The present invention relates to telecommunications distribution systems, e.g., optical fiber distribution systems, which may include a rack and elements which populate the rack, wherein such fiber optic elements can include fiber terminations, patching, fiber splitters, and fiber splices. More specifically, the present invention relates to a mounting system for fixedly stacking two or more such telecommunications distribution elements along a vertical column or stack.
Optical fiber distribution systems may include fiber terminations and other equipment which is typically rack mounted. Various concerns exist for the optical fiber distribution systems, including density, ease of use and mounting, and cable management. There is a continuing need for improvements in the telecommunications distribution area, especially optical fiber distribution area.
One implementation of a system in accordance with the examples of the disclosure includes a building block element mountable to a rack or other structure. The element includes a chassis, and a moveable tray. The tray is moveably mounted to chassis with a slide mechanism that allows the tray to slide relative to the chassis, wherein the tray may house equipment for fiber terminations, patching, splitting, and splicing.
The elements can be stacked in a column with each tray slidable in a horizontal direction. In the case of a column of elements, a selected tray is pulled outward to access the desired tray.
In an example embodiment of a fiber optic distribution element, one side of each element can be for patch cables, and the opposite side can be for cable termination of an incoming cable, such as a distribution cable or a feeder cable. The elements can be configured as desired and form building blocks for an optical fiber distribution system (ODF). When the elements are mounted in a column in a rack, the cables can be placed in vertical cable guides to enter and exit the selected element. An example rack may be front accessible. However, the elements shown and described can be used in other racks, frames, cabinets or boxes including in arrangements where rear access is desirable or useful.
According to an aspect of the disclosure, the disclosure is directed to a mounting system for fixedly stacking two or more such telecommunications elements along a vertical column or stack, wherein the stacked elements can then be mounted on further fixtures such as racks, frames, cabinets or boxes.
According to another aspect, the present disclosure relates to a mounting system for locking two pieces of telecommunications equipment so as to prevent relative sliding between the two pieces of telecommunications equipment and relative separation between the two pieces of telecommunications equipment that is in a direction generally perpendicular to the direction of the relative sliding. The mounting system includes a first locking feature in the form of a stud defining a stem portion and a flange portion having a larger profile than the stem portion, a second locking feature in the form of a slot defining a receiver portion and a retention portion, wherein the receiver portion is sized to accommodate the flange portion of the stud and the retention portion is sized to accommodate the stem portion but not the flange portion of the stud, and a third locking feature configured to prevent relative sliding between the two pieces of telecommunications equipment once the stem portion of the stud has been slid through the retention portion of the slot and the flange portion is out of alignment with the receiver portion of the slot. According to one example embodiment, the third locking feature may be provided in the form of a removable, snap-fit structure. According to another example embodiment, the third locking feature may be provided in the form of a cantilever arm that is an integral part of the telecommunications equipment, the cantilever arm having a portion that abuts the stud for preventing sliding movement of the stud.
According to another aspect, the disclosure is directed to a telecommunications distribution element that includes a mounting system that allows the distribution element to be fixedly stacked along a vertical column or stack with another similarly configured element.
According to another aspect, the disclosure is directed to an optical fiber distribution element comprising a top surface, a bottom surface, an interior region defined between the top surface and the bottom surface, the interior region including fiber optic connection locations, a first locking feature in the form of a stud extending from the top surface, the stud defining a stem portion and a flange portion having a larger profile than the stem portion, and a second locking feature in the form of a slot at the bottom surface, the slot defining a receiver portion and a retention portion, wherein the receiver portion is sized to accommodate the flange portion of the stud and the retention portion is sized to accommodate the stem portion but not the flange portion of the stud.
According to another aspect of the disclosure, the disclosure is directed to a method of stacking two or more distribution elements along a vertical column.
According to another aspect, the disclosure is directed to a method of locking two pieces of telecommunications equipment so as to prevent relative sliding between the two pieces of telecommunications equipment and relative separation between the two pieces of telecommunications equipment that is in a direction generally perpendicular to the direction of the relative sliding. The method includes aligning a flange portion of a stud of a first piece of telecommunications equipment with a receiver portion of a slot of a second piece of telecommunications equipment, passing the flange portion of the stud through the receiver portion of the slot, sliding a stem portion of the stud through a retention portion of the slot to bring the flange portion out of alignment with the receiver portion of the slot, and providing a lock that prevents relative sliding between the first and second pieces of telecommunications equipment so as to prevent sliding of the stem portion of the stud through the retention portion of the slot.
According to another aspect, the disclosure is directed to an optical fiber distribution element comprising a chassis, an optical device mounted to the chassis, the optical device including a plurality of cables extending from the optical device into the chassis, and a cable management device mounted to the chassis. The cable management device includes a plurality of radius limiters in the form of spools in a stacked arrangement for managing the cables extending from the optical device for further connection within the chassis, wherein a first of the spools defines a spool wall having a different wall length than that of a second of the spools, wherein a first of the plurality of cables is routed around the first of the spools and a second of the plurality of cables is routed around the second of the spools that has a different spool wall length than that of the first of the spools.
According to another aspect, the disclosure is directed to an optical fiber distribution element comprising a chassis, a tray slidably mounted to the chassis, the tray movable between a closed position and an open position, an optical device mounted to the chassis, the optical device including a plurality of cables extending from the optical device into the tray of the chassis, a first cable management device mounted within the tray, the cable management device including a plurality of radius limiters in the form of spools in a stacked arrangement for managing the cables extending from the optical device for further connection within the tray, wherein a first of the spools defines a spool wall having a different wall length than that of a second of the spools, wherein a first of the plurality of cables is routed around the first of the spools and a second of the plurality of cables is routed around the second of the spools that has a different spool wall length than that of the first of the spools, and a second cable management device for guiding the cables from the optical device to the first cable management device, wherein the second cable management device is configured to move in synchronized movement relative to both the chassis and the tray to maintain fiber slack.
According to another aspect, the disclosure is directed to a cable management device for managing a plurality of cables extending between two connection points on a fiber optic chassis, the cable management device comprising a plurality of radius limiters defined by spools arranged in a stacked arrangement, each spool including a wall defining a wall length that extends between a first end and a second opposite end of the cable management device, wherein a first of the spools defines a spool wall length that is different than that of a second of the spools.
According to yet another aspect, the disclosure is directed to a method of managing a plurality of the same length cables extending from an optical device toward connection locations within a telecommunications fixture on which the optical device is mounted, the method comprising routing at least two of the cables around two different radius limiters that are defined by spools provided in a stacked arrangement, each spool of the two defining a spool wall having a different wall length than the other for defining a different length cable path from the optical device to the connection locations.
Referring now to
Each element 10 holds fiber terminations, or other fiber components including fiber splitters and/or fiber splices. In the case of fiber terminations, incoming cables are connected to outgoing cables through connectorized cable ends which are connected by adapters, as will be described below.
Each element includes a chassis 20 and a movable tray 24. Tray 24 is movable with a slide mechanism 30 including one or more gears 32 and a set of two toothed racks or linear members 34.
Slide mechanism 30 provides for synchronized movement for managing the cables extending to and from tray 24. Entry points 36 on either side of chassis 20 allow for fixation of the input and output cables associated with each element 10. The radius limiters 38 associated with each slide mechanism 30 move in synchronized movement relative to chassis 20 and tray 24 to maintain fiber slack, without causing fibers to be bent, pinched, or pulled.
