The invention relates, in general, to the use of Dynamic Vascular Analysis (DVA™) (formerly described as DCA or Dynamic Cerebrovascular Analysis) and Hemodymanic Vascular Analysis (HVA™) methodologies for distinguishing among various vascular states. In particular, the invention relates to a telemedicine system, which includes both hardware and software, to automate, standardize and distribute the analysis of vascular data such as Transcranial Doppler (“TCD”) data, deploy DVA/HVA to extract more information from such data and extend neurovascular expertise world-wide for clinical and research applications. The invention further includes using such telemedicine system for assessing vascular health and the effects of treatments, risk factors and substances, including therapeutic substances, on blood vessels, especially cerebral blood vessels, but not limited thereto.
DVA and HVA provide methodologies of distinguishing among various vascular states. The ability to differentiate such vascular states (that may otherwise be indistinguishable until after a vascular event) is particularly applicable in many fields, one example being subarachnoid bleed from a ruptured aneurysm.
Vascular system disease processes and injury can affect the tone of a vessel or create points of blockage along the vessel (e.g., from inflammation from surrounding blood or atherosclerosis). Various methodologies exist today for assessing vascular function (more commonly referred to as endothelial function). These tests generally measure the response to a physiological stimulus such as breath holding or hyperventilation. Arterial blockages, however, are often detected by measurements of mean blood flow velocity by either Transcranial Doppler (“TCD”) ultrasound or an angiographical evaluation of the arterial segment (showing only a cross section silhouette of a vascular narrowing).
Stenosis is defined as a narrowing caused by inflammation, external compression, or arteriosclerosis within an arterial segment. Stenosis includes relative hyperemic conditions as well as vasospasm. For example, vasospasm represents a supra-physiologic stenosis given the acute development and lack of time for the vasculature to compensate. It should also be kept in mind that when there is atherosclerotic stenosis secondary to inflammatory changes at any particular point, other stenotic regions usually exist elsewhere in the vascular system (i.e., both proximate and distal to that point). The most common form of stenosis is atherosclerotic narrowing. In the coronaries and elsewhere, stenosis is assessed by a variety of methods. In the coronaries, for example, stenosis is measured primarily by angiography. As discussed above, however, angiography provides only a cross section silhouette of a vascular narrowing. As such, angiographic analysis is highly susceptible to being inaccurate (at time) due to the asymmetry of the narrowing within the artery (i.e., when the projection of view is changed, it may appear that the narrowing is either nonexistent or much smaller than would be measured physiologically).
Stenotic events and conditions resulting in significant flow alteration, including those needing therapeutic intervention, are composed of three discreet micro-physiological states depending on the three regions defined by the stenosis. The regions defined by the stenosis will be the pre-stenotic region, the stenotic region and the post-stenotic region. The three physiologic states in these regions will be a distal Perfusion-Impedance Mismatch (“PIMM”) in the pre-stenotic region, a hyperemic breakthrough at the site of stenosis in order to conserve volume and pressure of flow, and a proximal PIMM in the post stenotic region.
PIMM is defined as the imbalance of force vectors such that the impedance or resistance vector contributes more to the balance than the forward force vector. The net result of this condition is a reduction in forward flow. There may be two reasons for PIMM to occur. The first possible reason is “proximal” PIMM incurred by a drop in proximal perfusion pressure as a result of a significant stenosis. The second possible cause is a “distal” PIMM resulting from the increase in the resistance (or impedance) vector that induces the imbalance. Distal PIMM also occurs when significant small vessel disease is present. A combination of both types of PIMM can significantly inhibit forward movement of blood and when it is present in a post stenotic region it likely indicates a state of compensatory flow from other vessels.
Traditionally, neurological critical care defines two distinct types of cerebral vascular events. The first event is an ischemic flow or low flow. The second event is a vessel rupture (most commonly an aneurysm resulting from an over-dilated vessel). When a patient suffers or bleeds from an aneurysm, it typically occurs in the subarachnoid space (i.e., a subarachnoid hemorrhage). The initial response to a subarachnoid hemorrhage is a neurologic injury accompanied by loss of consciousness.
Patients surviving the initial event, however, frequently also have a secondary response to the hemorrhage. In particular, it is well documents that in the early phases of recovery, patients go into a state of hyperemia. Hyperemia is defined as a pathological increase in blood flow volume that exceeds the metabolic needs of the tissue being served by that vessel.
