The present invention relates generally to fiber optic telecommunications connection devices. More specifically, the present invention relates to multi-position holders for fiber optic connectors.
Fiber optic connectivity and service is being extended to more and more customers, both commercial and residential. However, not all customers to whom this service is available are currently ready to accept and utilize such service. Additionally, new service and connection devices may be provided in residential or commercial real estate development projects but at a time prior to when the units are constructed or ready for occupancy. In such circumstances, it is desirable to have an easily scalable solution for aiding connection of new customers to existing connections within a piece of installed connection equipment and expansion of the number of connections available within that installed equipment.
The present invention relates to a telecommunications equipment cabinet including a splitter connecting an outside plant cable to a plurality of fiber optic cables. The cabinet includes a splitter mounting area, a cable management structure, an array of adapters for optically connecting two fiber optic cables terminated with connectors, and an excess cable storage area. Customer equipment cables are connected to rear of adapters within the adapter array. Cables from the splitter are directed to the cable management structure and to the excess cable storage area where connectors terminating these cables are stored and protected until a connection between the outside plant cable and the customer equipment cable is desired.
The present invention further relates to a connector holder with at least one opening in a housing for receiving a fiber optic connector and protecting a polished end face of the connector. The connector holder includes a housing with a releasable latch on one end and a mounting tab on the other end which cooperate to releasably mount the housing within an opening in a bulkhead.
The present invention still further relates to a method of increasing the connection capacity of a fiber optic telecommunications connection cabinet. A splitter is mounted in the cabinet and a cable from the splitter is connected to an outside plant cable. The splitter splits an optical signal from the outside plant cable into a plurality of optical fiber cables terminated with optical fiber connectors. This plurality of cables is directed from the splitter to a cable management area and to an excess cable storage area. A plurality of connectors of these cables are inserted within a connector holder and the connector holder is inserted within a mounting opening in the excess cable storage area. The cabinet includes an array of adapters which may be used as needed to connect a cable from the splitter to a customer equipment cable.
The present invention still further relates to a splitter.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate several aspects of the present invention and together with the description, serve to explain the principles of the invention. A brief description of the drawings is as follows:
Reference will now be made in detail to the exemplary aspects of the present invention that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
A plurality of cables 108 connected to the customer equipment may be directed into cabinet 100. One or more OSP cables 106 may be directed into cabinet 100 to a splice arrangement, such as a splice tray or panel 110. OSP cables 106 may be spliced within splice panel 110 to a secondary cable 104. Secondary cable 104 is directed from splice panel 110 to a first cable management structure 112 and lead to a splitter 102 within a splitter mounting area 103. Splitter 102 separates the optical signal transmitted over OSP cable 106 and secondary cable 104 into up to thirty-two signals directed into an equal number of fiber distribution cables 114. Cables 114 are directed from splitter 102 through cable management area 112 and into a second cable management and slack storage area 116 including a plurality of cable slack storage spools 117. From slack storage area 116, cables 114 may be directed to either a connector holder within an excess cable storage area 118 or to an adapter within an adapter array 120. Each of these cables 114 are preferably terminated with a fiber optic connector.
Within excess cable storage area 118, a plurality of connector holders 122 are installed within mounting slots in a bulkhead 124. Connector holder 122 (described in further detail below) includes a plurality of openings for receiving and releasably holding the fiber optic connector. The openings in connector holder 122 preferably do not provide a continuous optical path but rather house and protect a polished end face of an optical fiber within each cable 114 which is mounted to the terminal fiber optic connector. This protection may be provided in combination with an endcap, such as shown in commonly-owned U.S. patent application Ser. No. 10/610,325, filed on Jun. 30, 2003, entitled “Fiber Optic Connector Holder and Method,” the disclosure of which is incorporated herein by reference. Alternatively, connector holder 122 may enclose and protect the polished end face of the connector terminating cable 114 without the need for a protective endcap.
Within adapter array 120, a plurality of fiber optic adapters 123 are mounted which receive the connector terminating cable 114. The connector of cable 114 is received within an opening in a front side of an adapter 123. Adapter 123 also includes an opening on an opposite rear side which is adapted to receive a connector terminating one of the customer equipment cables 108. Adapters 123 within adapter array 120 may optically connect one of the cables 114 to one of the cables 108, for transmission of an optical signal from OSP cable 106 to the customer equipment connected to that cable 108. Such cable terminating connectors and adapters 123 are well known in the industry. As shown in
Cabinet 100 includes a front 126, a pair of opposing sides 128, a rear wall 130, a base 132 and a top 134, all cooperating to define an interior 136 within which the various components described above are mounted. The components are accessible through an opening 140 in front 126 which may be closed off by a pair of doors 138.
Referring now to
Referring now to
Each opening 226 includes a first or top end 227 and a second or bottom end 225. A pair of ears 236 are positioned one each in a pair of opposing sides extending from top end 227 to bottom end 225, the ears 226 cooperating with a keying feature 238 on connector holder 122 to orient connector holder 122 within opening 226. Connector holder 122 includes a releasable latch 240 at one end and a tab 242 on the opposite end (shown in
Openings 226 within front face 228 of bulkhead 224 (and bulkhead 124) are sized to also receive up to eight adapters 123 when connector holders 122 are not in position. This allows bulkheads 124 and 224 to provide additional space for optically connecting cables 114 with customer equipment cables 108 for added connection capacity with cabinets 100 and 200, as well as similarly configured cabinets.
Referring now to
Housing 160 includes a first end or top 152 and a second end or bottom 154. Releasable latch 240 is mounted to top 152 and tab 242 is in bottom 154. Extending between top 152 and bottom 154 along sides 166 of housing 160 are rails 156. Keying feature 238 is positioned along rail 156 and extends beyond a rear face 158 of rail 156. A portion of housing 160 extending beyond rear face 158 of rail 156 is sized to fit within opening 226. When inserted within opening 226, rear face 158 of rail 156 engages front face 228 and keying feature 238 engages one of the ears 236 to properly orient top 152 and bottom 154 of housing 160.