Each tray 24 includes mounting structure 50 defining one or more of fiber terminations, fiber splitters, fiber splices, or other fiber components. As shown, mounting structure 50 holds adapters 52 which allow for interconnection of two connectorized ends of cables. Each tray 24 includes one or more frame members 56. In the example shown, two frame members 56 are provided. As illustrated, each frame member 56 is T-shaped. Also, each tray 24 includes two frame members 56 which are hingedly mounted at hinges 58. A top frame member 62 is positioned above a bottom frame member 64. The mounting structure 50 associated with each frame member 62, 64 includes one or more integrally formed adapter blocks 70. Adapter blocks 70 include a plurality of adapter ports for interconnecting to fiber optic connectors. A pathway 76 defines a generally S-shape from radius limiters 38 to adapter blocks 70. As shown, pathway 76 includes an upper level 78 and a lower level 80 in the interior. A portion 84 of pathway 76 is positioned adjacent to hinges 58 to avoid potentially damaging cable pull during pivoting movement of frame members 56. Flanges 86 and radius limiters 90 help maintain cables in pathways 76.
Tray 24 includes openings 96 to allow for technician access to the cable terminations at adapter blocks 70. In addition, the T-shapes of frame members 56 further facilitate technician access to the connectors.
Cables extending to and from element 10 can be affixed with a cable mount 100 as desired. Additional protection of the fiber breakouts can be handled with cable wraps 102. Radius limiters 106 can be additionally used to support and protect the cables.
The wrap 102 shown in
Referring now to
If desired, more than one feeder cable can supply cabling to more than one element 10.
Referring now to
A pathway 276 extends from either side from tray 224 to supply cables to each of trays 224. An upper level 278 and a lower level 280 supply the respective frame members 256 with cabling. A general S-shaped pathway 276 is defined wherein the pathway 276 passes close to hinges 258.
A dovetail 288 is used to hold cable mounts 286 and radius limiters 284.
An opening 290 in tray 224 allows for connector access by the technician. Similarly, openings 262 on each frame member 256 allow for technician access to the individual connectors.
To form a block 292 of plural elements 210, bars 294 and fasteners 296 are used. Bars 294 give a small spacing between each element 210.
Referring now to
Referring now to
Referring now to
It should be noted that although the universal mounting mechanism 500 of the present disclosure has been shown as being used on a piece of telecommunications equipment such as the optical fiber distribution element 510 (which has similar features to those elements 210 and 410 of
Still referring to
The universal mounting mechanism 500 generally includes the right and left universal mounting brackets 502, release handles 506 for each of the mounting brackets 502, a cover 508 for each of the mounting brackets 502, and the locking spring 504 for each of the mounting brackets 502.
In the depicted embodiment, each of the universal mounting brackets 502 is designed for mounting two stacked elements 510. Thus, each of the right and left mounting brackets 502 includes two latch openings 512 adjacent the front 514 of the mounting bracket 502 (one for each element 510) and upper and lower mounting tabs 516 at the rear 518 of the bracket 502.
In the given embodiment, the mounting tabs 516 at the rear 518 of the mounting brackets 502 are designed to slidably mount the brackets 502 to fixtures such as telecommunications racks along a sideway or lateral direction. As such, in mounting elements 510 to a rack, the universal mounting brackets 502 are initially slid into openings provided on the rack using the mounting tabs 516. Once the brackets 502 are secured on a rack, the elements 510 can be slid onto the brackets 502 in a sliding fashion, as will be described in further detail. The latch openings 512 of the brackets 502 are, then, used to lock the elements 510 in place.
In using the universal mounting mechanism 500 of the present disclosure, each element 510, on each of the right and left sides thereof, defines a bracket channel 520. The channel 520 is configured to slidably receive the front portions 514 of the mounting brackets 502. The cover 508 closes the bracket channel 520 to the exterior of each element 510. The cover 508 defines a deflection ramp 522 at the inner face thereof, the purpose of which will be discussed in further detail below. The locking spring 504 is mounted to each element 510 such that an end portion 524 of the locking spring 504 can flex in and out of the latch opening 512 of the universal mounting bracket 502. As shown in the cross-sectional views of
The element 510, at this point, is prevented from being pulled out forwardly. The locking spring 504 abuts an inner front face 532 defined by the latch opening 512 of the mounting bracket 502 to prevent removal of the chassis from a rack.
The release handle 506 is positioned between the locking spring 504 and the cover 508. The release handle 506 has a grip portion 534 for pulling the release handle 506 forwardly to release the chassis for removal from the mounting brackets 502. The release handle 506 also defines a deflection tab 536 at the rear end 538. The deflection tab 536 is configured to ride over the deflection ramp 522 of the cover 508 when the grip portion 534 is pulled forwardly. The interaction of the deflection tab 536 and the deflection ramp 522 causes lateral inward movement of the deflection tab 536, which in turn, pushes the spring 504 laterally inwardly, clearing the end portion 524 of the locking spring 504 from the latch opening 512. In this manner, when the release handle 506 is pulled forwardly, the interaction of the deflection tab 536 and the deflection ramp 522 causes the release of the spring 504, and thus the entire element 510, from the mounting bracket 502. The chassis and the entire element 510 can be pulled forwardly from the mounting bracket 502.
In using the universal mounting mechanism 500 on the element 510, a tray of the element 510 has to be pulled from its chassis to allow enough room for gripping the release handle 506 as seen in
The release handle 506 defines a positive stop 540 that is configured to abut a stop face 542 defined by a portion of a slide mechanism 544 within the element 510. The abutment of the stop 540 with the stop face 542 prevents further forward pulling of the release handle 506.
The universal mounting mechanism 500 includes a design that may be retrofitted on a number of telecommunications chassis. As long as a bracket channel 520 is provided in the chassis and the chassis includes enough spacing on the sides thereof for receiving a locking spring 504, a release handle 506, and a cover 508 for interacting with the release handle 506 and closing the mounting mechanism 500 to the exterior of the chassis, the universal mounting mechanism 500 can be utilized on any given chassis.
Also, as noted above, the rear portion 518 of the mounting brackets 502 may be modified to fit different types of mounting configurations on different types of telecommunications racks, frames, or cabinets. The mounting arrangement of the brackets 502 of the present disclosure that utilizes the tabs 516 for lateral slide-locking is simply one example of a mounting arrangement. Also, even though the mounting mechanism 500 of the present disclosure has been shown with mounting brackets 502 that can accommodate two vertically stacked elements 510, the mounting brackets 502 can be modified to receive other number of chassis, including a single chassis per bracket 502.
In the given embodiment, the locking spring 504 is fixed to the chassis with fasteners 545, allowing the end portion 524 of the locking spring 504 to be flexible. Other fixing methods may be used for the locking spring 504 in other types of telecommunications equipment.
Referring now to
The U-shaped radius limiter 638 defines an inner end 621 and an outer end 623 and a divider 625 extending from adjacent the inner end 621 to adjacent the outer end 623. The outer end 623 of the radius limiter 638 cooperates with a cable guide 684 that is mounted to the chassis 620 of the element 610 for leading cables to and from the tray 624 of the element 610.
The divider 625 of the radius limiter 638 forms two separate troughs 627, 629 for the radius limiter 638. The two troughs 627, 629 isolate and separate the cables (e.g., coming in and going out) of the element 610 into two distinct paths. According to one example cable routing configuration, the two troughs 627, 629 may guide the cables to the upper and lower levels 678, 680 defined toward the rear of the tray 624 while maintaining the S-shaped pathway 676 created within the element 610. The divider 625 of the radius limiter 638 includes a plurality of cable management tabs 631 mounted thereon for retaining the cables within the troughs 627, 629. A similar tab 633 is also found at the rear of the tray 624 for retaining the cables that are being lead to the upper and lower levels 678, 680. The tabs 631 and 633 may be removable, snap-on structures.
The tabs 631 and 633 cooperate with additional cable management fingers 635 defined both on the radius limiter 638 and toward the rear of the tray 624 in retaining the cables within the S-shaped pathway 676.