Another secondary response, often occurring five to ten days after the initial event, is the development of vasospasm. Vasospasm is defined as the pathologic constriction of the muscles of the vessel, causing a significant narrowing, which leads to a secondary ischemic or low flow stroke. Prevention and treatment of vasospasm (and more importantly prevention of the clinical or morbid state associated with vasospasm) primarily include hypertension and hypervolemic therapy. These therapies endeavor to increase vascular volume with fluid infusion and by raising the patient's blood pressure artificially with pharmacological agents. In the course of raising the patient's blood pressure and/or increasing the blood volume, however, it is possible to induce the state of cerebral hyperemia. Thus, treatment of one condition (vasospasm) may unintentionally induce the other (hyperemia).
As can be seen from the foregoing discussion, it is important to be able to distinguish between naturally occurring hyperemia, therapy-induced hyperemia and whether that hyperemia is actually becoming a vasospasm. The practicality of making such distinctions, however, is difficult to accomplish by traditional methodologies. For example, the current treatment modalities for vasospasm include transporting a patient to an angiography suite and performing angioplasty on the spastic lesion. Similarly, premature treatment of an apparent vasospastic condition (i.e., by hypertension and hypervolemic therapy) may actually increase a patient's risk of hyperemic swelling from the initial vascular event or cerebral edema. As such, it is critical to determine if and when a patient is transitioning from a hyperemic state to the early stages of vasospasm. Conversely, instituting hypertensive and/or hypervolemic therapy too late after the onset of vasospasm is of little or no value, as it provides no difference to the clinical outcome. In this regard, unnecessarily beginning hypertensive and/or hypervolemic therapy too far after the onset of vasospasm may be detrimental to the patient's health in view of the well known incidence of induced congestive heart failure among certain older (i.e., middle age and older) patients undergoing aggressive hypertensive and/or hypervolemic therapy.
Thus, the timing and use of hypertensive and/or hypervolemic therapy following a subarachnoid hemorrhage depends largely on being able to better define when a patient is transitioning from a hyperemic state to vasospasm. Currently, making such determinations may involve the comparison of peak systolic velocity ratios (derived from TCD ultrasound or other methodologies) of an intracranial vessel versus the extra cranial carotid artery. This comparison is referred to as the Lindegaard ratio. This type of analysis, however, is not highly accurate. Some studies have shown that the Lindegaard ratio is no better than 50% predictive for identifying the transition from hyperemia to vasospasm.
Other methodologies have been explored but have not come into widespread use for evaluating and differentiating among vascular states. One such methodology involves measuring blood pressure waves with a catheter being pulled through a point of narrowing within the corner artery. Similarly, some efforts have been directed to conducting vascular assessments using intravascular ultrasound (“IVUS”). These studies, however, have focused almost entirely on the use of the resultant ultrasound images to evaluate the physiological responses to the injection of vasodilators (e.g., adenosine) in order to calculate an anomaly defined ratio called the coronary flow volume reserve or the arterial flow volume reserve.
DVA/HVA may be used to quantitatively distinguish the transition from a hyperemic state to vasospasm (which may vary dynamically and dramatically on a day-to-day, or even moment-to-moment, basis in a neurocritical care unit). It should be further understood, however, that the physiological principals described herein may be extended and/or applied to differentiate other forms of vascular problems and vascular stenosis.
Hydrocephalus is a condition characterized by increased intracranial pressure resulting in decreased intracranial blood flow. Raised intracranial pressure puts additional external force on vessels, compressing small vessels such as terminal capillaries and/or venules. Specifically, this flow limitation affects the deeper brain structures fed by deep penetrating arteries such as those in the periventricular space. This decrease in flow characteristically results in edema formation at the ventricular horns, which is believed to be a watershed ischemic event.
Very little is known in most cases about the cause of hydrocephalus. It has been observed to affect patients with a variety of conditions including, for example, meningitis or intracranial hemorrhage (e.g., subarachnoid hemorrhage). Further, it has been speculated that it may be precipitated by certain metabolic disorders or general inflammatory states. It may also affect people, particularly the elderly, who exhibit no preexisting condition. The hydrocephalus condition often seen in the elderly is known as Normal Pressure Hydrocephalus (NPH).