To insert housing 160 within opening 226, bottom 154 is first positioned within opening 226 through front face 228 so that a locking face 243 of tab 242 is behind front face 228 at bottom end 225 and engages rear surface 229 of front face 228. Top 152 is then inserted within opening 226. A ramped face 244 of releasable latch 240 engages top end 227 of opening 226 and deflects to permit ramped face 244 and locking face 241 of releasable latch 240 to pass through opening 226. Locking face 241 of releasable latch 240 engages rear surface 229. Opposing both locking faces 241 and 243 are rear faces 158 of rails 156, which are engaging front face 228. Both keying features 238 engage ears 236 of opening 226. Releasable latch 240 includes a finger tab 246 which may be depressed to retract locking face 241 so that locking face 241 disengages from rear surface 229 and permits removal of housing 160 from opening 226. Housing 160 is configured to be inserted through front face 228 of bulkheads 124 or 224 when cabinet 100 or 200 is access through opening 140 in front 126.
Referring now to
Referring now to
A method of adding connection capacity to cabinet 100 might include installing a preconfigured splitter 102 in combination with one or more connector holders 122. It is desirable to provide for easy field expansion of connection capacity within cabinet 100 so that cabinet 100 does need to anticipate the ultimate connection configuration for a particular customer service area when installed. Cabinet 100 may be installed with only enough connection capacity to serve the immediate need forecasted for a customer area and allow for incremental expansion as more connections are needed in the area. The following method of adding connection capacity to cabinet 100 is also applicable to cabinet 200 and may be used to initially configure cabinet 100 prior to installation or to expand the capacity of cabinet 100 in the field.
To increase connection capacity within cabinet 100, a splitter 102 preconfigured with a cable 104 and thirty-two cables 114 terminated by connectors 180 is used. The splitter 102 is mounted within splitter mounting area 103 and the free end of cable 104 is led into cable management structure 112 and to splice panel 110. In splice panel 110, the free end of cable 104 is spliced into an end of an OSP cable 106. This splice optically connects OSP cable 106 to each of the cables 114. Connectors 180 of cables 114 are pre-inserted within four connector holders 122. Cables 114 are led from splitter 102 through cable management structure 112 to second cable management structure 116 where excess cable length may be retained within the cable slack storage arrangement. Since splitter 102 may be preconfigured for use with different cabinets as well as cabinet 100, the length of cables 114 of splitter may be longer than required for cabinet 100 and this excess length may be held about the cable slack storage spools 117 (see
From second cable management area 116, cables 114 and connector holders 122 with connectors 180 inserted are positioned within excess cable storage area 118. Each connector holder 122 is simply snapped into one of the openings 226 of bulkhead 124. Addition of extra connection capacity is now completed. When a customer connection is required, a customer equipment cable 108 is led into cabinet 100 and terminated with a connector 180. This connector is inserted within a rear opening of an adapter 123 within adapter array 120. Alternatively, when cabinet 100 is installed, the rear of all adapters 123 in adapter 122 may have customer equipment cables 108 prewired and these cables led to the customer premises in anticipation of future customer hookups. When such a prewired customer desires a live connection, a cable 114 merely needs to be inserted into the front of the appropriate adapter 123. One of the cables 114 within excess cable storage area 118 is selected and its connector 180 is removed from connector holder 118. The selected cable 114 is re-routed within second cable management area 116 as needed to provide a desired length of cable and the connector 180 is inserted within the appropriate adapter 123 in adapter array 120. If connector 180 of the selected cable 114 includes a dust cap to protect the polished end face of the fiber, this dust cap is removed prior to insertion into the adapter 123.
Splitter 102 includes thirty-two cables 114 and connectors 180, inserted within four connector holders 122 when splitter 102 is installed. As these cables 114 and connectors 180 are transferred into adapter array 120, some or all of the connector holders 122 may be emptied of all connectors 180. When this happens, the empty connector holder 122 may be removed from excess cable storage area 118 and discarded or recycled. Removal of these empty connector holders 122 would free openings 226 in bulkhead 124 to permit connector holders of additional splitters 102 to be installed and more capacity to be added to cabinet 100.
If a connection to customer equipment needs to be terminated, the connector 180 of the appropriate cable 114 may be removed from the adapter 123. The cable 114 is then rerouted within the cable management structure 116 and the connector 180 inserted within an opening 150 of a connector holder 122 within excess cable storage area 118.
Splitter mounting area 103 of cabinet 100 includes spaces to mount up to four splitters 102, while cabinet 200 provides spaces to mount up to eight splitters 102. Thus configured, cabinet 100 has a capacity to connect up to split up to four OSP cables into thirty-two cables 114 each, or up to a total of one hundred twenty eight cables 114. Within adapter array 120 there are a sufficient number of adapters 123 to permit connection of each of these cables 114 to a corresponding customer equipment cable 108.
However, cabinet 200 has the capacity to split up to eight OSP cables into thirty-two cables 114 each, or up to a total of two hundred fifty-six cables 114. Adapter array 120 in cabinet 200 only provides a total of two hundred sixteen adapters 123 for receiving connectors from cables 114. Once adapter array 120 has been fully populated with cables 114, there may be up to forty excess cables 114 within excess cable storage area 118 which are not provided with an adapter 123 for connection with a customer equipment cable 108.
