, as discussed in more detail below, the physical resources 620 may be embodied as high-performance processors in embodiments in which the sled 400 is embodied as a compute sled, as accelerator co-processors or circuits in embodiments in which the sled 400 is embodied as an accelerator sled, storage controllers in embodiments in which the sled 400 is embodied as a storage sled, or a set of memory devices in embodiments in which the sled 400 is embodied as a memory sled.


The sled 400 also includes one or more additional physical resources 630 mounted to the top side 650 of the chassis-less circuit board substrate 602. In the illustrative embodiment, the additional physical resources include a network interface controller (NIC) as discussed in more detail below. Of course, depending on the type and functionality of the sled 400, the physical resources 630 may include additional or other electrical components, circuits, and/or devices in other embodiments.


The physical resources 620 are communicatively coupled to the physical resources 630 via an input/output (I/O) subsystem 622. The I/O subsystem 622 may be embodied as circuitry and/or components to facilitate input/output operations with the physical resources 620, the physical resources 630, and/or other components of the sled 400. For example, the I/O subsystem 622 may be embodied as, or otherwise include, memory controller hubs, input/output control hubs, integrated sensor hubs, firmware devices, communication links (e.g., point-to-point links, bus links, wires, cables, waveguides, light guides, printed circuit board traces, etc.), and/or other components and subsystems to facilitate the input/output operations. In the illustrative embodiment, the I/O subsystem 622 is embodied as, or otherwise includes, a double data rate 4 (DDR4) data bus or a DDR5 data bus.


In some embodiments, the sled 400 may also include a resource-to-resource interconnect 624. The resource-to-resource interconnect 624 may be embodied as any type of communication interconnect capable of facilitating resource-to-resource communications. In the illustrative embodiment, the resource-to-resource interconnect 624 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the resource-to-resource interconnect 624 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to resource-to-resource communications.


The sled 400 also includes a power connector 640 configured to mate with a corresponding power connector of the rack 240 when the sled 400 is mounted in the corresponding rack 240. The sled 400 receives power from a power supply of the rack 240 via the power connector 640 to supply power to the various electrical components of the sled 400. That is, the sled 400 does not include any local power supply (i.e., an on-board power supply) to provide power to the electrical components of the sled 400. The exclusion of a local or on-board power supply facilitates the reduction in the overall footprint of the chassis-less circuit board substrate 602, which may increase the thermal cooling characteristics of the various electrical components mounted on the chassis-less circuit board substrate 602 as discussed above. In some embodiments, voltage regulators are placed on a bottom side 750 (see FIG. 7) of the chassis-less circuit board substrate 602 directly opposite of the processors 820 (see FIG. 8), and power is routed from the voltage regulators to the processors 820 by vias extending through the circuit board substrate 602. Such a configuration provides an increased thermal budget, additional current and/or voltage, and better voltage control relative to typical printed circuit boards in which processor power is delivered from a voltage regulator, in part, by printed circuit traces.


In some embodiments, the sled 400 may also include mounting features 642 configured to mate with a mounting arm, or other structure, of a robot to facilitate the placement of the sled 600 in a rack 240 by the robot. The mounting features 642 may be embodied as any type of physical structures that allow the robot to grasp the sled 400 without damaging the chassis-less circuit board substrate 602 or the electrical components mounted thereto. For example, in some embodiments, the mounting features 642 may be embodied as non-conductive pads attached to the chassis-less circuit board substrate 602. In other embodiments, the mounting features may be embodied as brackets, braces, or other similar structures attached to the chassis-less circuit board substrate 602. The particular number, shape, size, and/or make-up of the mounting feature 642 may depend on the design of the robot configured to manage the sled 400.


Referring now to FIG. 7, in addition to the physical resources 630 mounted on the top side 650 of the chassis-less circuit board substrate 602, the sled 400 also includes one or more memory devices 720 mounted to a bottom side 750 of the chassis-less circuit board substrate 602. That is, the chassis-less circuit board substrate 602 is embodied as a double-sided circuit board. The physical resources 620 are communicatively coupled to the memory devices 720 via the I/O subsystem 622. For example, the physical resources 620 and the memory devices 720 may be communicatively coupled by one or more vias extending through the chassis-less circuit board substrate 602. Each physical resource 620 may be communicatively coupled to a different set of one or more memory devices 720 in some embodiments. Alternatively, in other embodiments, each physical resource 620 may be communicatively coupled to each memory device 720.


The memory devices 720 may be embodied as any type of memory device capable of storing data for the physical resources 620 during operation of the sled 400, such as any type of volatile (e.g., dynamic random access memory (DRAM), etc.) or non-volatile memory. Volatile memory may be a storage medium that requires power to maintain the state of data stored by the medium. Non-limiting examples of volatile memory may include various types of random access memory (RAM), such as dynamic random access memory (DRAM) or static random access memory (SRAM). One particular type of DRAM that may be used in a memory module is synchronous dynamic random access memory (SDRAM). In particular embodiments, DRAM of a memory component may comply with a standard promulgated by JEDEC, such as JESD79F for DDR SDRAM, JESD79-2F for DDR2 SDRAM, JESD79-3F for DDR3 SDRAM, JESD79-4A for DDR4 SDRAM, JESD209 for Low Power DDR (LPDDR), JESD209-2 for LPDDR2, JESD209-3 for LPDDR3, and JESD209-4 for LPDDR4. Such standards (and similar standards) may be referred to as DDR-based standards and communication interfaces of the storage devices that implement such standards may be referred to as DDR-based interfaces.


In one embodiment, the memory device is a block addressable memory device, such as those based on NAND or NOR technologies. A memory device may also include next-generation nonvolatile devices, such as Intel 3D XPoint™ memory or other byte addressable write-in-place nonvolatile memory devices. In one embodiment, the memory device may be or may include memory devices that use chalcogenide glass, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level Phase Change Memory (PCM), a resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), anti-ferroelectric memory, magnetoresistive random access memory (MRAM) memory that incorporates memristor technology, resistive memory including the metal oxide base, the oxygen vacancy base and the conductive bridge Random Access Memory (CB-RAM), or spin transfer torque (STT)-MRAM, a spintronic magnetic junction memory based device, a magnetic tunneling junction (MTJ) based device, a DW (Domain Wall) and SOT (Spin Orbit Transfer) based device, a thyristor based memory device, or a combination of any of the above, or other memory. The memory device may refer to the die itself and/or to a packaged memory product. In some embodiments, the memory device may comprise a transistor-less stackable cross point architecture in which memory cells sit at the intersection of word lines and bit lines and are individually addressable and in which bit storage is based on a change in bulk resistance.


Referring now to FIG. 8, in some embodiments, the sled 400 may be embodied as a compute sled 800. The compute sled 800 is optimized, or otherwise configured, to perform compute tasks. Of course, as discussed above, the compute sled 800 may rely on other sleds, such as acceleration sleds and/or storage sleds, to perform such compute tasks. The compute sled 800 includes various physical resources (e.g., electrical components) similar to the physical resources of the sled 400, which have been identified in FIG. 8 using the same reference numbers. The description of such components provided above in regard to FIGS. 6 and 7 applies to the corresponding components of the compute sled 800 and is not repeated herein for clarity of the description of the compute sled 800.


In the illustrative compute sled 800, the physical resources 620 are embodied as processors 820. Although only two processors 820 are shown in FIG. 8, it should be appreciated that the compute sled 800 may include additional processors 820 in other embodiments. Illustratively, the processors 820 are embodied as high-performance processors 820 and may be configured to operate at a relatively high power rating. Although the processors 820 generate additional heat operating at power ratings greater than typical processors (which operate at around 155-230 W), the enhanced thermal cooling characteristics of the chassis-less circuit board substrate 602 discussed above facilitate the higher power operation. For example, in the illustrative embodiment, the processors 820 are configured to operate at a power rating of at least 250 W. In some embodiments, the processors 820 may be configured to operate at a power rating of at least 350 W.