Referring now to
It should be noted that although the mounting system 700 of the present disclosure has been shown as being used on a piece of telecommunications equipment such as the optical fiber distribution element 610 (which has similar features to those elements 10, 210, 410, and 510 of
Still referring to
According to an example embodiment, the mounting system 700 includes a first locking feature 701 in the form of at least one stud 702 (e.g., a plurality of studs 702 as depicted) that is provided at a top surface 690 of an element 610 and a second locking feature 703 in the form of at least one slot 704 (e.g., a plurality of slots 704 as depicted) that is provided at a bottom surface 692 of an element 610. According to an example embodiment, to improve manufacturing efficiency and standardization, an element 610 may include both the studs 702 at its top surface 690 and the slots 704 at its bottom surface 692. Thus, when stacking similarly configured elements 610, the studs 702 that are located at the top surface 690 of an element 610 can cooperate with the slots 704 that are located at the bottom surface 692 of an adjacent element that is to be stacked vertically with the first element 610.
In addition to the studs 702 and slots 704 which cooperate to partially fix the elements 610 together, the mounting system 700 of the present invention also includes a third locking feature 705 in the form of a removably mounted slide lock 706. As will be described in further detail below, the slide lock 706 is configured to prevent two stacked elements 610 from relatively sliding along the horizontal direction so as to prevent removal of the studs 702 from the slots 704, and, thus, separation of the two elements 610.
Still referring to
Each stud 702 includes a stem portion 708 and a flange portion 710. Each slot 704 includes a receiver portion 712 and a retention portion 714. The receiver portion 712 is sized to accommodate the flange portion 710 of the stud 702. Once the flange portion 710 of a stud 702 has been inserted through the receiver portion 712 of a slot 704, the stem portion 708 of the stud 702 slides through the retention portion 714 until the flange portion 710 of the stud 702 is positioned above the retention portion 714. Further advancement of a stud 702 within a slot 704 is prevented due to the abutment of the stem portion 708 of the stud 702 with an end 716 of the retention portion 714 of the slot 704 that acts as a positive stop.
In this manner, once the flange portion 710 of a stud 702 has been positioned above the retention portion 714 of a slot 704, the stud 702 cannot be separated from the slot 704 along a direction perpendicular to the sliding direction.
As shown in
Since separation of the two elements 610, after they have been fixed via the studs 702 and the slots 704, requires reverse relative horizontal movement between the elements 610, the mounting system 700 of the present disclosure further includes the slide lock 706 noted above and shown in
As shown in
It should be noted that although the depicted example of the mounting system 700 utilizes a slide lock 706 on both the right and left sides 694, 696 of an element stack, a slide lock 706 can be used on a single side of the stack if desired. Also, it should be noted that although the depicted example of the mounting system 700 utilizes a single slide lock 706 on each of the right and left sides 694, 696 of an element stack, more slide locks 706 can be used if desired.
Referring specifically now to a lower cutout 718 of an element 610, the cutout 718 defines both a bottom notch 726 and a side notch 728. The upper cutout 722 defines both a top notch 730 and a side notch 732. The cutouts 718, 722 are configured such that when the lower cutout 718 of an upper element 610 aligns with the upper cutout 722 of a lower element 610, an opening 734 is created between the two elements 610. The opening 734 is created by the alignment of the bottom notch 726 of a lower cutout 718 and the top notch 730 of an upper cutout 722.
The slide lock 706 is inserted into the opening 734 and prevents any horizontal movement between two stacked elements 610. The slide lock 706, according to the depicted embodiment, is a removable snap-fit structure that includes a flexible cantilever tab 736. The flexible cantilever tab 736 provides a frictional fit against the top and bottom notches 730, 726 of the upper and lower cutouts 722, 718, respectively, and can be flexed back toward the center of the slide lock 706 in removing the slide lock 706.
The side notches 732, 728 of the upper and lower cutouts 722, 718 also align when the elements 610 are moved into position. The side notches 732, 728 accommodate a user's fingers for accessing the slide lock 706 for either insertion or removal.
Thus, the mounting system 700 of the present disclosure provides a quick-attach solution that can be used in stacking elements 610 in a column for further mounting to equipment such as telecommunications racks, frames, or cabinets. The mounting system 700 of the present disclosure provides an unobtrusive attachment solution that can be incorporated in a variety of telecommunications distribution element designs. The mounting system 700 of the present disclosure may be used as a retro-fit solution on pre-existing telecommunications equipment with slight modification to certain aspects of the preexisting equipment to incorporate features of the system.
The mounting system 700 may be used to mount or stack two or more elements (such as the optical fiber distribution elements 610) that have similar configurations.
The mounting system 700 may also be used to mount or stack dissimilar equipment together if those pieces of equipment include features of the system 700 that allow them to intermate. For example, elements including equipment other than optical distribution features may be mounted to optical distribution elements such as elements 610 using the system 700 of the present disclosure as long as those equipment are configured with features of the system 700 that allow them to intermate with the features of equipment such as elements 610.
The mounting or stacking system 700 of the present disclosure may be used in instances where a single element includes features for mounting that element to a telecommunications rack, frame, or cabinet and other elements may be stacked with respect to that element using the system 700. For example, as shown in the example version of the element 510 in
The element utilizing the mounting features (such as the universal quick-connect mechanism 500 shown in
In using a mounting system such as the universal quick-connect mechanism 500 as shown in
For this reason, as illustrated in the examples of elements 1810 shown in
Referring now to
It should be noted that although the mounting system 900 of the present disclosure has been shown as being used on a piece of telecommunications equipment such as the optical fiber distribution element 810 (which has similar features to those elements 10, 210, 410, 510, and 610 of
Still referring to
According to an example embodiment, the mounting system 900 includes a first locking feature 901 in the form of at least one stud 902 (e.g., a plurality of studs 902 as depicted) that is provided at a top surface 890 of an element 810 and a second locking feature 903 in the form of at least one slot 904 (e.g., a plurality of slots 904 as depicted) that is provided at a bottom surface 892 of an element 810. According to an example embodiment, to improve manufacturing efficiency and standardization, an element 810 may include both the studs 902 at its top surface 890 and the slots 904 at its bottom surface 892. Thus, when stacking similarly configured elements 810, the studs 902 that are located at the top surface 890 of an element 810 can cooperate with the slots 904 that are located at the bottom surface 892 of an adjacent element that is to be stacked vertically with the first element 810. It should be noted that slots 904 are similar in configuration to slots 704 that are shown at the bottom of the element 610 in
In addition to the studs 902 and slots 904 which cooperate to partially fix the elements 810 together, the mounting system 900 of the present invention also includes a third locking feature 905 in the form of a slide lock 906. As will be described in further detail below, the slide lock 906 is configured to prevent two stacked elements 810 from relatively sliding along the horizontal direction so as to prevent removal of the studs 902 from the slots 904, and, thus, separation of the two elements 810.
Still referring to
Each stud 902 includes a stem portion 908 and a flange portion 910. Each slot 904 includes a receiver portion 912 and a retention portion 914. The receiver portion 912 is sized to accommodate the flange portion 910 of the stud 902. Once the flange portion 910 of a stud 902 has been inserted through the receiver portion 912 of a slot 904, the stem portion 908 of the stud 902 slides through the retention portion 914 until the flange portion 910 of the stud 902 is positioned above the retention portion 914. Further advancement of a stud 902 within a slot 904 is prevented due to the abutment of the stem portion 908 of the stud 902 with an end surface 916 defined by the retention portion 914 of the slot 904 that acts as a positive stop.
In this manner, once the flange portion 910 of a stud 902 has been positioned above the retention portion 914 of a slot 904, the stud 902 cannot be separated from the slot 904 along a direction perpendicular to the sliding direction.
