In present oil and gas drilling operations, there presently exists a need to monitor pressure, temperature and other wellbore conditions during lifetime of the well. In addition, it may be beneficial to have information about the subsurface formations that are penetrated by a wellbore. For example, certain formation evaluation schemes include measurement and analysis of the formation pressure and permeability. These measurements may be useful in predicting the production capacity and production lifetime of the subsurface formation. Evaluating and/or measuring properties of encountered formations, formation fluids, and/or formation gases may also be beneficial. An example property is the phase-change pressure of a formation fluid, which may be a bubble point pressure, a dew point pressure and/or an asphaltene onset pressure depending on the type of fluid.
Recently the cost of sensors and cabling capable of being placed in a well has been reduced to the point where it is now cost-effective to place telemetry within a well. In order to facilitate the placement of telemetry, which may be a pressure, temperature, or other sensor, within the well it is necessary to run the associated cables from the surface to a location where the sensor is desired. The desired location may be 8000, 9000, or more feet below the surface. Additionally the natural pressure within the well may be several thousand psi. Therefore it is necessary to support the weight of several thousand feet of sensor cable such as a tubing encapsulated cable, also known as a TEC line, as well as the various sensors from the wellhead. At the same time the pressurized wellbore fluid must be prevented from escaping at any undesired location. TEC line consists essentially of a metal armor shell, typically stainless steel, at least one inner insulator, and a conductor within the insulator or insulators.
In the past the cabling, the TEC line and the included electrical conductors or fiber optic cables for such sensors has been run through the various valves that make up the christmas tree and blowout preventer. However in many instances the valves may be closed without first removing the TEC line and included cabling. When the valves close the TEC line and included cabling is severed allowing the remaining Tec line and cable to fall into the well.
In an embodiment of the present invention a tubing encapsulated cable, TEC, enters the lower end of the tubing hanger for the tubing hanger is located within a blowout preventer or christmas tree below the valves utilized for isolating the well. The tubing hanger, which typically sits below the various valves within the christmas tree is utilized to both retain the TEC line within the well bore and to provide access to the conductors and/or data fibers within the TEC line.
Generally the TEC has an outer armor shell usually made of stainless steel and within the outer armor shell has a fiber-optic cable and/or at least one insulated conductor. In some instances the insulated conductors may be coaxial with the other conductors or fiber-optic cable. The tubing hanger has a port at the lower end for the TEC to enter the tubing hanger. In a current embodiment the TEC is secured to the lower end of the tubing hanger by compression fitting. With the TEC's outer armor shell secured to the tubing hanger the interior insulated conductors pass further through the bore and the lower end of the tubing hanger to a position where the insulated conductors may be intersected from the side of the tubing hanger by a conducting penetrator. It is anticipated that the conducting penetrator will access the tubing hanger in place of a lockdown pin. The conducting penetrator is configured such that the tip of the penetrator will pierce the layers of the insulated conductor allowing the various conducting layers of the penetrator to contact the appropriate layers of the insulated conductor to provide connectivity from the wellbore through the conducting penetrator to the exterior of the wellbore.
Is generally envisioned that the tubing hanger will prevent wellbore fluids from inadvertently being lost to the exterior by having seals at least between the wellbore and the penetrator access. In addition is envisioned that the TEC will be sealed to the tubing hanger where the TEC intersects the tubing hanger generally by a compression fitting. Additionally penetrator will incorporate seals.
The description that follows includes exemplary apparatus, methods, techniques, or instruction sequences that embody techniques of the inventive subject matter. However, it is understood that the described embodiments may be practiced without these specific details.
One of the problems with running telemetry within a well 8 is that typically the telemetry cable has to pass through the master valves, such as the lower master 16, the upper master 14, and the crown valve 12. With the telemetry cable running through the master valves, any time that any of the master valves have to be closed either the telemetry must be pulled from the well 8 before a master valve is closed or the master valve will sever the telemetry cable as the master valve closes. The telemetry cable will then fall into the well 8 requiring that the severed telemetry cable be fished out and replaced once the master valve can be reopened.
There have been many instances where a master valve is closed due to some problem with the well 8 in which case there's no time available to remove the telemetry cable. In other cases the master valve may be closed simply due to human error where the valve is closed without the operator realizing that the telemetry cable passes through. Fishing out and replacing telemetry cable is both time-consuming and expensive. Consequently, even though the cost of telemetry gauges and cabling has declined to the point where using telemetry within a well is cost-effective, operators are hesitant to allow telemetry cable to run up through the christmas tree through the master valves and out of the well to the pack off at the top of the Christmas tree.
It is desirable to place telemetry, such as landing a pressure gauge on a TEC line, at some point within the well, where the well has no production tubing, and then terminating the telemetry cable at the base of the production christmas tree. In other words, operators desire to safely bring the data cable out of the christmas tree but below the master valves, so that the operators have full use of the master valves at all times.
TEC line 102 has an outer wall 103, typically stainless steel, although other material may be used. Generally the TEC line 102 protects and provides support for the insulated cable 112 within the TEC line 102. In the present embodiment the insulated cable 112 includes from the outer layer inwards, an outer insulator 119, a conductive layer 115, an inner insulator 117, and an inner core conductor 113. The TEC line 102 and the included insulated cable 112 penetrates into tubing hanger 100 via port 108 so that a portion of the insulated cable 112 is adjacent to circumferential recess 114. In the present embodiment the insulated cable 112 penetrates an insulated pad 107 that provides support for the insulated cable 112 as the penetrator pierces the insulated cable 112 generally through port 105. In other embodiments the support for the insulated cable 112 may be provided by the tubing hanger 100 in lieu of the insulated pad 107. In certain embodiments tubing hanger 100 may not include circumferential recess 114 and may incorporate ports for the individual TEC lines that penetrate the tubing hanger 100. While
In certain instances the lockdown pin 200 may be an insulating material which allows the conductor 204, insulator 208, and interior pathway 206 to be replaced with a solid conducting core within lock pin 200. With a solid conducting core the penetrator tip 212 is incorporated into the solid conducting core and potential fluid pathways through lock pin 200 are prevented.
Referring now to
While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventive subject matter is not limited to them. Many variations, modifications, additions and improvements are possible.
Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.
This application claims priority to U.S. Provisional Patent Application No. 62/449,751 that was filed on Jan. 24, 2017.
Number | Date | Country | |
---|---|---|---|
62449751 | Jan 2017 | US |