In some embodiments, the compute sled 800 may also include a processor-to-processor interconnect 842. Similar to the resource-to-resource interconnect 624 of the sled 400 discussed above, the processor-to-processor interconnect 842 may be embodied as any type of communication interconnect capable of facilitating processor-to-processor interconnect 842 communications. In the illustrative embodiment, the processor-to-processor interconnect 842 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the processor-to-processor interconnect 842 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to processor-to-processor communications.


The compute sled 800 also includes a communication circuit 830. The illustrative communication circuit 830 includes a network interface controller (NIC) 832, which may also be referred to as a host fabric interface (HFI). The NIC 832 may be embodied as, or otherwise include, any type of integrated circuit, discrete circuits, controller chips, chipsets, add-in-boards, daughtercards, network interface cards, or other devices that may be used by the compute sled 800 to connect with another compute device (e.g., with other sleds 400). In some embodiments, the NIC 832 may be embodied as part of a system-on-a-chip (SoC) that includes one or more processors, or included on a multichip package that also contains one or more processors. In some embodiments, the NIC 832 may include a local processor (not shown) and/or a local memory (not shown) that are both local to the NIC 832. In such embodiments, the local processor of the NIC 832 may be capable of performing one or more of the functions of the processors 820. Additionally or alternatively, in such embodiments, the local memory of the NIC 832 may be integrated into one or more components of the compute sled at the board level, socket level, chip level, and/or other levels.


The communication circuit 830 is communicatively coupled to an optical data connector 834. The optical data connector 834 is configured to mate with a corresponding optical data connector of the rack 240 when the compute sled 800 is mounted in the rack 240. Illustratively, the optical data connector 834 includes a plurality of optical fibers which lead from a mating surface of the optical data connector 834 to an optical transceiver 836. The optical transceiver 836 is configured to convert incoming optical signals from the rack-side optical data connector to electrical signals and to convert electrical signals to outgoing optical signals to the rack-side optical data connector. Although shown as forming part of the optical data connector 834 in the illustrative embodiment, the optical transceiver 836 may form a portion of the communication circuit 830 in other embodiments.


In some embodiments, the compute sled 800 may also include an expansion connector 840. In such embodiments, the expansion connector 840 is configured to mate with a corresponding connector of an expansion chassis-less circuit board substrate to provide additional physical resources to the compute sled 800. The additional physical resources may be used, for example, by the processors 820 during operation of the compute sled 800. The expansion chassis-less circuit board substrate may be substantially similar to the chassis-less circuit board substrate 602 discussed above and may include various electrical components mounted thereto. The particular electrical components mounted to the expansion chassis-less circuit board substrate may depend on the intended functionality of the expansion chassis-less circuit board substrate. For example, the expansion chassis-less circuit board substrate may provide additional compute resources, memory resources, and/or storage resources. As such, the additional physical resources of the expansion chassis-less circuit board substrate may include, but is not limited to, processors, memory devices, storage devices, and/or accelerator circuits including, for example, field programmable gate arrays (FPGA), application-specific integrated circuits (ASICs), security co-processors, graphics processing units (GPUs), machine learning circuits, or other specialized processors, controllers, devices, and/or circuits.


Referring now to FIG. 9, an illustrative embodiment of the compute sled 800 is shown. As shown, the processors 820, communication circuit 830, and optical data connector 834 are mounted to the top side 650 of the chassis-less circuit board substrate 602. Any suitable attachment or mounting technology may be used to mount the physical resources of the compute sled 800 to the chassis-less circuit board substrate 602. For example, the various physical resources may be mounted in corresponding sockets (e.g., a processor socket), holders, or brackets. In some cases, some of the electrical components may be directly mounted to the chassis-less circuit board substrate 602 via soldering or similar techniques.


As discussed above, the individual processors 820 and communication circuit 830 are mounted to the top side 650 of the chassis-less circuit board substrate 602 such that no two heat-producing, electrical components shadow each other. In the illustrative embodiment, the processors 820 and communication circuit 830 are mounted in corresponding locations on the top side 650 of the chassis-less circuit board substrate 602 such that no two of those physical resources are linearly in-line with others along the direction of the airflow path 608. It should be appreciated that, although the optical data connector 834 is in-line with the communication circuit 830, the optical data connector 834 produces no or nominal heat during operation.


The memory devices 720 of the compute sled 800 are mounted to the bottom side 750 of the of the chassis-less circuit board substrate 602 as discussed above in regard to the sled 400. Although mounted to the bottom side 750, the memory devices 720 are communicatively coupled to the processors 820 located on the top side 650 via the I/O subsystem 622. Because the chassis-less circuit board substrate 602 is embodied as a double-sided circuit board, the memory devices 720 and the processors 820 may be communicatively coupled by one or more vias, connectors, or other mechanisms extending through the chassis-less circuit board substrate 602. Of course, each processor 820 may be communicatively coupled to a different set of one or more memory devices 720 in some embodiments. Alternatively, in other embodiments, each processor 820 may be communicatively coupled to each memory device 720. In some embodiments, the memory devices 720 may be mounted to one or more memory mezzanines on the bottom side of the chassis-less circuit board substrate 602 and may interconnect with a corresponding processor 820 through a ball-grid array.


Each of the processors 820 includes a heatsink 850 secured thereto. Due to the mounting of the memory devices 720 to the bottom side 750 of the chassis-less circuit board substrate 602 (as well as the vertical spacing of the sleds 400 in the corresponding rack 240), the top side 650 of the chassis-less circuit board substrate 602 includes additional “free” area or space that facilitates the use of heatsinks 850 having a larger size relative to traditional heatsinks used in typical servers. Additionally, due to the improved thermal cooling characteristics of the chassis-less circuit board substrate 602, none of the processor heatsinks 850 include cooling fans attached thereto. That is, each of the heatsinks 850 is embodied as a fan-less heatsink. In some embodiments, the heat sinks 850 mounted atop the processors 820 may overlap with the heat sink attached to the communication circuit 830 in the direction of the airflow path 608 due to their increased size, as illustratively suggested by FIG. 9.


Referring now to FIG. 10, in some embodiments, the sled 400 may be embodied as an accelerator sled 1000. The accelerator sled 1000 is configured, to perform specialized compute tasks, such as machine learning, encryption, hashing, or other computational-intensive task. In some embodiments, for example, a compute sled 800 may offload tasks to the accelerator sled 1000 during operation. The accelerator sled 1000 includes various components similar to components of the sled 400 and/or compute sled 800, which have been identified in FIG. 10 using the same reference numbers. The description of such components provided above in regard to FIGS. 6, 7, and 8 apply to the corresponding components of the accelerator sled 1000 and is not repeated herein for clarity of the description of the accelerator sled 1000.


In the illustrative accelerator sled 1000, the physical resources 620 are embodied as accelerator circuits 1020. Although only two accelerator circuits 1020 are shown in FIG. 10, it should be appreciated that the accelerator sled 1000 may include additional accelerator circuits 1020 in other embodiments. For example, as shown in FIG. 11, the accelerator sled 1000 may include four accelerator circuits 1020 in some embodiments. The accelerator circuits 1020 may be embodied as any type of processor, co-processor, compute circuit, or other device capable of performing compute or processing operations. For example, the accelerator circuits 1020 may be embodied as, for example, field programmable gate arrays (FPGA), application-specific integrated circuits (ASICs), security co-processors, graphics processing units (GPUs), neuromorphic processor units, quantum computers, machine learning circuits, or other specialized processors, controllers, devices, and/or circuits.


In some embodiments, the accelerator sled 1000 may also include an accelerator-to-accelerator interconnect 1042. Similar to the resource-to-resource interconnect 624 of the sled 600 discussed above, the accelerator-to-accelerator interconnect 1042 may be embodied as any type of communication interconnect capable of facilitating accelerator-to-accelerator communications. In the illustrative embodiment, the accelerator-to-accelerator interconnect 1042 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the accelerator-to-accelerator interconnect 1042 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to processor-to-processor communications. In some embodiments, the accelerator circuits 1020 may be daisy-chained with a primary accelerator circuit 1020 connected to the NIC 832 and memory 720 through the I/O subsystem 622 and a secondary accelerator circuit 1020 connected to the NIC 832 and memory 720 through a primary accelerator circuit 1020.


