Telemetric orthopaedic implant

Information

  • Patent Grant
  • 8486070
  • Patent Number
    8,486,070
  • Date Filed
    Wednesday, August 23, 2006
    18 years ago
  • Date Issued
    Tuesday, July 16, 2013
    11 years ago
Abstract
An instrumented orthopaedic implant, such as an intramedullary (IM) nail, is disclosed. The implant has the capacity to provide an accurate measurement of the applied mechanical load across the implant. The implant includes sensors and associated electronic components located in recesses on the outer surface of the implant. The implant houses the sensing apparatus, the interface circuitry, the data transmitter, and the power receiver. The hermetically sealed housing is adapted for implantation in the body of a patient. The implant is used with a controller which communicates with it by telemetry, and there is an acting unit connected to the electronic components which is adapted to carry out a function based upon a condition detected by the sensors.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to orthopaedic implants and, more particularly, orthopaedic implants having data acquisition capabilities.


2. Related Art


Trauma products, such as intramedullary (IM) nails, pins, rods, screws, plates and staples, have been used for many years in the field of orthopaedics for the repair of broken bones. These devices function well in most instances, and fracture healing occurs more predictably than if no implant is used. In some instances, however, improper installation, implant failure, infection or other conditions, such as patient non-compliance with prescribed post-operative treatment, may contribute to compromised healing of the fracture, as well as increased risk to the health of the patient.


Health care professionals currently use non-invasive methods, such as x-rays, to examine fracture healing progress and assess condition of implanted bone plates. However, x-rays may be inadequate for accurate diagnoses. They are costly, and repeated x-rays may be detrimental to the patient's and health care workers' health. In some cases, non-unions of fractures may go clinically undetected until implant failure. Moreover, x-rays may not be used to adequately diagnose soft tissue conditions or stress on the implant. In some instances, invasive procedures are required to diagnose implant failure early enough that appropriate remedial measures may be implemented.


The trauma fixation implants currently available on the market are passive devices because their primary function is to support the patient's weight with an appropriate amount of stability whilst the surrounding fractured bone heals. Current methods of assessing the healing process, for example radiography, patient testimonial, etc., do not provide physicians with sufficient information to adequately assess the progress of healing, particularly in the early stages of healing. X-ray images only show callus geometry and cannot access the mechanical properties of the consolidating bone. Therefore, it is impossible to quantify the load sharing between implant and bone during fracture healing from standard radiographs, CT, or MRI scans. Unfortunately, there is no in vivo data available quantifying the skeletal loads encountered during fracture healing as well as during different patient and physiotherapy activities. The clinician could use this information to counsel the patient on life-style changes or to prescribe therapeutic treatments if available. Continuous and accurate information from the implant during rehabilitation would help to optimize postoperative protocols for proper fracture healing and implant protection and add significant value in trauma therapy. Furthermore, improvements in security, geometry, and speed of fracture healing will lead to significant economic and social benefits. Therefore, an opportunity exists to augment the primary function of trauma implants to enhance the information available to clinicians.


Patient wellness before and after an intervention is paramount. Knowledge of the patient's condition can help the caregiver decide what form of treatment may be necessary given that the patient and caregiver are able to interact in an immediate fashion when necessary. Many times the caregiver does not know the status of a would-be or existing patient and, therefore, may only be able to provide information or incite after it was necessary. If given information earlier, the caregiver can act earlier. Further, the earlier information potentially allows a device to autonomously resolve issues or remotely perform the treatment based on a series of inputs.


Surgeons have historically found it difficult to assess the patient's bone healing status during follow up clinic visits. It would be beneficial if there was a device that allowed the health care provider and patient to monitor the healing cascade. Moreover, it would be beneficial if such a device could assist in developing custom care therapies and/or rehabilitation.


Additionally, surgeons have found it difficult to manage patient information. It would be beneficial if there was available a portable memory device that stored patient information, such as entire medical history files, fracture specifics, surgery performed, X-ray images, implant information, including manufacturer, size, material, etc. Further, it would be beneficial if such portable memory device could store comments/notes from a health care provider regarding patient check-ups and treatments given.


Therefore, there is a need in the art for an instrumented orthopaedic trauma implant that can provide precise and accurate information to doctors and patients concerning the status of the implant, progress of fracture healing, and the surrounding tissue without the need for x-rays or invasive procedures.


SUMMARY OF THE INVENTION

It is in view of the above problems that the present invention was developed. The invention is an instrumented orthopaedic implant, such as an intramedullary (IM) nail, with the capacity to provide an accurate measurement of the applied mechanical load across the implant. The implant includes sensors and associated electronic components for measurement of loads and transmission of the sensor data to an external reader.


One aspect of the invention is that it allows for information to be gathered and processed yielding conclusive valuable data with respect to a subject's bone healing cascade. The invention removes the guessing from the diagnosis by providing objective unbiased data collected from them throughout the healing process. Because the invention has a memory function, patient data can be stored; thus, allowing for the easy transmission of the data. The data may include personal data, patient history information, as well as patient activity. If the activity is captured, the surgeon could discern if the patient has been accurately performing postoperative rehabilitation regimens. This allows the surgeon to accurately predict and prescribe further regimens, which currently is not feasible with existing employed technology.


In another aspect of the invention, the captured information also can be used as an input to an algorithm that outputs a command for one or more reactions. The invention may react in a number of ways. The device enables the surgeon to allow autonomous intervention when needed to augment treatment using a biologic, such as injectable cements or demineralized bone matrix, to aid in the speed healing or informs the surgeon if a revision surgery may be necessary.


Thus, in furtherance of the above goals and advantages, the present invention is, briefly, a telemetric orthopaedic implant system, the system including an orthopaedic implant and a control unit. The orthopaedic implant includes at least one sensor; a first recess adapted to receive said at least one sensor; an electronic component electrically connected to said at least one sensor, the electronic component including at least a power supply, a first transmitter, a first receiver, and a first microprocessor; a second recess adapted to receive the electronic component; potting material to seal said first recess and said second recess; a power source electrically connected to said electronic component; and an acting unit electrically connected to said electronic component, said acting unit adapted to carry out a function based upon a condition. The control unit includes a second microprocessor; a second transmitter electrically connected to said second microprocessor, the second transmitter adapted to send a signal to said first receiver of said electronic component; and a second receiver electrically connected to said second microprocessor, the second receiver adapted to receive data from said first transmitter of said electronic component.


Further features, aspects, and advantages of the present invention, as well as the structure and operation of various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and together with the description, serve to explain the principles of the invention. In the drawings:



FIG. 1 is a perspective view of a telemetric orthopaedic implant in a first embodiment;



FIG. 2 is a top view of the implant shown in FIG. 1;



FIG. 3 is a partial sectional side view of the implant shown in FIG. 1;



FIG. 4 is a detailed perspective view of the implant shown in FIG. 1;



FIG. 5 is a perspective view of a telemetric orthopaedic implant in a second embodiment;



FIG. 6 is a perspective view of the telemetric orthopaedic implant shown in FIG. 5;



FIG. 7 is a perspective view of an insert;



FIG. 8 is a perspective view of a telemetric orthopaedic implant in a third embodiment;



FIG. 9 is a perspective view of the telemetric orthopaedic implant shown in FIG. 8;



FIG. 10 is a perspective view of a telemetric orthopaedic implant illustrating the results of finite element analysis;



FIG. 11 is a graph illustrating data output vs. force;



FIG. 12 is a schematic illustrating an electronic component and a data receiver;



FIG. 13 illustrates use of a handheld device;



FIG. 14 illustrates a control unit;



FIG. 15 is a schematic illustrating a telemetric orthopaedic implant system;



FIG. 16 is a graph illustrating a fracture healing curve;



FIG. 17 is a graph illustrating a non-union fracture healing curve;



FIG. 18 illustrates an artificial fracture gap;



FIG. 19 illustrates an in vitro biomechanical test setup;



FIG. 20 is a graph illustrating strain vs. fracture gap depth as a function of load;



FIG. 21 is a graph illustrating strain vs. load as function of gap volume;



FIG. 22 is a graph illustrating accelerometer output vs. time;



FIG. 23 is a graph illustrating magnitude vs. frequency;



FIG. 24 is a graph illustrating magnitude vs. frequency;



FIG. 25 is a graph illustrating magnitude vs. frequency;



FIG. 26 is a graph illustrating magnitude vs. frequency; and



FIG. 27 is a flowchart illustrating steps to analyze gait.





DETAILED DESCRIPTION OF THE EMBODIMENTS

A “smart implant” is an implant that is able to sense its environment, apply intelligence to determine whether action is required, and act on the sensed information to change something in a controlled, beneficial manner. One attractive application of smart implant technology is to measure loads on an orthopaedic implant. For example, an intramedullary nail is subjected to three types of loading: bending, torsional, and compression. These loads may be measured indirectly by measuring sensor output of a series of strain gauges mounted to the orthopaedic implant. In the case of an intramedullary nail, diametrically apposed strain gauges mounted on the outer surfaces of the nail are subjected to tensile and compressive forces, respectively. Typically, the strain measured from the sensors is higher when the implant is loaded in bending than in compression.


A fundamental parameter of the strain gauge is its sensitivity to strain, expressed quantitatively as the gauge factor (G). Gauge factor is defined as the ratio of fractional change in electrical resistance to the fractional change in length (strain),










G
=


Δ





R


R





ɛ



,




(
1
)







where R=nominal resistance, ΔR=resulting change in resistance and ε=strain. This change in resistance arises from two important factors: (a) the change in the resistivity of the material, and (b) the change in the physical dimensions of the resistor as the material is deformed. For a foil strain gauge, G is found to be 2.1. Voltage recordings are converted to strain using the following equation:—










ɛ
=




-
4







V
r



G






F


(

1
+

2






V
r



)






x


(

1
+


R
L


R
g



)




,




(
2
)







where RL is the lead resistance, Rg is the nominal gauge resistance, which is specified by the gauge manufacturer, GF is the Gauge Factor, which is also specified by the gauge manufacturer, and Vr is the voltage ratio defined by the following equation:—











V
r

=

(




V
CH



(
strained
)


-


V
CH



(
unstrained
)




V
EX


)


,




(
3
)







where VCH and VEX are the measured signal's voltage and excitation voltage respectively.


Strain is related to stress using Hooke's Law which can be rearranged to calculate the compression and bending loads experienced by the implant (F),

E·ε·A=F  (4)


where E is the stiffness of the implant in gigapascals (GPa), ε=strain measured from the output of the instrumented implant, and A is the cross-sectional area of the implant in square meters (m2). The corresponding load on the bone could be deduced by subtracting the implant load from the total downward force exerted by the limb measured using either a force plate or a balance.