As shown in
Since separation of the two elements 810, after they have been fixed via the studs 902 and the slots 904, requires reverse relative horizontal movement between the elements 810, the mounting system 900 of the present disclosure further includes the slide lock 906 noted above and shown in
As shown in
As shown in
As also shown in
In should be noted that a slide lock 906 in the form of a cantilever arm 918 may be provided at one or more of the slots 904 found on the elements 810. In certain embodiments, each slot 904 may include a cantilever arm 918 communicating therewith for providing the slide lock 906. In the example depicted in
It should also be noted that although the depicted example of the mounting system 900 utilizes a slide lock 906 on both the right and left sides 894, 896 of an element stack, a slide lock 906 can be used on a single side of the stack if desired. However, using a slide lock 906 on both sides 894, 896 of the element stack may provide more stability to the locking mechanism.
Thus, the mounting system 900 of the present disclosure, similar to the locking system 700, provides a quick-attach solution that can be used in stacking elements 810 in a column for further mounting to equipment such as telecommunications racks, frames, or cabinets. The mounting system 900 of the present disclosure provides an unobtrusive attachment solution that can be incorporated in a variety of telecommunications distribution element designs. The mounting system 900 of the present disclosure may be used as a retro-fit solution on pre-existing telecommunications equipment with slight modification to certain aspects of the preexisting equipment to incorporate features of the system.
The mounting system 900 may be used to mount or stack two or more elements (such as the optical fiber distribution elements 810) that have similar configurations.
The mounting system 900 may also be used to mount or stack dissimilar equipment together if those pieces of equipment include features of the system 900 that allow them to intermate. For example, elements including equipment other than optical distribution features may be mounted to optical distribution elements such as elements 810 using the system 900 of the present disclosure as long as that equipment is configured with features of the system 900 that allow them to intermate with the features of equipment such as elements 810.
The mounting or stacking system 900 of the present disclosure may be used in instances where a single element includes features for mounting that element to a telecommunications rack, frame, or cabinet and other elements may be stacked with respect to that element using the system 900. For example, as shown in the example version of the element 510 in
The element utilizing the mounting features (such as the universal quick-connect mechanism 500 shown in
Referring now to
Still referring to
The S-shaped pathway 876, similar to the embodiment of the element 610 discussed previously, is divided into two separate troughs 827, 829 by a divider 825 that is toward the rear of the tray. According to an example cable routing configuration, the two troughs 827, 829 may guide the cables to upper and lower levels 878, 880 defined toward the rear of the tray 824 while maintaining the S-shaped pathway 876 created within the element 810. The covers 811, 813 help retain cables within the S-shaped pathway 876 defined within the tray 824 as the cables lead to and from the radius limiter 838 to the tray 824 within element 810. The pivotability aspect of the covers 811, 813 facilitates initial placement of the cables within the S-shaped pathway 876 and provides access to the cables for removal. As shown, the covers 811, 813 may also include apertures 821 for viewing the cables within the S-shaped pathway 876 from an exterior of the tray 824 when the covers 811, 813 are closed.
Referring now to
Similar to the earlier embodiments of the elements, each tray 824 of element 810 may include two frame members in a stacked arrangement, wherein the frame members are hingedly mounted at hinges 858. A top frame member is normally positioned above a bottom frame member. As discussed previously, the S-shaped pathway 876 includes an upper level 878 and a lower level 880 in the interior. The upper level 878 is configured to supply an upper frame member, and the lower level 880 is configured to supply a lower frame member that is positioned below the upper frame member. The trays cooperate with the frame members in defining openings for guiding the cables to the specified frame members.
A portion 884 of the S-shaped pathway 876 is positioned adjacent to hinges 858 to avoid potentially damaging cable pull during pivoting movement of frame members.
Similar to previously discussed trays, each tray 824 of element 810 includes openings 897 to allow for technician access to the cable terminations within the tray 824. Furthermore, as will be discussed in further detail, most of the embodiments of the frame members that are configured to be used within the tray 824 of element 810 include a middle portion that is separated by openings from side portions, similar to the frame members discussed previously, for allowing connector access to the technicians.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Even though all of the various embodiments of the elements illustrated in the present application have been shown with telecommunications equipment housed within the trays of the elements,
In the embodiment of the element 1810 shown in
As shown in
In the depicted example of the element 1810, the side wall 1812 is configured with two rows of dovetail receivers 1868 for receiving two fiber optic devices 1900 in a stacked arrangement.
It should be noted that the locking features 1862 in the form of dovetail receivers 1868 of the element 1810 may be used for mounting a variety of different structures at the sidewalls 1812 of the element 1810, such as additional radius limiters, cable fixation clamps, other fiber optic equipment, etc.
The mounting bracket 2100 can utilize locking features similar to locking features 1862 illustrated in
Thus, as shown in
As noted above, locking features in the form of dovetail receivers may be used for mounting a variety of different structures at the sidewalls 1812 of the element 1810, such as additional radius limiters, cable fixation clamps, other fiber optic equipment, etc.
For example,
The cable fixation device 1899 is similar to the cable fixation devices shown and described in WO 2014/173930 in that the cable mount 1899 is configured for securing an incoming cable such as a distribution or feeder cable to a side of an element such as an element 1810. The cable mount 1899 is sized for mounting cables that are larger in diameter than those mounted by the cable fixation devices in WO 2014/173930.
Similar to the cable fixation devices in WO 2014/173930, the cable mount 1899 of the present application is defined by a base portion 1901 and a fiber routing portion 1903 that is configured to be mounted to the base portion 1901 with a snap-fit interlock.
As shown in
The cable mount 1899 includes features for securing or clamping the strength members of an incoming cable to limit axial pull on the cable to preserve the optical fibers. A strength member clamp 1936 of the cable mount 1899 is defined by the interaction of a portion (i.e., a clamping surface 1938) of the base portion 1901 and fixation plates 1940 that are configured to be clamped against the base portion 1901 via fasteners 1942. The strength member clamp 1936 will be described in further detail below. The portion of the base 1901 that forms the clamping surface 1938 for clamping the strength members may also be referred to as a first clamp member, and the fixation plates 1940 may also be referred to as second clamp members of the strength member clamp 1936.
The cable mount 1899, once assembled, defines a front end and a rear end. The cable mount 1899 is configured to receive an incoming cable through the rear end. The base portion 1901 of the cable mount 1899 defines a jacket channel 1920 for housing the jacket of the incoming cable. A strength member pocket 1924 is defined by the base portion for receiving strength members of the incoming cable. The fiber routing portion 1903 of the cable mount 1899 includes features for guiding individual fiber-carrying loose tubes to different desired directions as the fibers extend toward the front end of the cable mount 1899.
The jacket channel 1920 is defined by upper and lower transverse walls 1931, 1933. A divider wall 1935 of the cable mount 1899 separates the jacket channel 1920 from the strength member pocket 1924. The strength member pocket 1924 is defined on an opposite side of the divider wall 1935 from the jacket channel 1920. The divider wall 1935 defines a pair of openings 1937 through which the jacket channel 1920 communicates with the strength member pocket 1924. When a cable is received from the rear end of the cable mount 1899, the strength members of the cable protruding from the jacket of the cable are inserted into the strength member pocket 1924 through the openings 1937 before being clamped using the strength member clamp 1936.
According to the depicted embodiment, the base portion 1901 of the cable mount 1899 is configured to be mounted to equipment such as element 1810 with a snap-fit interlock. As shown, the base portion defines a cantilever arm 1911 with a ramped tab 1913 adjacent the front end of the cable mount 1899 for interlocking with a notch that may be provided on a piece of telecommunications equipment. The base portion 1901 of the cable mount 1899 also defines catches 1915 having dovetail profiles along the base portion 1901 that are configured to slidably mate with intermating structures provided on the element 1810. In this manner, the cable mount 1899 may be slidably attached to the element 1810 before being locked into a notch defined by the equipment with the cantilever arm 1911. It should be noted that a snap-fit interlock utilizing dovetail profiles and a flexible cantilever lock is only one example of an attachment mechanism that may be used to mount the cable mount 1899 to an element such as element 1810 and that other types of attachment mechanisms or methods (that limit axial pull on a secured cable) may be used.