Referring now to FIG. 11, an illustrative embodiment of the accelerator sled 1000 is shown. As discussed above, the accelerator circuits 1020, communication circuit 830, and optical data connector 834 are mounted to the top side 650 of the chassis-less circuit board substrate 602. Again, the individual accelerator circuits 1020 and communication circuit 830 are mounted to the top side 650 of the chassis-less circuit board substrate 602 such that no two heat-producing, electrical components shadow each other as discussed above. The memory devices 720 of the accelerator sled 1000 are mounted to the bottom side 750 of the of the chassis-less circuit board substrate 602 as discussed above in regard to the sled 600. Although mounted to the bottom side 750, the memory devices 720 are communicatively coupled to the accelerator circuits 1020 located on the top side 650 via the I/O subsystem 622 (e.g., through vias). Further, each of the accelerator circuits 1020 may include a heatsink 1070 that is larger than a traditional heatsink used in a server. As discussed above with reference to the heatsinks 870, the heatsinks 1070 may be larger than traditional heatsinks because of the “free” area provided by the memory resources 720 being located on the bottom side 750 of the chassis-less circuit board substrate 602 rather than on the top side 650.


Referring now to FIG. 12, in some embodiments, the sled 400 may be embodied as a storage sled 1200. The storage sled 1200 is configured, to store data in a data storage 1250 local to the storage sled 1200. For example, during operation, a compute sled 800 or an accelerator sled 1000 may store and retrieve data from the data storage 1250 of the storage sled 1200. The storage sled 1200 includes various components similar to components of the sled 400 and/or the compute sled 800, which have been identified in FIG. 12 using the same reference numbers. The description of such components provided above in regard to FIGS. 6, 7, and 8 apply to the corresponding components of the storage sled 1200 and is not repeated herein for clarity of the description of the storage sled 1200.


In the illustrative storage sled 1200, the physical resources 620 are embodied as storage controllers 1220. Although only two storage controllers 1220 are shown in FIG. 12, it should be appreciated that the storage sled 1200 may include additional storage controllers 1220 in other embodiments. The storage controllers 1220 may be embodied as any type of processor, controller, or control circuit capable of controlling the storage and retrieval of data into the data storage 1250 based on requests received via the communication circuit 830. In the illustrative embodiment, the storage controllers 1220 are embodied as relatively low-power processors or controllers. For example, in some embodiments, the storage controllers 1220 may be configured to operate at a power rating of about 75 watts.


In some embodiments, the storage sled 1200 may also include a controller-to-controller interconnect 1242. Similar to the resource-to-resource interconnect 624 of the sled 400 discussed above, the controller-to-controller interconnect 1242 may be embodied as any type of communication interconnect capable of facilitating controller-to-controller communications. In the illustrative embodiment, the controller-to-controller interconnect 1242 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the controller-to-controller interconnect 1242 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to processor-to-processor communications.


Referring now to FIG. 13, an illustrative embodiment of the storage sled 1200 is shown. In the illustrative embodiment, the data storage 1250 is embodied as, or otherwise includes, a storage cage 1252 configured to house one or more solid state drives (SSDs) 1254. To do so, the storage cage 1252 includes a number of mounting slots 1256, each of which is configured to receive a corresponding solid state drive 1254. Each of the mounting slots 1256 includes a number of drive guides 1258 that cooperate to define an access opening 1260 of the corresponding mounting slot 1256. The storage cage 1252 is secured to the chassis-less circuit board substrate 602 such that the access openings face away from (i.e., toward the front of) the chassis-less circuit board substrate 602. As such, solid state drives 1254 are accessible while the storage sled 1200 is mounted in a corresponding rack 204. For example, a solid state drive 1254 may be swapped out of a rack 240 (e.g., via a robot) while the storage sled 1200 remains mounted in the corresponding rack 240.


The storage cage 1252 illustratively includes sixteen mounting slots 1256 and is capable of mounting and storing sixteen solid state drives 1254. Of course, the storage cage 1252 may be configured to store additional or fewer solid state drives 1254 in other embodiments. Additionally, in the illustrative embodiment, the solid state drivers are mounted vertically in the storage cage 1252, but may be mounted in the storage cage 1252 in a different orientation in other embodiments. Each solid state drive 1254 may be embodied as any type of data storage device capable of storing long term data. To do so, the solid state drives 1254 may include volatile and non-volatile memory devices discussed above.


As shown in FIG. 13, the storage controllers 1220, the communication circuit 830, and the optical data connector 834 are illustratively mounted to the top side 650 of the chassis-less circuit board substrate 602. Again, as discussed above, any suitable attachment or mounting technology may be used to mount the electrical components of the storage sled 1200 to the chassis-less circuit board substrate 602 including, for example, sockets (e.g., a processor socket), holders, brackets, soldered connections, and/or other mounting or securing techniques.


As discussed above, the individual storage controllers 1220 and the communication circuit 830 are mounted to the top side 650 of the chassis-less circuit board substrate 602 such that no two heat-producing, electrical components shadow each other. For example, the storage controllers 1220 and the communication circuit 830 are mounted in corresponding locations on the top side 650 of the chassis-less circuit board substrate 602 such that no two of those electrical components are linearly in-line with each other along the direction of the airflow path 608.


The memory devices 720 of the storage sled 1200 are mounted to the bottom side 750 of the of the chassis-less circuit board substrate 602 as discussed above in regard to the sled 400. Although mounted to the bottom side 750, the memory devices 720 are communicatively coupled to the storage controllers 1220 located on the top side 650 via the I/O subsystem 622. Again, because the chassis-less circuit board substrate 602 is embodied as a double-sided circuit board, the memory devices 720 and the storage controllers 1220 may be communicatively coupled by one or more vias, connectors, or other mechanisms extending through the chassis-less circuit board substrate 602. Each of the storage controllers 1220 includes a heatsink 1270 secured thereto. As discussed above, due to the improved thermal cooling characteristics of the chassis-less circuit board substrate 602 of the storage sled 1200, none of the heatsinks 1270 include cooling fans attached thereto. That is, each of the heatsinks 1270 is embodied as a fan-less heatsink.


Referring now to FIG. 14, in some embodiments, the sled 400 may be embodied as a memory sled 1400. The storage sled 1400 is optimized, or otherwise configured, to provide other sleds 400 (e.g., compute sleds 800, accelerator sleds 1000, etc.) with access to a pool of memory (e.g., in two or more sets 1430, 1432 of memory devices 720) local to the memory sled 1200. For example, during operation, a compute sled 800 or an accelerator sled 1000 may remotely write to and/or read from one or more of the memory sets 1430, 1432 of the memory sled 1200 using a logical address space that maps to physical addresses in the memory sets 1430, 1432. The memory sled 1400 includes various components similar to components of the sled 400 and/or the compute sled 800, which have been identified in FIG. 14 using the same reference numbers. The description of such components provided above in regard to FIGS. 6, 7, and 8 apply to the corresponding components of the memory sled 1400 and is not repeated herein for clarity of the description of the memory sled 1400.


In the illustrative memory sled 1400, the physical resources 620 are embodied as memory controllers 1420. Although only two memory controllers 1420 are shown in FIG. 14, it should be appreciated that the memory sled 1400 may include additional memory controllers 1420 in other embodiments. The memory controllers 1420 may be embodied as any type of processor, controller, or control circuit capable of controlling the writing and reading of data into the memory sets 1430, 1432 based on requests received via the communication circuit 830. In the illustrative embodiment, each memory controller 1420 is connected to a corresponding memory set 1430, 1432 to write to and read from memory devices 720 within the corresponding memory set 1430, 1432 and enforce any permissions (e.g., read, write, etc.) associated with sled 400 that has sent a request to the memory sled 1400 to perform a memory access operation (e.g., read or write).