Incorporation of sensors and other electronic components within an implantable medical device, such as an intramedullary nail, alters its primary function from a passive load-supporting device to a smart “intelligent” system with the ability to record and monitor patient activity and compliance.


Telemetric Intramedullary Nail

Referring to the accompanying drawings in which like reference numbers indicate like elements, FIG. 1 illustrates a telemetric intramedullary (IM) nail 10. The telemetric IM nail 10 includes at least one sensor 12. One particular sensor configuration is illustrated in FIG. 1. In this embodiment, sensors 12 are located in a proximal region 20, a central or mid-shaft region 22, and a distal region 24 of the IM nail 10. In the embodiment depicted in FIG. 1, the telemetric IM nail 10 includes three sensors 12a, 12b, 12c with a sensor corresponding to each region. However, those of ordinary skill in the art would understand that a greater or lesser number of sensors may be used and that sensors may be applied in other configurations. The telemetric nail 10 continuously measures a set of strain values generated from the sensors 12. As explained in greater detail below, the telemetric IM nail 10 transmits the measurements from the nail to a reader device for calculation of the forces components without disturbing fracture healing.


The telemetric IM nail 10 may include features to allow fixation of the nail to bone. For example, the telemetric IM nail 10 may include proximal apertures 26 and/or distal apertures 28. In the embodiment depicted in FIG. 1, the telemetric IM nail 10 includes two proximal holes 26, a distal hole 28, and a distal slot 28, but those of ordinary skill in the art would understand that a greater or lesser number of apertures may be provided.


As best seen in FIG. 5, the telemetric IM nail 10 also includes one or more electronic components 18, such as a printed circuit board. The electronic components 18 form an instrumentation circuit with the sensors 12. The electronic components 18 may include associated signal conditioning circuitry, one or more microprocessors, one or more memory devices, a power supply, and communications components. The electronic components 18 allow in situ measurement of changes in the local environment. The combination of the sensor 12 and the electronic components 18 provide a powerful tool for indirect measurement of the changing load over time due to fracture consolidation using the algorithm described above. In turn, these indirect measurements may be used to provide information to clinicians on the environment for use in clinical decision making.


In order to maintain the integrity of the telemetric IM nail 10, the implant design must protect the components, provide an accurate and stable connection between the sensor and its environment, and maintain the functionality of the implant itself. Incorporating sensors within the structure of internal implants raises the “packaging problem” of maintaining the insulation of electronics, as biological tissues are an extremely hostile environment. Furthermore, the risk of damage to the electronic components 18 from common sterilization methods cannot be underestimated. Design considerations for instrumenting the IM nail 10 requires minimization of any damage to the mechanical and physical properties of the nail and allow for large scale commercialization and manufacture. Certain designs may be confirmed by measuring the bending stiffness and fatigue behavior of the IM nail 10 before and after instrumentation.


As best seen in FIGS. 2-5, the IM nail 10 includes at least one recess 14. As examples, the recess 14 may be rectangular, square, circular, elliptical, or some combination thereof. The recess 14 may be made using various manufacturing techniques including, but not limited to machining, milling, grinding, forging, casting, stamping, and injection molding. The recess 14 has a depth D, which ranges from about 0.1 mm to about 2.0 mm. The length L of the recess may be in the range from about 1 mm to about 100 mm. In the embodiment depicted in FIG. 3, the recess 14 is about 0.5 mm thick and about 5 mm long. The recess 14 receives the sensor 12 and conductor wires 16. The recess 14 protects the sensor 12 and conductor wires 16 from abrasive damage during the surgical insertion process. The recess 14 is located on either an anterior surface or a posterior surface enabling the sensors 12 to experience tensile and compression forces respectively. The sensor 12 may be fixed in the recess 14 using a range of high stiffness adhesives including epoxy resins, polyurethanes, UV curable adhesives, and medical grade cyanoacrylates. These types of fixation methods do not adversely affect the performance of the sensor 12.


Additionally, the telemetric IM nail 10 may include a recess 14 in the proximal region 20 to receive the electronic components 18. The recess 14 is dimensioned to accept the electronic components 18. For example, the electronic components may be about 56 mm long, about 6.2 mm wide, and about 0.25 mm thick, and the recess 14 is sized accordingly. The recess 14 may be of the same size as the electronic components 18 or slightly larger.


Alternatively, installation of the strain gauges 12 and other electronic components may be carried out using a more evasive method, such as electro-discharge milling a longitudinal section in the implant, installing the components in the IM nail 10, and laser welding the tube segments. However, there are several disadvantages to using this approach. Localized heat of welding tends to cause distortion and warping of the base metals or stresses around the weld area, which could affect the corrosion resistance of the implant. Moreover, laser beam welding has a tremendous temperature differential between the molten metal and the base metal immediately adjacent to the weld. Heating and cooling rates are much higher in laser beam welding than in arc welding, and the heat-affected zones are much smaller. Rapid cooling rates can create problems such as cracking in high carbon steels.


There are a number of ways to encapsulate the sensors 12 and other electronic components. Some components may require more durable methods of encapsulation than others. For example, if a battery or other potentially hazardous device is included in the electronics system a titanium case may be required. Alternatively, if the components are biologically benign, then a simple potting material, such as polyurethane or a silicone, may prove to be sufficient. Those skilled in the art would understand that various materials may be used for the potting material. What is significant is that the potting material acts as a cover to separate the electronic components from the surrounding environment. Soldering and welding techniques may also be used to help permanently seal the sensors 12 and other electronic components inside the instrumented nail 10. Substituting the standard foil gauge with platinum strain gauges may also enhance durability and resistance to sterilization and attack by biological fluids.


In one particular embodiment in FIG. 6, the sensors 12 and the electronic components 18 are covered with a biocompatible potting material 30, such as polyurethane or silicone, in order to provide a hermetic seal. Because the sensors 12 and the electronic components 18 are sealed hermetically from the patient tissues and fluids, long term function of the telemetric IM nail 10 is achievable. At the same time, leakage of non-biocompatible or toxic materials is eliminated. The potting material 30 is an electrically insulative, moisture resistant material, supplied in either a liquid or putty-like form and is used as a protective coating on sensitive areas of electrical and electronic equipment. The potting material 30 may be optically opaque or colorless. The strain gauges 12 and conductor wires 16 are covered in potting material 30 with suitable mechanical characteristics required to survive the implantation process and restore the mechanical envelope.


An alternative arrangement of the electronic components 18 in the telemetric instrumented nail 10 is shown in FIGS. 7, 8, and 9. In this particular design, passive electronic components 40 are located in the recess 14 of the proximal region 20 and active electronic components 42, such as a power supply, microprocessor, data storage device, and external communication device, are contained in a separate nail head insert 44. As best seen in FIG. 9, the passive electronic components 40 may be covered with the potting material 30 to hermetically seal the electronic components 40. In this configuration, the telemetric IM nail 10 is implanted in the usual manner, and, once the nail has been implanted into the bone, the nail head insert 44 is attached to the telemetric IM nail 10. For example, the nail head insert 44 may be threaded into a hole 46 (best seen in FIG. 5). This particular design avoids any sensitive electronics being damaged by the implantation process. Connections between the passive and active electronic components 40, 42 can be made using either an inductively coupled link or physical connections via slip rings.


The telemetric IM nail 10 may be constructed from a biocompatible material using standard manufacturing techniques. For example, the nail may be forged out of metal, hand or machine laid composite, or machined from stock. Alternatively, the telemetric IM nail 10 may be cast, injection molded, or compacted through hot isostatic processing (HIP). The HIP manufacturing process is particularly suited for producing nails with preformed recesses designed to receive sensors and electronic components.


In yet another alternative embodiment, the telemetric IM nail 10 may be constructed using a biodegradable composite whose degradation rate is controlled by sensed strain data. Such a device is more compliant than a conventional metal implant because the mechanical modulus of the implant changes according to the degree of healing of the adjacent bone. Increased load bearing capacity on the healing bone triggers the release of an active agent that accelerates the degradation rate of the nail in order to reduce its load sharing ability. On the other hand, slow healers require the release of active agents that inhibit the degradation rate of the implant material. The release of the active agent may be controlled using a micro-electromechanical structures (MEMS) reservoir system that releases a chemical manipulation on demand that either accelerates or decelerates the rate of degradation of the nail. The instrumented components may be manufactured using restorable materials, such as degradable, porous silicon wafers. Otherwise, non-degradable electronic components may remain in the patient, which may be acceptable in some cases.


FE Modeling to Determine Optimum Position of Sensors

Referring now to FIG. 10, the sensors 12 may be devices capable of measuring mechanical strain, such as foil or semiconductor strain gauges. Alternatively, the sensors 12 may be load cells used to directly measure mechanical load. The embodiment depicted in FIG. 1 utilizes foil strain gauges to measure strain. The optimum location of the sensors 12 for the purpose of measuring strain may be determined through finite element (FE) analysis. The sensors 12 may be located, for example, but not limited to, in the working region of the implant 10. The working region is defined as the region between two fixation apertures 26, 28. The fixation apertures 26, 28 are adapted to receive fasteners, such as screws, to attach the implant 10 to bone. As can be seen in FIG. 10, the darker, shaded areas represent stress concentrations. The stress distribution results from the way in which the nail 10 is loaded through the patient's hip joint and results in high bending stresses on the outer surface of the nail 10, aligned with the proximal apertures 26. Typically, a 50% reduction in stress is observed between sensors placed inside the implant as opposed to an external mounting.


Sensor

The telemetric IM nail 10 includes the sensor 12. The sensor 12 senses at least one item, event, condition, etc. The sensor 12 may be any number of types including, but not limited to, a foil strain gauge, a semi-conductor strain gauge, a vibrating beam sensor, a force sensor, a piezoelectric element, a fibre Bragg grating, a gyrocompass, or a giant magneto-impedance (GMI) sensor. Further, the sensor 12 may indicate any kind of condition including, but not limited to, strain, pH, temperature, pressure, displacement, flow, acceleration, direction, acoustic emissions, voltage, pulse, biomarker indications, such as a specific protein indications, chemical presence, such as by an oxygen detector, by an oxygen potential detector, or by a carbon dioxide detector, a metabolic activity, or biologic indications to indicate the presence of white blood cells, red blood cell, platelets, growth factors, or collagens. Finally, the sensor 12 may be an image capturing device.


