This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present disclosure. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
The present invention relates to the field of data transmission along a tubular body, such as a steel pipe. More specifically, the invention relates to the transmission of data along a pipe within a wellbore or along a pipeline, either at the surface or in a body of water. The present invention further relates to a wireless transmission system for transmitting data up a drill string during a drilling operation or along the casing during drilling or production operations.
General Discussion of Technology
It is desirable to transmit data along a pipeline without the need for wires or radio frequency (electromagnetic) communications devices. Examples abound where the installation of wires is either technically difficult or economically impractical. The use of radio transmission may also be impractical or unavailable in cases where radio-activated blasting is occurring, or where the attenuation of radio waves near the tubular body is significant.
Likewise, it is desirable to collect and transmit data along a tubular body in a wellbore, such as during a drilling process. In the drilling of oil and gas wells, a wellbore is formed using a drill bit that is urged downwardly at a lower end of a drill string. The drill bit is rotated while force is applied through the drill string and against the rock face of the formation being drilled. During this process, the operator may seek to acquire real time data related to temperature, pressure, rate of rock penetration, inclination, azimuth, fluid composition, and local geology. In order to obtain such information, special downhole assemblies have been developed. These assemblies are generally referred to as Logging While Drilling (LWD) or Measurement While Drilling (MWD) assemblies, or generically as bottom hole assemblies.
LWD and MWD assemblies are typically placed proximate the drill bit at the bottom of the drill string. Bottom hole assemblies having LWD or MWD capabilities are able to store or transmit information about subsurface conditions for review by drilling or production operators at the surface. LWD and MWD techniques generally seek to reduce the need for tripping the drill string and running wireline logs to obtain downhole data.
A variety of technologies have been proposed or developed for downhole communications using LWD or MWD. In one form, MWD and LWD information is simply stored in a processor having memory. The processor is retrieved and the information is downloaded later when the drill string is pulled, such as when a drill bit is changed out or a new bottom hole assembly is installed.
Several real time data telemetry systems have also been offered. One involves the use of a physical cable such as an electrical conductor or a fiber optic cable that is secured to the tubular body. The cable may be secured to either the inner or the outer diameter of the pipe. The cable provides a hard wire connection that allows for real-time transmission of data and the immediate evaluation of subsurface conditions. Further, these cables allow for high data transmission rates and the delivery of electrical power directly to downhole sensors.
It can be readily perceived that the placement of a physical cable along a string of drill pipe during drilling is problematic. In this respect, the cable will become quickly tangled and will break if secured along a rotating drill string. This problem is lessened when a downhole mud motor is used that allows for a generally non-rotating drill pipe. However, even in this instance the harsh downhole environment and the considerable force of the pipe as it scrapes across the surrounding borehole can impair the cable.
It has been proposed to place a physical cable along the outside of a casing string during well completion. However, this can be difficult as the placement of wires along a pipe string requires that thousands of feet of cable be carefully unspooled and fed during pipe connection and run-in. Further, the use of hard wires in a well completion requires the installation of a specially-designed well head that includes through-openings for the wires. In addition, if the wire runs outside of a casing string, this creates a potential weak spot in the cement sheath that may contribute to a loss of pressure isolation between subsurface intervals. It is generally not feasible to pass wires through a casing mandrel for subsea applications. In sum, passing cable in the annulus adds significant cost, both for equipment and for rig time, to well completions.
Mud pulse telemetry, or mud pressure pulse transmission, is commonly used during drilling to obtain data from sensors at or near the drill bit. Mud pulse telemetry employs variations in pressure in the drilling mud to transmit signals from the bottom hole assembly to the surface. The variations in pressure may be sensed and analyzed by a computer at the surface.
A downside to mud pulse telemetry is that it transmits data to the surface at relatively slow rates, typically at rates of less than 20 bits per second (bps). This rate decreases as the length of the wellbore increases, even down to 10 or fewer bps. Slow data transmission rates can be costly to the drilling process. For example, the time it takes to downlink instructions and uplink survey data (such as azimuth and inclination), during which the drill string is normally held stationary, can be two to seven minutes. Since many survey stations are typically required, this downlink/uplink time can be very expensive, especially on deepwater rigs where daily operational rates can exceed $2 million. Similarly, the time it takes to downlink instructions and uplink data associated with many other tasks such as setting parameters in a rotary steerable directional drilling tool or obtaining a pressure reading from a pore-pressure-while-drilling tool can be very costly.
The use of acoustic telemetry has also been suggested. Acoustic telemetry employs an acoustic signal generated at or near the bottom hole assembly or bottom of a pipe string. The signal is transmitted through the wellbore pipe, meaning that the pipe becomes the carrier medium for sound waves. Transmitted sound waves are detected by a receiver and converted to electrical signals for analysis.
U.S. Pat. No. 5,924,499 entitled “Acoustic Data Link and Formation Property Sensor for Downhole MWD System” teaches the use of acoustic signals for “short hopping” a component along a drill string. Signals are transmitted from the drill bit or from a near-bit sub and across the mud motors. This may be done by sending separate acoustic signals simultaneously—one that is sent through the drill string, a second that is sent through the drilling mud, and optionally, a third that is sent through the formation. These signals are then processed to extract readable signals.
U.S. Pat. No. 6,912,177, entitled “Transmission of Data in Boreholes,” addresses the use of an acoustic transmitter that is part of a downhole tool. Here, the transmitter is provided adjacent a downhole obstruction such as a shut-in valve along a drill stem so that an electrical signal may be sent across the drill stem. U.S. Pat. No. 6,899,178, entitled “Method and System for Wireless Communications for Downhole Applications,” describes the use of a “wireless tool transceiver” that utilizes acoustic signaling. Here, an acoustic transceiver is in a dedicated tubular body that is integral with a gauge and/or sensor. This is described as part of a well completion.
Faster data transmission rates with some level of clarity have been accomplished using electromagnetic (EM) telemetry. EM telemetry employs electromagnetic waves, or alternating current magnetic fields, to “jump” across pipe joints. In practice, a specially-milled drill pipe is provided that has a conductor wire machined along an inner diameter. The conductor wire transmits signals to an induction coil at the end of the pipe. The induction coil, in turn, transmits an EM signal to another induction coil, which sends that signal through the conductor wire in the next pipe. Thus, each threaded connection provides a pair of specially milled pipe ends for EM communication.
National Oilwell Varco® of Houston, Tex. offers a drill pipe network, referred to as IntelliSery®, that uses EM telemetry. The IntelliServ® system employs drill pipe having integral wires that can transmit LWD/MWD data to the surface at speeds of up to 1 Mbps. This creates a communications system from the drill string itself. The IntelliServ® communications system uses an induction coil built into both the threaded box and pin ends of the drill pipe joints so that data may be transmitted across each connection. Examples of IntelliServ® patents are U.S. Pat. No. 7,277,026 entitled “Downhole Component With Multiple Transmission Elements,” and U.S. Pat. No. 6,670,880 entitled “Downhole Data Transmission System.”