Accurate diagnosis of NPH is complicated by the fact that it is characterized by the “classical symptom triad” of incontinence, dementia and unsteadiness of gait, though other symptoms are often present or more prevalent. These symptoms can often be mistakenly attributed to other causes. As a result, NPH is frequently misdiagnosed because it historically requires a high index of suspicion on the part of the treating physician. Once suspected, NPH is difficult to definitively assess and diagnose accurately. Conventionally, confirming a diagnosis of NPH may entail performing an invasive procedure, known as cisternogram, comprising injection of a radioactive tracer substance into the subdural space (i.e., the cerebrospinal fluid space) and monitoring the uptake of the tracer at particular points in the cranium using a nuclear detector at 24, 48 and 72 hour intervals after the initial injection in an effort to semi-quantitate the clearance of that radionuclide tracer.
Other methods of diagnosing hydrocephalus and NPH may include repeated lumbar puncture testing, which is the withdrawal of anywhere from 20 to 40 cc's of spinal fluid to see if a patient gains clinical improvement. The most marked improvements being in gait and mentation. Continuous pressure monitoring of the spinal fluid pressure may also be performed via an indwelling catheter. However, this methodology is performed only at those institutions having specialized critical care units dedicated to this task. Furthermore, this method entails a high risk of infection (i.e., meningitis).
While a cisternogram or other clinical study may be indicative of NPH condition, these studies alone typically do not definitively diagnose a patient with NPH because they do not sufficiently exclude other causes of the observed symptoms. The only definitive diagnostic procedure currently available entails a major invasive neurosurgical procedure. The presence of the symptoms alone, however, usually does not warrant performing such a procedure. Accordingly, it has been notoriously difficult to both accurately and quickly assess and diagnose NPH.
Finally, by the time the classic triad of symptoms appears in a patient sufficient to arouse the suspicions of the treating physician, considerable injury to the central nervous system may have already occurred. Given that the central nervous system has very little capacity for damage repair, especially in the elderly, it is highly desirable to have a system capable of being used to both preventively monitor patients before symptoms become evident and to quickly and accurately diagnose a patient once the symptoms have been expressed.
The use of the DVA/HVA methodologies described above has been uniquely applied for the diagnosis and evaluation of hydrocephalus, including NPH, both before and after surgical correction. It has been used to track the natural history and progression of the onset of NPH. It has also been used to generate a reference database useful for future diagnoses that includes a variety of intracranial pressure data such as natural history NPH data, supine data, and Trendelenberg (head down tilt of approximately 15 degrees) data.
One common shortcoming of most diagnostic systems relates to the lack of sensitivity and specificity associated with the differential diagnosis of various conditions (i.e., increased intracranial pressure and/or flow variations) that may be explain any number of physiological phenomenon. DVA/HVA enables observation of the abnormal flow characteristics in patients suffering from hydrocephalus which are especially apparent during a tilt table (Trendelenberg) test. The fundamental feature of the test is the ability to detect and observe a homogenous global increase in both the pulsatility index and flow acceleration, thus enabling discrimination between homogenous and heterogeneous affects from global intracranial events. For example, a global event could be global inflammation which would typically cause a patchy distribution when the TCD data was correlated (i.e., a heterogeneous event) or it could be a metabolic disorder affecting all vessels homogeneously without necessarily excluding any particular region. These metabolic disorders may include, for example, Fabry Disease, Diabetes or Alzheimer's Disease.
Additionally, DVA/HVA provides a means to identify critical variables that affect intracranial blood flow that in turn cause dementia. Dementia in as much as a function of deterioration of blood flow dynamics as it is due to the loss of brain tissue and deposition of pathologic substances. Accordingly, the invention provides a reliable and efficient means for diagnosing and assessing patients suffering from dementia as well as monitoring and optimizing treatments and regimens designed to combat the onset and progression of the condition.
Thus, there is a need for better diagnosis as well a decision tool to allow physicians to analyze vascular test data, such as TCD-derived data, using vascular methodologies such as DVA/HVA. Further, there is a need for a tool that provides comparisons between a patient's readings and normative data sets, as well as a system to do so.
Furthermore, the expertise to make such uses of the test data is not wide spread. As such, every location, capable of performing vascular tests on a patient, does not also have the capability to analyze, process, diagnose or otherwise use this data. Therefore, this invention, among other benefits, provides a distributed system and method that permit wide-spread or remote use of these methodologies which may achieve the benefits recited above and in the foregoing descriptions.