Some orthopaedic applications may require more than one sensor to measure more than one item, event, or condition. Thus, some implants require multi-channel capabilities. For example, the telemetric IM nail 10 may include six or more strain gauges. The sensor 12 may be an array of sensors or a series of discrete sensors. The telemetric IM nail 10 also may be designed with multiaxial strain gauges in a rosette configuration to enable loads to be measured in x, y and/or z planes. The configuration of the sensors 12 also may be tailored to meet the requirements of the patients fracture. The sensor 12 is designed in such way that it does not compromise the performance of the implant. For example, the sensor 12 must be unobtrusive, biocompatible, and in no way affect the established biomechanical performance of the implant. It has been shown that nails with a tight fit between implant and the adjacent bone may be deformed significantly during insertion. As a result, the resolution of the selected sensor is better than 8 bit (0.05%). The output of the sensor may be investigated by applying an axial load to the instrumented nail.


The loading configuration is designed to match the loading pattern typically observed in a human femur, i.e. an offset vertical load transmitted through the nail via the proximal fastener. Strain vs. load plots for three instrumented IM nails with two strain sensors 12 located on the inner (compression) and outer (tensile) surfaces at either the mid-shaft region (nail 1), distal region (nail 2), or proximal region (nail 3) respectively are shown in FIG. 11. In all cases, the responses from the sensor pairs are fairly linear when the load on the nail is ramped up to 500 N. In addition, there is little or no hysteresis observed when the load is applied and removed from the nail.


Communication

The electronic components 18 are in communication with a data receiver 50. The electronic components 18 receive data from the sensor 12 and transmit the data to the data receiver 50. The electronic components 18 transmit the data by wire or through a wireless connection. The transmission may use available technologies, such as ZIGBEE™, BLUETOOTH™, Matrix technology developed by The Technology Partnership Plc. (TTP), or other Radio Frequency (RF) technology. ZigBee is a published specification set of high level communication protocols designed for wireless personal area networks (WPANs). The ZIGBEE trademark is owned by ZigBee Alliance Corp., 2400 Camino Ramon, Suite 375, San Ramon, Calif., U.S.A. 94583. Bluetooth is a technical industry standard that facilitates short range communication between wireless devices. The BLUETOOTH trademark is owned by Bluetooth Sig, Inc., 500 108th Avenue NE, Suite 250, Bellevue Wash., U.S.A. 98004. RF is a wireless communication technology using electromagnetic waves to transmit and receive data using a signal above approximately 0.1 MHz in frequency. Due to size and power consumption constraints, the telemetric IM nail 10 may utilize the Medical Implantable Communications Service (MICS) in order to meet certain international standards for communication.


Instrumentation System


FIG. 12 illustrates the electronic components 18, such as a printed circuit board, and the data receiver 50. The electronic component 18 includes a power transmitter 32, a DC power supply 34, a combination analog/digital converter and microprocessor 36, and a sensor data transmitter 38. The data receiver 50 includes a sensor data receiver 52 and a power transmitter 54. Although illustrated as separate components, those of ordinary skill in the art would understand that the transmitter and the receiver may be combined in a single unit, sometimes referred to as a transceiver. In the embodiment depicted in FIG. 12, power consumption and data transmission are contactless. The electronic component 18 may include any of the following: (1) any number of foil strain gauges; (2) matching number of low noise, low power instrumentation amplifiers; (3) matching number of Wheatstone bridge resistor networks; (4) matching number of strain gauge zero-adjustments; and (5) on-board power supply with noise filtering.


Power Management

The telemetric IM nail 10 may incorporate one or more power management strategies. Power management strategies may include implanted power sources or inductive power sources. Implanted power sources may be something simple, such as a battery, or something more complex, such as energy scavenging devices. Energy scavenging devices may include motion powered piezoelectric or electromagnetic generators and associated charge storage devices. Inductive power sources include inductive coupling systems and Radio Frequency (RF) electromagnetic fields.


Finally, the telemetric IM nail 10 may incorporate a storage device (not shown). The storage device may be charged by an inductive/RF coupling or by an internal energy scavenging device. The storage device must have sufficient capacity to store enough energy at least to perform a single shot measurement and to subsequently process and communicate the result.



FIG. 13 illustrates a handheld device 60 being placed on a leg 102 of a patient 100. The handheld device 60 generates RF waves that excite the electronic component 18. The excited electronic component 18 retrieves stored sensor readings and sends them to the handheld device 60 via a carrier wave. The handheld device 60 may be equipped with a processor (not shown) for direct analysis of the sensor readings or the handheld device 60 may be connected to a computer for analysis of the sensor readings.


Communication

The demands on an implantable telemetry system are severe and robust methods must be utilized to capture data from the orthopaedic implant. Prior attempts in the art have not provided a signal in the range needed for an instrumented intramedullary nail. Thus, the telemetric IM nail 10 has a wired interface in its most simplified version. In other words, the electronic components 18 are connected to an external control unit 62 via a wire (not shown). The control unit 62 may be placed on the patient 100 as a wearable device, such as an arm band, wrist band, thigh band, or anklet bracelet. Alternatively, the control unit 62 may be connected to a cast 64, such as by placing the control unit inside the cast or attaching the control unit to the exterior of the cast.


The control unit 62 may include a display 66 and/or a speaker 68. The display 66 may be used to display sensor readings, provide warning lights, a count down timer allowing the patient to anticipate an important event, such as cast removal, or an entertainment device, such as an electronic game, to occupy time. The speaker 68 may be used to provide sounds, such as pre-recorded instruction, warning sounds, or game sounds.


The patient actively wears the control unit 62 which constantly monitors the patient's activity. In the case of a major event, such as a traumatic incident or loss of essential body function, the control unit 62 senses this change and sends out an alert which could be audible and/or visual. Alternatively or in addition to the alert, the control unit 62 may send information to another device which could prompt the wearer for information to confirm the patient's status. The control unit 62 could also be used to notify emergency assistance groups of impending danger and other pertinent information, such as location of the patient. In this last example, the control unit 62 may include a global positioning system (GPS) module to locate the control unit and patient.


The control unit 62 may be housed in virtually any type of material, such as plastic, rubber, metal, glass, ceramic, wood, stone, long fiber composites, short fiber composites, non-fiber composites, etc. The display 66 may be a liquid crystal display, a light emitting diode display, a plasma display, a digital light processing, a liquid crystal on silicon display, cathode ray tube, etc.


In other embodiments, however, the telemetric IM nail 10 has a wireless communications facility to allow the patient to move around freely. This embodiment is partially depicted in FIG. 12.


Not only does the telemetric IM nail 10 include a sensor, but also the telemetric IM nail may include an acting unit to perform certain functions based on sensor readings or external commands. FIG. 15 illustrates a telemetric implant system 110. The telemetric implant system 110 includes a telemetric orthopaedic implant 112, a control unit 114, a reader 116, and a computing device 118. The reader 116 wirelessly communicates with the control unit 114 to transmit and receive data. The reader 116 is connected to the computing device 118 either by wires or wirelessly. The computing device 118 may be any number of known devices, such as a personal digital assistant, a desktop computer, a laptop computer, a notepad PC, a biometric monitoring device, a handheld computer, or a server. The computing device 118 is used to analyze the data received from the orthopaedic implant 112. The computing device 118 may be used to store data and/or to program the telemetric orthopaedic implant 112. The reader 116 and the computing device 118 may be incorporated into a single device.


The orthopaedic implant 112 includes one or more sensors 120, a microcontroller 122, one or more stored deliverables 124, and one or more acting units 126. The sensor 120 outputs an induced signal to a preamplifier (not shown), then to an amplifier (not shown), and then to a filter (not shown). The signal travels then to the microcontroller 122 which processes the sensor signal via an algorithm and decides if the information is to be stored or sent to the acting unit 126. The algorithm used to decide how to act can be pre-programmed from the manufacturer or by surgeon preference. The acting unit 126 may communicate with the microcontroller 122 either by wire or wirelessly. Upon receiving the signal from the control unit 114 or the microcontroller 122, the acting unit 126 deploys a stored deliverable 124, which includes, but is not limited to, biological manipulations, an antibiotic, an anti-inflammatory agent, a pain medication, an osteogenic factor, radio-markers, angiogenic factors, vasodilator, and/or growth factors.


The acting unit 126 may be a MEMS device, such as a pump that delivers a specific volume of medicament or other stored deliverable 124. The orthopaedic implant 112 may include several of these pumps that all contain the same stored deliverable 124 as to offer redundancy in case one or more of the pumps fail. The pump contains a reservoir or reservoirs of stored deliverable 124 to be delivered. The stored deliverable 124 is delivered using any type of microfluidic mechanism, such as a rotary pump, a piston pump, a shape memory material pump, etc.


The control unit 114 includes a power generator 128, an energy storage device 130, a logic circuit 132, a microcontroller 134, an RF detector coil 136, and an RF load switch 138.


User Interface

In some embodiments, the computing device 118 includes a graphical user interface (GUI). The GUI allows a healthcare provider and/or patient to display information based on the collected data either locally or remotely, for example telemedicine, from the telemetric orthopaedic implant 112. The GUI identifies the system to communicate with, prompts the user for security clearance, verifies the security clearance, and downloads the data from the telemetric orthopaedic implant 112 or the reader 116. The data could then be further processed into various forms from simple discrete healing progress status numbers or verbiage to complex information such as a graphical reproduction of the patient gait cycle curve, patient activity, patient compliance, patient data, healthcare provider information, implant manufacture information, surgical techniques, x-radiograph information, computed tomography imaging information, magnetic resonance imaging information.


Further, the patient could be alerted by the GUI as a result of sensed information. The logic circuit 132 may be used to monitor data received from the telemetric orthopaedic implant 112 and send a signal if a certain variable exceeds a preconfigured limit. The alert could let the user know when a clinic visit is necessary for doctor intervention, the device has been overloaded, or how to manage a situation that has occurred without surgeon intervention.


The telemetric implant system 110 has many uses. For example, a patient may undergo a surgical intervention to repair a sustained injury or joint reconstruction, during which time the patient receives a telemetric orthopaedic implant to aid in the repair of the injury. The implant may utilize an electromechanical system designed to monitor various aspects of the patient's recovery with one or more sensors, decide if an action needs to take place, and hence act as programmed.