It is observed that the induction coils in an EM telemetry system must be precisely located in the box and pin ends of the joints of the drill string to ensure reliable data transfer. For a long (e.g., 20,000 foot) well, there can be more than 600 tool joints. This represents over 600 pipe sections to be threadedly connected. Further, each threaded connection is preferably tested at the drilling platform to ensure proper functioning.
National Oilwell Varco® promotes its IntelliServ® system as providing the oil and gas industry's “only high-speed, high-volume, high-definition, bi-directional broadband data transmission system that enables downhole conditions to be measured, evaluated, monitored and actuated in real time.” However, the IntelliServ® system generally requires the use of booster assemblies along the drill string. These can be three to six foot sub joints having a diameter greater than the drill pipe placed in the drill string. The booster assemblies, referred to sometimes as “signal repeaters,” are located along the drill pipe about every 1,500 feet. The need for repeaters coupled with the need for specially-milled pipe can make the IntelliServ® system a very expensive option.
Recently, the use of radiofrequency signals has been suggested. This is offered in U.S. Pat. No. 8,242,928 entitled “Reliable Downhole Data Transmission System.” This patent suggests the use of electrodes placed in the pin and box ends of pipe joints. The electrodes are tuned to receive RF signals that are transmitted along the pipe joints having a conductor material placed there along, with the conductor material being protected by a special insulative coating.
While high data transmission rates can be accomplished using RF signals in a downhole environment, the transmission range is typically limited to a few meters. This, in turn, requires the use of numerous repeaters.
Accordingly, a need exists for a high speed wireless transmission system in a wellbore that does not require the machining of induction coils with precise grooves placed into pipe ends or the need for electrodes in the pipe ends or couplings. Further, a need exists for such a wireless transmission system that does not require the precise alignment of induction coils or the placement of RF electrodes between pipe joints.
A system for downhole telemetry is provided herein. The system employs a series of autonomous communications nodes spaced along a wellbore. The nodes allow for wireless communication between one or more sensors residing at the level of a subsurface formation, and a receiver at the surface.
The system first includes a tubular body disposed in the wellbore. Where the wellbore is being formed, the tubular body is a drill string, with the wellbore progressively penetrating into a subsurface formation. The subsurface formation preferably represents a rock matrix having hydrocarbon fluids available for production in commercially acceptable volumes. Thus, the wellbore is to be completed as a production well, or “producer.” Alternatively, the wellbore is to be completed as an injection well or a formation monitoring well.
In another aspect, the wellbore has already been completed. The tubular body is then a casing string or, alternatively, a production string such as tubing.
The system also includes at least one sensor. As noted, the sensor is disposed along the wellbore at a depth of the subsurface formation. The sensor may be, for example, a temperature sensor, a pressure sensor, a microphone, a geophone, a vibration sensor, a resistivity sensor, a fluid flow measurement device, a formation density sensor, a fluid identification sensor, or a strain gauge. Where the wellbore is being drilled, the sensor may alternatively be a set of position sensors indicating, inclination, azimuth, and orientation.
The system further has a sensor communications node. The sensor communications node is placed along the wellbore. The sensor communications node is connected to the tubular body at the depth of the subsurface formation. The sensor communications node is in electrical communication with the at least one sensor. Preferably, the sensor resides within a housing of the sensor communications node.
The sensor communications node is configured to receive signals from the at least one sensor. The signals represent a subsurface condition such as temperature, pressure, or logging information. The sensor communications node preferably includes a sealed housing for holding the electronics.
The system also comprises a topside communications node. The topside communications node is placed along the wellbore proximate the surface. In one aspect, the topside communications node is connected to the well head. The surface may be an earth surface. Alternatively, in a subsea context, the surface may be an offshore drilling or production platform.
The system further includes a plurality of intermediate communications nodes. The intermediate communications nodes are attached to the tubular body in spaced-apart relation. In one aspect, the intermediate communications nodes are spaced at about 10 to about 100 foot (˜3 meter to ˜30 meter) intervals. The intermediate communications nodes are configured to relay messages between from the sensor communications node and the topside communications node.
Each of the intermediate communications nodes has an independent power source. The power source may be, for example, batteries or a fuel cell. In addition, each of the intermediate communications nodes has an electro-acoustic transducer and associated transceiver that is used to establish telemetry. The transceiver is designed to receive and transmit acoustic waves at a frequency range enabling (i) node-to-node acoustic transmission and (ii) a modulation scheme permitting the transfer of information. In any aspect, each of the acoustic waves represents a packet of information comprising a plurality of separate tones, with each tone having a non-prescribed amplitude, a non-prescribed reverberation time, or both.
The acoustic waves represent the readings taken and data generated by the sensor. In this way, data about subsurface conditions are transmitted wirelessly from node-to-node up to the surface. In one aspect, the communications nodes transmit data as mechanical waves at a rate exceeding about 50 bps. In a preferred embodiment, multiple frequency shift keying (MFSK) is the modulation scheme enabling the transmission of information.
A method of transmitting data in a wellbore is also provided herein. The method uses a plurality of data transmission nodes situated along a tubular body to accomplish a wireless transmission of data along the wellbore. The wellbore penetrates into a subsurface formation, allowing for the communication of a wellbore condition at the level of the subsurface formation up to the surface.
The method first includes running a tubular body into the wellbore. The tubular body is formed by connecting a series of pipe joints end-to-end.
The method also includes placing at least one sensor along the wellbore at a depth of the subsurface formation. The sensor may be a pressure sensor, a temperature sensor, a set of position sensors, a vibration sensor, a formation density sensor, a strain gauge, a sonic velocity sensor, a resistivity sensor, or other sensor.
The method further includes attaching a sensor communications node to the tubular body. The sensor communications node is then placed at the depth of the subsurface formation. The sensor communications node is in electrical (or, optionally, optical) communication with the at least one sensor. This communication may be by means of a short wired connection. In one aspect, the sensor resides in the housing of a sensor communications node.
The sensor communications node is configured to receive signals from the at least one sensor. The signals represent a subsurface condition as detected by the sensor. In one embodiment, the sensor is the same electro-acoustic transducer that enables the telemetry communication. In this way, amplitude and amplitude attenuation values may be analyzed.
The method also provides for attaching a topside communications node to the tubular body or other structure, such as the well head or the blow out preventer (BOP), that is connected to the tubular body. The topside communications node is attached to the tubular body proximate the surface.
The method further comprises attaching a plurality of intermediate communications nodes to the tubular body. The intermediate communications nodes reside in spaced-apart relation along the tubular body between the sensor communications node and the topside communications node. The intermediate communications nodes are configured to relay sensor data via acoustic waves from the sensor communications node to the topside node. The intermediate communications nodes are configured as described above.