As shown in
The above specification, examples and data provide a complete description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
This application is a continuation of application Ser. No. 15/982,606, filed May 17, 2018, now U.S. Pat. No. 10,345,539, which is a continuation of application Ser. No. 14/999,575, filed May 16, 2016, now U.S. Pat. No. 10,126,509, which is a continuation of application Ser. No. 14/251,035, filed Apr. 11, 2014, now U.S. Pat. No. 9,341,798, which is a continuation of application Ser. No. 13/961,105, filed Aug. 7, 2013, now U.S. Pat. No. 8,818,158, which is a continuation of application Ser. No. 13/460,042, filed Apr. 30, 2012, now U.S. Pat. No. 8,538,228, which is a continuation of application Ser. No. 12/897,424, filed Oct. 4, 2010, now U.S. Pat. No. 8,184,940, which is a continuation of application Ser. No. 12/392,575, filed Feb. 25, 2009, now U.S. Pat. No. 7,809,234, which is a continuation of application Ser. No. 12/194,328, filed Aug. 19, 2008, now U.S. Pat. No. 7,809,233, which is a continuation of application Ser. No. 11/835,882, filed Aug. 8, 2007, now U.S. Pat. No. 7,519,259, which is a continuation of application Ser. No. 11/399,944, filed Apr. 7, 2006, now U.S. Pat. No. 7,277,620, which is a continuation of application Ser. No. 10/871,555, filed Jun. 18, 2004, now U.S. Pat. No. 7,218,827, which applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4736100 | Vastagh | Apr 1988 | A |
4747020 | Brickley et al. | May 1988 | A |
4792203 | Nelson et al. | Dec 1988 | A |
4824196 | Bylander | Apr 1989 | A |
4861134 | Alameel et al. | Aug 1989 | A |
4900123 | Barlow et al. | Feb 1990 | A |
4913522 | Nolf et al. | Apr 1990 | A |
4948220 | Violo et al. | Aug 1990 | A |
4977483 | Perretta | Dec 1990 | A |
4995688 | Anton et al. | Feb 1991 | A |
4999652 | Chan | Mar 1991 | A |
5023646 | Ishida et al. | Jun 1991 | A |
5058983 | Corke et al. | Oct 1991 | A |
5073042 | Mulholland et al. | Dec 1991 | A |
5076688 | Bowen et al. | Dec 1991 | A |
5142598 | Tabone | Aug 1992 | A |
5214735 | Henneberger et al. | May 1993 | A |
5233674 | Vladic | Aug 1993 | A |
5274729 | King et al. | Dec 1993 | A |
5274731 | White | Dec 1993 | A |
5317663 | Beard et al. | May 1994 | A |
5333221 | Briggs et al. | Jul 1994 | A |
5333222 | Belenkiy et al. | Jul 1994 | A |
5359688 | Underwood | Oct 1994 | A |
5363465 | Korkowski et al. | Nov 1994 | A |
5367598 | Devenish, III et al. | Nov 1994 | A |
5402515 | Vidacovich et al. | Mar 1995 | A |
5408557 | Hsu | Apr 1995 | A |
RE34955 | Anton et al. | May 1995 | E |
5420958 | Henson et al. | May 1995 | A |
5442726 | Howard et al. | Aug 1995 | A |
5448015 | Jamet et al. | Sep 1995 | A |
5469526 | Rawlings | Nov 1995 | A |
5497444 | Wheeler | Mar 1996 | A |
5506922 | Grois | Apr 1996 | A |
5511144 | Hawkins et al. | Apr 1996 | A |
5542015 | Hultermans | Jul 1996 | A |
5647043 | Anderson et al. | Jul 1997 | A |
5708751 | Mattei | Jan 1998 | A |
5734776 | Puetz | Mar 1998 | A |
5764844 | Mendes | Jun 1998 | A |
5774612 | Belenkiy et al. | Jun 1998 | A |
5778130 | Walters et al. | Jul 1998 | A |
5778132 | Csipkes et al. | Jul 1998 | A |
5784515 | Tamara et al. | Jul 1998 | A |
5823646 | Arizpe et al. | Oct 1998 | A |
5825955 | Ernst | Oct 1998 | A |
5883995 | Lu | Mar 1999 | A |
5909526 | Roth et al. | Jun 1999 | A |
5930425 | Abel et al. | Jul 1999 | A |
5945633 | Ott et al. | Aug 1999 | A |
5956444 | Duda et al. | Sep 1999 | A |
5969294 | Eberle et al. | Oct 1999 | A |
5975769 | Larson et al. | Nov 1999 | A |
6027252 | Erdman et al. | Feb 2000 | A |
6041155 | Anderson et al. | Mar 2000 | A |
6044193 | Szentesi et al. | Mar 2000 | A |
6061492 | Strause et al. | May 2000 | A |
6069797 | Widmayer et al. | May 2000 | A |
6076975 | Roth | Jun 2000 | A |
6079881 | Roth | Jun 2000 | A |
6096797 | Prantl et al. | Aug 2000 | A |
6149315 | Stephenson | Nov 2000 | A |
6160946 | Thompson et al. | Dec 2000 | A |
6188687 | Mussman et al. | Feb 2001 | B1 |
6188825 | Bandy et al. | Feb 2001 | B1 |
6208796 | Williams Vigliaturo | Mar 2001 | B1 |
6227717 | Ott et al. | May 2001 | B1 |
6234683 | Waldron et al. | May 2001 | B1 |
6236795 | Rodgers | May 2001 | B1 |
6240229 | Roth | May 2001 | B1 |
6247849 | Liu | Jun 2001 | B1 |
6256443 | Uruno | Jul 2001 | B1 |
6259850 | Crosby, Jr. et al. | Jul 2001 | B1 |
6271484 | Tokutsu | Aug 2001 | B1 |
6278829 | BuAbbud et al. | Aug 2001 | B1 |
6298190 | Waldron et al. | Oct 2001 | B2 |
RE37489 | Anton et al. | Jan 2002 | E |
6347888 | Puetz | Feb 2002 | B1 |
6356697 | Braga et al. | Mar 2002 | B1 |
6363200 | Thompson et al. | Mar 2002 | B1 |
6385381 | Janus et al. | May 2002 | B1 |
6411767 | Burrous et al. | Jun 2002 | B1 |
6418262 | Puetz et al. | Jul 2002 | B1 |
6424781 | Puetz et al. | Jul 2002 | B1 |
6425694 | Szilagyi et al. | Jul 2002 | B1 |
6431762 | Taira et al. | Aug 2002 | B1 |
6434313 | Clapp, Jr. et al. | Aug 2002 | B1 |
6452925 | Sistanizadeh et al. | Sep 2002 | B1 |
6453033 | Little et al. | Sep 2002 | B1 |
6464402 | Andrews et al. | Oct 2002 | B1 |
D466087 | Cuny et al. | Nov 2002 | S |
6480487 | Wegleitner et al. | Nov 2002 | B1 |
6483977 | Battey et al. | Nov 2002 | B2 |
6496640 | Harvey et al. | Dec 2002 | B1 |
6535682 | Puetz et al. | Mar 2003 | B1 |
6539147 | Mahony | Mar 2003 | B1 |
6539160 | Battey et al. | Mar 2003 | B2 |
6542688 | Battey et al. | Apr 2003 | B1 |
6547450 | Lampert | Apr 2003 | B2 |
6554485 | Beatty et al. | Apr 2003 | B1 |
6556763 | Puetz et al. | Apr 2003 | B1 |