Early Monitoring of Bone Healing

While immobilization and surgery may facilitate bone healing, the healing of a fracture still requires adequate physiological healing which can be achieved through continuously monitoring changes in the in situ load distribution between the implant and the surrounding bone using sensors and a biotelemetry system. The mass and architecture of bone are known to be influenced by mechanical loading applied to them. In the absence of appropriate loading due to stress shielding caused by poor management of internal orthopaedic fixation systems, bone mass is reduced resulting in compromised healing of the fracture. The primary function of an telemetric orthopaedic implant is to carry the load immediately after surgical placement. For example, the telemetric orthopaedic nail carries the load immediately after surgical placement in the intramedullary canal. With progression of fracture healing, the load sharing between the implant and the bone changes. This can be tracked using strain gauges optimally positioned within the orthopaedic implant according to the location of the fracture. The sensors are used to monitor the progress of union in the case of fracture by continuously monitoring the load component of the healing bone in all spatial components, which is unobtainable from X-rays. Periodic follow-up will provide a graph that shows the gradual decrease of relative motion of the fragments until union occurs.


Each fracture patient generates his or her own unique healing curve; however, the general shape of the healing curve indicates whether the fracture will progress to either a union condition or a non-union condition. The healing curve generated from a patient is dependent upon a number of factors including the type and location of the fracture, health status (underlying disease), age, activity, rehabilitation, and time to reach weight bearing.


Hypothetical load vs. healing time curves showing the loading distribution between an instrumented IM nail and the surrounding bone are schematically illustrated in FIG. 16 and FIG. 17. In FIG. 16, the fracture is progressing to a union condition, and in FIG. 17, the fracture maintains a non-union condition. Although fracture healing results in a reduction in implant load, the remaining load of the nail can be significant and are expected to increase with patient activity. It has been suggested that loading of the bone may increase up to 50% after implant removal. The load measured in the adjacent bone can be determined by subtracting the implant load from the load exerted through the limb, which is determined using either a force plate or balance. The clinician can also measure the load acting through the contralateral limb in order to provide a reference measurement for a fully functional limb.


The healing curve may be used in several different ways. First, in the case of an active telemetric orthopaedic implant, the implant or control unit continuously records data. In the case of an intramedullary nail as an example, the strain on the implant is recorded as the patient ambulates. The surgeon or other healthcare provider may download the data from the implant or control unit in a clinical setting. The data is processed and a healing curve is generated from the data. If the surgeon observes that the strain on the implant is decreasing with time, similar to the graph of FIG. 16, this implies that the surrounding hard tissue is accepting some of the load and, thus, the fracture is healing. However, if the strain on the implant is unchanged with time and at the approximate level as when the patient was discharged from the hospital or other health care facility, similar to the graph of FIG. 17, then this implies that the surrounding hard tissue is not bearing the load and, therefore, the fracture is not healing.


Second, the telemetric orthopaedic implant may be a passive device that does not record data continuously but only when it is exposed to an energy source. In this embodiment, the hospital or healthcare facility provides an energy source which energizes the telemetric orthopaedic implant and allows it to record data. In this example, the telemetric orthopaedic implant is energized, a load is placed on the affected bone with the implant at to a set level, and sensor readings are captured. For example, the implant may be an intramedullary nail and the sensors may measure strain on the nail as the load is applied. The sensed data is downloaded and processed. In this example, the sensed data must be compared to previous measurements. For example, measurements may be taken at predetermined time periods, such as daily or weekly. If the load applied to the bone is unchanged and the strain has decreased compared to previous measurements over time, then it is implied that the hard tissue is sharing some of the load and, thus, the fracture is healing. However, if the strain on the implant remains unchanged compared to previous measurements over time, this implies that the surrounding hard tissues is not bearing any of the load and, therefore, the fracture is not healing.


Telemetric orthopaedic implants of the kind described herein utilize an algorithm that gives an early indication as to whether the fracture will heal or not based on the rate of change in the initial load measurements. The information provided by the sensors also may be used to design a new class of orthopaedic implants that are more compliant with the surrounding bone in terms of strength and stiffness.


The functionality of a telemetric orthopaedic implant may be demonstrated in vitro using a plastic fracture model. In this test shown in FIGS. 18 and 19, a telemetric intramedullary nail 220 is implanted in an intact femur model 200 and gradually, a circumferential fracture gap 210 is introduced while observing changes in the strain as a function of load. Thus, reversing the fracture conditions typically observed in vivo. The strain gauges are applied to the medial and lateral sides of the nail 220, positioned on the shaft of the nail to correspond with the fracture gap placement. Interpretation of the data obtained from this study represents the ability to measure bone healing in vivo. The nail construct is loaded at a stepwise displacement from 0 lbf to 300 lbf in predetermined increments and the strain is measured at each load increment. The first series of strain measurements are made with the bone model completely intact. The next series of strain measurements are made with 75% of the fracture gap 210 in place. Subsequently, the third, fourth, and fifth series of strain measurements are made with 50%, 25%, and 0% of the fracture gap 210 in place, respectively. A final series of strain measurements is made with the fracture gap segments re-inserted to their original position. The fracture gap 210 is approximately 5 mm thick, positioned on the shaft of the bone model such that it will be at half of the working distance of the nail 200, which means it is half of the distance between the locking fasteners.



FIG. 20 illustrates reverse simulated bone healing using an artificially induced circumferential gap. FIG. 21 illustrates load vs. strain curves obtained from the plastic fracture model with 100% (fully intact), 75%, 50%, 25%, and 0% (fully fractured) of the fracture gap in place.


Gait Analysis

The invention also includes a gait analysis tool in which gait data is gathered, processed, and stored until an external device accesses the data and presents it to a reviewer, such as a patient, surgeon, healthcare provider, or physical therapist. The telemetric orthopaedic implant may include an accelerometer, which can output acceleration changes over time at a sampling rate ranging from about 1 to about 2000 Hz. Reference FIG. 22 for an example of graphically represented data output resulting from wearing an accelerometer and the wearer undergoing normal unassisted gait. The sensor output data can then be manipulated as desired for analysis. One such method is to convert the data from the time domain to the frequency domain and look for biometric markers or patterns. FIGS. 23-25 show data similar to that in FIG. 22 transformed into the frequency domain. In these figures, distinct peaks are seen at various frequencies which define the wearer's gait signature seen as the differences in FIGS. 23-25. The patient's gait changes gradually with time and aging or abruptly as would be the case when a patient sustains a severe traumatic injury to any of the bone in their lower extremity. The frequency domain gait signature for an artificially induced antalgic gait pattern is seen in FIG. 26.


The gait analysis tool allows for basic information to be gathered and processed yielding conclusive valuable data with respect to a subject's gait cycle. This data can be used to diagnose the patient's healing status in at least their lower extremities, which when injured impede the normal gait cycle. Historically, surgeons have had to rely on radiographs or other imaging techniques to determine the stage of the patient's bone healing cascade. These tools are helpful but allow for error in diagnosis. There are several areas for this opportunity including but not limited to image quality, parallax, and misdiagnosis. Further, even though these diagnosis tools exist, the surgeon relies on patient testimonial more heavily than the images. The gait analysis tool removes the guessing from the diagnosis by providing the surgeon objective unbiased data collected from the patient throughout the healing process. The gait analysis tool allows the surgeon to understand earlier in the healing process if intervention is needed to augment treatment using a biologic, such as an injectable cement or demineralized bone matrix, to speed healing or if a revision surgery may be necessary. Because the telemetric orthopaedic implant described herein has a memory function, patient data may be stored thus allowing for the easy transmission of the data. This data could include personal data, patient history information, as well as patient activity. If the activity is captured, the surgeon could discern if the patient has been accurately performing postoperative rehabilitation regimens. This allows the surgeon to accurately predict and prescribe further regimens, which currently is not feasible with existing employed technology.



FIG. 27 illustrates steps to implement gait analysis. A person, such as a doctor or healthcare provider, begins at step 310. In step 312, the person reads the data from the patient. For example, the patient may have an active telemetric orthopaedic that continuously measures data as the patient ambulates. In the case of an intramedullary nail as an example, the acceleration of the implant is recorded as the patient ambulates. The surgeon or other healthcare provider may download the data from the implant or control unit in a clinical setting. After the data is downloaded, it is processed in step 314 to convert the data from the time domain to the frequency domain. This allows the doctor, healthcare provider, or software to look for biometric markers or patterns.


Because data is continuously monitored, extraneous data is also downloaded in step 312. For example, data may be recorded when the patient is sitting. In optional step 316, a decision is used to look for peak stride and peak step data within the global download. By utilizing the decision 316, it can be ensured that gait information is present in the global data. If gait information is not present, the doctor or healthcare provider returns to step 312 at another time to retrieve global data.


In step 318 to 332, the gait information is extracted and placed into groups for analysis. In this way, it can be ensured that the doctor or healthcare provider is looking at how the gait changes from one group to the next. For example, the first group of gait information may be from a first time period and the second group of gait information may be from a second time period.


In step 318, stride amplitude, step amplitude, stride frequency, and step frequency is estimated. In step 320, a simplified single gait cycle group is generated. The global data is broken down and correlated to the simplified single gait cycle group in step 322. The data is processed iteratively in step 324. In step 326, a decision is made whether the correlation is above an adaptive threshold. If so, the correlated cycle is identified as a gait group in step 330. If not, the cycle is determined to be non-gait data in step 328. The data is processed iteratively until all the data is analyzed as being gait data or non-gait data in step 332. Once the gait cycles are identified, the gait cycles are analyzed in step 334 and the process completes in step 336.


Alternatively, gait data may be collected and analyzed at the hospital or healthcare facility. In other words, the patient ambulates and data is recorded in the presence of a doctor or healthcare provider. However, this type of data collection does not allow for analysis over long periods of time. Moreover, this type of data collection does not allow for measurement of patient compliance because a patient is more likely to be non-compliant when outside of the hospital or healthcare facility and compliant when in the presence of the doctor or healthcare provider. However, gait data taken at discrete periods of time still provide an indication whether or not a fracture is progressing to a union condition.


CONCLUSION

Although the depicted embodiments concentrate on the function of an instrumented intramedullary nail designed specifically for bone healing, alternative embodiments include incorporation of the sensor and other electronic components within other implantable trauma products, such as a plate, a bone screw, a cannulated screw, a pin, a rod, a staple and a cable. Further, the instrumentation described herein is extendable to joint replacement implants, such a total knee replacements (TKR) and total hip replacements (THR), dental implants, and craniomaxillofacial implants.