In a preferred embodiment, the attaching steps comprise clamping the various communications nodes, that is, at least the sensor communications nodes and the intermediate communications nodes, to the tubular body. These communications nodes are welded or otherwise pre-attached to one or more clamps, which are then secured around the tubular body during run-in.
In one aspect, the method further includes receiving a signal from the topside communications node at a receiver. The receiver is located at or just above the surface. The receiver preferably receives electrical or optical signals from the topside communications node. In one embodiment, the electrical or optical signals are conveyed in a conduit suitable for operation in an electrically classified area, that is, via a so-called “Class I, Division 1” conduit (as defined by NFPA 497 and API 500). Alternatively, data can be transferred from the topside communications node to a receiver via an electromagnetic (RF) wireless connection. The electrical signals may then be processed and analyzed at the surface.
So that the present inventions can be better understood, certain drawings, charts, graphs and/or flow charts are appended hereto. It is to be noted, however, that the drawings illustrate only selected embodiments of the inventions and are therefore not to be considered limiting of scope, for the inventions may admit to other equally effective embodiments and applications.
As used herein, the term “hydrocarbon” refers to an organic compound that includes primarily, if not exclusively, the elements hydrogen and carbon. Examples of hydrocarbons include any form of natural gas, oil, coal, and bitumen that can be used as a fuel or upgraded into a fuel.
As used herein, the term “hydrocarbon fluids” refers to a hydrocarbon or mixtures of hydrocarbons that are gases or liquids. For example, hydrocarbon fluids may include a hydrocarbon or mixtures of hydrocarbons that are gases or liquids at formation conditions, at processing conditions, or at ambient conditions (20° C. and 1 atm pressure). Hydrocarbon fluids may include, for example, oil, natural gas, gas condensates, coal bed methane, shale oil, shale gas, and other hydrocarbons that are in a gaseous or liquid state.
As used herein, the term “subsurface” refers to regions below the earth's surface.
As used herein, the term “sensor” includes any electrical sensing device or gauge. The sensor may be capable of monitoring or detecting pressure, temperature, fluid flow, vibration, resistivity, or other formation data.
As used herein, the term “formation” refers to any definable subsurface region. The formation may contain one or more hydrocarbon-containing layers, one or more non-hydrocarbon containing layers, an overburden, and/or an underburden of any geologic formation.
The terms “zone” or “zone of interest” refer to a portion of a formation containing hydrocarbons. The term “hydrocarbon-bearing formation” may alternatively be used.
As used herein, the term “wellbore” refers to a hole in the subsurface made by drilling or insertion of a conduit into the subsurface. A wellbore may have a substantially circular cross section, or other cross-sectional shape. As used herein, the term “well,” when referring to an opening in the formation, may be used interchangeably with the term “wellbore.”
The terms “tubular member” or “tubular body” refer to any pipe, such as a joint of casing, a portion of a liner, a drill string, a production tubing, an injection tubing, a pup joint, a buried pipeline, underwater piping, or above-ground pipeline. The tubular body may also be a downhole tubular device such as a joint of sand screen having a base pipe with pre-drilled holes, a slotted liner, or an inflow control device.
The inventions are described herein in connection with certain specific embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use, such is intended to be illustrative only and is not to be construed as limiting the scope of the inventions.
Referring first to the derrick 120, the derrick 120 includes a frame structure 121 that extends up from the earth surface 101 and which supports drilling equipment. The derrick 120 also includes a traveling block 122, a crown block 123 and a swivel 124. A so-called kelly 125 is attached to the swivel 124. The kelly 125 has a longitudinally extending bore (not shown) in fluid communication with a kelly hose 126. The kelly hose 126, also known as a mud hose, is a flexible, steel-reinforced, high-pressure hose that delivers drilling fluid through the bore of the kelly 125 and down into the drill string 160.
The kelly 125 includes a drive section 127. The drive section 127 is non-circular in cross-section and conforms to an opening 128 longitudinally extending through a kelly drive bushing 129. The kelly drive bushing 129 is part of a rotary table. The rotary table is a mechanically driven device that provides clockwise (as viewed from above) rotational force to the kelly 125 and connected drill string 160 to facilitate the process of drilling a borehole 105. Both linear and rotational movement may thus be imparted from the kelly 125 to the drill string 160.
A platform 102 is provided for the derrick 120. The platform 102 extends above the earth surface 101. The platform 102 generally supports rig hands along with various components of drilling equipment such as a pumps, motors, gauges, a dope bucket, pipe lifting equipment and control equipment. The platform 102 also supports the rotary table.
It is understood that the platform 102 shown in
Placed below the platform 102 and the kelly drive section 127 but above the earth surface 101 is a blow-out preventer, or BOP 130. The BOP 130 is a large, specialized valve or set of valves used to control pressures during the drilling of oil and gas wells. Specifically, blowout preventers control the fluctuating pressures emanating from subterranean formations during a drilling process. The BOP 130 may include upper 132 and lower 134 rams used to isolate flow on the back side of the drill string 160. Blowout preventers 130 also prevent the pipe joints making up the drill string 160 and the drilling fluid from being blown out of the wellbore 150 when a blowout threatens.
As shown in
In drilling the wellbore 150, a first string of casing 110 is placed down from the surface 101. This is known as surface casing 110 or, in some instances (particularly offshore), conductor pipe. The surface casing 110 is secured within the formation 155 by a cement sheath. The cement sheath resides within an annular region 115 between the surface casing 110 and the surrounding formation 155.
During the process of drilling and completing the wellbore 150, additional strings of casing (not shown) will be provided. These may include intermediate casing strings and a final production casing string. For the final production casing, a liner may be employed, that is, a string of casing that is not tied back to the surface 101.
As noted, the wellbore 150 is formed by using a bottom hole assembly 170. The bottom-hole assembly 170 allows the operator to control or “steer” the direction or orientation of the wellbore 150 as it is formed. In this instance, the bottom hole assembly 170 is known as a rotary steerable drilling system, or RSS.
The bottom hole assembly 170 will include a drill bit 172. The drill bit 172 may be turned by rotating the drill string 160 from the platform 102. Alternatively, the drill bit 172 may be turned by using so-called mud motors 174. The mud motors 174 are mechanically coupled to and turn the nearby drill bit 172. The mud motors 174 are used with stabilizers or bent subs 176 to impart an angular deviation to the drill bit 172. This, in turn, deviates the well from its previous path in the desired azimuth and inclination.
There are several advantages to directional drilling. These primarily include the ability to complete a wellbore along a substantially horizontal axis of a subsurface formation, thereby exposing a substantially greater formation face. These also include the ability to penetrate into subsurface formations that are not located directly below the wellhead. This is particularly beneficial where an oil reservoir is located under an urban area or under a large body of water. Another benefit of directional drilling is the ability to group multiple wellheads on a single platform, such as for offshore drilling. Finally, directional drilling enables multiple laterals and/or sidetracks to be drilled from a single wellbore in order to maximize reservoir exposure and recovery of hydrocarbons.