As noted above, the cable mount 1899 is configured for securing or clamping the strength members of an incoming cable to limit axial pull on the cable to preserve the optical fibers. Once the strength members of an incoming cable are inserted into the strength member pocket 1924 through the openings 1937, the strength members may be clamped between the clamping surface 1938 defined by the base portion 1901 and the fixation plates 1940.
The fixation plates 1940 each define a fastener mount 1941 that has a threaded opening 1943 for receiving the fastener 1942 when clamping the fixation plates 1940 with respect to the base portion 1901. The fastener mount 1941 defines a throughhole 1963 that extends along a longitudinal axis of the fixation plates (generally perpendicular to the threaded opening 1943) that is for receiving the strength member of the cable. When the fasteners 1942 are used to clamp the fixation plates 1940 with respect to the base portion 1901, at least a portion of each fastener may extend through the threaded opening 1943 and into the throughhole. The throughhole 1963 is preferably sized such that a strength member can extend therethrough without interference from the fastener 1942 that extends at least partially into the throughhole 1963.
The fastener mount 1941 of each fixation plate 1940 extends from a top of the fixation plate 1940 to a portion of the fixation plate 1940 that defines a clamping surface 1945. The clamping surface 1945 of the fixation plate 1940 is configured to abut against the clamping surface 1938 defined by the base portion 1901 in clamping the strength member of the cable. As noted above, clamping the fixation plates 1940 against the base portion 1901 is accomplished by using the fasteners 1942, which are threadedly engaged with the fastener mounts 1941 and which draw the fixation plates 1940 towards the base portion 1901. The base portion 1901 defines openings 1917 that are configured to accommodate and receive the fastener mounts 1941 as the fixation plates 1940 are pulled up with respect to the base portion 1901.
The fiber routing portion 1903 of the cable mount 1899 is configured to receive and guide the fiber carrying tubes of a cable being mounted using the cable mount 1899. Fiber carrying tubes are lead up a ramp 1987 defined by the fiber routing portion 1903 after the strength member of the cable has been separated therefrom and has been inserted into the strength member pocket 1924. The divider wall 1935 keeps the fiber carrying tubes and the cable jacket separate from the strength member pocket 1924 similar to the embodiments of the cable mount discussed previously. In this manner, when the cables are subjected to pulling forces, the fiber carrying components are isolated from the part of the cable mount that clamps the strength member.
The fiber routing portion 1903 of the cable mount 1899 defines a pair of fastener mounts 1919. The fastener mounts 1919 define pockets 1921 for accommodating the heads of the fasteners 1942. The fastener mounts 1919 allow the fasteners 1942 to pass from the fiber routing portion 1903 through the opening 1917 of the base portion 1901 into the fastener mounts 1941 of the fixation plates 1940. As the fasteners 1942 are threadably turned with respect to the fiber routing portion 1903, the fixation plates 1940 are pulled toward the base portion 1901 to clamp the strength members between the clamping surfaces 1938 and 1945.
As noted previously, the fiber routing portion 1903 of the cable mount 1899 includes features for guiding individual fiber-carrying loose tubes to different desired directions as the fibers extend toward the front end of the cable mount 1899. The fiber routing portion 1903 defines cable management structures in the form of spools 1927 that are configured to guide the fiber carrying tubes to different desired directions without violating minimum bend requirements.
As shown, the spools 1927 may include flanges 1929 for retaining the fibers within the fiber routing portion 1903. A plurality of fiber channels 1959 are formed between the spools 1927. The flanges 1929 of the spools facilitate in keeping the fibers within desired fiber channels 1959.
As shown, the base portion 1901 may define walls 1997 at the front end to cooperate with the spools 1927 of the fiber routing portion 1903 for directing or guiding the fiber carrying tubes extending from the spools 1927 to different locations around a distribution element.
The fiber routing portion 1903, specifically the spools 1927, are designed to allow the fibers to be routed to different locations around an element or to different elements. The fiber routing portion 1903 is configured to allow the fiber carrying tubes to extend straight upwardly, straight downwardly, diagonally upwardly, diagonally downwardly, or straight through after passing through the channels 1959.
In the embodiment of the cable mount 1899 illustrated, the fiber routing portion 1903 is provided as a separate structure than the base portion 1901 of the cable mount 1899 and is mounted to the base portion 1901 with a snap-fit interlock. The two portions are provided as separate structures so that the base portion 1901 can be used with fiber routing portions that may have a different configuration than the fiber routing portion 1903 that is shown in
Referring now to
Yet another embodiment of a latch 2020 for keeping the tray of an element in a closed position is illustrated in
Now referring to
Referring now to
A cable extending vertically within a telecommunications rack to which the element 1810 is mounted enters the entrance trough 2004 of cable mount 2000 and can lead either toward the front of the element 1810 or toward the rear of the element 1810 via the exit troughs 2006.
The body 2002 of the cable mount 2000 defines tabs 2012 at the sides of the entrance trough 2004 for pressing against the outer jackets of the cables to frictionally hold the cables mounted using the cable mount 2000. The tabs 2012 may also be provided along the sides of the exit troughs 2006.
The cable mount can be mounted to any of the elements 1810 along a vertical block depending upon where the vertical cable needs to be directed.
Referring now to
The cable management insert 2110 is placed within the tray 1824 at a location between the sidewall of element 1810 and a connection or patch panel 2114 that includes a plurality of connection locations 2116. In the depicted embodiment, the connection locations 2116 of the panel 2114 are defined by fiber optic adapters 2118 (e.g., LC or SC format adapters). The connection locations 2116 are provided generally toward the middle of the tray 1824, and the adapters 2118 defining the connection locations 2116 are provided in a stacked arrangement from a rear end 2120 of the tray 1824 toward a front end 2122 of the tray 1824. The depicted adapters 2118 are stacked such that the adapter axes are generally perpendicular to a line that extends from the front end 2122 to the rear end 2120 of the tray 1824. Angled mounting can also be used, where the adapter axes are provided at an acute angle to a line that extends from the front end 2122 to the rear end 2120 of the tray 1824. The depicted adapters 2118 are mounted such that they define parallel axes, which can also be provided in the angled mounting configuration.
Still referring to
As shown in
The cable management insert 2110 discussed above provides the advantage of being able to use similar (or same) length cables or pigtails 2134 extending from a fiber optic splitter 1900 that has been mounted to the element 1810, even though each cable 2134 will be patched at a different point on the patch panel 2114. For example, a cable 2134 for connection to the frontmost adapter of the patch panel adapters 2118 might require a much longer cable length than a cable 2134 for connection to the rearmost adapter of the patch panel adapters 2118. The cable management insert 2110 is designed to provide an adjustment for the patching location of the cables 2134 while allowing all of the cables 2134 extending from a telecommunications device 1900 to be of a similar (or the same) length. With the radius limiters 2132 of the cable management insert 2110 defining cable paths of differing lengths, all of the cables 2134 extending from the splitter 1900 can be provided with a similar length. The different radius limiters 2132 accomplish the purpose of adjusting for the different patching locations of the cables 2134.