A patient receives a wireless instrumented joint reconstruction product. The electromechanical system within the implant may be used to monitor patient recovery using one or more sensors, and make a decision as to whether any intervention is required in the patient's rehabilitation. The telemetric joint replacement continuously measures a complete set of strain values generated in the implant and transmits them from the patient to a laboratory computer system without disturbing the primary function of the implant. Alternatively, a wired system may be utilized in the form of a wearable device external to the patient. Again, the electromechanical system could be designed to monitor various aspects of the patient's recovery.


The wireless technology may be introduced into dental implants to enable early detection of implant overloading. Overloading occurs when prolonged excessive occlusal forces applied to the implant exceeded the ability of the bone-implant interface to withstand and adapt to these forces, leading to fibrous replacement at the implant interface, termed “osseodisintegration,” and ultimately to implant failure. Again, a communication link may be used to selectively access the strain data in the memory from an external source.


The technology associated with the instrumentation procedure also may be adapted to monitor soft tissue repair (e.g. skin muscle, tendons, ligaments, cartilage etc.) and the repair and monitoring of internal organs (kidney's, liver, stomach, lungs, heart, etc.).


The advantage of the invention over the prior art concerns the incorporation of the components within the fixation device in a manner that protects the components, provides an accurate and stable connection between the sensor and its environment, maintains the functionality of the implant itself, and is suitable for large scale manufacture. The device allows for information to be gathered and processed yielding useful clinical data with respect to a patient's bone healing cascade.


The instrumented device removes the guessing from the conventional diagnostic techniques, such as x-ray, CT and MRI imaging, by providing the patient objective quantitative data collected from them through the healing process. Currently, there is no device which quantifies the skeletal loads encountered during fracture healing, as well as during different patient and physiotherapy activities. Furthermore, the load distribution between the implant and the adjacent bone during fracture healing is also unknown. Such data would help to optimize postoperative protocols for improved fracture healing. The device described herein addresses this by having on board sensors and a memory facility enabling patient data to be stored thus allowing for early transmission of data. This data includes patient history and patient activity. The device also enables early intervention by the surgeon, if required, such as administration of drugs, injection of orthobiologics, cements or demineralized bone matrix to help promote/accelerate bone healing or a revision surgery.


In view of the foregoing, it will be seen that the several advantages of the invention are achieved and attained. Among other things, potential clinical benefits include reduced number of clinic visits, reduced pain suffered by the patient, improved data on fracture healing, and early notification of delayed or non-union.


The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.


As various modifications could be made in the constructions and methods herein described and illustrated without departing from the scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.