The illustrative well site 100 also includes a sensor 178. Here, the sensor 178 is part of the bottom hole assembly 170. The sensor 178 may be, for example, a set of position sensors that is part of the electronics for a RSS. Alternatively or in addition, the sensor 178 may be a temperature sensor, a pressure sensor, or other sensor for detecting a downhole condition during drilling. Alternatively still, the sensor may be an induction log or gamma ray log or other log that detects fluid and/or geology downhole.
The sensor 178 is part of a MWD or a LWD assembly. It is observed that the sensor 178 is located above the mud motors 174. This is a common practice for MWD assemblies. This allows the electronic components of the sensor 178 to be spaced apart from the high vibration and centrifugal forces acting on the bit 172.
Where the sensor 178 is a set of position sensors, the sensors may include three inclinometer sensors and three environmental acceleration sensors. Ideally, a temperature sensor and a wear sensor will also be placed in the drill bit 172. These signals are input into a multiplexer and transmitted.
It is desirable to send signals about the downhole condition back to an operator at the surface 101. To do this, a telemetry system is used. As discussed above, various telemetry systems are known in the industry. However, the well site 100 of
The nodes first include a topside communications node 182. The topside communications node 182 is placed closest to the surface 101. The topside node 182 is configured to receive and/or transmit acoustic signals. The topside communications node can be below grade as shown above, or above grade.
The nodes may also include a sensor communications node 184. The sensor communications node is placed closest to the sensor 178. The sensor communications node 184 is configured to communicate with the downhole sensor 178, and then send a wireless signal using an acoustic wave.
Finally, the nodes include a plurality of intermediate communications nodes 180. Each of the intermediate communications nodes 180 resides between the sensor node 182 and the topside node 184. The intermediate communications nodes 180 are configured to receive and then relay acoustic signals along the length of the wellbore 150. Preferably, the intermediate communications nodes 180 utilize two-way electro-acoustic transducers to both receive and relay mechanical waves.
In
In
As noted, an illustrative intermediate communications node 350 is shown exploded away from the pipe joint 300. The communications node 350 is designed to attach to the wall 310 of the pipe joint 300 at a selected location. In one aspect, selected pipe joints 300 will each have an intermediate communications node 350 between the box end 322 and the pin end 324. In one arrangement, the communications node 350 is placed immediately adjacent the box end 322 or, alternatively, immediately adjacent the pin end 324 of every joint of pipe. In another arrangement, the communications node 350 is placed at a selected location along every second or every third pipe joint 300 in a drill string 160. In other aspects, more or less than one intermediate communications node may be placed per joint 300.
The intermediate communications node 350 shown in
There are several benefits to the use of an externally-placed communications node that uses acoustic waves. For example, such a node will not interfere with the flow of fluids within the internal bore 315 of the pipe joint 300. Further, installation and mechanical attachment can be readily assessed or adjusted, as necessary.
In
Returning to
The sensor communications node 184 transmits signals from the sensor 178 as acoustic waves. The acoustic waves are preferably at a frequency of between about 50 kHz and 500 kHz. The signals are received by an intermediate communications node 180 that is closest to the sensor communications node 184. That intermediate communications node 180, in turn, will relay the signal on to a next-closest node 180 so that acoustic waves indicative of the downhole condition are sent from node-to-node. A last intermediate communications node 180 transmits the signals acoustically to the topside communications node 182.
Communication may be between adjacent nodes, or it may occasionally skip a node depending on node spacing or communication range. Preferably, communication is routed around any nodes that are broken. Preferably, the number of nodes which transmit a communication packet is fewer than the total number of nodes between the sensor node and the topside node in order to conserve battery power and extend the operational life of the network.
The well site 100 of
In any event, the processor 192 may be incorporated into a computer having a screen. The computer may have a separate keyboard 194, as is typical for a desk-top computer, or an integral keyboard as is typical for a laptop or a personal digital assistant. In one aspect, the processor 192 is part of a multi-purpose “smart phone” having specific “apps” and wireless connectivity.
It is noted that data may be sent along the nodes not only from the sensor 178 up to the receiver 190, but also from the receiver 190 down to the sensor 178. This transmission may be of benefit in the event that the operator wishes to make a change in the way the sensor 178 is functioning. This is also of benefit when the sensor 178 is actually another type of device, such as an inflow control device that opens, closes or otherwise actuates in response to a signal from the surface 101.
Referring first to the well head 260, the well head 260 may be any arrangement of pipes or valves that receive reservoir fluids at the top of the well. In the arrangement of
It is understood that rather than using a Christmas tree, the well head 260 may alternatively include a motor (or prime mover) at the surface 201 that drives a pump. The pump, in turn, reciprocates a set of sucker rods and a connected positive displacement pump (not shown) downhole. The pump may be, for example, a rocking beam unit or a hydraulic piston pumping unit. Alternatively still, the well head 260 may be configured to support a string of production tubing having a downhole electric submersible pump, a gas lift valve, or other means of artificial lift (not shown). The present inventions are not limited by the configuration of operating equipment at the surface unless expressly noted in the claims.
Referring next to the wellbore 250, the wellbore 250 has been completed with a series of pipe strings, referred to as casing. First, a string of surface casing 210 has been cemented into the formation. Cement is shown in an annular bore between the bore wall 215 of the wellbore 250 and the casing 210. The surface casing 210 has an upper end in sealed connection with the lower master valve 264.
Next, at least one intermediate string of casing 220 is cemented into the wellbore 250. The intermediate string of casing 220 is in sealed fluid communication with the upper master valve 262. Cement is again shown in a bore 215 of the wellbore 250. The combination of the casing strings 210, 220 and the cement sheath in the bore 215 strengthens the wellbore 250 and facilitates the isolation of formations behind the casing 210, 220.
It is understood that a wellbore 250 may, and typically will, include more than one string of intermediate casing. Some of the intermediate casing strings may be only partially cemented into place, depending on regulatory requirements and the presence of migratory fluids in any adjacent strata.
Finally, a production liner 230 is provided. The production liner 230 is hung from the intermediate casing string 230 using a liner hanger 232. A portion of the production liner 230 may optionally be cemented in place. The liner is a string of casing that is not tied back to the surface 201.
The production liner 230 has a lower end 234 that extends substantially to an end 254 of the wellbore 250. For this reason, the wellbore 250 is said to be completed as a cased-hole well. Those of ordinary skill in the art will understand that for production purposes, the liner 230 may be perforated or may include sections of slotted liner to create fluid communication between a bore 235 of the liner 230 and the surrounding rock matrix making up the subsurface formation 255.