In some embodiments, the memory sled 1400 may also include a controller-to-controller interconnect 1442. Similar to the resource-to-resource interconnect 624 of the sled 400 discussed above, the controller-to-controller interconnect 1442 may be embodied as any type of communication interconnect capable of facilitating controller-to-controller communications. In the illustrative embodiment, the controller-to-controller interconnect 1442 is embodied as a high-speed point-to-point interconnect (e.g., faster than the I/O subsystem 622). For example, the controller-to-controller interconnect 1442 may be embodied as a QuickPath Interconnect (QPI), an UltraPath Interconnect (UPI), or other high-speed point-to-point interconnect dedicated to processor-to-processor communications. As such, in some embodiments, a memory controller 1420 may access, through the controller-to-controller interconnect 1442, memory that is within the memory set 1432 associated with another memory controller 1420. In some embodiments, a scalable memory controller is made of multiple smaller memory controllers, referred to herein as “chiplets”, on a memory sled (e.g., the memory sled 1400). The chiplets may be interconnected (e.g., using EMIB (Embedded Multi-Die Interconnect Bridge)). The combined chiplet memory controller may scale up to a relatively large number of memory controllers and I/O ports, (e.g., up to 16 memory channels). In some embodiments, the memory controllers 1420 may implement a memory interleave (e.g., one memory address is mapped to the memory set 1430, the next memory address is mapped to the memory set 1432, and the third address is mapped to the memory set 1430, etc.). The interleaving may be managed within the memory controllers 1420, or from CPU sockets (e.g., of the compute sled 800) across network links to the memory sets 1430, 1432, and may improve the latency associated with performing memory access operations as compared to accessing contiguous memory addresses from the same memory device.


Further, in some embodiments, the memory sled 1400 may be connected to one or more other sleds 400 (e.g., in the same rack 240 or an adjacent rack 240) through a waveguide, using the waveguide connector 1480. In the illustrative embodiment, the waveguides are 64 millimeter waveguides that provide 16 Rx (i.e., receive) lanes and 16 Tx (i.e., transmit) lanes. Each lane, in the illustrative embodiment, is either 16 GHz or 32 GHz. In other embodiments, the frequencies may be different. Using a waveguide may provide high throughput access to the memory pool (e.g., the memory sets 1430, 1432) to another sled (e.g., a sled 400 in the same rack 240 or an adjacent rack 240 as the memory sled 1400) without adding to the load on the optical data connector 834.


Referring now to FIG. 15, a system for executing one or more workloads (e.g., applications) may be implemented in accordance with the data center 100. In the illustrative embodiment, the system 1510 includes an orchestrator server 1520, which may be embodied as a managed node comprising a compute device (e.g., a processor 820 on a compute sled 800) executing management software (e.g., a cloud operating environment, such as OpenStack) that is communicatively coupled to multiple sleds 400 including a large number of compute sleds 1530 (e.g., each similar to the compute sled 800), memory sleds 1540 (e.g., each similar to the memory sled 1400), accelerator sleds 1550 (e.g., each similar to the memory sled 1000), and storage sleds 1560 (e.g., each similar to the storage sled 1200). One or more of the sleds 1530, 1540, 1550, 1560 may be grouped into a managed node 1570, such as by the orchestrator server 1520, to collectively perform a workload (e.g., an application 1532 executed in a virtual machine or in a container). The managed node 1570 may be embodied as an assembly of physical resources 620, such as processors 820, memory resources 720, accelerator circuits 1020, or data storage 1250, from the same or different sleds 400. Further, the managed node may be established, defined, or “spun up” by the orchestrator server 1520 at the time a workload is to be assigned to the managed node or at any other time, and may exist regardless of whether any workloads are presently assigned to the managed node. In the illustrative embodiment, the orchestrator server 1520 may selectively allocate and/or deallocate physical resources 620 from the sleds 400 and/or add or remove one or more sleds 400 from the managed node 1570 as a function of quality of service (QoS) targets (e.g., performance targets associated with a throughput, latency, instructions per second, etc.) associated with a service level agreement for the workload (e.g., the application 1532). In doing so, the orchestrator server 1520 may receive telemetry data indicative of performance conditions (e.g., throughput, latency, instructions per second, etc.) in each sled 400 of the managed node 1570 and compare the telemetry data to the quality of service targets to determine whether the quality of service targets are being satisfied. The orchestrator server 1520 may additionally determine whether one or more physical resources may be deallocated from the managed node 1570 while still satisfying the QoS targets, thereby freeing up those physical resources for use in another managed node (e.g., to execute a different workload). Alternatively, if the QoS targets are not presently satisfied, the orchestrator server 1520 may determine to dynamically allocate additional physical resources to assist in the execution of the workload (e.g., the application 1532) while the workload is executing. Similarly, the orchestrator server 1520 may determine to dynamically deallocate physical resources from a managed node if the orchestrator server 1520 determines that deallocating the physical resource would result in QoS targets still being met.


Additionally, in some embodiments, the orchestrator server 1520 may identify trends in the resource utilization of the workload (e.g., the application 1532), such as by identifying phases of execution (e.g., time periods in which different operations, each having different resource utilizations characteristics, are performed) of the workload (e.g., the application 1532) and pre-emptively identifying available resources in the data center 100 and allocating them to the managed node 1570 (e.g., within a predefined time period of the associated phase beginning). In some embodiments, the orchestrator server 1520 may model performance based on various latencies and a distribution scheme to place workloads among compute sleds and other resources (e.g., accelerator sleds, memory sleds, storage sleds) in the data center 100. For example, the orchestrator server 1520 may utilize a model that accounts for the performance of resources on the sleds 400 (e.g., FPGA performance, memory access latency, etc.) and the performance (e.g., congestion, latency, bandwidth) of the path through the network to the resource (e.g., FPGA). As such, the orchestrator server 1520 may determine which resource(s) should be used with which workloads based on the total latency associated with each potential resource available in the data center 100 (e.g., the latency associated with the performance of the resource itself in addition to the latency associated with the path through the network between the compute sled executing the workload and the sled 400 on which the resource is located).


In some embodiments, the orchestrator server 1520 may generate a map of heat generation in the data center 100 using telemetry data (e.g., temperatures, fan speeds, etc.) reported from the sleds 400 and allocate resources to managed nodes as a function of the map of heat generation and predicted heat generation associated with different workloads, to maintain a target temperature and heat distribution in the data center 100. Additionally or alternatively, in some embodiments, the orchestrator server 1520 may organize received telemetry data into a hierarchical model that is indicative of a relationship between the managed nodes (e.g., a spatial relationship such as the physical locations of the resources of the managed nodes within the data center 100 and/or a functional relationship, such as groupings of the managed nodes by the customers the managed nodes provide services for, the types of functions typically performed by the managed nodes, managed nodes that typically share or exchange workloads among each other, etc.). Based on differences in the physical locations and resources in the managed nodes, a given workload may exhibit different resource utilizations (e.g., cause a different internal temperature, use a different percentage of processor or memory capacity) across the resources of different managed nodes. The orchestrator server 1520 may determine the differences based on the telemetry data stored in the hierarchical model and factor the differences into a prediction of future resource utilization of a workload if the workload is reassigned from one managed node to another managed node, to accurately balance resource utilization in the data center 100.


To reduce the computational load on the orchestrator server 1520 and the data transfer load on the network, in some embodiments, the orchestrator server 1520 may send self-test information to the sleds 400 to enable each sled 400 to locally (e.g., on the sled 400) determine whether telemetry data generated by the sled 400 satisfies one or more conditions (e.g., an available capacity that satisfies a predefined threshold, a temperature that satisfies a predefined threshold, etc.). Each sled 400 may then report back a simplified result (e.g., yes or no) to the orchestrator server 1520, which the orchestrator server 1520 may utilize in determining the allocation of resources to managed nodes.