Claims
  • 1. A telemetric orthopaedic implant system, the system comprising: a. an orthopaedic implant, the orthopaedic implant comprising: i. at least one sensor;ii. a first recess adapted to receive said at least one sensor;iii. an electronic component electrically connected to said at least one sensor, the electronic component including at least a power supply, a first transmitter, a first receiver, and a first microprocessor;iv. a second recess adapted to receive the electronic component;v. potting material to seal said first recess and said second recess;vi. a power source electrically connected to said electronic component; andvii. an acting unit electrically connected to said electronic component, said acting unit adapted to carry out a function based upon a condition; andb. a control unit, the control unit comprising: i. a second microprocessor;ii. a second transmitter electrically connected to said second microprocessor, the second transmitter adapted to send a signal to said first receiver of said electronic component; andiii. a second receiver electrically connected to said second microprocessor, the second receiver adapted to receive data from said first transmitter of said electronic component.
  • 2. The telemetric orthopaedic implant system of claim 1, wherein said orthopaedic implant is an intramedullary nail.
  • 3. The telemetric orthopaedic implant system of claim 1, wherein said at least one sensor is selected from the group consisting of a foil strain gauge, a semi-conductor strain gauge, a vibrating beam sensor, a force sensor, a piezoelectric element, a fibre Bragg grating, and a giant magneto-impedance (GMI) sensor.
  • 4. The telemetric orthopaedic implant system of claim 1, wherein said control unit further comprises a graphical user interface.
  • 5. The telemetric orthopaedic implant system of claim 1, wherein said orthopaedic implant further comprises a cap insert.
  • 6. The telemetric orthopaedic implant system of claim 1, wherein said first transmitter and said first receiver are combined into a single first transceiver, and second transmitter and second receiver are combined into a single second transceiver.
  • 7. The telemetric orthopaedic implant system of claim 1, further comprising a handheld device.
  • 8. The telemetric orthopaedic implant system of claim 1, further comprising a reader.
  • 9. The telemetric orthopaedic implant system of claim 1, further comprising a computing device.
  • 10. The telemetric orthopaedic implant system of claim 1, further comprising a gait analysis tool.
  • 11. The telemetric orthopaedic implant system of claim 1, wherein said function is delivery of a stored deliverable.
  • 12. The telemetric orthopaedic implant system of claim 1, wherein said condition is based upon data acquired by said at least one sensor.
  • 13. The telemetric orthopaedic implant system of claim 1, wherein said condition is based upon a command provided by said control unit.
  • 14. The telemetric orthopaedic implant system of claim 1, wherein said at least one sensor is selected from the group consisting of a strain gauge, a pH sensor, a temperature sensor, a pressure sensor, a flow sensor, an accelerometer, a gyroscope, an acoustic sensor, a voltage sensor, a pulse meter, an image capturing device, a biomarker indicator, chemical detector, and a biologic indicator.
  • 15. The telemetric orthopaedic implant system of claim 14, wherein said a biomarker indicator is a specific protein indicator.
  • 16. The telemetric orthopaedic implant system of claim 14, wherein said chemical detector is selected from the group consisting of an oxygen detector, an oxygen potential detector, and a carbon dioxide detector.
  • 17. The telemetric orthopaedic implant system of claim 1, wherein said power source is selected from the group consisting of a battery, an energy scavenging device, and an inductive power source.
  • 18. The telemetric orthopaedic implant system of claim 17, wherein said energy scavenging device is selected from the group consisting of a motion powered piezoelectric device and an electromagnetic generator.
  • 19. The telemetric orthopaedic implant system of claim 17, further comprising a charge storage device electrically connected to said energy scavenging device.
  • 20. The telemetric orthopaedic implant system of claim 18, further comprising a charge storage device electrically connected to said energy scavenging device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Phase of International Application No. PCT/US2006/033326, filed Aug. 23, 2006. This application claims the benefit of U.S. Provisional Application No. 60/710,550, filed on Aug. 23, 2005; U.S. Provisional Application No. 60/728,374, filed on Oct. 19, 2005; and U.S. Provisional Application No. 60/816,675, filed on Jun. 27, 2006. The disclosure of each application is incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2006/033326 8/23/2006 WO 00 7/28/2008
Publishing Document Publishing Date Country Kind
WO2007/025191 3/1/2007 WO A
US Referenced Citations (256)
Number Name Date Kind
3713148 Cardullo et al. Jan 1973 A
3727209 White et al. Apr 1973 A
3976060 Hildebrandt et al. Aug 1976 A
4096477 Epstein et al. Jun 1978 A
4242663 Slobodin Dec 1980 A
4281664 Duggan Aug 1981 A
4361153 Slocum et al. Nov 1982 A
4441498 Nordling Apr 1984 A
4473825 Walton Sep 1984 A
4481428 Charlot Nov 1984 A
4494545 Slocum et al. Jan 1985 A
4510495 Sigrimis et al. Apr 1985 A
4513743 van Arragon et al. Apr 1985 A
4525713 Barletta et al. Jun 1985 A
4546241 Walton Oct 1985 A
4571589 Slocum et al. Feb 1986 A
4576158 Boland Mar 1986 A
4944299 Silvian Jul 1990 A
4952928 Carroll et al. Aug 1990 A
4991682 Kuntz et al. Feb 1991 A
5024239 Rosenstein Jun 1991 A
5030236 Dean Jul 1991 A
5042504 Huberti Aug 1991 A
5117825 Grevious Jun 1992 A
5197488 Kovacevic Mar 1993 A
5252962 Urbas et al. Oct 1993 A
5309919 Snell et al. May 1994 A
5326363 Aikins Jul 1994 A
5330477 Crook Jul 1994 A
5334202 Carter Aug 1994 A
5337747 Neftel Aug 1994 A
5360016 Kovacevic Nov 1994 A
5383935 Shirkhanzadeh Jan 1995 A
5416695 Stutman et al. May 1995 A
5423334 Jordan Jun 1995 A
5425775 Kovacevic Jun 1995 A
5456724 Yen et al. Oct 1995 A
5470354 Hershberger et al. Nov 1995 A
5481262 Urbas et al. Jan 1996 A
5518008 Cucchiaro et al. May 1996 A
5524637 Erickson Jun 1996 A
5533519 Radke et al. Jul 1996 A
5626630 Markowitz et al. May 1997 A
5630835 Brownlee May 1997 A
5681313 Diez Oct 1997 A
5695496 Orsak et al. Dec 1997 A
5720746 Soubeiran Feb 1998 A
5733292 Gustilo et al. Mar 1998 A
5735887 Barreras et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5792076 Orsak et al. Aug 1998 A
5807701 Payne et al. Sep 1998 A
5833603 Kovacs et al. Nov 1998 A
5836989 Shelton Nov 1998 A
5873843 Draper Feb 1999 A
5904708 Goedeke May 1999 A
5935171 Schneider et al. Aug 1999 A
5944745 Rueter Aug 1999 A
6009878 Weijand et al. Jan 2000 A
6025725 Gershenfeld et al. Feb 2000 A
6034295 Rehberg et al. Mar 2000 A
6034296 Elvin et al. Mar 2000 A
6059576 Brann May 2000 A
6061597 Rieman et al. May 2000 A
6102874 Stone et al. Aug 2000 A
6111520 Allen et al. Aug 2000 A
6120502 Michelson Sep 2000 A
6135951 Richardson et al. Oct 2000 A
6143035 McDowell Nov 2000 A
6168569 McEwen et al. Jan 2001 B1
6183425 Whalen et al. Feb 2001 B1
6200265 Walsh et al. Mar 2001 B1
6201980 Darrow et al. Mar 2001 B1
6210301 Abraham-Fuchs et al. Apr 2001 B1
6245109 Mendes et al. Jun 2001 B1
6312612 Sherman et al. Nov 2001 B1
6325756 Webb et al. Dec 2001 B1
6327501 Levine et al. Dec 2001 B1
6356789 Hinssen et al. Mar 2002 B1
6369694 Mejia Apr 2002 B1
6385593 Linberg May 2002 B2
6402689 Scarantino et al. Jun 2002 B1
6433629 Hamel et al. Aug 2002 B2
6434429 Kraus et al. Aug 2002 B1
6442432 Lee Aug 2002 B2
6447448 Ishikawa et al. Sep 2002 B1
6447449 Fleischman et al. Sep 2002 B1
6449508 Sheldon et al. Sep 2002 B1
6466810 Ward et al. Oct 2002 B1
6477424 Thompson et al. Nov 2002 B1
6482154 Haubrich et al. Nov 2002 B1
6497655 Linberg et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6527711 Stivoric et al. Mar 2003 B1
6529127 Townsent et al. Mar 2003 B2
6535766 Thompson et al. Mar 2003 B1
6539253 Thompson et al. Mar 2003 B2
6553262 Lang et al. Apr 2003 B1
6567703 Thompson et al. May 2003 B1
6573706 Mendes et al. Jun 2003 B2
6583630 Mendes et al. Jun 2003 B2
6602191 Quy Aug 2003 B2
6610096 MacDonald Aug 2003 B2
6636769 Govari et al. Oct 2003 B2
6638231 Govari et al. Oct 2003 B2
6641540 Fleischman et al. Nov 2003 B2
6652464 Schwartz et al. Nov 2003 B2
6658300 Govari et al. Dec 2003 B2
6667725 Simons et al. Dec 2003 B1
6675044 Chen Jan 2004 B2
6682490 Roy et al. Jan 2004 B2
6694180 Boesen Feb 2004 B1
6706005 Roy et al. Mar 2004 B2
6712778 Jeffcoat et al. Mar 2004 B1
6738671 Christophersom et al. May 2004 B2
6749568 Fleischman et al. Jun 2004 B2
6764446 Wolinsky et al. Jul 2004 B2
6766200 Cox Jul 2004 B2
6783499 Schwartz Aug 2004 B2
6790372 Roy et al. Sep 2004 B2
6793659 Putnam Sep 2004 B2
6804552 Thompson et al. Oct 2004 B2
6807439 Edwards et al. Oct 2004 B2
6810753 Valdevit et al. Nov 2004 B2
6819247 Birnbach et al. Nov 2004 B2
6821299 Kirking et al. Nov 2004 B2
6834436 Townsend et al. Dec 2004 B2
6855115 Fonseca et al. Feb 2005 B2
6864802 Smith et al. Mar 2005 B2
6895281 Amundson et al. May 2005 B1
6926670 Rich et al. Aug 2005 B2
6939299 Petersen et al. Sep 2005 B1
6968743 Rich et al. Nov 2005 B2
6994672 Fleischman et al. Feb 2006 B2
7001346 White Feb 2006 B2
7027871 Burnes et al. Apr 2006 B2
7034694 Yamaguchi et al. Apr 2006 B2
7097662 Evans Aug 2006 B2
7147604 Allen et al. Dec 2006 B1
7151914 Brewer Dec 2006 B2
7182736 Roy Feb 2007 B2
7190273 Liao et al. Mar 2007 B2
7195645 DiSilvestro et al. Mar 2007 B2
7209790 Thompson et al. Apr 2007 B2
7212133 Goetz et al. May 2007 B2
7218232 DiSilvestro May 2007 B2
7229415 Schwartz Jun 2007 B2
7256695 Hamel Aug 2007 B2
7333013 Berger Feb 2008 B2
7357037 Hnat et al. Apr 2008 B2
7474223 Nycz et al. Jan 2009 B2
7559951 DiSilvestro et al. Jul 2009 B2
7729758 Haller et al. Jun 2010 B2
7756579 Nitzan et al. Jul 2010 B2
7780613 Sherman Aug 2010 B2
8007450 Williams Aug 2011 B2
20010047125 Quy Nov 2001 A1
20020099359 Santini, Jr. et al. Jul 2002 A1
20020116080 Birnbach et al. Aug 2002 A1
20020138153 Koniuk Sep 2002 A1
20020151978 Zacouto et al. Oct 2002 A1
20020170193 Townsend et al. Nov 2002 A1
20030040806 MacDonald Feb 2003 A1
20030069644 Kovacevic et al. Apr 2003 A1
20030105470 White Jun 2003 A1
20030120150 Govari Jun 2003 A1
20030136417 Fonseca et al. Jul 2003 A1
20030143775 Brady Jul 2003 A1
20030178488 Southard Sep 2003 A1
20030229381 Hochmair et al. Dec 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040011137 Hnat et al. Jan 2004 A1
20040014456 Vaananen Jan 2004 A1
20040019382 Amirouche Jan 2004 A1
20040073137 Lloyd et al. Apr 2004 A1
20040073221 Biscup Apr 2004 A1
20040094613 Shiratori et al. May 2004 A1