As an alternative, portions of the liner 230 may include joints of sand screen (not shown). The use of sand screens with gravel packs allows for greater fluid communication between the bore 235 of the liner 230 and the surrounding rock matrix while still providing support for the wellbore 250. The present inventions are not limited by the nature of the completion unless expressly so stated in the claims.
The wellbore 250 also includes a string of production tubing 240. The production tubing 240 extends from the well head 260 down to the subsurface formation 255. In the arrangement of
It is also noted that the bottom end 234 of the production liner 230 is completed substantially horizontally within the subsurface formation 255. This is a common orientation for wells that are completed in so-called “tight” or “unconventional” formations. However, the present inventions have equal utility in vertically completed wells or in multi-lateral deviated wells. Further, the communications nodes 280 themselves may be used in other tubular constructions such as above-ground, under-ground, or below water pipelines.
The illustrative well site 200 also includes one or more sensors 290. Here, the sensors 290 are placed at the depth of the subsurface formation 255. The sensors 290 may be, for example, pressure sensors, flow meters, or temperature sensors. A pressure sensor may be, for example, a sapphire gauge or a quartz gauge. Sapphire gauges are preferred as they are considered more rugged for the high-temperature downhole environment. Alternatively, the sensors may be microphones for detecting ambient noise, or geophones (such as a tri-axial geophone) for detecting the presence of micro-seismic activity. Alternatively still, the sensors may be fluid flow measurement devices such as a spinners, or fluid composition sensors.
It is desirable to send signals about the downhole condition back to a receiver at the surface 201. As with the well site 100 of
The nodes first include a topside communications node 282. The topside communications node 282 is placed closest to the surface 201. The topside node 282 is configured to receive and/or transmit signals. The topside communications node 282 should be placed on the wellhead or next to the surface along the uppermost joint of casing 210.
The nodes also include a sensor communications node 284. The sensor communications node 284 is placed closest to the sensors 290. The sensor communications node 284 is configured to communicate with the downhole sensor 290, and then send a wireless signal using acoustic waves.
Finally, the nodes include a plurality of intermediate communications nodes 280. Each of the intermediate communications nodes 280 resides between the sensor communications node 284 and the topside communications node 282. The intermediate communications nodes 280 are configured to receive and then relay acoustic signals along the length of the tubing string 240. Preferably, the intermediate nodes 280 utilize two-way electro-acoustic transducers to receive and relay mechanical waves. The intermediate communications nodes 280 preferably reside along an outer diameter of the casing strings 210, 220, 230.
In operation, the sensor communications node 284 is in electrical communication with the (one or more) sensors 290. This may be by means of a short wire, or by means of wireless communication such as infrared or radio waves. The sensor communications node 284 is configured to receive signals from the sensors 290, wherein the signals represent a subsurface condition such as temperature or pressure. Alternatively, sensor 290 may be contained in the housing of communications node 284.
The sensor communications node 284 transmits signals from the sensors 290 as acoustic waves. The acoustic waves are preferably at a frequency band of about 100 kHz. The signals are received by an intermediate communications node 280. That intermediate communications node 280, in turn, will relay the signal on to another intermediate communications node so that acoustic waves indicative of the downhole condition are sent from node-to-node. A last intermediate communications node 280 transmits the signals to the topside node 282.
The well site 200 of
The signals may be received by the processor 272 through a wire (not shown) such as a co-axial cable, a fiber optic cable, a USB cable, or other electrical or optical communications wire. Alternatively, the receiver 270 may receive the final signals from the topside node 282 wirelessly through a modem or transceiver. The receiver 270 preferably receives electrical signals via a so-called Class I, Division 1 conduit, that is, a wiring conduit that is considered acceptably safe in an explosive environment.
In each of
The communications node 400 first includes a housing 410. The housing 410 is designed to be attached to an outer wall of a joint of wellbore pipe, such as the pipe joint 300 of
The housing 410 is dimensioned to be strong enough to protect internal electronics. In one aspect, the housing 410 has an outer wall 412 that is about 0.2 inches (0.51 cm) in thickness. A bore 405 is formed within the wall 412. The bore 405 houses the electronics, shown in
It is noted that in
The transceiver 440 will receive an acoustic telemetry signal. In one preferred embodiment, the acoustic telemetry data transfer is accomplished using multiple frequency shift keying (MFSK). Any extraneous noise in the signal is moderated by using well-known conventional analog and/or digital signal processing methods. This noise removal and signal enhancement may involve conveying the acoustic signal through a signal conditioning circuit using, for example, a bandpass filter.
The transceiver will also produce acoustic telemetry signals. In one preferred embodiment, an electrical signal is delivered to an electromechanical transducer, such as through a driver circuit. In a preferred embodiment, the transducer is the same electro-acoustic transducer that originally received the MFSK data. The signal generated by the electro-acoustic transducer then passes through the housing 410 to the tubular body (such as production tubing 240), and propagates along the tubular body to other communication nodes. The re-transmitted signal represents the same sensor data originally transmitted by sensor communications node 284. In one aspect, the acoustic signal is generated and received by a magnetostrictive transducer comprising a coil wrapped around a core as the transceiver. In another aspect, the acoustic signal is generated and received by a piezoelectric ceramic transducer. In either case, the electrically encoded data are transformed into a sonic wave that is carried through the wall of the tubular body in the wellbore.
The communications node 400 optionally has a protective outer layer 425. The protective outer layer 425 resides external to the wall 412 and provides an additional thin layer of protection for the electronics. The communications node 400 is also preferably fluid sealed with the housing 410 to protect the internal electronics. Additional protection for the internal electronics is available using an optional potting material.
The communications node 400 also optionally includes a shoe 500. More specifically, the node 400 includes a pair of shoes 500 disposed at opposing ends of the wall 412. Each of the shoes 500 provides a beveled face that helps prevent the node 400 from hanging up on an external tubular body or the surrounding earth formation, as the case may be, during run-in or pull-out. The shoes 500 may have a protective outer layer 422 and an optional cushioning material 424 (shown in
The shoe 500 first includes a body 510. The body 510 includes a flat under-surface 512 that butts up against opposing ends of the wall 412 of the intermediate communications node 400.
Extending from the under-surface 512 is a stem 520. The illustrative stem 520 is circular in profile. The stem 520 is dimensioned to be received within opposing recesses 414 of the wall 412 of the node 400.
Extending in an opposing direction from the body 510 is a beveled surface 530. As noted, the beveled surface 530 is designed to prevent the communications node 400 from hanging up on an object during run-in into a wellbore.
Behind the beveled surface 530 is a flat surface 535. The flat surface 535 is configured to extend along the drill string 160 (or other tubular body) when the communications node 400 is attached along the tubular body. In one aspect, the shoe 500 includes an optional shoulder 515. The shoulder 515 creates a clearance between the flat surface 535 and the tubular body opposite the stem 520.