Referring now to FIG. 16, an illustrative system 1600 for latency based service level agreements includes multiple compute devices 1602 in communication over a network 1610. As shown, the system 1600 is a storage cluster and thus the compute devices 1602 may include an SDN controller node 1604 as well as multiple storage nodes 1606 and client nodes 1608. In use, as described further below, the SDN controller node 1604 configures a group quality of service (QoS) model for storage services of the system 1600. The storage services are separated into two traffic classes, including client I/O (replication) and rebalance I/O (rebuild). The SDN controller node 1604 monitors network traffic to determine the need for burst bandwidth. If burst bandwidth is required, the SDN controller node reduces and/or increases assigned bandwidth for components in the end to end path. The burst bandwidth may be applied using one or more group QoS policies. Thus, the system 1600 may avoid statically allocating bandwidth for storage rebuild traffic, which may improve performance at times when storage rebuild is not required. Further, the system 1600 may provide prioritized service for different storage services, even for networks with a limited number of network classes of service (e.g., eight COS). Additionally, the system 1600 may improve congestion management by throttling QoS (e.g., egress bandwidth) at different levels in the system 1600 during and after rebuild (e.g., at the client nodes 1608 where client traffic is initiated, at switches 1612 in the network 1610, and/or at storage nodes 1606 in the storage cluster). Thus, with distributed congestion management the system 1600 may avoid traffic flooding during failure scenarios.


Each compute device 1602 may be embodied as any type of compute device capable of performing the functions described herein. For example, each compute device 1602 may be embodied as, without limitation, a sled 400, a compute sled 800, an accelerator sled 1000, a storage sled 1200, a computer, a server, a distributed computing device, a disaggregated computing device, a network device, a multiprocessor system, a server, a workstation, and/or a consumer electronic device. Illustratively, the SDN controller node 1604 and each of the client nodes 1608 may be embodied as a compute sled 800, and each of the storage nodes 1606 may be embodied as a storage sled 1200.


As discussed in more detail below, the elements of the system 1600 are configured to transmit and receive data with each other and/or other devices of the system 1600 over the network 1610. The network 1610 may be embodied as any number of various wired and/or wireless networks. For example, the network 1610 may be embodied as, or otherwise include a wired or wireless local area network (LAN), and/or a wired or wireless wide area network (WAN). As such, the network 1610 may include any number of additional devices, such as additional computers, routers, and switches, to facilitate communications among the devices of the system 1600. As shown, the network 1610 illustratively includes a network switch 1612, which may be embodied as a top-of-rack (ToR) switch, a middle-of-rack (MoR) switch, an end-of-row switch, a pod switch, a spine switch, or other network device. Of course, the network 1610 may include multiple additional switches, routers, gateways, or other network devices.


In some embodiments, each of the SDN controller node 1604, the storage nodes 1606, and/or the client nodes 1608 may be embodied as a virtualized system (e.g., one or more functions executed in virtualized environment(s), such as virtual machine(s) or container(s), in which the underlying hardware resources appear as physical hardware to software executing in the virtualized environment(s), but are separated from the software by an abstraction layer) or a disaggregated system (e.g., composed from one or more underlying hardware devices). In some embodiments, certain functions of the SDN controller node 1604, the storage nodes 1606, and/or the client nodes 1608 may be duplicated and/or incorporated in other devices. For example, in some embodiments, certain functions of the SDN controller node 1604 may be performed by the one or more storage nodes 1606, client nodes 1608, and/or network switches 1612.


Still referring to FIG. 16, in an illustrative embodiment, the SDN controller node 1604 establishes an environment 1620 during operation. The illustrative environment 1620 includes a burst detector 1622 and a group QoS manager 1624. The various components of the environment 1620 may be embodied as hardware, firmware, software, or a combination thereof. As such, in some embodiments, one or more of the components of the environment 1620 may be embodied as circuitry or collection of electrical devices (e.g., burst detector circuitry 1622 and/or group QoS manager circuitry 1624). It should be appreciated that, in such embodiments, one or more of the burst detector circuitry 1622 and/or the group QoS manager circuitry 1624 may form a portion of the processor 820, the I/O subsystem 622, the HFI 832, and/or other components of the SDN controller node 1604. Additionally, in some embodiments, one or more of the illustrative components may form a portion of another component and/or one or more of the illustrative components may be independent of one another.


The burst detector 1622 is configured to monitor network traffic of the storage cluster 1600. The network traffic includes a replication traffic class and a rebuild traffic class. The burst detector 1622 is further configured to determine whether burst bandwidth is required by the storage cluster 1600 in response to monitoring the network traffic. Burst bandwidth includes increased bandwidth for the rebuild traffic class.


The group QoS manager 1624 is configured to apply a group policy indicative of burst bandwidth to the storage cluster 1600 in response to determining that burst bandwidth is required. The group policy includes zero fixed bandwidth for the rebuild traffic class. Applying the group policy may include marking the network traffic as included in the replication traffic class or the rebuild traffic class, for example by setting a bit or setting a class of service field of an overlay network header of the network traffic. Applying the group policy may include marking the network traffic with an amount of burst bandwidth that is required, for example by setting a field of the overlay network header. The overlay network header may be a VxLAN header. The group policy may be applied to an end to end path of the storage cluster 1600. For example, the group policy may be applied to a virtual machine bandwidth or container bandwidth of the client nodes 1608, to a storage service bandwidth of the storage nodes 1606, to a switch 1612 port bandwidth, and/or to an orchestration allocation bandwidth.


Still referring to FIG. 16, in an illustrative embodiment, each storage node 1606 establishes an environment 1640 during operation. The illustrative environment 1640 includes a client data service 1642, a replication service 1644, a rebalance service 1646, and a host agent 1648. The various components of the environment 1640 may be embodied as hardware, firmware, software, or a combination thereof. As such, in some embodiments, one or more of the components of the environment 1640 may be embodied as circuitry or collection of electrical devices (e.g., client data service circuitry 1642, replication service circuitry 1644, rebalance service circuitry 1646, and/or host agent circuitry 1648). It should be appreciated that, in such embodiments, one or more of the client data service circuitry 1642, the replication service circuitry 1644, the rebalance service circuitry 1646, and/or the host agent circuitry 1648 may form a portion of the processor 820, the I/O subsystem 622, the HFI 832, and/or other components of the storage node 1606. Additionally, in some embodiments, one or more of the illustrative components may form a portion of another component and/or one or more of the illustrative components may be independent of one another.


The client data service 1642 is configured to send and/or receive data with one or more client nodes 1608. The client data service 1642 may be embodied as an object-based distributed storage system such as Ceph. The client data may be stored in one or more storage volumes 1650, which may be embodied as logical and/or physical storage volumes of the storage node 1606.


The replication service 1644 is configured to replicate client data between multiple storage nodes 1606 in response to client data. For example, updated data from the client nodes 1608 may be replicated between multiple storage nodes 1606 to provide data durability and redundancy. The rebalance service 1646 is configured to transfer data between multiple storage nodes 1606 to rebuild and/or rebalance the client data stored by the storage node 1606 (e.g., the storage volumes 1650). Data may be rebuilt and/or rebalanced in response to recovering from component or network failure, in response to changes in network topography (e.g., adding or removing storage nodes 1606), or other changes to the storage cluster 1600. Each of the services 1642, 1644, 1646 may communicate on separate overlay networks, for example using separate VxLAN network identifiers (VNIs). In some embodiments, the storage cluster 1600 may include additional or different storage services, such as data read-write, placement, monitoring, de-duplication, etc. Each of those services also communicate on separate overlay networks.


The host agent 1648 is configured to monitor network traffic of the storage node 1606, for example by maintaining one or more counters. The host agent 1648 may provide telemetry with counter data to the SDN controller node 1604. The host agent 1648 is further configured to apply one or more group QoS policies provided by the SDN controller node 1604. The host agent 1648 may be configured to receive storage service traffic on one or more overlay networks, parse overlay network header to identify a group QoS policy, and apply the group QoS policy. The overlay network header may be a VxLAN header.