6577595 | Counterman | Jun 2003 | B1 |
6597670 | Tweedy et al. | Jul 2003 | B1 |
6614980 | Mahony | Sep 2003 | B1 |
6621975 | Laporte et al. | Sep 2003 | B2 |
6623170 | Petrillo | Sep 2003 | B2 |
6625375 | Mahony | Sep 2003 | B1 |
6631237 | Knudsen et al. | Oct 2003 | B2 |
6654536 | Battey et al. | Nov 2003 | B2 |
6661961 | Allen et al. | Dec 2003 | B1 |
6668127 | Mahony | Dec 2003 | B1 |
6678457 | Kim et al. | Jan 2004 | B2 |
6755574 | Fujiwara et al. | Jun 2004 | B2 |
6760530 | Mandry | Jul 2004 | B1 |
6760531 | Solheid et al. | Jul 2004 | B1 |
6768860 | Liberty | Jul 2004 | B2 |
6778752 | Laporte et al. | Aug 2004 | B2 |
6788786 | Kessler et al. | Sep 2004 | B1 |
6792190 | Xin | Sep 2004 | B2 |
6792191 | Clapp, Jr. et al. | Sep 2004 | B1 |
6815612 | Bloodworth et al. | Nov 2004 | B2 |
6850685 | Tinucci et al. | Feb 2005 | B2 |
6853795 | Dagley et al. | Feb 2005 | B2 |
6870734 | Mertesdorf et al. | Mar 2005 | B2 |
6901200 | Schray | May 2005 | B2 |
6909833 | Henschel et al. | Jun 2005 | B2 |
6920274 | Rapp et al. | Jul 2005 | B2 |
6925241 | Bohle et al. | Aug 2005 | B2 |
6950593 | Hodge et al. | Sep 2005 | B2 |
6980725 | Swieconek | Dec 2005 | B1 |
6983095 | Reagan et al. | Jan 2006 | B2 |
7029322 | Ernst et al. | Apr 2006 | B2 |
7088899 | Reagan et al. | Aug 2006 | B2 |
7103255 | Reagan et al. | Sep 2006 | B2 |
7142764 | Allen et al. | Nov 2006 | B2 |
7146089 | Reagan et al. | Dec 2006 | B2 |
7166805 | Robinson et al. | Jan 2007 | B2 |
7171102 | Reagan et al. | Jan 2007 | B2 |
7198409 | Smith et al. | Apr 2007 | B2 |
7200317 | Reagan et al. | Apr 2007 | B2 |
7218827 | Vongseng et al. | May 2007 | B2 |
7233731 | Solheid et al. | Jun 2007 | B2 |
7277620 | Vongseng et al. | Oct 2007 | B2 |
7369741 | Reagan et al. | May 2008 | B2 |
7407330 | Smith et al. | Aug 2008 | B2 |
7457503 | Solheid et al. | Nov 2008 | B2 |
7471869 | Reagan et al. | Dec 2008 | B2 |
7515805 | Smith et al. | Apr 2009 | B2 |
7519259 | Smith et al. | Apr 2009 | B2 |
7809233 | Smith et al. | Oct 2010 | B2 |
7809234 | Smith et al. | Oct 2010 | B2 |
7826706 | Vongseng et al. | Nov 2010 | B2 |
7841775 | Smith et al. | Nov 2010 | B2 |
7844159 | Solheid et al. | Nov 2010 | B2 |
7980768 | Smith et al. | Jul 2011 | B2 |
7995894 | Solheid et al. | Aug 2011 | B2 |
8005335 | Reagan et al. | Aug 2011 | B2 |
8184940 | Smith et al. | May 2012 | B2 |
8210756 | Smith et al. | Jul 2012 | B2 |
8401357 | Solheid et al. | Mar 2013 | B2 |
8538228 | Smith et al. | Sep 2013 | B2 |
8636421 | Smith et al. | Jan 2014 | B2 |
8811791 | Solheid et al. | Aug 2014 | B2 |
8818158 | Smith et al. | Aug 2014 | B2 |
9122019 | Smith et al. | Sep 2015 | B2 |
9201206 | Smith et al. | Dec 2015 | B2 |
9250408 | Solheid et al. | Feb 2016 | B2 |
9304276 | Solheid et al. | Apr 2016 | B2 |
9341798 | Smith et al. | May 2016 | B2 |
9411120 | Crain, Jr. | Aug 2016 | B2 |
9470851 | Smith et al. | Oct 2016 | B2 |
9541724 | Solheid et al. | Jan 2017 | B2 |
9784928 | Smith et al. | Oct 2017 | B2 |
10126509 | Smith et al. | Nov 2018 | B2 |
10151896 | Solheid et al. | Dec 2018 | B2 |
10168491 | Smith et al. | Jan 2019 | B2 |
10345539 | Smith et al. | Jul 2019 | B2 |
20010001270 | Williams Vigliaturo | May 2001 | A1 |
20020034290 | Pershan | Mar 2002 | A1 |
20020176681 | Puetz et al. | Nov 2002 | A1 |
20020181893 | White et al. | Dec 2002 | A1 |
20030002812 | Lampert | Jan 2003 | A1 |
20030113086 | Jun et al. | Jun 2003 | A1 |
20030174996 | Henschel et al. | Sep 2003 | A1 |
20030207601 | Adachi | Nov 2003 | A1 |
20040074852 | Knudsen et al. | Apr 2004 | A1 |
20040126069 | Jong et al. | Jul 2004 | A1 |
20040165852 | Erwin et al. | Aug 2004 | A1 |
20040228598 | Allen et al. | Nov 2004 | A1 |
20040264873 | Smith et al. | Dec 2004 | A1 |
20050002633 | Solheid et al. | Jan 2005 | A1 |
20050129379 | Reagan et al. | Jun 2005 | A1 |
20050163448 | Blackwell, Jr. et al. | Jul 2005 | A1 |
20050281526 | Vongseng et al. | Dec 2005 | A1 |
20060083475 | Grubish et al. | Apr 2006 | A1 |
20060115220 | Elkins, II et al. | Jun 2006 | A1 |
20060204200 | Lampert et al. | Sep 2006 | A1 |
20080019644 | Smith et al. | Jan 2008 | A1 |
20080019655 | Vongseng et al. | Jan 2008 | A1 |
20080025684 | Vongseng et al. | Jan 2008 | A1 |
20080075411 | Solheid et al. | Mar 2008 | A1 |
20080317425 | Smith et al. | Dec 2008 | A1 |
20090074372 | Solheid et al. | Mar 2009 | A1 |
20090087157 | Smith et al. | Apr 2009 | A1 |
20090190896 | Smith et al. | Jul 2009 | A1 |
20090196565 | Vongseng et al. | Aug 2009 | A1 |
20090285540 | Reagan et al. | Nov 2009 | A1 |
20090317047 | Smith et al. | Dec 2009 | A1 |
20100226615 | Reagan et al. | Sep 2010 | A1 |
20120301090 | Cline et al. | Nov 2012 | A1 |
20180267261 | Smith et al. | Sep 2018 | A1 |
20180372972 | Solheid et al. | Dec 2018 | A1 |
20180372973 | Solheid et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
2426610 | Apr 2001 | CN |
2625920 | Jul 2004 | CN |
0 743 701 | Nov 1996 | EP |
0 788 002 | Aug 1997 | EP |
0 871 047 | Oct 1998 | EP |
0 967 498 | Dec 1999 | EP |
0 975 180 | Jan 2000 | EP |
1 045 267 | Oct 2000 | EP |
63-229409 | Sep 1988 | JP |
2000-75180 | Mar 2000 | JP |
2000-193833 | Jul 2000 | JP |
2000-241629 | Sep 2000 | JP |
2000-241629 | Sep 2000 | JP |
2001-13365 | Jan 2001 | JP |
2001-27720 | Jan 2001 | JP |
2001-133634 | May 2001 | JP |
2001-235633 | Aug 2001 | JP |
1144266 | Jun 2002 | JP |
3307618 | Jul 2002 | JP |
2002-243981 | Aug 2002 | JP |
2002-258898 | Sep 2002 | JP |