In one arrangement, the communications nodes 400 with the shoes 500 are welded onto an inner or outer surface of the tubular body, such as wall 310 of the pipe joint 300. More specifically, the body 410 of the respective communications nodes 400 are welded onto the wall of the tubular body. In some cases, it may not be feasible or desirable to pre-weld the communications nodes 400 onto pipe joints before delivery to a well site. Therefore, it is desirable to utilize a clamping system that allows a drilling or service company to mechanically connect/disconnect the communications nodes 400 along a tubular body as the tubular body is being run into a wellbore.
The system 600 first includes at least one clamp 610. In the arrangement of
The illustrative clamps 610 of
Each clamp 610 also includes a fastening mechanism 620. The fastening mechanisms 620 may be any means used for mechanically securing a ring onto a tubular body, such as a hook or a threaded connector. In the arrangement of
In operation, a clamp 610 is placed onto the tubular body 630 by pivoting the first 612 and second 614 arcuate sections of the clamp 610 into an open position. The first 612 and second 614 sections are then closed around the tubular body 630, and the bolt 625 is run through the first 622 and second 624 receiving rings. The bolt 625 is then turned relative to the nut 627 in order to tighten the clamp 610 and connected communications node 400 onto the outer surface of the tubular body 630. Where two clamps 610 are used, this process is repeated.
The tubular body 630 may be, for example, a drill string such as the illustrative drill string 160 of
In one aspect, the communications node 400 is about 12 to 20 inches (0.30 to 0.51 meters) in length as it resides along the tubular body 630. Specifically, the housing 410 of the communications node may be 8 to 16 inches (0.20 to 0.41 meters) in length, and each opposing shoe 500 may be 2 to 5 inches (0.05 to 0.13 meters) in length. Further, the communications node 400 may be about 1 inch in width and 1 inch in height. The housing 410 of the communications node 400 may have a concave profile that generally matches the radius of the tubular body 630.
A method for transmitting data in a wellbore is also provided herein. The method preferably employs the communications node 400 and the clamping system 600 of
The method 700 first includes running a tubular body into the wellbore. This is shown at Box 710. The tubular body is formed by connecting a series of pipe joints end-to-end. The pipe joints are fabricated from a steel material that is suitable for conducting an acoustical signal.
The method 700 also includes placing at least one sensor along the wellbore at a depth of the subsurface formation. This is provided at Box 720. Here, the sensor may be a pressure sensor, a temperature sensor, an inclinometer, a logging tool, a resistivity sensor, a vibration sensor, a fluid density sensor, a fluid identification sensor, a fluid flow measurement device (such as a so-called “spinner”) or other sensor. The sensor may reside, for example, along a string of drill pipe as part of a rotary steerable drilling system. Alternatively, the sensor may reside along a string of casing within a wellbore. Alternatively still, the sensor may reside along a string of production tubing or a joint of sand screen.
The method 700 further includes attaching a sensor communications node to the tubular body. This is seen at Box 730. The sensor communications node may be placed either inside or outside of a tubular body. The sensor communications node is then placed at the depth of the subsurface formation. The sensor communications node is in communication with the at least one sensor. This is preferably a short wired connection or a connection through a circuit board. Alternatively, the communication could be acoustic or radio frequency (RF), particularly in the case when the sensor and communications nodes are not in the same housing. The sensor communications node is configured to receive signals from the at least one sensor. The signals represent a subsurface condition such as temperature, pressure, pipe strain, fluid flow or fluid composition, or geology.
Preferably, the at least one sensor resides within the housing for the sensor communications node. The sensor communications node may alternatively be configured to use the electro-acoustic transducer as a sensor.
The method 700 also provides for attaching a topside communications node to the tubular body. This is indicated at Box 740. The topside communications node is attached to the tubular body proximate the surface. In one aspect, the topside communications node is connected to the well head, which for purposes of the present disclosure may be considered part of the tubular body.
The method 700 further comprises attaching a plurality of intermediate communications nodes to the tubular body. This is shown at Box 750. The intermediate communications nodes reside in spaced-apart relation along the tubular body between the sensor communications node and the topside communications node. The intermediate communications nodes are configured to receive and transmit acoustic waves from the sensor communications node to the topside node. In one aspect, piezo wafers or other piezoelectric elements are used to receive and transmit acoustic signals. In another aspect, multiple stacks of piezoelectric crystals or magnetostrictive devices are used. Signals are created by applying electrical signals of an appropriate frequency across one or more piezoelectric crystals, causing them to vibrate at a rate corresponding to the frequency of the desired acoustic signal. Each acoustic signal represents a packet of data comprised of a collection of separate tones.
In the method 700, each of the intermediate communications nodes has an independent power source. The independent power source may be, for example, batteries or a fuel cell. In addition, each of the intermediate communications nodes has a transducer. The transducer is preferably an electro-acoustic transducer with an associated transceiver that is designed to receive the acoustic waves and produce acoustic waves.
In one aspect, the data transmitted between the nodes is represented by acoustic waves according to a multiple frequency shift keying (MFSK) modulation method. Although MFSK is well-suited for this application, its use as an example is not intended to be limiting. It is known that various alternative forms of digital data modulation are available, for example, frequency shift keying (FSK), multi-frequency signaling (MF), phase shift keying (PSK), pulse position modulation (PPM), and on-off keying (OOK). In one embodiment, every 4 bits of data are represented by selecting one out of sixteen possible tones for broadcast.
Acoustic telemetry along tubulars is characterized by multi-path or reverberation which persists for a period of milliseconds. As a result, a transmitted tone of a few milliseconds duration determines the dominant received frequency for a time period of additional milliseconds. Preferably, the communication nodes determine the transmitted frequency by receiving or “listening to” the acoustic waves for a time period corresponding to the reverberation time, which is typically much longer than the transmission time. The tone duration should be long enough that the frequency spectrum of the tone burst has negligible energy at the frequencies of neighboring tones, and the listening time must be long enough for the multipath to become substantially reduced in amplitude. In one embodiment, the tone duration is 2 ms, then the transmitter remains silent for 48 milliseconds before sending the next tone. The receiver, however, listens for 2+48=50 ms to determine each transmitted frequency, utilizing the long reverberation time to make the frequency determination more certain. Beneficially, the energy required to transmit data is reduced by transmitting for a short period of time and exploiting the multi-path to extend the listening time during which the transmitted frequency may be detected.
In one embodiment, an MFSK modulation is employed where each tone is selected from an alphabet of 16 tones, so that it represents 4 bits of information. With a listening time of 50 ms, for example, the data rate is 80 bits per second.
The tones are selected to be within a frequency band where the signal is detectable above ambient and electronic noise at least two nodes away from the transmitter node so that if one node fails, it can be bypassed by transmitting data directly between its nearest neighbors above and below. In one example, the tones can be approximately evenly spaced in frequency, but the tones may be spaced within a frequency band from about 50 kHz to about 500 kHz. More preferably, the tones are evenly spaced in a period within a frequency band approximately 25 kHz wide centered around or including 100 kHz.