As shown in
As illustrated in
After passing through the U-shaped radius limiter 1838, as the cables 2134 branch out from the entrance point 2135 toward the adapters 2118 of the patch panel 2114, the cables 2134 are routed around the different radius limiters 2132 depending upon where they are going to be patched along the connection panel 2114. The cables 2134 extending toward the adapters 2118 positioned generally toward a rear 2138 of the patch panel 2114 are guided around the curved wall 2136 of the rearmost radius limiter 2132. These cables are initially routed toward the front 2122 of the tray 1824, around the wall 2136 of the rearmost radius limiter 2132, and then toward the rear 2120 of the tray 1824 to the associated adapters 2118. The cables 2134 extending toward the adapters 2118, positioned generally at a center 2140 of the connection panel 2114 and toward a front 2142 of the connection panel 2114, are guided around the front three radius limiters 2132, based upon the final patching location.
Each of the radius limiters 2132 define retention fingers 2144 extending from the spool walls 2136 thereof for retaining the cables 2134 around the spools 2132. As shown in
Even though the depicted embodiment of the cable management insert 2110 is shown with radius limiters, wherein at least two of which define different spool wall lengths and thus, different cable path lengths, in other embodiments, more than two different types of spools 2132 can be provided on the insert 2110. For example, each of the front three radius limiters 2132 can have spool walls 2136 with differing lengths from each other, to provide for a finer adjustment/accommodation for the final patching location of the cables 2134.
Referring now to
As noted above, the cable management inserts 2210 share a similar configuration and functionality with the inserts 2110 of
Similar to the version of the insert 2110, the cable management insert 2210 is placed within the frame member 2212 at a location between the sidewall of element 1810 and the connection panel 2114 that includes the plurality of connection locations 2116 toward the middle of the frame member 2212.
Similar to cable management insert 2110, the cable management insert 2210 defines a generally planar configuration with a front end 2224, a rear end 2226, a right side 2228, and a left side 2230. The cable management insert 2210 includes a plurality of radius limiters 2232 (e.g., spools) that are arranged from the front end 2224 to the rear end 2226 in a stacked arrangement. As discussed above, the radius limiters 2232 are designed to provide cable paths of differing lengths depending upon where the radius limiters 2232 are positioned with respect to the connection panel 2114.
The cable management insert 2210, as discussed previously for insert 2110, provides the advantage of being able to use similar (or same) length cables or pigtails extending from a fiber optic splitter 1900 that has been mounted to the element 1810, even though each cable is patched at a different point on the patch panel 2114. The different radius limiters 2232 accomplish the purpose of adjusting for the different patching locations of the cables.
As illustrated in
As the cables branch out from the entrance point toward the adapters 2118 of the patch panel 2114, the cables are routed around the different radius limiters 2232 depending upon where they are going to be patched along the connection panel 2114. The cables extending toward the adapters 2118 positioned generally toward a rear of the patch panel 2114 are guided around the curved portion 2237 of the wall 2236 of the rearmost radius limiter 2232. These cables are initially routed toward the front of the frame member 2212, around the wall 2236 of the rearmost radius limiter 2232, and then toward the rear of the frame member 2212 to the associated adapters 2118. The cables extending toward the adapters 2118, positioned generally at a center of the connection panel 2114 and toward a front of the connection panel 2114, are guided around the front three radius limiters 2232, based upon the final patching location.
Each of the radius limiters 2232 define retention fingers 2244 extending from the spool walls 2236 thereof for retaining the cables around the spools 2232.
As shown in
Even though the depicted embodiment of the cable management insert 2210 is shown with radius limiters, wherein at least three of which define different spool wall lengths and thus, different cable path lengths, in other embodiments, more than three different types of spools 2232 can be provided on the insert 2210. For example, each of the front three radius limiters 2232 can have spool walls 2236 with differing lengths from each other, to provide for a finer adjustment/accommodation for the final patching location of the cables.
This application is a continuation of U.S. patent application Ser. No. 17/159,724, filed Jan. 27, 2021, now U.S. Pat. No. 11,592,639; which is a continuation of U.S. patent application Ser. No. 16/263,765, filed on Jan. 31, 2019, now U.S. Pat. No. 10,908,375; which is a continuation of U.S. patent application Ser. No. 15/564,114, filed on Oct. 3, 2017, now U.S. Pat. No. 10,261,281; which is a National Stage Application of PCT/EP2016/057294, filed on Apr. 3, 2016; which claims the benefit of U.S. Patent Application Ser. No. 62/142,903, filed on Apr. 3, 2015, the disclosures of which are incorporated herein by reference in their entireties. To the extent appropriate, a claim of priority is made to each of the above disclosed applications
Number | Name | Date | Kind |
---|---|---|---|
2805106 | Penkala | Sep 1957 | A |
2864656 | Yorinks | Dec 1958 | A |
3901564 | Armstrong | Aug 1975 | A |
4070076 | Zwillinger | Jan 1978 | A |
4172625 | Swain | Oct 1979 | A |
4359262 | Dolan | Jan 1982 | A |
4320934 | Röck et al. | Mar 1982 | A |
4373776 | Purdy | Feb 1983 | A |
4494806 | Williams et al. | Jan 1985 | A |
4502754 | Kawa | Mar 1985 | A |
4585303 | Pinsard et al. | Apr 1986 | A |
4595255 | Bhatt et al. | Jun 1986 | A |
4630886 | Lauriello et al. | Dec 1986 | A |
4697874 | Nozick | Oct 1987 | A |
4699455 | Erbe et al. | Oct 1987 | A |
4708430 | Donaldson et al. | Nov 1987 | A |
4717231 | Dewez et al. | Jan 1988 | A |