2003-255186 | Sep 2003 | JP |
2005-91379 | Apr 2005 | JP |
3698579 | Sep 2005 | JP |
3761762 | Mar 2006 | JP |
2007-121609 | May 2007 | JP |
WO 9853347 | Nov 1998 | WO |
WO 9927404 | Jun 1999 | WO |
WO 0075706 | Dec 2000 | WO |
WO 0221182 | Mar 2002 | WO |
WO 02103429 | Dec 2002 | WO |
WO 04032532 | Apr 2004 | WO |
Entry |
---|
21 photographs showing what AFL Telecommunications LLC purports to be the ECOE cabinet referenced in the Prior art statement and the Supplemental prior art statement listed below. AFL Telecommunications LLC asserts the cabinet was on sale as early as 2001. |
24 photos of LambdaUnite® Blank Card; “LambdaUnite® MultiSerVice Switch (MSS)” brochure (2003); and “Lucent's LambdaUnite® Busts Out” official release (Jan. 29, 2002). |
ADC Telecommunications, Inc.'s 2nd Edition of Fiber Panel Products; front cover, Table of Contents, pp. 1-111, and back cover; revised Jul. 1996, Item No. 846. |
ADC Telecommunications, Inc.'s 6th Edition of Next Generation Frame (NGF) Product Family Ordering Guide; front cover, Table of Contents, pp. 1-41, and back cover; revised Feb. 2003, Item No. 820. |
ADC Telecommunications, Inc.'s Fiber Optic, Cable Assemblies and Accessories Brochure; front cover, Table of Contents, pp. 1-23, and back cover; revised Apr. 2003, Item No. 100300. |
ADC Telecommunications, Inc.'s OMX™ 600, Optical Distribution Frame Brochure; front cover, Table of Contents, pp. 1-14, and back cover; revised Feb. 2001, Item No. 854. |
ADC Telecommunications, Inc.'s Outside Plant, Fiber Cross-Connect Solutions Products Brochure; front cover, Table of Contents, pp. 1-48, and back cover.; revised Jun. 2002, Item No. 1047. |
ADC Telecommunications, Inc.'s Secure Fiber Entrance Terminal (SFET) Brochure; front cover, pp. 2-7, and back cover; revised May 1998, Item No. 1005. |
ADC Telecommunications, Inc., brochure titled Value Added module System, © 2000 (29 pages). |
ADC Telecommunications, Inc., brochure titled Value-Added module System: Optical Distribution Frame (OAIX™ 600), © 2001 (12 pages). |
AMP Inc. catalog entitled “Fiber Optic Products,” front and back covers and p. 59, (4 pgs.) ( © 1991). |
Assembly reference drawings having drawing No. 1067101, dated Aug. 17, 1999 (2 pages). |
AT&T Network Systems catalog entitled “Fiber Optic Products Innovation for wide ranging applications,” front and back covers and pp. 6-1 through 6-16 (18 pages) ( © 1995). |
ATI Optique Catalog, ATI Optique Division of TI electronique, Version 2.6, released Mar. 27, 2002 (50 pages). |
Brochure from Amphenol Corp. entitled “Amphenol® 954 Series one piece SC Connector,” 2 pgs. (1990). |
Certified English Translation of JP2000-193833 by David Baldwin of Park IP Translations (26 pages). |
Certified English Translation of JP2000-193833 by Frank McGee of Morningside IP (24 pages). |
Certified English Translation of JP2000-241629 by Frank McGee of Morningside IP (33 pages). |
Certified English Translation of JP2000-241629 by Jonathan Merz (36 pages). |
Connectorized splitter drawings having drawing No. 1067961, dated Aug. 18, 1999 (8 pages). |
Couplers: Couplers WDMS Packaging, Alcoa Fujikura Ltd., Telecommunications Division, © 2000 (5 pp.) showing AFL splitters. |
Drawings showing an ADC fiber storage trough concept including presentation entitled “Fujitsu Fiber Management Project Fiber Trough Concept”, 11 pages (Jun. 2002). |
Drawings showing another ADC fiber storage trough concept including presentation entitled “Fujitsu Fiber Management Project Fiber Trough Concept” by Kathy Barnes (7 pages), photos of trough disclosed in presentation by Kathy Barnes installed in a rack (3 pages) and presentation entitled “Fujitsu Fiber Management Project Fiber Trough Concept” by Dan Mertesdorf (9 pages), 19 total pages (Apr. 2002). |
European Search Report for Application No. 09011819.1 dated Nov. 19, 2009. |
European Search Report for Application No. 10158615.4 dated Jun. 9, 2010. |
European Search Report and written opinion cited in Application No. 10158615.4 dated Oct. 4, 2010 (12 pages). |
European Search Report and written opinion cited in Application No. 10183098.2 dated Dec. 14, 2010 (7 pages). |
European Search Report for Application No. 11166490.0 dated Jul. 4, 2011. |
European Search Report for Application No. 10181631.2 dated Sep. 5, 2011. |
Fiber distribution drawings having drawing No. 1069967, dated Aug. 17, 1999 (2 pages). |
Fifth Preliminary Amendment filed Jun. 19, 2008 and Notice of Allowance dated Jul. 17, 2017 for U.S. Appl. No. 11/729,310. |
FONS Corporation's MDC Series Rack or Wall Mount Enclosures product sheet, 3 pages, (2002). |
FONS Corporation's Modular Distribution Cabinets Rack Mount Enclosures, Model MDC-7, product sheet, 2 pages (2005) (shows the same device as shown in FONS Corporation's MDC Series Rack or Wall Mount Enclosures product sheet (above)). |
FONS Corporation's Technical Drawing No. 11669, Rev. D, of Distribution Cabinet Assembly MFDC-7, 1 page (technical drawing depicting the device shown in FONS Corporation's Modular Distribution Cabinets Rack Mount Enclosures, which was advertised as early as 2005 (above)). |
Hasegawa et al., 100GHz-48CH Athermal AWG with a Novel Temperature Insensitive Principle, National Fiber Optics Engineers Conference, 2003 Technical Proceedings, pp. 801-808. |
Hecht, J., “Connectors,” Understanding Fiber Optics, Chapter 13, Third Edition, pp. 251-265 (Copyright 1999). |