Preferably, the nodes employ a “frequency hopping” method where the last transmitted tone is not immediately re-used. This prevents extended reverberation from being mistaken for a second transmitted tone at the same frequency. For example, 17 tones are utilized for representing data in an MFSK modulation scheme; however, the last-used tone is excluded so that only 16 tones are actually available for selection at any time.
In one aspect, the tubular body is a drill string. In this instance, each of the intermediate communications nodes is preferably placed along an outer diameter of pipe joints making up the drill string. In another aspect, the tubular body is a casing string. In this instance, each of the intermediate communications nodes is placed along an outer surface of pipe joints making up the casing string. In yet another embodiment, the tubular body is a production string such as tubing. In this instance, each of the intermediate communications nodes may be placed along an outer diameter of pipe joints making up the production string.
In one aspect, the method 700 further includes transmitting a signal from the topside communications node to a receiver. This is shown at Box 760. The topside communications node also comprises an independent power source, meaning that it does not also supply power to any other intermediate or sensor communications node. The independent power source may be either internal to or external to the topside communications node. Further, the topside communications node has an electro-acoustic transducer designed to receive the acoustic waves from one or more of the plurality of intermediate communications nodes, and transmit acoustic waves to the receiver as a new signal. Preferably, the topside communications node includes a magnetically activated reed switch or other means to silence radio transmissions from the node without opening the Class 1 Div 1 housing.
The communication signal between the topside communications node and the receiver may be either a wired electrical signal or a wireless radio transmission. Alternatively, the signal may be an optical signal. In any instance, the signal represents a subsurface condition as transmitted by the sensor in the subsurface formation. The signals are received by the receiver, which has data acquisition capabilities. The receiver may employ either volatile or non-volatile memory. The data may then be analyzed at the surface.
As can be seen, a novel downhole telemetry system is provided, as well as a novel method for the wireless transmission of information using a plurality of data transmission nodes. The re-transmission process that takes place along the nodes not only provides a mechanism to remove signal noise, but also increases the signal amplitude. In the system, the repertoire of frequencies used by the nodes for communication, the amplitude of each frequency, the time duration for which each frequency is transmitted, and the time between signals may be optimized to find a balance between data transmission rate and energy used in data transmission.
In one embodiment, the tubular body is made up of joints of pipe that form a casing string. At least some of the joints of pipe and the connected communications nodes are surrounded by a cement sheath.
While it will be apparent that the inventions herein described are well calculated to achieve the benefits and advantages set forth above, it will be appreciated that the inventions are susceptible to modification, variation and change without departing from the spirit thereof.
This application is the National Stage of International Application No. PCT/US2013/076273, filed 18 Dec. 2013, which claims the benefit of U.S. Ser. No. 61/739,414, filed Dec. 19, 2012, the entire contents of which are hereby incorporated by reference herein. This application is also related to U.S. Ser. Nos. 61/739,679 (PCT/US2013/076282), 61/739,677 (PCT/US2013/076286), 61/739,678 (PCT/US2013/076284), and 61/739,681 (PCT/US2013/076278), each filed on Dec. 19, 2012, the entire contents of each of which are also hereby incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/076273 | 12/18/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/100264 | 6/26/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3103643 | Kalbfell | Sep 1963 | A |
3512407 | Zill | May 1970 | A |
3781783 | Tucker | Dec 1973 | A |
4283780 | Nardi | Aug 1981 | A |
4302826 | Kent | Nov 1981 | A |
4314365 | Petersen | Feb 1982 | A |
4884071 | Howard | Nov 1989 | A |
5128901 | Drumheller | Jul 1992 | A |
5234055 | Cornette | Aug 1993 | A |
5373481 | Orban | Dec 1994 | A |
5468025 | Adinolfe | Nov 1995 | A |
5480201 | Mercer | Jan 1996 | A |
5495230 | Lian | Feb 1996 | A |
5562240 | Campbell | Oct 1996 | A |
5592438 | Rorden et al. | Jan 1997 | A |
5697650 | Brown | Dec 1997 | A |
5850369 | Rorden et al. | Dec 1998 | A |
5857146 | Kido | Jan 1999 | A |
5924499 | Birchak | Jul 1999 | A |
5995449 | Green et al. | Nov 1999 | A |
6049508 | Deflandre | Apr 2000 | A |
6125080 | Sonnenschein | Sep 2000 | A |
6177882 | Ringgenberg | Jan 2001 | B1 |
6236850 | Desai | May 2001 | B1 |
6239690 | Burbidge | May 2001 | B1 |
6300743 | Patino | Oct 2001 | B1 |
6400646 | Shah | Jun 2002 | B1 |
6429784 | Beique | Aug 2002 | B1 |
6462672 | Besson | Oct 2002 | B1 |
6670880 | Hall et al. | Dec 2003 | B1 |
6695277 | Gallis | Feb 2004 | B1 |
6717501 | Hall et al. | Apr 2004 | B2 |
6727827 | Edwards | Apr 2004 | B1 |
6816082 | Laborde | Nov 2004 | B1 |
6868037 | Dasgupta et al. | Mar 2005 | B2 |
6899178 | Tubel | May 2005 | B2 |
6912177 | Smith | Jun 2005 | B2 |
6956791 | Dopf et al. | Oct 2005 | B2 |
6980929 | Aronstam et al. | Dec 2005 | B2 |
