The present disclosure is related to cable for transmitting radio frequency (RF) signals to and from an implantable or other medical device to a medical device programmer or similar device.
Some implantable medical devices require the placement of a telemetry head in close proximity to the device in order for the device to communicate with an external medical device such as a programmer. During implantation of such an implantable medical device, physicians may wish to test or program the device while in a sterile environment such as an operating room. In such cases, the telemetry head and the programmer would be required to be sterilized prior to use.
In one aspect, the invention of the disclosure is an extension cable to connect via telemetry, an external medical device in a non-sterile zone with a medical device that is within a sterile zone.
In one embodiment, the telemetry extension cable comprises or consists essentially a cable having a length and comprising a conductor, a first RF antenna attached at one end of the cable and a second RF antenna attached at a second end of the cable, at least one of the first or second antennas configured to transmit and receive RF signals to and from an implantable medical device.
In other embodiments, cable portions are connected together at a point between the first and second antennas via cable connectors that releasably connect the cable portions together.
In another aspect, the invention of the disclosure is a system for connecting an external medical device to an implantable medical device. The system comprises a telemetry extension cable of the disclosure and an external medical device having a telemetry head connected to the external medical device.
In another aspect, the invention of the discourse is a kit which includes a cable having a first portion with a first length and a second portion with a second length, the first portion of the cable having an RF antenna at an end and a cable connector at another end, the second portion of the cable having an RF antenna on an end and a cable connector at another end, the cable connectors configured to releasably connect the first and second cable portions together, at least one of the first or second cable portions is sterile.
In other embodiments, at least the sterile portion of the cable is packaged within sterile packaging.
In another aspect, the invention of the disclosure provides a method of connecting via wired telemetry a non-sterile medical device with a medical device located within a sterile zone by utilizing a telemetry extension cable described in this disclosure.
In this disclosure an antenna is a specialized transducer that converts radio-frequency (RF) fields into alternating current (AC) or vice-versa.
The telemetry extension cables of the disclosure are useful for communication with a medical device just prior to complete implantation within a patient. Certain implantable medical devices communicate with a medical device programmer by placing a programmer telemetry head in close proximity to the implanted medical device. According to current practice, if before closing the incision, a physician wishes to test the implanted device before closing the incision, the programmer telemetry head would need to be sterile. In such situations, a telemetry extension cable of the disclosure could be used to connect in a telemetric sense a programmer's telemetry head that is situated outside of the sterile environment with the partially implanted medical device.
In such a configuration, one of the RF antennas would be placed under the telemetry head and the other RF antenna at the other end of the extension cable would be placed in close proximity to the incision and partially implanted medical device. In this situation, both RF antennas and the cable of the telemetry extension cable would be packaged in a sterile package with one end of the telemetry extension cable would remain sterile and the other end of the telemetry extension cable would be placed into the non-sterile environment or zone and the RF antenna would be placed under the medical device programmer head.
In some embodiments, the telemetry extension cable could be manufactured using materials to allow for re-sterilization or of the telemetry extension cable or it could be manufactured using less expensive materials for disposable use. In another embodiment, a telemetry extension cable of the disclosure could be configured with a suitable in-line, dis-connectable and re-connectable cable connector along the length of the cable and between the RF antennas, for example, about 0.5 m from the RF antenna under the medical device programmer telemetry head. Such an arrangement would allow that a portion of the cable and the RF antenna in close proximity to the implanted device would only be required to be sterile, while the other portion of the cable and the RF antenna communication with a telemetry head could be outside of the sterile zone. In this configuration, only part of the telemetry cable could be disposable and the non-sterile portion of the telemetry extension cable could be re-used. In other embodiments, the telemetry extension cables described in this disclosure can also incorporate a magnet, for example, a low profile magnet, in the RF antenna that would be placed near and implantable medical device.
An embodiment of a telemetry extension cable of the disclosure is shown in
Useful conductive materials for use in the cable 12 and in the coiled conductor in the antenna include metal wire, metal cables, metal meshes, and the like. Useful metals include copper, aluminum, platinum, gold, silver, and alloys of any of them. Useful polymers that can be used as coating materials on the cable and antennas include polyamides, polyimides, polyethers, PEEK, silicones, and polyurethanes. Useful magnets include ceramic and rare-earth magnets such as those that contain neodymium. The cable typically contains four conductors with a pair of conductors present for redundancy. The cable may also contain a cable shield.
Generally, the RF antennas of the telemetry extension cables can be made by known methods such as compression molding. The cable can be made by extrusion or other conductor or wire coating techniques.
The telemetry extension cables described in this disclosure can be used to connect legacy implantable medical devices via RF telemetry, with an external medical device without having to sterilize the external medical device. Additionally, the telemetry cables of the disclosure can further simplify connecting an implantable medical device within a sterile zone with a non-sterile external medical device, such as a programmer or monitor, by allowing the sterile portion of the telemetry extension cable to be disposable, that is, disposed of after a single use.
One skilled in the art will appreciate that the present invention can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
3657652 | Smith | Apr 1972 | A |
5383915 | Adams | Jan 1995 | A |
5759199 | Snell et al. | Jun 1998 | A |
6201993 | Kruse et al. | Mar 2001 | B1 |
6224617 | Saadat et al. | May 2001 | B1 |
6463329 | Goedeke | Oct 2002 | B1 |
6895281 | Amundson et al. | May 2005 | B1 |
6930602 | Villaseca et al. | Aug 2005 | B2 |
7010355 | Lee | Mar 2006 | B2 |
7092761 | Cappa et al. | Aug 2006 | B1 |
7103414 | Poore et al. | Sep 2006 | B1 |
8214045 | Kronich et al. | Jul 2012 | B2 |
8437855 | Sjostedt et al. | May 2013 | B2 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20030171789 | Malek et al. | Sep 2003 | A1 |
20080127478 | Phillips et al. | Jun 2008 | A1 |
20090112626 | Talbot et al. | Apr 2009 | A1 |
20090228074 | Edgell et al. | Sep 2009 | A1 |
20100117454 | Cook et al. | May 2010 | A1 |
20110043051 | Meskens | Feb 2011 | A1 |
20110245886 | Stetson et al. | Oct 2011 | A1 |
20110245892 | Kast et al. | Oct 2011 | A1 |
20110313486 | Castro et al. | Dec 2011 | A1 |
20120203317 | Valentine et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
2314215 | Apr 2011 | EP |
0187413 | Nov 2001 | WO |
2009058788 | May 2009 | WO |
Entry |
---|
(PCT/US2014/026943) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Mailed Aug. 6, 2014, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20140340272 A1 | Nov 2014 | US |