20040113790 Hamel et al. Jun 2004 A1
20040116837 Yamaguchi et al. Jun 2004 A1
20040152972 Hunter Aug 2004 A1
20040176815 Janzig et al. Sep 2004 A1
20040186396 Roy et al. Sep 2004 A1
20040204647 Grupp et al. Oct 2004 A1
20040231420 Xie et al. Nov 2004 A1
20040243148 Wasielewski Dec 2004 A1
20040249315 Damen Dec 2004 A1
20050010139 Aminian et al. Jan 2005 A1
20050010299 Disilvestro Jan 2005 A1
20050010300 Disilvestro et al. Jan 2005 A1
20050010301 Sisilvestro et al. Jan 2005 A1
20050010302 Dietz Jan 2005 A1
20050012610 Liao et al. Jan 2005 A1
20050012617 DiSilvestro et al. Jan 2005 A1
20050015014 Fonseca et al. Jan 2005 A1
20050061079 Schulman Mar 2005 A1
20050080335 Simon et al. Apr 2005 A1
20050099290 Govari May 2005 A1
20050101833 Hsu et al. May 2005 A1
20050113932 Kovacevic May 2005 A1
20050131397 Levin Jun 2005 A1
20050187482 O'Brien et al. Aug 2005 A1
20050194174 Hipwell, Jr. et al. Sep 2005 A1
20050234555 Sutton et al. Oct 2005 A1
20050247319 Berger Nov 2005 A1
20050273170 Navarro et al. Dec 2005 A1
20050288727 Penner Dec 2005 A1
20060009656 Zhang Jan 2006 A1
20060009856 Sherman et al. Jan 2006 A1
20060030771 Levine Feb 2006 A1
20060032314 Hnat et al. Feb 2006 A1
20060043178 Tethrake et al. Mar 2006 A1
20060043179 Nycz et al. Mar 2006 A1
20060047283 Evans, III et al. Mar 2006 A1
20060052782 Morgan et al. Mar 2006 A1
20060058627 Flaherty Mar 2006 A1
20060065739 Falls et al. Mar 2006 A1
20060069436 Sutton et al. Mar 2006 A1
20060069447 Disilvestro et al. Mar 2006 A1
20060109105 Varner et al. May 2006 A1
20060111291 DiMauro et al. May 2006 A1
20060119481 Tethrake et al. Jun 2006 A1
20060129050 Martinson et al. Jun 2006 A1
20060142656 Malackowski et al. Jun 2006 A1
20060145871 Donati et al. Jul 2006 A1
20060174712 O'Brien et al. Aug 2006 A1
20060177956 O'Brien et al. Aug 2006 A1
20060190080 Danoff et al. Aug 2006 A1
20060196277 Allen et al. Sep 2006 A1
20060200030 White et al. Sep 2006 A1
20060200031 White et al. Sep 2006 A1
20060232408 Nycz et al. Oct 2006 A1
20060235310 O'Brien et al. Oct 2006 A1
20060241354 Allen Oct 2006 A1
20060244465 Krob et al. Nov 2006 A1
20060260401 Xie et al. Nov 2006 A1
20060271199 Johnson Nov 2006 A1
20060283007 Cros et al. Dec 2006 A1
20060287602 O'Brien et al. Dec 2006 A1
20060287700 White et al. Dec 2006 A1
20070038051 Talman et al. Feb 2007 A1
20070078497 Vandanacker Apr 2007 A1
20070089518 Ericson et al. Apr 2007 A1
20070090543 Condie et al. Apr 2007 A1
20070100215 Powers et al. May 2007 A1
20070123938 Haller et al. May 2007 A1
20070129769 Bourget et al. Jun 2007 A1
20070180922 Crottet et al. Aug 2007 A1
20070208544 Kulach et al. Sep 2007 A1
20070219639 Otto et al. Sep 2007 A1
20080086145 Sherman et al. Apr 2008 A1
20080105874 Wang et al. May 2008 A1
20080161729 Bush Jul 2008 A1
20080208516 James Aug 2008 A1
20090131838 Fotiadis et al. May 2009 A1
20090222050 Wolter et al. Sep 2009 A1
20100152621 Janna et al. Jun 2010 A1
Foreign Referenced Citations (99)
Number Date Country
1127446 Jul 1996 CN
101022760 Aug 2007 CN
19855254 Jun 2000 DE
0062459 Dec 1986 EP
1023872 Aug 2000 EP
1099415 May 2001 EP
0959956 Dec 2001 EP
1256316 Nov 2002 EP
1256316 Nov 2002 EP
1309960 May 2003 EP
1331903 Aug 2003 EP
1366712 Dec 2003 EP
1495456 Jan 2005 EP
1502540 Feb 2005 EP
0987047 Apr 2005 EP
1535039 Jun 2005 EP
1541095 Jun 2005 EP
1570781 Sep 2005 EP
1570781 Sep 2005 EP
1570782 Sep 2005 EP
1582183 Oct 2005 EP
1586287 Oct 2005 EP
1611835 Jan 2006 EP
1642550 Apr 2006 EP
1704893 Sep 2006 EP
1738716 Jan 2007 EP
1765204 Mar 2007 EP
1377340 May 2007 EP
1803394 Jul 2007 EP
1830303 Sep 2007 EP
8200378 Feb 1982 WO
WO 9006720 Jun 1990 WO
WO9621397 Jul 1996 WO
9629007 Sep 1996 WO
WO 9626678 Sep 1996 WO
WO 9629007 Sep 1996 WO
WO 9714367 Apr 1997 WO
WO 9720512 Jun 1997 WO
WO9843701 Oct 1998 WO
WO 0018317 Apr 2000 WO
WO 0019888 Apr 2000 WO
WO 0030534 Jun 2000 WO
WO 0032124 Jun 2000 WO
WO 0119248 Mar 2001 WO
WO 0137733 May 2001 WO
WO 0203347 Jan 2002 WO
WO 0228082 May 2002 WO
WO 02056763 Jul 2002 WO
02058551 Aug 2002 WO
WO 02061705 Aug 2002 WO
03008570 Jan 2003 WO
WO 03003145 Jan 2003 WO
WO 03044556 May 2003 WO
WO 03085617 Oct 2003 WO
WO 2004005872 Jan 2004 WO
2004014456 Feb 2004 WO
2004014456 Feb 2004 WO
WO 2004052453 Jun 2004 WO
WO 2004052456 Jun 2004 WO
WO 2004077073 Sep 2004 WO
WO 2005007025 Jan 2005 WO
WO 2005013851 Feb 2005 WO
WO 2005039440 May 2005 WO
2005074821 Aug 2005 WO
WO 2005074821 Aug 2005 WO
2005084544 Sep 2005 WO
WO 2005084544 Sep 2005 WO
WO 2005104997 Nov 2005 WO
WO 2005120203 Dec 2005 WO
2006010037 Jan 2006 WO
WO 2006010037 Jan 2006 WO
2006045080 Apr 2006 WO
2006045607 May 2006 WO
WO 2006049796 May 2006 WO
WO 2006052765 May 2006 WO
WO 2006055547 May 2006 WO
2006063156 Jun 2006 WO
2006089069 Aug 2006 WO
WO 2006086113 Aug 2006 WO
WO 2006086114 Aug 2006 WO
WO 2006094273 Sep 2006 WO
WO 2006096582 Sep 2006 WO
WO 2006110798 Oct 2006 WO
WO 2006113660 Oct 2006 WO
WO2006131302 Dec 2006 WO
2007009088 Jan 2007 WO
WO 2007002185 Jan 2007 WO
WO 2007002224 Jan 2007 WO
WO 2007002225 Jan 2007 WO
WO 2007008493 Jan 2007 WO
2007025191 Mar 2007 WO
WO 2007025191 Mar 2007 WO
WO 2007030489 Mar 2007 WO
WO 2007036318 Apr 2007 WO
WO2007041124 Apr 2007 WO
WO 2007061890 May 2007 WO
2007090543 Aug 2007 WO
2008105874 Sep 2008 WO
2009098768 Aug 2009 WO
Non-Patent Literature Citations (120)
Entry
Chinese Decision on Rejection for Chinese Patent Application 200680038574.1 issued Oct. 26, 2011 (English translation), 12 pages.
Japanese Notice of Reasons for Rejection for Application No. 2008-528223 mailed Nov. 1, 2011 (Engligh translation), 3 pages.
Office Action for U.S. Appl. No. 12/528,243, mailed May 11, 2012.
Office Action for U.S. Appl. No. 11/718,588, mailed Jul. 16, 2012.
Decision of Rejection for Japanese Application 2008-528223, mailed Jul. 24, 2012.
International Search Report for International Application PCT/US2006/033326, dated Dec. 13, 2006, 5 pages.
International Preliminary Report on Patentability for International Application PCT/US2006/033326, dated Feb. 26, 2008, 9 pages.
Written Opinion of the International Searching Authority for International Application PCT/US2006/033326, mailed Feb. 23, 2008, 8 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2009/032540, dated Aug. 3, 2010, 5 pages.
Written Opinion of the International Search Authority for International Application PCT/US2009/032540, dated Aug. 1, 2010, 4 pages.
Written Opinion of the International Search Authority for International Application PCT/US2008/075316, dated Mar. 6, 2010, 6 pages.
Office Action for U.S. Appl. No. 12/528,243, mailed Jun. 23, 2011, 10 pages.
Office Action for U.S. Appl. No. 11/718,588, mailed Dec. 8, 2010, 9 pages.
Final Office Action for U.S. Appl. No. 11/718,588, mailed May 5, 2011, 16 pages.
Office Action for U.S. Appl. No. 11/718,588, mailed Dec. 15, 2011, 17 pages.
International Search Report for International Application PCT/US2009/032540 dated Apr. 29, 2009, 3 pages.
Global market for RFID in healthcare 2006-2016 by value: Source: IDTechEx, RFID in Healthcare 2006-2016, May 1, 2006.
Fruin, et al, “Validity of a Multi-Sensor Armband in Estimating Rest and Exercise Energy Expenditure”, Am Coll Sports Med, vol. 36, 6, pp. 1063-1069, 2004.
Jakicic, et al, “Evaluation of the SenseWear Pro Armband™ to Assess Energy Expenditure during Exercise”, Med. Sci. Sports Exerc.; vol. 36,5, pp. 897-904, 2004.
Nachemson et al., “Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis”, J.Bone Jt Surg. 53A, 445-464 (Apr. 1971).
Burny, et al., “Smart orthopedic implants”, Orthopedics, Dec. 2005; 28 (12):1401.
Rydell, “Forces Acting on the Femoral Head Prosthesis”, Acta Orthop Scand, Suppl. 88, 1966.
Lanyon, et al., “In Vivo Strain Measurements from Bone and Prosthesis following Total Hip Replacement”, The Journal of Bone and Joint Surgery, vol. 63-A, No. 6, pp. 989-1000, 1981.
Carlson, et al., “A Radio Telemetry Device for Monitoring Cartilage Surface Pressures in the Human Hip”, IEEE Trans. on Biomed. Engrg.,vol. BME-21, No. 4, pp. 257-264, Jul. 1974.
Carlson, et al, “A look at the prosthesis-cartilage interface: design of a hip prosthesis containing pressure transducers”, J Biomed Mater Res. 1974; 8(4 pt 2): 261-269.
English, et al., “In vivo records of hip loads using a femoral implant with telemetric output (a preliminary report),” J Biomed Eng. 1979; 1(2):111-115,.
Rushfeldt, et al., Improvd Techniques for Measuring in Vitro Geometry and Pressure Distribution in Human Acetabulum-II. Instrumented . . . J Biomechanics No. 14, pp. 315-323, 1981.
Hodge, et al., “Preliminary In Vivo Pressure Measurements in a Human Acetabulum”, Proceedings of 31 st Annual Meeting, Orthopaedic Research Society, 1985.
Hodge, et al., “Contact Pressures in the Human Hip Joint Measured In Vivo”, Proc. of National Academy of Science, U.S.A., No. 83, pp. 2879-2883, 1986.
Brown, et al., “In Vivo Load Measurements on a Total Hip Prosthesis”, Proceedings of the 31 st Meeting, Orthopaedic Research Society, 1985.
Davy, et al., “Telemetric Force Measurements across the Hip after Total Arthroplasty”, Journal of Bone and Joint Surgery, vol. 70-A, No. 1, Jan. 1988: 45-50.
Taylor, et al., “Telemetry of forces from proximal femoral replacements and relevance to fixation”, J Biomech. 1997; 30:225-234.
Bergmann, et al., “Multichannel Strain Gauge Telemetry for Orthopaedic Implants”, Technical Note, J. Biomechanics, vol. 21, No. 2, pp. 169-176, 1988.
Rohlmann, et al., “Telemeterized Load Measurement Using Instrumented Spinal Internal Fixators in a Patient with Degenerative Instability”, Spine, vol. 20, No. 24, 1995.
Berkman, et al., “Biomedical Micropressor with Analog I/O”, Inter. Solid-State Circuits Conf. Digest of Technical Papers, pp. 168-169, 1981.
Dorman, et al., “A Monolithic Signal Processor for a Neurophysiological Telemetry System”, IEEE Journal of Solid-State Circuits, vol. 20, pp. 1185-1193, 1985.
Gschwend, et al., “A General Purpose Implantable Multichannel Telemetry System for Physiological Research”, Biotelemetry Patient Monitoring, vol. 6, pp. 107-117, 1979.
Cook, et al., “A Custom Microprocessor for Implantable Telemetry Systems”, Proc of the IEEE Symp. On Computer-Based Medical Systems, pp. 412-417, Jun. 1990.
Brown, et al., “Telemetering In Vivo Loads from Nail Plate Implants”, J. Biomechanics, vol. 15, No. 11, pp. 815-823, 1982.
Fernald, et al., “A System Architecture for Intelligent Implantable Biotelemetry Instruments”, Proc. IEEE Eng in Medicine and Biology Soc. Annual Conf., pp. 1411-1412, 1989.
Rohlmann, et al., “Influence of load carrying on loads in internal spinal fixators”, J Biomech. 2000; 33:1099-1104.
Rohlmann, et al., “Loads on an internal spinal fixation device during walking”, J Biomech, 1997; 30:41-47.
Schneider, et al, “Loads acting in an intramedullary nail during fracture healing in the human femur”, Journal of Biomechanics 34, 2001, pp. 849-857.