HRS catalog entitled “Optical Fibre Connectors,” front and back covers and pp. 16, 17 and 49 (5 pages) (Mar. 1991). |
Installation drawings having drawing No. 1069965, dated Aug. 14, 1999 (3 pages). |
Iwano, S. et al., “MU-type Optical Fiber Connector System,” NTT Review, vol. 9, No. 2, pp. 63-71 (Mar. 1997). |
LC Extraposition Dust Cap, Zhejiang Yingfeng Optical Communication Technology, http://www.nhyingfeng.com/en/show.asp?id=438, 5 pages (Copyright 2016). |
LC Molded Connector Dust Cap—100 Pack, Cables Plus USA, https://store.cablesplususa.com/lcmocoducapl.html, 2 pages (Copyright 2003-2018). |
Mini-SAS Cables, VANDESAIL 0.5m Internal Mini-SAS to 4x: Amazon.co.uk Electronics, https://www.amazon.co.uk/Mini-SAS-VANDESAIL-Internal-SAS-Breakout-Cable/dp/B01HZFUNVS, 7 pages (2017). |
Nexans, Cross-Connect Cabinet III: Plastic Watertight Cabinet for FTTH Applications, dated 2002 (2 pages). |
Nexans, Cross-Connect Cabinet V: Metallic Watertight Cabinet for FTTH Applications, dated 2002 (2 pages). |
NTT Int'l Fiber Termination Module (FTM) & Premises Optical Distribution Cabinets (PODC) product brochure, 3 pages, undated. |
Office Action and Certified translation thereof cited by Japanese Patent Examiner in Japanese application No. 2006-517505, which is equivalent to copending and coassigned U.S. Appl. No. 12/276,886, filed Nov. 24, 2008, by Smith et al., titled “Telecommunications Connection Cabinet.” |
Optical fiber coupler review, Technical Report 2001, showing Sumitomo Osaka Cement Co. Ltd's Optical Coupler (pp. 41-42). |
“Retainer Staright [sic] Removable SC,” which shows a latch design, 2 pages (Jan. 17, 2006). |
“Senko Advanced Components: SC Connector Kits,” printout from website of Senko Advanced Components at www.senko.com/fiberoptic/detail_product.php?product=80 available at least as early as Mar. 26, 2003 (obtained Nov. 7, 2017 via Internet Archive Wayback Machine). |
Sugita, E. et al., “SC-Type Single-Mode Optical Fiber Connectors,” Journal of Lightwave Technology, vol. 7, No. 11, pp. 1689-1696 (Nov. 1989). |
Tachikura et al., Newly Developed Optical Fiber Distribution System and Cable Management in Central Office, International Wire & Cable Symposium, Proceedings of the 50th IWCS, pp. 98-105. |
Technical Specifications, Seiko Instruments Inc., SSC-PE Series Single-Mode SC Connector Plug: (published in 2000). |
Complaint relating to Civil Action No. 08-CV-5222-RMK-JJK, filed Sep. 19, 2008 (8 pages). |
First Amended Complaint relating to ADC Telecommunications, Inc. v. Tyco Electronics Corp., Civil Action No. 08-CV-05222, filed Dec. 8, 2008. |
Answer, Affirmative Defenses, and Counter Claims to the First Amended Complaint relating to ADC Telecommunications, Inc. v. Tyco Electronics Corp., Civil Action No. 08-CV-05222, filed Mar. 13, 2009. |
ADC's Reply to Counterclaims and Counterclaims relating to ADC Telecommunications, Inc. v. Tyco Electronics Corp., Civil Action No. 08-CV-05222, filed Apr. 2, 2009. |
Stipulated Dismissal of all Claims and Counterclaims, filed Oct. 30, 2009, relating to ADC Telecommunications, Inc. v. Tyco Electronics Corp., Civil Action No. 08CV-05222. |
Complaint relating to Civil Action No. 08-CV-02234-DWF-JSM, filed Jun. 13, 2008 (7 pages). |
First Amended Complaint, ADC Telecommunication, Inc. and Fiber Optic Network Solutions Corp. v. AFL Telecommunications LLC, Civil Action No. 0:08-cv-02234-DWF-JSM, 8 pages (Aug. 14, 2008). |
Defendant's Answer and Defenses in Response to the First Amended Complaint, ADC Telecommunication, Inc. and Fiber Optic Network Solutions Corp. v. AFL Telecommunications LLC, Civil Action No. 0:08-cv-02234-DWF-JSM, 14 pages (Dec. 8, 2008). |
Amended Order for Pretrial Conference, ADC Telecommunication, Inc. and Fiber Optic Network Solutions Corp. v. AFL Telecommunications LLC, Civil Action No. 0:08-cv-02234-DWF-JSM, 5 pages (Dec. 11, 2008). |
Prior art statement submitted by AFL Telecommunications LLC in Civil Action No. 08-CV-02234-DWF-JSM on May 11, 2009 (145 pages). |
Supplemental prior art statement submitted by AFL Telecommunications LLC in Civil Action No. 08-Cv-02234-DWF-JSM on May 19, 2009 (155 pages). |
Response to prior art statement submitted by ADC Telecommunications, Inc. in Civil Action No. 08-CV-02234-DWF-JSM on Aug. 18, 2009 (131 pages). |
Second supplemental prior art statement submitted by AFL Telecommunications LLC in Civil Action No. 08-CV-02234-DWF-JSM on Nov. 10, 2009 (8 pages). |
Joint Claim Construction Statement, relating to ADC Telecommunications, Inc. v, AFL Telecommunications LLC, Civil Action No. 08-CV-02234, filed Nov. 17, 2009 (40 pages). |
Plaintiff ADC's Markman Brief (Redacted Version), filed Feb. 9, 2010, relating to ADC Telecommunications, Inc. v, AFL Telecommunications LLC, Civil Action No. 08-CV-02234-DWF-JSM (99 pages). |
Defendant AFL Telecommunications LLC's Memorandum in Support of Proposed Claim Construction, (AFL's Markman Brief), filed Feb. 9, 2010, relating to ADC Telecommunications, Inc. v, AFL Telecommunications LLC, Civil Action No. 08-CV-02234 (42 pages). |
Plaintiff ADC's Responsive Markman Brief, filed Mar. 9, 2010, relating to ADC Telecommunications, Inc. v, AFL Telecommunications LLC, Civil Action No. 08-CV-02234 (21 pages). |
Defendant AFL Telecommunications LLC's Answering Claim Construction Brief, filed Mar. 9, 2010, relating to ADC Telecommunications, Inc. v, AFL Telecommunications LLC, Civil Action No. 08-CV-02234 (60). |