Still referring to FIG. 16, in an illustrative embodiment, each client node 1608 establishes an environment 1660 during operation. The illustrative environment 1640 includes a virtual machine (VM)/container 1662 and a host agent 1664. The various components of the environment 1660 may be embodied as hardware, firmware, software, or a combination thereof. As such, in some embodiments, one or more of the components of the environment 1660 may be embodied as circuitry or collection of electrical devices (e.g., VM/container circuitry 1662 and/or host agent circuitry 1664). It should be appreciated that, in such embodiments, one or more of the VM/container circuitry 1662 and/or the host agent circuitry 1664 may form a portion of the processor 820, the I/O subsystem 622, the HFI 832, and/or other components of the client node 1608. Additionally, in some embodiments, one or more of the illustrative components may form a portion of another component and/or one or more of the illustrative components may be independent of one another.


The VM/container 1662 is configured to access client data provided by one or more storage nodes 1606. The VM/container 1662 may access the client data service 1642 using any appropriate client protocol. The VM/container 1662 may be embodied as any virtual machine, container (e.g., Docker), or other application executed by the client node 1608. The VM/container 1662 may include or otherwise use a storage service client, such as a Ceph client.


Similar to the host agent 1648, the host agent 1664 is configured to monitor network traffic of the client node 1608, for example by maintaining one or more counters. The host agent 1664 may provide telemetry with counter data to the SDN controller node 1604. The host agent 1664 is further configured to apply one or more group QoS policies provided by the SDN controller node 1604. The host agent 1664 may be configured to receive storage service traffic on one or more overlay networks, parse overlay network header to identify a group QoS policy, and apply the group QoS policy. The overlay network header may be a VxLAN header.


Referring now to FIG. 17, in use, a compute device 1602 may execute a method 1700 for storage cluster quality of service management. It should be appreciated that, in some embodiments, the operations of the method 1700 may be performed by one or more components of the system 1600 as shown in FIG. 16. For example, the method 1700 may be performed by one or more components of the environment 1620 of the SDN controller node 1604. The method 1700 begins in block 1702, in which the compute device 1602 configures a storage services group QoS model. In some embodiments, in block 1704 the group QoS model may identify client I/O traffic, such as client data transaction traffic or replication traffic. In some embodiments, in block 1706 the group QoS model may identify rebuild I/O traffic, such as rebuild traffic or rebalance traffic. The group QoS model may be used by an orchestrator layer of the system 1600 (e.g., the SDN controller the compute device 1602) to enforce QoS to storage services running on the storage nodes 1606 and client nodes 1608. An existing group-based policy system for network QoS may be extended to cover storage services. Namespace identifiers may be shared between the storage group-based policy and the network group-based policy.


Referring now to FIG. 20, diagram 2000 illustrates one potential embodiment of a storage group-based policy 2004. The illustrative policy 2004 is an extension of an Openstack Group Based Policy (GBP) 2002. As shown, the existing group policy 2002 applies network policy through Neutron and native drivers. The extended storage group policy 2004 creates Cinder security groups, which are consumed by the Cinder driver and Cinder. Drivers from Ceph interface to the Cinder group QoS. The namespace ID is shared between the network GBP 2002 and storage GBP 2004.


The storage policy may describe the requirements for ordered chains of services by separating out storage-specific policies from specific service details (storage service chaining). Storage service chain nodes may include logical devices providing storage services of a particular type (e.g., logical block, gateway, replication, journaling, etc.). A service chain specification may include an ordered grouping of service chain nodes. Specifications may be used in the definition of a “redirect” action. A service chain instance may include a specific instantiation of a service chain specification between policy groups. Instances may be created automatically when a service chain is activated as part of a rule set.


Referring back to FIG. 17, in block 1708 the compute device 1602 monitors network traffic in the storage cluster 1600. The compute device 1602 may use any appropriate traffic monitoring technique. In some embodiments, in block 1710 the compute device 1602 may poll one or more counters on each storage node 1606. For example, the compute device 1602 may poll network traffic counters, storage service request counters, or other counters indicative of the amount of traffic in the storage cluster 1600.


In block 1712, the compute device 1602 determines whether burst bandwidth is required by the storage cluster 1600. Burst bandwidth may be required, for example, for rebuild traffic in response to a hardware failure (e.g., storage device/drive, DIMM, or other component failure) or a software failure (e.g., corruption, consistent point failures, accidental deletion of data, etc.). To determine whether burst bandwidth is required, the compute device 1602 may compare telemetry from the storage cluster 1600 (e.g., counter values from the storage nodes 1606) to a predetermined threshold that indicates the need for increasing rebuild traffic. If burst bandwidth is not required, the method 1600 loops back to block 1708 to continue monitoring storage traffic. If burst bandwidth is required, the method 1700 advances to block 1714.


In block 1714, the compute device 1602 determines an amount of burst bandwidth based on the storage cluster traffic. In some embodiments, in block 1716 the compute device 1602 may determine the burst bandwidth to be allocated to rebuild traffic. The compute device 1602 may determine burst bandwidth for each component in the end to end path, including the storage nodes 1606, the client nodes 1608, and ports of the network switches 1612 that carry storage traffic. One embodiment of a method for determining the burst bandwidth is described below in connection with FIG. 18.


In block 1718, the compute device 1602 applies the burst bandwidth using QoS parameters included in one or more group policies. The compute device 1602 may use any appropriate technique to apply the QoS parameters to part or all of the end to end path of the storage cluster 1600. In particular, the compute device 1602 may apply QoS parameters to the storage nodes 1606, to the client nodes 1608, and/or to the network switches 1612 (or individual ports of the switches 1612).


In some embodiments, in block 1720 the compute device 1602 may throttle bandwidth on one or more storage nodes 1606. In some embodiments, in block 1722 the compute device 1602 may set a VxLAN header to identify replication traffic as compared to rebuild traffic. One potential embodiment of such a VxLAN header is described below in connection with FIG. 21. In some embodiments, in block 1724 the compute device 1602 may set a VxLAN group based policy (GBP) header with the burst bandwidth determined as described above. One potential embodiment of such a VxLAN GBP header is described below in connection with FIG. 22. After applying the burst bandwidth QoS, the method 1700 loops back to block 1708 to continue monitoring storage cluster traffic.


Referring now to FIG. 18, in use, a compute device 1602 may execute a method 1800 for burst bandwidth determination. The method 1800 may be executed in connection with block 1714 of FIG. 17, as described above. Thus, it should be appreciated that in some embodiments, the operations of the method 1800 may be performed by one or more components of the system 1600 as shown in FIG. 16. For example, the method 1800 may be performed by one or more components of the environment 1620 of the SDN controller node 1604. The method 1800 begins in block 1802, in which the compute device 1602 determines a configured bandwidth allocation for rebuild traffic. In an illustrative embodiment, an overall QoS value may be determined as the weighted sum of multiple different services, as shown below in Equation 1. In that example, an administrator may define a percentage of network bandwidth for rebuild traffic. The administrator may allocate total bandwidth between multiple services, including storage services, compute services, and accelerator services, as shown below in Equation 2. The storage service bandwidth may be further subdivided between replication bandwidth, rebuild bandwidth, and other storage services as shown below in Equation 3.





Overall QoS=svc1·w1+svc2·w2+ . . . +svcn·wn   (1)





Total BW=Storage Svc BW+Compute+FGPA service+ . . . +n   (2)





Storage Svc BW=Replication BW+Rebuild BW+ . . . +n   (3)


In block 1804, the compute device 1602 collects telemetry to identify bandwidth consumed per client. The monitoring telemetry identifies actual bandwidth consumed on a per client basis. Bandwidth may be determined using Equations 4 and 5 below.