The invention relates, in general, to the use of Dynamic Vascular Analysis (DVA™) and Hemodymanic Vascular Analysis (HVA™) methodologies for distinguishing among various vascular states. In particular, the invention relates to a telemedicine system, which includes both hardware and software, to automate, standardize and distribute the analysis of vascular data such as Transcranial Doppler (“TCD”) data, deploy DVA/HVA to extract more information from such data and extend neurovascular expertise world-wide for clinical and research applications. The invention further includes using such telemedicine system for assessing vascular health and the effects of treatments, risk factors and substances, including therapeutic substances, on blood vessels, especially cerebral blood vessels, but not limited thereto.
The present invention includes a system and method for analyzing vascular data, such as, but no limited to, Doppler data or TCD, with algorithms such as DVA or HVA. The data may be measured by a vascular property measuring device, such as a TCD but not limited thereto. The invention allows rapid and efficient analysis of the data, and provides mechanisms for comparing patient data to known or measured normative data sets. Further, the present invention provides more accurate and less invasive diagnoses based on vascular conditions. Additionally, the present invention also provides a methodology for differentiating among various vascular states and conditions.
In one embodiment of the present invention, such differentiation is made by a telemedicine system on TCD data deploying DVA or HVA algorithms to extract information from such TCD data. Further, the present invention may extend neurovascular expertise world-wide for clinical and research applications. The system and method of the present invention include software and hardware that distinguish between vascular states which may be used for assessing vascular health, the effects of treatments, risk factors and substances, including therapeutic substances, on blood vessels, especially cerebral blood vessels, but not limited thereto. In the present invention, a telemedicine platform enable objective, reproducible, computational processing to provide a variety of information including, but not limited to, data measures (e.g. TCD data), vascular analysis indices (e.g. DVA indices), and other parameters and hymodynamic information in a telemedicine service model across multiple instrument systems which can be supervised by a global group of experts. This extends neurovascular expertise, making it possible for facilities not associated with neurovascular centers of excellence to develop a neurovascular diagnostic capability. Further, it may help expand the use of cerebrovascular hemodynamic information in other clinical disciplines. Furthermore, other benefits of the device and method of the present invention, as well as variations on the data, data source, analysis algorithms and dissemination of the data and results, within the level of ordinary skill are contemplated here, even if not expressly stated.
While the claims at the conclusion of the specification set forth the present invention, the following detailed description and accompanying drawings are intended to set forth a preferred embodiment for carrying out the invention. It is understood, however, that the subject matter of the present invention may be embodied in many different forms and variations known to those skilled in the art.
While the description below discusses the utilization of TCD as the data source of the invention, it should be realized that the present invention may use any data source and should not be construed as being limited to the TCD. Furthermore, the present invention may use the multivariate analysis of data from diverse sources and need not be limited to a single data source such as a TCD (e.g. use of blood pressure information).
The data 150 from device 110 may be processed on the telemedicine server 120, and users may interact with that data through the plurality of workstations 130. The workstations 130 may be connected to the server 120 through any type of conventional network 140 known to one of skill in the art. This may include, but is not limited to, a LAN or the Internet.
In operation, data 150 may flow from the device to the telemedicine server 120, where the data 150 may be processed in accordance with the methods of the present invention, as described in detail below. A user may access a review tool on a workstation 130 to review the results of the processing and may make any necessary adjustments thereto. Again, users may be located at any location including, but not limited to, on-site, remote locations or in one or more regional centers. As such, where desired, remote access is provided to the user. The adjusted data may be updated on the telemedicine server 120. After the update, the telemedicine server 120 may generate a report that may be reviewed by a user through a workstation 130. Again, where desired, the processing and storage of the data by the server and access and review by the user, as well as report generation, may be remotely performed. After generation of the report, the data and/or report may alternatively be reviewed by another user such as a physician. This again may be done remotely where desired. The physician may review the report and enter comments, interpretations or provide a diagnosis, thereby eliminating the need for the physician to dictate the comments, interpretations or diagnosis and then have that information entered on the report by a transcription service. This improves report accuracy and reduces the time required to produce a report. The physician may also electronically sign the report, after which the system will “lock” the report to prevent further modification. At this time, the physician may then send the locked report to the requesting physician. Further, the reports may be queried or viewed on-line. Any and all portions of the present invention may have remote access and any of the server, the work stations, users, physicians, data storage, report generator and any other portion of the present invention, may be located remotely to the other portions, in some cases separated by many, many miles. Access to all data in the telemedicine platform is controlled and restricted by a role-based security system. The security system prevents users from accessing any information they are not authorized to access.