6987463 | Beique et al. | Jan 2006 | B2 |
7006918 | Economides et al. | Feb 2006 | B2 |
7064676 | Hall et al. | Jun 2006 | B2 |
7082993 | Ayoub et al. | Aug 2006 | B2 |
7140434 | Chouzenoux et al. | Nov 2006 | B2 |
7224288 | Hall et al. | May 2007 | B2 |
7249636 | Ohmer | Jul 2007 | B2 |
7257050 | Stewart et al. | Aug 2007 | B2 |
7277026 | Hall et al. | Oct 2007 | B2 |
7310286 | Jarvis | Dec 2007 | B1 |
RE40032 | van Bokhorst | Jan 2008 | E |
7317990 | Sinha et al. | Jan 2008 | B2 |
7321788 | Addy | Jan 2008 | B2 |
7348893 | Huang et al. | Mar 2008 | B2 |
7411517 | Flanagan | Aug 2008 | B2 |
7477160 | Lemenager et al. | Jan 2009 | B2 |
7516792 | Lonnes et al. | Apr 2009 | B2 |
7595737 | Fink et al. | Sep 2009 | B2 |
7602668 | Liang et al. | Oct 2009 | B2 |
7649473 | Johnson et al. | Jan 2010 | B2 |
7775279 | Marya et al. | Aug 2010 | B2 |
8044821 | Mehta | Oct 2011 | B2 |
8049506 | Lazarev | Nov 2011 | B2 |
8115651 | Camwell et al. | Feb 2012 | B2 |
8162050 | Roddy et al. | Apr 2012 | B2 |
8220542 | Whitsitt et al. | Jul 2012 | B2 |
8237585 | Zimmerman | Aug 2012 | B2 |
8242928 | Prammer | Aug 2012 | B2 |
8330617 | Chen et al. | Dec 2012 | B2 |
8347982 | Hannegan et al. | Jan 2013 | B2 |
8381822 | Hales et al. | Feb 2013 | B2 |
8434354 | Crow et al. | May 2013 | B2 |
8496055 | Mootoo et al. | Jul 2013 | B2 |
8539890 | Tripp et al. | Sep 2013 | B2 |
8544564 | Moore et al. | Oct 2013 | B2 |
8787840 | Srinivasan | Jul 2014 | B2 |
8826980 | Neer | Sep 2014 | B2 |
8833469 | Purkis | Sep 2014 | B2 |
20020026958 | Brisco | Mar 2002 | A1 |
20020043369 | Vinegar | Apr 2002 | A1 |
20020149500 | Beique | Oct 2002 | A1 |
20020153996 | Chan | Oct 2002 | A1 |
20030056953 | Tumlin et al. | Mar 2003 | A1 |
20030117896 | Sakuma | Jun 2003 | A1 |
20030151977 | Shah | Aug 2003 | A1 |
20040065443 | Berg et al. | Apr 2004 | A1 |
20040073370 | Dasgupta et al. | Apr 2004 | A1 |
20040084190 | Hill et al. | May 2004 | A1 |
20040105342 | Gardner et al. | Jun 2004 | A1 |
20040124994 | Oppelt | Jul 2004 | A1 |
20040256113 | LoGiudice et al. | Dec 2004 | A1 |
20040262008 | Deans | Dec 2004 | A1 |
20050024231 | Fincher et al. | Feb 2005 | A1 |
20050039912 | Hall et al. | Feb 2005 | A1 |
20050145010 | Vanderveen et al. | Jul 2005 | A1 |
20050284659 | Hall et al. | Dec 2005 | A1 |
20060002232 | Shah et al. | Jan 2006 | A1 |
20060115095 | Giesbrecht et al. | Jun 2006 | A1 |
20060124310 | Lopez de Cardenas et al. | Jun 2006 | A1 |
20060133203 | James et al. | Jun 2006 | A1 |
20070024464 | Lemenager et al. | Feb 2007 | A1 |
20070029112 | Li et al. | Feb 2007 | A1 |
20070030762 | Huang et al. | Feb 2007 | A1 |
20070103271 | King | May 2007 | A1 |
20070139217 | Beique et al. | Jun 2007 | A1 |
20070146351 | Katsurahira | Jun 2007 | A1 |
20070263488 | Clark | Nov 2007 | A1 |
20080253228 | Camwell | Oct 2008 | A1 |
20090045974 | Patel | Feb 2009 | A1 |
20090159272 | Auzerias et al. | Jun 2009 | A1 |
20090264956 | Rise et al. | Oct 2009 | A1 |
20090277688 | Oothoudt | Nov 2009 | A1 |
20090289808 | Prammer | Nov 2009 | A1 |
20100013663 | Cavender et al. | Jan 2010 | A1 |
20100032210 | Teodorescu | Feb 2010 | A1 |
20100126718 | Lilley | May 2010 | A1 |
20100157739 | Slocum et al. | Jun 2010 | A1 |
20100176813 | Simon | Jul 2010 | A1 |
20100194584 | Savage | Aug 2010 | A1 |
20100214107 | Montebovi | Aug 2010 | A1 |
20110066378 | Lerche et al. | Mar 2011 | A1 |
20110168403 | Patel | Jul 2011 | A1 |
20110186290 | Roddy | Aug 2011 | A1 |
20110275313 | Baldemair et al. | Nov 2011 | A1 |
20110280294 | Luo et al. | Nov 2011 | A1 |
20110297376 | Holderman et al. | Dec 2011 | A1 |
20120017673 | Godager | Jan 2012 | A1 |
20120024050 | Godager | Feb 2012 | A1 |
20120024052 | Eriksen | Feb 2012 | A1 |
20120043079 | Wassouf et al. | Feb 2012 | A1 |
20120076212 | Zeppetelle | Mar 2012 | A1 |
20120090687 | Grisby et al. | Apr 2012 | A1 |
20120170410 | Hay | Jul 2012 | A1 |
20120241172 | Ludwig et al. | Sep 2012 | A1 |
20120256415 | Dole | Oct 2012 | A1 |
20120256492 | Song et al. | Oct 2012 | A1 |
20120257475 | Luscombe et al. | Oct 2012 | A1 |
20130003503 | L'Her | Jan 2013 | A1 |
20130008648 | Lovorn et al. | Jan 2013 | A1 |
20130106615 | Prammer | May 2013 | A1 |
20130110402 | Godager | May 2013 | A1 |
20130118315 | Barnett | May 2013 | A1 |
20130175094 | Ross et al. | Jul 2013 | A1 |
20130248172 | Angeles Boza et al. | Sep 2013 | A1 |
20130248174 | Dale et al. | Sep 2013 | A1 |
20130272708 | Mizuguchi | Oct 2013 | A1 |
20130294203 | Goodman | Nov 2013 | A1 |
20140079242 | Nguyen | Mar 2014 | A1 |
20140152659 | Davidson et al. | Jun 2014 | A1 |
20140266769 | van Zelm | Sep 2014 | A1 |
20140269188 | van Zelm | Sep 2014 | A1 |
20140327552 | Filas et al. | Nov 2014 | A1 |
20140352955 | Tubel et al. | Dec 2014 | A1 |
20150003202 | Palmer | Jan 2015 | A1 |
20150009040 | Bowles et al. | Jan 2015 | A1 |
20150015413 | Gao | Jan 2015 | A1 |
20150027687 | Tubel | Jan 2015 | A1 |
20150285065 | Howell | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
0 636 763 | Feb 1995 | EP |
1 409 839 | Apr 2005 | EP |
WO 2010074766 | Jul 2010 | WO |
WO 2013079928 | Jun 2013 | WO |
WO 2013079929 | Jun 2013 | WO |
WO 2013112273 | Aug 2013 | WO |
WO 2014018010 | Jan 2014 | WO |
WO 2014049360 | Apr 2014 | WO |
WO 2014134741 | Sep 2014 | WO |
Entry |
---|
Author: Department of Defense; Title: Interoperability and Performance Standards for Medium and High Frequency Radio Systems; Date: Mar. 1, 1999, Pertinent Pages: whole document. |
Emerson Process Management (2011), “Roxar downhole Wireless PT sensor system,” www.roxar.com, or downhole@roxar.com, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20150275657 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61739414 | Dec 2012 | US |