4737039 | Sekerich | Apr 1988 | A |
4765710 | Burmeister et al. | Aug 1988 | A |
4792203 | Nelson et al. | Dec 1988 | A |
4820007 | Ross et al. | Apr 1989 | A |
4840449 | Ghandeharizadeh | Jun 1989 | A |
4898448 | Cooper | Feb 1990 | A |
4971421 | Ori | Nov 1990 | A |
4986762 | Keith | Jan 1991 | A |
4995688 | Anton et al. | Feb 1991 | A |
5024498 | Becker et al. | Jun 1991 | A |
5066149 | Wheeler et al. | Nov 1991 | A |
5067678 | Henneberger et al. | Nov 1991 | A |
5071211 | Debortoli et al. | Dec 1991 | A |
5100221 | Carney et al. | Mar 1992 | A |
5127082 | Below et al. | Jun 1992 | A |
5129030 | Petrunia | Jul 1992 | A |
5138688 | Debortoli | Aug 1992 | A |
5142606 | Carney et al. | Aug 1992 | A |
5142607 | Petrotta et al. | Aug 1992 | A |
5167001 | Debortoli et al. | Nov 1992 | A |
5174675 | Martin | Dec 1992 | A |
5240209 | Kutsch | Aug 1993 | A |
5247603 | Vidacovich et al. | Sep 1993 | A |
5275064 | Hobbs | Jan 1994 | A |
5285515 | Milanowski et al. | Feb 1994 | A |
5289558 | Teichler et al. | Feb 1994 | A |
5316243 | Henneberger | May 1994 | A |
5323480 | Mullaney et al. | Jun 1994 | A |
5335349 | Kutsch et al. | Aug 1994 | A |
5339379 | Kutsch et al. | Aug 1994 | A |
5353367 | Czosnowski et al. | Oct 1994 | A |
5363466 | Milanowskki et al. | Nov 1994 | A |
5363467 | Keith | Nov 1994 | A |
5402515 | Vidacovich et al. | Mar 1995 | A |
5412751 | Siemon et al. | May 1995 | A |
5430823 | Dupont et al. | Jul 1995 | A |
5438641 | Malacarne | Aug 1995 | A |
5490229 | Ghanderharizadeh et al. | Feb 1996 | A |
5497444 | Wheeler | Mar 1996 | A |
5509096 | Easley | Apr 1996 | A |
5511144 | Hawkins et al. | Apr 1996 | A |
5530783 | Belopolsky et al. | Jun 1996 | A |
5570450 | Fernandez et al. | Oct 1996 | A |
5613030 | Hoffer et al. | Mar 1997 | A |
5640481 | Llewellyn et al. | Jun 1997 | A |
5655044 | Finzel et al. | Aug 1997 | A |
5717810 | Wheeler | Feb 1998 | A |
5724469 | Orlando | Mar 1998 | A |
5802237 | Pulido | Sep 1998 | A |
5811055 | Geiger | Sep 1998 | A |
5836148 | Fukao | Nov 1998 | A |
5882100 | Rock | Mar 1999 | A |
5887106 | Cheeseman et al. | Mar 1999 | A |
5917984 | Röseler et al. | Jun 1999 | A |
5923753 | Haataja et al. | Jul 1999 | A |
5946440 | Puetz | Aug 1999 | A |
5966492 | Bechamps et al. | Oct 1999 | A |
5971626 | Knodell et al. | Oct 1999 | A |
5975769 | Larson et al. | Nov 1999 | A |
5978540 | Bechamps et al. | Nov 1999 | A |
6009224 | Allen | Dec 1999 | A |
6022150 | Erdman et al. | Feb 2000 | A |
6027252 | Erdman et al. | Feb 2000 | A |
6044194 | Meyerhoefer | Mar 2000 | A |
6076908 | Maffeo | Jun 2000 | A |
6099224 | Uchida et al. | Aug 2000 | A |
6215938 | Reitmeier et al. | Apr 2001 | B1 |
6226436 | Daoud et al. | May 2001 | B1 |
6236795 | Rodgers | May 2001 | B1 |
6263141 | Smith | Jul 2001 | B1 |
6269214 | Naudin et al. | Jul 2001 | B1 |
6301424 | Hwang | Oct 2001 | B1 |
6360050 | Moua et al. | Mar 2002 | B1 |
6438310 | Lance et al. | Aug 2002 | B1 |
6439523 | Chandler et al. | Aug 2002 | B1 |
6496638 | Andersen | Dec 2002 | B1 |
6504988 | Trebesch et al. | Jan 2003 | B1 |
6591051 | Solheid et al. | Jul 2003 | B2 |
6594434 | Davidson et al. | Jul 2003 | B1 |
6600866 | Gatica et al. | Jul 2003 | B2 |
6612515 | Tinucci et al. | Sep 2003 | B1 |
6625374 | Holman et al. | Sep 2003 | B2 |
RE38311 | Burmeister et al. | Nov 2003 | E |
6677520 | Kim et al. | Jan 2004 | B1 |
6711339 | Puetz et al. | Mar 2004 | B2 |
6715619 | Kim et al. | Apr 2004 | B2 |
6748155 | Kim et al. | Jun 2004 | B2 |
6768860 | Liberty | Jul 2004 | B2 |
6796437 | Krampotich et al. | Sep 2004 | B2 |
6804447 | Smith et al. | Oct 2004 | B2 |
6809258 | Dang et al. | Oct 2004 | B1 |
6810193 | Müller | Oct 2004 | B1 |
6819857 | Douglas et al. | Nov 2004 | B2 |
6845208 | Thibault et al. | Jan 2005 | B2 |
6850685 | Tinucci et al. | Feb 2005 | B2 |
6865331 | Mertesdorf | Mar 2005 | B2 |
6925241 | Bohle et al. | Aug 2005 | B2 |
6934457 | Vincent et al. | Aug 2005 | B2 |
6937807 | Franklin et al. | Aug 2005 | B2 |
6944383 | Herzog et al. | Sep 2005 | B1 |
6945620 | Lam et al. | Sep 2005 | B2 |
6968111 | Trebesch et al. | Nov 2005 | B2 |
6981750 | Krampotich | Jan 2006 | B2 |
7006748 | Dagley et al. | Feb 2006 | B2 |
7068907 | Schray | Jun 2006 | B2 |
7079744 | Douglas et al. | Jul 2006 | B2 |
7116777 | Knudsen et al. | Oct 2006 | B2 |
7120348 | Trebesch et al. | Oct 2006 | B2 |
7171099 | Barnes et al. | Jan 2007 | B2 |
7231125 | Douglas et al. | Jun 2007 | B2 |
7274852 | Smrha et al. | Sep 2007 | B1 |
7302153 | Thom | Nov 2007 | B2 |
7302154 | Trebesch et al. | Nov 2007 | B2 |
7308184 | Barnes et al. | Dec 2007 | B2 |
7362942 | Beck | Apr 2008 | B2 |
7367823 | Rapp et al. | May 2008 | B2 |
7373071 | Douglas et al. | May 2008 | B2 |
7397996 | Herzog et al. | Jul 2008 | B2 |
7406240 | Murano | Jul 2008 | B2 |
7409137 | Barnes | Aug 2008 | B1 |
7418182 | Krampotich | Aug 2008 | B2 |
7437049 | Krampotich | Oct 2008 | B2 |
7454113 | Barnes | Nov 2008 | B2 |
7457504 | Smrha et al. | Nov 2008 | B2 |
7460757 | Hoehne et al. | Dec 2008 | B2 |
7463811 | Trebesch et al. | Dec 2008 | B2 |
7480438 | Douglas et al. | Jan 2009 | B2 |
7496268 | Escoto et al. | Feb 2009 | B2 |
7499623 | Barnes et al. | Mar 2009 | B2 |
7567744 | Krampotich et al. | Jul 2009 | B2 |
7570860 | Smrha et al. | Aug 2009 | B2 |
7570861 | Smrha et al. | Aug 2009 | B2 |
7599599 | Herzog et al. | Oct 2009 | B2 |
7664361 | Trebesch et al. | Feb 2010 | B2 |
7689089 | Wagner et al. | Mar 2010 | B2 |
7706656 | Zimmel | Apr 2010 | B2 |
7715681 | Krampotich et al. | May 2010 | B2 |
7747125 | Lee et al. | Jun 2010 | B1 |
RE41460 | Wheeler | Jul 2010 | E |
7751674 | Hill | Jul 2010 | B2 |
7764859 | Krampotich et al. | Jul 2010 | B2 |
7856166 | Biribuze et al. | Dec 2010 | B2 |
7869683 | Barnes et al. | Jan 2011 | B2 |
7876993 | Krampotich et al. | Jan 2011 | B2 |
7889961 | Cote et al. | Feb 2011 | B2 |
7978957 | Sano et al. | Jul 2011 | B2 |
8027558 | Barnes et al. | Sep 2011 | B2 |
8041175 | Krampotich et al. | Oct 2011 | B2 |
8059932 | Hill et al. | Nov 2011 | B2 |
8078030 | Trebesch et al. | Dec 2011 | B2 |
8179684 | Smrha et al. | May 2012 | B2 |
8195022 | Coburn et al. | Jun 2012 | B2 |
8285104 | Davis et al. | Oct 2012 | B2 |
8452149 | Krampotich et al. | May 2013 | B2 |
8526774 | Krampotich et al. | Sep 2013 | B2 |