Compute BW=Client 1 BW+Client 2 BW+ . . .   (4)





Client 1 BW=Compute BW+I/O Service BW+NW BW   (5)


In block 1806, the compute device 1602 determines volume bandwidth for each storage node 1606. The volume bandwidth may be the total I/O associated with all data volumes 1650 of the storage node 1606. In block 1808, the compute device 1602 collects telemetry on storage traffic per volume with priority based on traffic class. The moving average of each traffic class that the volumes 1650 are assigned to may be used. In block 1810, the compute device 1602 sums weighted averages of volume bandwidth, where the weights are based on priority. A weighted average may be determined by multiplying each moving average by a weight derived from priority. Volume bandwidth VBW may be determined using Equation 6, below.






VBW=V1+V2+V3+ . . .   (6)


In block 1812, the compute device 1602 determines a configured aggregate maximum QoS for all volumes 1650 per storage node 1606. For example, maximum aggregate I/O operations per second (IOPS) and bandwidth may be determined per storage node 1606 based on Cinder QoS settings and/or Nova volume mappings. Aggregate volume QoS may be determined using Equation 7 below.





Agg V=V1+V2+V3+ . . .   (7)


In block 1814, the compute device 1602 determines per node bandwidth allocation for storage ports. In block 1816, the compute device 1602 collects telemetry with weighted averages of per-port traffic. Telemetry with weighted averages may be collected on a per port level where storage traffic is funneled through to give actual per node bandwidth allocation. For example, telemetry per switch 1612 port may be collected, or telemetry per NIC port for storage nodes 1606 may be collected. Ports may be labeled P1, P2, . . . , PN. A subset of those ports may be storage ports PX, PY, . . . .


In block 1816, the compute device 1602 determines rebuild bandwidth at the storage node 1606. Rebuild bandwidth at the storage node 1606 may be determined using Equation 8, below.





Rebuild BW at storage node=(Storage SVC−(VBW+replication+ . . . +n))   (8)


In block 1818, the compute device 1602 determines rebuild bandwidth at the host (e.g., at the client node 1608). Rebuild bandwidth at the host 1608 may be determined using Equation 9, below.





Rebuild BW at host=(Client 1 IOSvc BW+Client 2 IOsvc BW+ . . . )−(PX+PY) BW   (9)


After determining rebuild bandwidth at the storage node 1606 and at the host 1608, the method 1800 is completed. As described above, the rebuild bandwidth may be applied to the storage cluster 1600 using one group policies. In particular, traffic may be throttled for a reduced bandwidth allocation on the data VLAN, since some portion of this allocation goes to the rebuild VLAN. The above process may be performed on storage nodes 1606 for data traffic, cluster traffic aggregate bandwidth using telemetry, and throttle this traffic accordingly. The SDN controller node 1604 may use a VxLAN GBP header to set a value indicating the bandwidth using the VNI ids set for this type of traffic at the sled NICs 832. One embodiment of a VxLAN GBP header is described below in connection with FIG. 22. The network LAN driver may use the value parsed at the NIC 832, as described further below in connection with FIG. 19.


Referring now to FIG. 19, in use, a compute device 1602 may execute a method 1900 for applying group QoS policies. It should be appreciated that, in some embodiments, the operations of the method 1900 may be performed by one or more components of the system 1600 as shown in FIG. 16. For example, the method 1900 may be performed by one or more components of the environment 1640 of a storage node 1606 and/or one or more components of the environment 1660 of a client node 1608. The method 1900 begins in block 1902, in which the compute device 1602 receives storage service VxLAN traffic. The storage service traffic may be associated with one of multiple storage services. Each storage service may be assigned a different VxLAN network identifier (VNI).


In block 1904, the compute device 1602 parses the VxLAN header to identify a group QoS identifier. For example, the header may identify whether the traffic is rebuild traffic or replication traffic. The VxLAN header may be parsed by hardware and/or firmware of a NIC 832 of the compute device 1602. In block 1906, the compute device 1602 selects a group QoS policy based on the identifier. For example, the compute device 1602 may select a group QoS policy provisioned by the SDN controller node 1604. As another example, the compute device 1602 may select a group QoS policy based on an amount of burst bandwidth identified in the VxLAN header.


In block 1908, the compute device 1602 applies the group QoS policy. For example, the compute device 1602 may throttle egress bandwidth, request frequency, or other storage traffic generated by the compute device 1602. The group policy may be applied with Linux cgroups, Intel Resource Director Technology (RDT), or other policy enforcement mechanisms of the compute device 1602. The group QoS policy may be applied by a LAN driver or other component executed by the compute device 1602. After applying the QoS policy, the method 1900 loops back to block 1902 to continue receiving storage traffic.


Referring now to FIG. 21, diagram 2100 illustrates one potential embodiment of a VxLAN header that may be used by the system 1600. The VxLAN header 2100 includes bit ‘C’ (located at the third bit of the first octet) which may be used to define the presence of burst bandwidth as an additional value. Its absence will show that this value is not used. In some embodiments, the VxLAN header 2100 may also identify the type of network traffic (e.g., replication traffic or rebalance traffic). For example, the three QoS bits (the first three bits of the second octet) may mark whether the traffic is replication traffic or rebalance traffic. The markings may be used by DSCP to apply group QoS settings. Potential values of the QoS bits are shown below in Table 1.









TABLE 1





Values for QoS Bits and Associated Traffic Class of Service
















001
Replication Traffic


000
BE (Best Effort) OR Tenant Traffic COS1


010
EE (Excellent Effort) OR Tenant Traffic COS2


011
CA (Critical Applications)


100
Rebalance Service


101


110
IC (Storage Internetwork Control)


111









Referring now to FIG. 22, diagram 2200 illustrates another potential embodiment of a VxLAN header that may be used by the system 1600. As shown, the VxLAN header 2200 includes a group policy ID in third and fourth octets. The VxLAN header 2200 also includes bit B′ (located at the eighth bit of the second octet) which when parsed indicates that this VxLAN is part of a group with a policy for burst bandwidth. In some embodiments, the VxLAN header 2200 may include a hex value, octet, or other field that indicates the amount of burst bandwidth “B” that should be applied.


EXAMPLES

Illustrative examples of the technologies disclosed herein are provided below. An embodiment of the technologies may include any one or more, and any combination of, the examples described below.


Example 1 includes a compute device for storage cluster quality of service (QoS) management, the compute device comprising a burst detector to (i) monitor network traffic of a storage cluster, wherein the network traffic comprises a replication traffic class and a rebuild traffic class, and (ii) determine whether burst bandwidth is required by the storage cluster in response to monitoring of the network traffic; and a group QoS manager to apply a group policy indicative of burst bandwidth to the storage cluster in response to a determination that burst bandwidth is required.


Example 2 includes the subject matter of Example 1, and wherein the burst bandwidth comprises increased bandwidth for the rebuild traffic class.


Example 3 includes the subject matter of any of Examples 1 and 2, and wherein the group policy includes zero fixed bandwidth for the rebuild traffic class.


Example 4 includes the subject matter of any of Examples 1-3, and wherein to apply the group policy comprises to mark the network traffic as included in the replication traffic class or included in the rebuild traffic class.


Example 5 includes the subject matter of any of Examples 1-4, and wherein to mark the network traffic comprises to set a bit of an overlay network header of the network traffic.


Example 6 includes the subject matter of any of Examples 1-5, and wherein the overlay network header comprises a VxLAN header.


Example 7 includes the subject matter of any of Examples 1-6, and wherein to mark the network traffic comprises to set a class of service field of an overlay network header of the network traffic.


Example 8 includes the subject matter of any of Examples 1-7, and wherein to apply the group policy comprises to mark the network traffic with an amount of the burst bandwidth that is required.


Example 9 includes the subject matter of any of Examples 1-8, and wherein to mark the network traffic with the amount comprises to set a field of an overlay network header of the network traffic.


Example 10 includes the subject matter of any of Examples 1-9, and wherein to apply the group policy comprises to apply the group policy to an end to end path of the storage cluster.