Stipulated Dismissal of All Claims and Counterclaims, ADC Telecommunication, Inc. and Fiber Optic Network Solutions Corp. v. AFL Telecommunications LLC, Civil Action No. 0:08-cv-02234-DWF-JSM, 2 pages (Jul. 27, 2010). |
Order for Dismissal with Prejudice, ADC Telecommunication, Inc. and Fiber Optic Network Solutions Corp. v. AFL Telecommunications LLC, Civil Action No. 0:08-cv-02234-DWF-JSM, 1 page (Jul. 28, 2010). |
Order for Dismissal with Prejudice, ADC Telecommunication, Inc. and Fiber Optic Network Solutions Corp. v. AFL Telecommunications LLC, Civil Action No. 0:08-cv-02234-DWF-JSM, 1 page (Aug. 6, 2010). |
Complaint—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Jan. 2017). |
Exhibit A to Complaint—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Jan. 2017). |
Exhibit B to Complaint—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Jan. 31, 2017). |
Exhibit C to Complaint—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Jan. 31, 2017). |
Exhibit D to Complaint—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Jan. 31, 2017). |
Exhibit E to Complaint—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Jan. 31, 2017). |
Answer to Complaint—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Apr. 24, 2017). |
Initial Claim Charts—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Jul. 31, 2017). |
Plaintiff's Response to First Set of Interrogatories (Nos. 1-15)—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Sep. 14, 2017) |
Plaintiff's Supplemental Response to Interrogatory No. 2—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Sep. 22, 2017) |
Preliminary Invalidity Claim Charts and Disclosures—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn, Oct. 6, 2017) |
Exhibit 1 to Preliminary Invalidity Claim Charts and Disclosures—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn, Oct. 6, 2017) |
Exhibit 2 to Preliminary Invalidity Claim Charts and Disclosures—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn, Oct. 6, 2017) |
Exhibit 3 to Preliminary Invalidity Claim Charts and Disclosures—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn, Oct. 6, 2017) |
Exhibit 4 to Preliminary Invalidity Claim Charts and Disclosures—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn, Oct. 6, 2017) |
Exhibit 5 to Preliminary Invalidity Claim Charts and Disclosures—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn, Oct. 6, 2017) |
Exhibit 6 to Preliminary Invalidity Claim Charts and Disclosures—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn, Oct. 6, 2017) |
Plaintiff's Memorandum in Support of Motion to Compel—CommScope Technologies LLC v. Clearfield, Inc., Case No. 17-cv-00307 (D. Minn., Oct. 9, 2017) |
Defendant Clearfield Inc. 's Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 51 pages (Dec. 11, 2017) |
Exhibit 1 to Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 42 pages (Dec. 11, 2017) |
Exhibit 2 to Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 50 pages (Dec. 11, 2017) |
Exhibit 3 to Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 32 pages (Dec. 11, 2017) |
Exhibit 4 to Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 42 pages (Dec. 11, 2017) |
Exhibit 5 to Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 69 pages (Dec. 11, 2017) |
Exhibit 6 to Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 59 pages (Dec. 11, 2017) |
Table A to Revised Preliminary Invalidity Claim Charts and Disclosures, CiVil Action No. 17-cv-00307-PJS-BRT, 59 pages (Dec. 11, 2017) |
Defendant Clearfield Inc. 's Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 65 pages (Jan. 12, 2018) |
Exhibit 1 to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 61 pages (Jan. 12, 2018). |
Exhibit 2 to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 65 pages (Jan. 12, 2018). |
Exhibit 3 to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 50 pages (Jan. 12, 2018). |
Exhibit 4 to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 60 pages (Jan. 12, 2018). |
Exhibit 5 to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 86 pages (Jan. 12, 2018). |
Exhibit 6 to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 79 pages (Jan. 12, 2018). |
Commscope's Response to Clearfield's Second Revised Invalidity Claim Charts and Disclosure, Civil Action No. 17-cv-00307-PJS-BRT, 105 pages (Jan. 19, 2018) |
Exhibit A to Response to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 37 pages (Jan. 19, 2018) |
Exhibit B to Response to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 31 pages (Jan. 19, 2018) |
Exhibit C to Response to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 37 pages (Jan. 19, 2018) |
Exhibit D to Response to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 36 pages (Jan. 19, 2018) |
Exhibit E to Response to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 38 pages (Jan. 19, 2018) |
Exhibit F to Response to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 46 pages (Jan. 19, 2018) |
Joint Status Report, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 11 pages (Feb. 9, 2018. |
Joint Status Report Exhibit B, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 33 pages (Feb. 9, 2018). |
Joint Status Report Exhibit B, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 21 pages (Feb. 9, 2018). |
Stipulation of Dismissal, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 2 pages (Feb. 19, 2018). |
Order of Dismissal, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 1 page (Feb. 20, 2018). |