8559785 | Barlowe et al. | Oct 2013 | B2 |
8600208 | Badar et al. | Dec 2013 | B2 |
8639081 | Barnes et al. | Jan 2014 | B2 |
8655136 | Trebesch et al. | Feb 2014 | B2 |
8690593 | Anderson et al. | Apr 2014 | B2 |
8731361 | Anderson et al. | May 2014 | B2 |
10261281 | Geens | Apr 2019 | B2 |
10908375 | Geens | Feb 2021 | B2 |
11592639 | Geens | Feb 2023 | B2 |
20010001270 | Williams Vigliaturo | May 2001 | A1 |
20020159746 | Howell et al. | Oct 2002 | A1 |
20020181922 | Xin et al. | Dec 2002 | A1 |
20030007767 | Douglas et al. | Jan 2003 | A1 |
20030128951 | Lecomte et al. | Jul 2003 | A1 |
20030165315 | Trebesch et al. | Sep 2003 | A1 |
20030174996 | Henschel et al. | Sep 2003 | A1 |
20030190035 | Knudsen et al. | Oct 2003 | A1 |
20040011750 | Kim et al. | Jan 2004 | A1 |
20040136676 | Mertesdorf | Jul 2004 | A1 |
20040175090 | Vastmans et al. | Sep 2004 | A1 |
20040227443 | Sandoval | Nov 2004 | A1 |
20040258384 | Trebesch et al. | Dec 2004 | A1 |
20050025444 | Barnes et al. | Feb 2005 | A1 |
20050058421 | Dagley et al. | Mar 2005 | A1 |
20050078929 | Iwanek | Apr 2005 | A1 |
20050100301 | Solheid et al. | May 2005 | A1 |
20050123261 | Bellekens et al. | Jun 2005 | A1 |
20060193586 | Hoehne et al. | Aug 2006 | A1 |
20060275008 | Xin | Dec 2006 | A1 |
20070003204 | Saravanos et al. | Jan 2007 | A1 |
20070031099 | Herzog et al. | Feb 2007 | A1 |
20070058918 | Trebesch et al. | Mar 2007 | A1 |
20070201806 | Douglas et al. | Aug 2007 | A1 |
20080063350 | Trebesch et al. | Mar 2008 | A1 |
20080124038 | Kowalczyk et al. | May 2008 | A1 |
20080169116 | Mullaney et al. | Jul 2008 | A1 |
20080175550 | Coburn et al. | Jul 2008 | A1 |
20080205843 | Castonguay et al. | Aug 2008 | A1 |
20090067800 | Vazquez et al. | Mar 2009 | A1 |
20090067802 | Hoehne et al. | Mar 2009 | A1 |
20090097813 | Hill | Apr 2009 | A1 |
20090129033 | Smrha et al. | May 2009 | A1 |
20090136196 | Trebesch et al. | May 2009 | A1 |
20090274430 | Krampotich et al. | Nov 2009 | A1 |
20090274431 | Krampotich et al. | Nov 2009 | A1 |
20100061693 | Bran de Leon et al. | Mar 2010 | A1 |
20100142910 | Hill et al. | Jun 2010 | A1 |
20100158465 | Smrha | Jun 2010 | A1 |
20100150518 | Leon et al. | Jul 2010 | A1 |
20100195968 | Trebesch et al. | Aug 2010 | A1 |
20100266253 | Krampotich et al. | Oct 2010 | A1 |
20100316346 | Krampotich et al. | Dec 2010 | A1 |
20100322578 | Cooke et al. | Dec 2010 | A1 |
20110123165 | Barth et al. | May 2011 | A1 |
20110188809 | LeBlanc et al. | Aug 2011 | A1 |
20110206336 | Krampotich et al. | Aug 2011 | A1 |
20110211799 | Conner et al. | Sep 2011 | A1 |
20110217016 | Mullsteff | Sep 2011 | A1 |
20110267794 | Anderson et al. | Nov 2011 | A1 |
20110268404 | Cote et al. | Nov 2011 | A1 |
20110268408 | Giraud et al. | Nov 2011 | A1 |
20110268410 | Giraud et al. | Nov 2011 | A1 |
20110268412 | Giraud et al. | Nov 2011 | A1 |
20110286712 | Puetz et al. | Nov 2011 | A1 |
20110317974 | Krampotich et al. | Dec 2011 | A1 |
20120057838 | Hill et al. | Mar 2012 | A1 |
20120093475 | Trebesch et al. | Apr 2012 | A1 |
20120230646 | Thompson et al. | Sep 2012 | A1 |
20130089292 | Ott et al. | Apr 2013 | A1 |
20130089298 | Holmberg et al. | Apr 2013 | A1 |
20130183018 | Holmberg | Jul 2013 | A1 |
20130287356 | Solheid et al. | Oct 2013 | A1 |
20130287357 | Solheid et al. | Oct 2013 | A1 |
20140086545 | Solheid et al. | Mar 2014 | A1 |
20140133819 | Trebesch et al. | May 2014 | A1 |
20140241691 | Solheid et al. | Aug 2014 | A1 |
20170235084 | Geens | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
4099585 | Apr 1985 | AU |
5531486 | Mar 1986 | AU |
102483500 | May 2012 | CN |
2735106 | Feb 1979 | DE |
2918309 | Nov 1980 | DE |
3308682 | Sep 1984 | DE |
3836273 | Apr 1990 | DE |
4413136 | May 1995 | DE |
29504191 | Mar 1996 | DE |
0146478 | Jun 1985 | EP |
0149250 | Jul 1985 | EP |
0356942 | Mar 1990 | EP |
0406151 | Jan 1991 | EP |
0464570 | Jan 1992 | EP |
0479226 | Apr 1992 | EP |
0196102 | Mar 1993 | EP |
0538164 | Apr 1993 | EP |
0563995 | Oct 1999 | EP |
1 228 389 | May 2003 | EP |
2 093 596 | Aug 2009 | EP |
2531576 | Feb 1984 | FR |
2587127 | Mar 1987 | FR |
2678076 | Dec 1992 | FR |
59-74523 | Apr 1984 | JP |
60-169811 | Sep 1985 | JP |
61-55607 | Mar 1986 | JP |
61-90104 | May 1986 | JP |
200337929 | Jan 2004 | KR |
20080033420 | Apr 2008 | KR |
9110927 | Jul 1991 | WO |
9507480 | Mar 1995 | WO |
9610203 | Apr 1996 | WO |
9900619 | Jan 1999 | WO |
9938042 | Jul 1999 | WO |
03005095 | Jan 2003 | WO |
2008048935 | Apr 2008 | WO |
2014118227 | Aug 2014 | WO |
2014173930 | Oct 2014 | WO |
Entry |
---|
“TU Fiber Handbook” with English translation, 14 pages, Mar. 1992. |
“Precision Mechanical” with English translation, 5 pages. |
Northern Telecom Bulletin #91-004, Issue #2, May 1991, 16 pages. |
AT&T Product Bulletin 2987D-DLH-7/89, “High Density Interconnect System (HDIC),” Issue 2 (Copyright 1989), 4 pages. |
Preface to the book “Structure, Installation, Connection and Protection of Communication Optical Fiber Cable,” in Chinese with English Translation, 14 pages (Mar. 1992). |
Complaint relating to Civil Action No. 5:11-cv-02509-JS, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Apr. 11, 2011 (14 pages). |
Complaint relating to Civil Action No. 1:11cv-735 (GBL-IDD), ADC Telecommunications, Inc v. Opterna Am, Inc. filed Jul. 12, 2011 (6 pages). |
Plaintiff's Notice of Dismissal relating to Civil Action No. 5:11-cv-02509-JS, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Jul. 12, 2011 (1 page). |
Stipulation and Order of Dismissal relating to Civil Action No. 1:11-cv-735-GBL-IDD, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Feb. 21, 2012 (2 pages). |
International Search Report and Written Opinion of the International Searching Authority for corresponding International Patent Application No. PCT/EP2016/057294 mailed Jun. 10, 2012, 12 pages. |
Examination Report No. 1 for Australian Patent Application No. 2016239875 mailed Jul. 13, 2020, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20230288656 A1 | Sep 2023 | US |
Number | Date | Country | |
---|---|---|---|
62142903 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17159724 | Jan 2021 | US |
Child | 18162556 | US | |
Parent | 16263765 | Jan 2019 | US |
Child | 17159724 | US | |
Parent | 15564114 | US | |
Child | 16263765 | US |