Heinlein, et al., “An instrumented knee endoprosthesis for measuring loads in vivo”, EORS 2004, 51st Annual Meeting of the Orthopaedic research Society, Aug. 2007, 1 page.
Townsend, et al., Multichannel, Programmable, Microprocessor Based Strain Gauge . . . , 18th Ann. Int Conf. IEEE Eng. in Med & Biology Soc. Oct. 31-Nov. 3,.1996, Amsterdam.
Mendes, et al., “IntelliJoint System for monitoring displacement in biologic system”, Biomed Bytes 2002 (4), pp. 69-70.
Cristofolini, et al., “A novel transducer for the measurement of cement-prosthesis interface forces in cemented . . . ” , Medicial Eng & Physics vol. 22, Sept 7, 2000, pp. 493-501.
Müller, Otto, et al., “Three-dimensional measurements of the pressure distribution in artificial joints with a capacitive sensor array”, J Biomech, vol. 37, Oct. 2004, pp. 1623-1625.
Bergmann, et al., “Frictional Heating of Total Hip Implants. Part 1: Measurements in Patients,” Journal of Biomechanics, vol. 34, Issue 4, Apr. 2001, pp. 421-428.
Rohlmann, et al., “In vitro load measurement using an instrumented spinal fixation device”, Medical Engineering & Physics, vol. 18, Issue 6, Sep. 1996, pp. 485-488.
Burny, et al., “Concept, design and fabrication of smart orthopaedic implants”, Medical Engineering & Physics, 22 (2000), pp. 469-479.
Townsend, et al., “Remotely powered multichannel microprocessor based telemetry systems for smart implantable devices and smart structures,” Proc. SPIE vol. 3673, pp. 150-156 (Mar. 1999).
D'Lima, et al., “An implantable telemetry device to measure intra-articular tibial forces”, J Biomech. Feb. 2005; 38(2): pp. 299-304.
Bergmann, et al., “Hip Joint Contact Forces during Stumbling”, Langenbecks Arch Surg. Feb. 2004; 389(1): 53-9. Epub Nov. 19, 2003.
Stansfield, et al., “Direct comparison of calculated hip joint contact forces with those measured using instrumented implants . . . ” J Biomech. Jul. 2003; 36(7):929-36.
Heller, et al., “Musculo-skeletalloading conditions at the hip during walking and stair climbing”, J Biomech. Jul. 2001; 34(7):883-93.
Bergmann, et al., “Hip Contact Forces and Gait Patterns from Routing Activities”, J. Biomech. Jul. 2001; 34(7):859-71.
Bergmann, et al., “Frictional Heating of Total Hip Implants. Part 2: Finite Element Study,” J Biomech. Apr. 2001; 34(4):429-35.
Park, et al, “Hip muscle co-contraction: evidence from concurrent in vivo pressure measurement and force estimation”, Gait Posture. Dec. 1999; 10(3):211-22.
Graichen, et al., “Hip endoprosthesis for in vivo measurement of joint force and temperature”, J Biomech Oct. 1999; 32(10):1113-7.
Krebs, et al., “Hip Biomechanics during Gait”, J Orthop & Sports Phys Ther. Jul. 1998; 28(1):51-9.
Tackson, et al., “Acetabular pressures during hip arthritis exercises”, Arthritis Care & Res. Oct. 1997; 10(5):308-19.
Kotzar, et al, “Torsional loads in the early postoperative period following total hip replacement”, J Orthop Res. Nov. 1995; 13(6):945-55.
Bergmann, et al, “Is staircase walking a risk for the fixation of hip implants?,” J Biomech, May 1995; 28(5):535-53.
Brand, et al, “Comparison of hip force calculations and measurements in the same patient”, J Arthroplasty, Feb. 1994; 9(1):45-51.
Bergmann, et al., “Hip joint loading during walking and running, measured in two patients”, J Biomech, Aug. 1993; 26(8):969-90.
Graichen, et al., “Four-channel telemetry system for in vivo measurement of hip joint forces”, J Sioment Eng, Sep. 1991; 13(5):370-4.
Kotzar, et al., “Telemeterized in vivo hip joint force data: a report on two patients after total hip surgery”, J Orthop Res., Sep. 1991, 9(5):621-33.
Morrell, et al., “Corroboration of in vivo cartilage pressures with implacations for synovial joint tribology and . . . ”, Proc Natl Acad Sci USA, Oct. 11, 2005; 102(41 ):14819-24.
McGibbon, et al., “Cartilage degeneration in relation to repetitive pressure: case study of a unilateral hip hemiarthroplasty patient”. J Arthroplasty, Jan. 1999, 14(1):52-8.
Lu, et al., “Influence of muscle activity on the forces in the femur: An in vivo study”, J Biomech, Nov.-Dec. 1997; 30(11-12):1101-6.
Taylor, et al., “Telemetry of forces from proximal femoral replacements and relevance to fixation”, J Biomech, Mar. 1997; 30(3):225-34.
Puers, et al., “A telemetry system for the detection of hip prosthesis loosening by vibration analysis”, Sensors and Actuators 85 (2000) 42-47.
Aminian K, et al., “Temporal Feature Estimation During Walking Using Miniature Accelerometers . . . ” Med Biol Eng Comput, 1999, 37, 686-691.
Bussmann JBJ, et al., “Analysis and Decomposition of Signals Obtained by Thigh-Fixed Uni-Axial Accelerometry During Normal Walking,” Med Biol Eng Comput, 2000, 38, 632-638.
Petrofsky JS, et al., “Joint Acceleration during Gait in Relation to Age,” Eur J Appl Physiology. 2004, 92: 254-262.
Patent Application for U.S. Appl. No. 60/710,550, filed Aug. 23, 2005.
International Search Report for International Application PCT/US2005/040052 dated Jun. 22, 2006, 8 pages.
Written Opinion of the International Search Authority issued in PCT/US2005/040052 on May 20, 2006, 9 pages.
International Preliminary Report on Patentability issued in PCT/US2005/040052 on May 8, 2007, 10 pages.
International Search Report and Written Opinion for International Application PCT/US2007/062757 dated Nov. 19, 2007, 8 pages.
International Search Report for International Application PCT/US2008/075316 dated Dec. 3, 2008, 2 pages.
International Search Report for International Application PCT/US2008/032540 dated Apr. 29, 2009, 3 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2007/062757, mailed Aug. 29, 2009, 6 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2008/075316, mailed Mar. 9, 2010, 7 pages.
Bergmann, et al, “Design and Calibration of Load Sensing Orthopaedic Implants,” Journal of Biomechanical Engineering, Apr. 2008, vol. 130, 9 pages.
Catrysse, M., et al., “An Inductive Powering System with Integrated Bidirectional Datatransmission,” Sensors and Actuators A: Physical, vol. 115, Issues 2-3, Sep. 21, 2004, pp. 221-229, The 17th European Conference on Solid-State Transducers.
Claes, L.E., and Cunningham, J.L., “Monitoring the Mechanical Properties of Healing Bone,” Clin Orthop Relat res (2009) 467:1964-1971.
Kao-Shang Shih, et al, “Influence of Muscular Contractions on the Stress Analysis of Distal Femoral Interlocking Nailing,” Clinical Biomechanics, 23 (2008) 38-44.
Westerhoff, P., “An Instrumented Implant for in vivo Measurement of Contact Forcdes and Contact Moments in the Shoulder Joint,” Medical Engineering & Physics, 31 (2009) 207-213.
Swedberg, Claire, “Surgeon Designs System to Monitor Orthopaedic Implants and Promote Healing,” RFID Journal, reprinted from http://www.rfidjournal.com/article/articleprint/3978/-1/1 on Mar. 26, 2008, 2 pages.
Rapp, Susan M., “Smart Implants to Provide Feedback, Measure Joint Loads, Detect Infection,” Orthopedics Today, 2008, reprinted from http://www.orthosupersite.com/view.asp?rID=28657 on Jun. 6, 2008, 3 pages.
Seide, K., et al., “An Intelligent Internal Fixator System for Long Bones,” 52nd Annual Meeting of the Orthopaedic Research Society, Paper No. 1698.
Rorie, J.F., et al, “A Telemetric Instrumentation System for Orthopaedic Implants,” Apr. 19, 1995, 15 pages.
Arms, S.W., et al., “Wireless Strain Measurement Systems—Applications and Solutions,” presented at NSF-ESF Joint Conference on Structural Health Monitoring, Strasbourg, France, Oct. 3-5, 2003.
Yang, G.Y., et al, “Design of Microfabricated Strain Gauge Array to Monitor Bone Deformation In Vitro and In Vivo,” Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering, May 19-21, 2004, 8 pages.
Einhorn, T.A., “The Cell and Molecular Biology of Fracture Healing,” Clin Orthop, 1998: Suppl: 355:7-21.
Elvin, N., et al., “A Self-Powered Mechanical Strain Energy Sensor,” Smart Matter Struct 2001; 10:1-7.
Kummer, F. J., et al., “Development of a Telemeterized Should Prosthesis,” Clin Orthop Relat Res., Sep. 1996 (330):31-4.
Morris BA, D'Iima, D.D , J., Kovacevic, N., Arms, S.W., Townsend, C.P., and Colwell, C.W. Jr., “e-Knee: Evolution of the Electronic Knee Prosthesis,” J Bone Joint Surg., 83:62-66, 2000.
Kaufman, K., Irby, S.E., and Colwell, C.W., “Instrumented Implant for Measuring Tibiofemoral Forces,” J. Biomechanics, 29:667-671, 1996.
Taylor, S.J.G., Walker, P.S., Perry, J.S., Cannon, S.R., and Woledge, R., “The Forces in the Distal Femur and the Knee During Walking and Other Activities Measured by Telemetry,” the Journal of Arthroplasty, 13:428-437, 1998.
SRI Consulting, “RFID Technologies”, 2004; and Silicon Chip Online, “RFID Tags—How They Work.” reprinted from http://www.siliconchip.com.au/cms/A30750/article.html.
Global market for RFID in healthcare 2006-2016 by value: Source: IDTechEx, RFIDfid in Healthcare 2006-2016.
Healthcare RFID Medical Microchip, Yenra, Apr. 30, 2003, reprinted from http://www.yenra.com/healthcare-rfid-medical-microchip/.
Verichip System, Product of VeriChip Corp., reprinted from http://www.verichipcorp.com/content/solutions/verichip reprinted on Apr. 26, 2011.
Sub-dermal RFID, Yenra, Sep. 25, 2003, reprinted from http://www.yenra.com/subdermalrfid/.
Clyde Church, “Radio Frequency Identification (RFID) Tracking of Orthopaedic Inventories Fact or Fiction, Today and Tomorrow,” BONE Zone, Spring 2004, pp. 35-40.
Luis Figarella, Kirk Kikirekov, Heinrich Oehlmann, Radio Frequency Identification (RFID) in Health Care, Benefits, Limitations, Recommendations, A Health Industry Business Communications Council HIBCC White Paper (2006).
Alex Macario; Dean Morris; Sharon Morris “Initial Clinical Evaluation of a Handheld Device for Detecting Retained Surgical Gauze Sponges Using Radiofrequency Identification Technology” Arch Surg., 2006; 141:659-662.
Patricia Kaeding “RFID medical devices—Opportunities and challenges,” Published Oct. 19, 2005, Wisconsin Technology Network, http://wistechnology.com.
First Office Action for Chinese Application No. 200680038574.1, mailed Oct. 9, 2009, 16 pages.
Second Office Action for Chinese Application No. 200680038574.1, mailed Jul. 7, 2011, 8 pages.
First Office Action for Chinese Application No. 200880115437.2, mailed Nov. 22, 2012.
Office Action for Chinese Application No. 200980112399, mailed Dec. 25, 2012.
Patent Examination Report No. 1 for Australian Application No. 2009209045, mailed Nov. 29, 2012.
Office Action for U.S. Appl. No. 12/865,657, mailed Jan. 23, 2013.
Office Action for U.S. Appl. No. 12/528,243, mailed Dec. 19, 2012.
Official Inquiry for Japanese Application No. 2012-23327, mailed Apr. 9, 2013.
Notice of Reexamination for Chinese Application No. 200680038574.1, mailed Mar. 12, 2013.
Related Publications (1)
Number Date Country
20080300597 A1 Dec 2008 US
Provisional Applications (3)
Number Date Country
60710550 Aug 2005 US
60728374 Oct 2005 US
60816675 Jun 2006 US