Petition for Inter Partes Review of U.S. Pat. No. 7,198,409—Case No. IPR2018-00003 (Oct. 6, 2017). |
Ex 1003—Declaration of Michael Lebby, Ph.D., in Support of Petition for Inter Partes Review of U.S. Pat. No. 7,198,409 (Oct. 6, 2017). |
Ex. 1004—JP 2000-241629A to Hirao et al. (“Hirao”) with certified translation. |
Ex. 1005—U.S. Pat. No. 6,554,485 (“Beaty”). |
Ex. 1006—“SSC-PE Series Single-Mode SC Connector Plugs: Technical Specifications,” Seiko Instruments, Inc., copyright 2002 (“Seiko Specification”). |
Ex. 1008—“JIS C 5973: F04 Type connectors for optical fiber cables,” Japanese Standards Association, 1998 (“JIS C 5973 Standard”). |
Ex. 1009—“Senko Advanced Components: SC Connector Kits,” printout from website of Senko Advanced Components at www.senko.com/fiberoptic/detail_product.php?product=80 available at least as early as Mar. 26, 2003 (obtained Oct. 5, 2017 via Internet Archive Wayback Machine) (“Senko Data Sheet”. |
Ex. 1010—“Corning Cable Systems UniCam™ SC/ST-Compatible/FC Connector Assembly Instructions Using FBC-006 Cleaver,” Corning Cable Systems, Inc., May 2001 (“Corning Data Sheet”). |
Preliminary Response by Patent Owner Under 37 C.F.R. § 42.107, Paper No. 5, Case No. IPR2018-00003, 77 pages (Jan. 12, 2018). |
Exhibit 2001 to Paper No. 5—Declaration of Casimer Decusatis in Support of Patent Owner's Preliminary Response, Case No. IPR2018-00003, 50 pages (Jan. 11, 2018) |
Exhibit 2002 to Paper No. 5—True and correct information downloaded from the website https://www.commscope.com/catalog/solution_wn_centralofc_hdfullfrontodf/2147496441/pdf/part/63205/CS6174-000_FIST-GR3-R-300_300-22-2.pdf on Jan. 5, 2018 |
Exhibit 2003 to Paper No. 5—True and correct information downloaded from the website http://wbtnetworks.com.au/product/high-density-optical-distribution-frame-00-series/ on Jan. 5, 2018. |
Exhibit 2004 to Paper No. 5—True and correct information downloaded from the website https://www.seeclearfield.com/products/categoiy/frames/fxhd-frames.html on Jan. 5, 2018. |
Exhibit 2005 to Paper No. 5—True and correct information downloaded from the website http://www.lxtelecom.com/fiber-optics/optical-fiber-distribution-frames/hd-odf-gpx82-5.html on Jan. 5, 2018. |
Petition for Inter Partes Review of U.S. Pat. No. 7,809,233—Case No. IPR2018-00154 (Nov. 7, 2017). |
Exhibit 1001 to IPR IPR2018-00154—U.S. Pat. No. 7,809,233 (“the '233 Patent”). |
Exhibit 1002 to IPR IPR2018-00154—Prosecution History of the '233 Patent (“the Prosecution History”). |
Exhibit 1003 to IPR IPR2018-00154—Declaration of Dr. Michael Lebby. |
Exhibit 1004 to IPR IPR2018-00154—JP 2000-193833A to Oda et al. (“Oda”) with certified translation. |
Exhibit 1005 to IPR IPR2018-00154—JP 2000-241629A to Hirao et al. (“Hirao”) with certified translation. |
Exhibit 1006 to IPR IPR2018-00154—U.S. Pat. No. 6,983,095 to Reagan et al. (“Reagan”). |
Exhibit 1007 to IPR IPR2018-00154—U.S. Pat. No. 6,256,443 to Uruno et al. (“Uruno”). |
Exhibit 1008 to IPR2018-00154—Excerpt from CommScope's Initial Claim Charts (Exhibit C) served Jul. 31, 2017, in CommScope Technologies LLC v. Clearfield, Inc.,Case No. 0:12-cv-00307-PJS-BRT (D. Minn.). |
Exhibit 1009 to IPR2018-00154—“SSC-PE Series Single-Mode SC Connector Plugs: Technical Specifications,” Seiko Instruments, Inc., copyright 2002 (“Seiko Specification”). |
Exhibit 1010 to IPR2018-00154—“JIS C 5973: F04 Type connectors for optical fiber cables,” Japanese Standards Association, 1998 (“JIS C 5973 Standard”). |
Exhibit 1011 to IPR2018-00154—“Senko Advanced Components: SC Connector Kits,” printout from website of Senko Advanced Components at www.senko.com/fiberoptic/detail_product.php?product=80 available at least as early as Mar. 26, 2003 (obtained Oct. 5, 2017 via Internet Archive Wayback Machine) (“Senko Data Sheet”). |
Exhibit 1012 to IPR2018-00154—“Corning Cable Systems UniCam™ SC/ST—Compatible/FC Connector Assembly Instructions Using FBC-006 Cleaver,” Corning Cable Systems, Inc., May 2001 (“Corning Data Sheet”). |
Preliminary Response by Patent Owner Under 37 C.F.R. § 42.107, Case No. IPR2018-00154, 60 pages (Feb. 16, 2018). |
Exhibit 2001—Declaration of Casimer DeCusatis in Support of Patent Owner's Preliminary Response, Case No. PR2018-00154, 39 pages (Feb. 13, 2018) |
Exhibit 2002—Declaration of Michael Lebby, Ph.D., in Support of Petition for Inter Partes Review of U.S. Pat. No. 8,705,929 (Ex. 1003 in Clearfield, Inc. v. CommScope Technologies LLC , IPR2017-02122), Case No. PR2018-00154, 141 pages (Feb. 16, 2018). |
Exhibit 2003—Exhibit 10 to Clearfield Inc.'s Second Revised Preliminary Invalidity Claim Charts and Disclosures, served on Jan. 12, 2018, Case No. PR2018-00154, 43 pages (Feb. 16, 2018). |
Number | Date | Country | |
---|---|---|---|
20200003967 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15982606 | May 2018 | US |
Child | 16504894 | US | |
Parent | 14999575 | May 2016 | US |
Child | 15982606 | US | |
Parent | 14251035 | Apr 2014 | US |
Child | 14999575 | US | |
Parent | 13961105 | Aug 2013 | US |
Child | 14251035 | US | |
Parent | 13460042 | Apr 2012 | US |
Child | 13961105 | US | |
Parent | 12897424 | Oct 2010 | US |
Child | 13460042 | US | |
Parent | 12392575 | Feb 2009 | US |
Child | 12897424 | US | |
Parent | 12194328 | Aug 2008 | US |
Child | 12392575 | US | |
Parent | 11835882 | Aug 2007 | US |
Child | 12194328 | US | |
Parent | 11399944 | Apr 2006 | US |
Child | 11835882 | US | |
Parent | 10871555 | Jun 2004 | US |
Child | 11399944 | US |