Some examples of the data 150 provided by device 110 are listed below. This list includes, but is not limited, to the following:
The format of this data can dependent upon the manufacturer of the device. Some possible formats, for example but not limited thereto, can include an XML file, a DICOM-format file, an HL 7-format file, Microsoft Access® database, a SQL-compatible database, a flat file. If necessary, the conversion of this data to the format used by the invention can be accomplished through known data mapping techniques from the format of the device into the invention's data format.
The telemedicine system 100 may have a data conversion module 310, as illustrated in
The telemedicine system 100 may include a data processing module 320, as illustrated in
Given that ultrasound waves are echoed by objects in the body in addition to blood cells, velocimetry waveforms will often have noise from the echoes of those other objects.
DVA/HVA involves the analysis of the vascular test data, for example, TCD data. As applied to evaluating and differentiating among vascular states and conditions, DVA/HVA may include TCD and/or Intravascular Ultrasound (“IVUS”) data (collectively “data”) that is collected and evaluated (via software) as a function of time and velocity. Some factors that can be measured or considered when evaluating and differentiating among vascular states are (a) a simultaneous consideration of the ultrasound data values (peak systolic velocity (PSV or Sys), end diastolic velocity (EDV or Dia), peak systolic time (PST), end diastolic time (EDT), mean flow velocity (MFV), systolic acceleration (SA), pulsatility index (PI), the natural logarithm of the SA (In SA) for each of the established 19 vessel segments within the cerebral vasculature; (b) a comparison of the data values against a reference database and/or quantifying the degree of variance from mean values; or (c) a series of indices (e.g. blood flow velocity ratios or other vascular data) that are representative of the vascular status/performance/health of each of the 19 vessel segments. Of course, the analysis need not be limited to these 19 vessel segments. Further, the list of factors above is exemplary and not exhaustive.
The examples of
Peak systolic velocity (PSV) is the velocity at the identified maximum. End diastolic velocity (EDV) is the velocity at the identified minimum. The mean flow velocity (MFV) is
in approximation and more completely
The pulsatility index (PI) is
The systolic acceleration (SA) is identified as the point of maximum acceleration on the velocity envelope between the end diastolic and peak systolic velocities. This value may be automatically calculated by the algorithm via known methods of calculating maxima of a data set or may be calculated via the following formula:
The derived indices can include the dynamic work or compliance index the dynamic flow index, and the dynamic pressure index.
Velocity Index (VAI)) relates to the force of flow to the mean flow velocity and describes kinetic efficiency of a segment in moving blood forward. It is given by the formula
The basic values and derived indices may be computed based on the relevant identified features or selected parameters, in this embodiment, the maxima and minima. Thus, if cursor placements, i.e. feature identified or selected parameters are changed, the factors may be recomputed based on the new placements. As explained below, the review tool has the capability to recompute the factors dynamically as cursor placements are adjusted.
The telemedicine system 100 has a data review tool 410, as illustrated in
As explained above, one form of velocimetry data consists of a series of waveforms, one waveform for each vessel scanned, where features may be identified or parameters selected therefore in steps S620 to S650, as illustrated in
Step S230, as illustrated in
The telemedicine system 100 may have a report generation module 350, as illustrated in
The telemedicine system 100 may have a notification module 340, as illustrated in
The telemedicine system 100 has optional report review tool 420, as illustrated in
While the foregoing explanations are made to better illustrate and describe the invention, they are not intended to limit the scope of the claims. The scope of the invention is to be defined by the claims appended hereto, and by their equivalents, and all equivalent structures, acts and configurations known to those skilled in the art are contemplated herein.
This application is a continuation of U.S. patent application Ser. No. 12/007,255, filed on Jan. 8, 2008, entitled “TELEMEDICINE PLATFORM FOR STANDARDIZED INTERPRETATION OF VASCULAR DATA USING VASCULAR ANALYSIS”, which is a continuation of U.S. patent application Ser. No. 11/798,295, filed May 11, 2007, entitled “TELEMEDICINE PLATFORM FOR STANDARDIZED INTERPRETATION OF VASCULAR DATA USING VASCULAR ANALYSIS,” which claims the benefit of U.S. Provisional Patent Application No. 60/799,661, filed on May 12, 2006, entitled “TELEMEDICINE PLATFORM FOR STANDARDIZED TRANSCRANIAL DOPPLER INTERPRETATION USING DYNAMIC VASCULAR ANALYSIS.” The foregoing applications are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60799661 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12007255 | Jan 2008 | US |
Child | 12230800 | US | |
Parent | 11798295 | May 2007 | US |
Child | 12007255 | US |