Example 11 includes the subject matter of any of Examples 1-10, and wherein to apply the group policy to the end to end path comprises to apply the group policy to a virtual machine bandwidth or container bandwidth of a client node of the storage cluster.


Example 12 includes the subject matter of any of Examples 1-11, and wherein to apply the group policy to the end to end path comprises to apply the group policy to a storage service bandwidth of a storage node of the storage cluster.


Example 13 includes the subject matter of any of Examples 1-12, and wherein to apply the group policy to the end to end path comprises to apply the group policy to a switch port bandwidth of the storage cluster.


Example 14 includes the subject matter of any of Examples 1-13, and wherein to apply the group policy to the end to end path comprises to apply the group policy to an orchestration allocation bandwidth of the storage cluster.


Example 15 includes a method for storage cluster quality of service (QoS) management, the method comprising monitoring, by a compute device, network traffic of a storage cluster, wherein the network traffic comprises a replication traffic class and a rebuild traffic class; determining, by the compute device, whether burst bandwidth is required by the storage cluster in response to monitoring the network traffic; and applying, by the compute device, a group policy indicative of burst bandwidth to the storage cluster in response to determining that burst bandwidth is required.


Example 16 includes the subject matter of Example 15, and wherein the burst bandwidth comprises increased bandwidth for the rebuild traffic class.


Example 17 includes the subject matter of any of Examples 15 and 16, and wherein the group policy includes zero fixed bandwidth for the rebuild traffic class.


Example 18 includes the subject matter of any of Examples 15-17, and wherein applying the group policy comprises marking the network traffic as included in the replication traffic class or included in the rebuild traffic class.


Example 19 includes the subject matter of any of Examples 15-18, and wherein marking the network traffic comprises setting a bit of an overlay network header of the network traffic.


Example 20 includes the subject matter of any of Examples 15-19, and wherein the overlay network header comprises a VxLAN header.


Example 21 includes the subject matter of any of Examples 15-20, and wherein marking the network traffic comprises setting a class of service field of an overlay network header of the network traffic.


Example 22 includes the subject matter of any of Examples 15-21, and wherein applying the group policy comprises marking the network traffic with an amount of the burst bandwidth that is required.


Example 23 includes the subject matter of any of Examples 15-22, and wherein marking the network traffic with the amount comprises setting a field of an overlay network header of the network traffic.


Example 24 includes the subject matter of any of Examples 15-23, and wherein applying the group policy comprises applying the group policy to an end to end path of the storage cluster.


Example 25 includes the subject matter of any of Examples 15-24, and wherein applying the group policy to the end to end path comprises applying the group policy to a virtual machine bandwidth or container bandwidth of a client node of the storage cluster.


Example 26 includes the subject matter of any of Examples 15-25, and wherein applying the group policy to the end to end path comprises applying the group policy to a storage service bandwidth of a storage node of the storage cluster.


Example 27 includes the subject matter of any of Examples 15-26, and wherein applying the group policy to the end to end path comprises applying the group policy to a switch port bandwidth of the storage cluster.


Example 28 includes the subject matter of any of Examples 15-27, and wherein applying the group policy to the end to end path comprises applying the group policy to an orchestration allocation bandwidth of the storage cluster.


Example 29 includes a computing device comprising a processor; and a memory having stored therein a plurality of instructions that when executed by the processor cause the computing device to perform the method of any of Examples 15-28.


Example 30 includes one or more non-transitory, computer readable storage media comprising a plurality of instructions stored thereon that in response to being executed result in a computing device performing the method of any of Examples 15-28.


Example 31 includes a computing device comprising means for performing the method of any of Examples 15-28.

Claims
  • 1. A compute device for storage cluster quality of service (QoS) management, the compute device comprising: a burst detector to (i) monitor network traffic of a storage cluster, wherein the network traffic comprises a replication traffic class and a rebuild traffic class, and (ii) determine whether burst bandwidth is required by the storage cluster in response to monitoring of the network traffic; anda group QoS manager to apply a group policy indicative of burst bandwidth to the storage cluster in response to a determination that burst bandwidth is required.
  • 2. The compute device of claim 1, wherein the burst bandwidth comprises increased bandwidth for the rebuild traffic class.
  • 3. The compute device of claim 1, wherein the group policy includes zero fixed bandwidth for the rebuild traffic class.
  • 4. The compute device of claim 1, wherein to apply the group policy comprises to mark the network traffic as included in the replication traffic class or included in the rebuild traffic class.
  • 5. The compute device of claim 4, wherein to mark the network traffic comprises to set a bit of an overlay network header of the network traffic.
  • 6. The compute device of claim 5, wherein the overlay network header comprises a VxLAN header.
  • 7. The compute device of claim 4, wherein to mark the network traffic comprises to set a class of service field of an overlay network header of the network traffic.
  • 8. The compute device of claim 1, wherein to apply the group policy comprises to mark the network traffic with an amount of the burst bandwidth that is required.
  • 9. The compute device of claim 8, wherein to mark the network traffic with the amount comprises to set a field of an overlay network header of the network traffic.
  • 10. The compute device of claim 1, wherein to apply the group policy comprises to apply the group policy to an end to end path of the storage cluster.
  • 11. The compute device of claim 10, wherein to apply the group policy to the end to end path comprises to apply the group policy to a virtual machine bandwidth or container bandwidth of a client node of the storage cluster.
  • 12. The compute device of claim 10, wherein to apply the group policy to the end to end path comprises to apply the group policy to a storage service bandwidth of a storage node of the storage cluster.
  • 13. The compute device of claim 10, wherein to apply the group policy to the end to end path comprises to apply the group policy to a switch port bandwidth of the storage cluster.
  • 14. The compute device of claim 10, wherein to apply the group policy to the end to end path comprises to apply the group policy to an orchestration allocation bandwidth of the storage cluster.
  • 15. A method for storage cluster quality of service (QoS) management, the method comprising: monitoring, by a compute device, network traffic of a storage cluster, wherein the network traffic comprises a replication traffic class and a rebuild traffic class;determining, by the compute device, whether burst bandwidth is required by the storage cluster in response to monitoring the network traffic; andapplying, by the compute device, a group policy indicative of burst bandwidth to the storage cluster in response to determining that burst bandwidth is required.
  • 16. The method of claim 15, wherein the burst bandwidth comprises increased bandwidth for the rebuild traffic class.
  • 17. The method of claim 15, wherein applying the group policy comprises marking the network traffic as included in the replication traffic class or included in the rebuild traffic class.
  • 18. The method of claim 15, wherein applying the group policy comprises marking the network traffic with an amount of the burst bandwidth that is required.
  • 19. The method of claim 15, wherein applying the group policy comprises applying the group policy to an end to end path of the storage cluster.
  • 20. One or more computer-readable storage media comprising a plurality of instructions stored thereon that, in response to being executed, cause a compute device to: monitor network traffic of a storage cluster, wherein the network traffic comprises a replication traffic class and a rebuild traffic class;determine whether burst bandwidth is required by the storage cluster in response to monitoring the network traffic; andapply a group policy indicative of burst bandwidth to the storage cluster in response to determining that burst bandwidth is required.
  • 21. The one or more computer-readable storage media of claim 20, wherein the burst bandwidth comprises increased bandwidth for the rebuild traffic class.
  • 22. The one or more computer-readable storage media of claim 20, wherein the group policy includes zero fixed bandwidth for the rebuild traffic class.
  • 23. The one or more computer-readable storage media of claim 20, wherein to apply the group policy comprises to mark the network traffic as included in the replication traffic class or included in the rebuild traffic class.
  • 24. The one or more computer-readable storage media of claim 20, wherein to apply the group policy comprises to mark the network traffic with an amount of the burst bandwidth that is required.
  • 25. The one or more computer-readable storage media of claim 20, wherein to apply the group policy comprises to apply the group policy to an end to end path of the storage cluster.